
A Requirements Engineering and Management Training Course for
Software Development Professionals

João M. Fernandes
Dept. Informática

Universidade do Minho
Braga, Portugal

jmf@di.uminho.pt

Ricardo J. Machado
Dept. Sistemas de Informação

Universidade do Minho
Guimarães, Portugal
rmac@dsi.uminho.pt

Stephen B. Seidman
College of Natural Sciences and Mathematics

University of Central Arkansas
Comway AR, USA
sseidman@uca.edu

Abstract

Devising a course for software professionals working in
industry depends on several factors. In order to create a
course that fulfils professionals’ expectations, it is important
to take account of the skills of the participants, the time
available, and the specific topics to be covered. This paper
presents the curriculum of a course in requirements engi-
neering and management intended for software developers
with a first-level academic degree in computing and expe-
rience in developing real software solutions. This context
requires the course to concentrate on topics that were not
taught in the participants’ previous education and that can
have a positive impact on their daily practices.

1. Introduction

Typically, after three to five years of employment in
software development, professionals realize that they need
structured insights into specific software engineering topics.
Until this point, topics such as requirements engineering,
project management, and quality are typically not seen
as important, because early-career software development
professionals are essentially technology-driven.

In particular, software requirements is one of the eleven
Knowledge Areas covered by the IEEE Computer Soci-
ety’s CSDP (Certified Software Development Professional)
certification examination. The CSDP exam is designed to
assess candidates with a minimum of 9 000 hours of software
engineering experience.

This paper presents the curriculum of a course in require-
ments engineering and management intended for software
development professionals with a first degree in computing
(computer science, computer engineering, software engineer-
ing, information systems, or information technology) and
experience in developing software solutions in real-world
(industrial) contexts. The course must therefore concentrate
on topics that were not taught during the first degree in
computing and that can have a positive impact on the
professionals’ daily practice. We also discuss how software

development professionals can attend the course for the
following purposes:

• to obtain academic recognition of the education that
they have received beyond the first-cycle degree by
embedding it within a life-long learning scheme of cu-
mulative credits to be used in a second-level academic
degree (equivalent to a U.S. Master’s degree).

• to get preparation for the software requirements section
of the IEEE’s CSDP certification examination.

This paper is organized as follows. Section 2 gives an
overview of the structure and learning objectives of the
course. In section 3, the seven training units that constitute
the course are described. Section 4 discusses some issues re-
lated to academic and professional certification. Conclusions
and some ideas for future work are presented in section 5.

2. Training Course

Most of our students have first-level academic degrees
in computing. They work on the development of software
applications, either as programmers, testers, or project man-
agers. Typically, people conducting requirements activities
also perform work in programming or project management;
they sometimes call themselves analysts/programmers to
reflect the fact that they assume several technical roles when
developing software solutions.

Since requirements activities tend to be less technical than
other software development activities, computing students
and even faculty often perceive them as less important than,
for example, programming, testing, or design. This clearly
suggests that software developers, after leaving university,
are generally not prepared to perform requirements activities
in industrial contexts [14]. This reality is consistent with
the report in [16], which indicates that there is a general
weakness in requirements engineering knowledge in indus-
try. Furthermore, requirements engineering tasks in industry
are often performed in a non-systematic manner. For exam-
ple, requirements elicitation tasks tend to be handled in a
completely ad-hoc manner.

22nd Conference on Software Engineering Education and Training

978-0-7695-3539-5/09 $25.00 © 2009 IEEE

DOI 10.1109/CSEET.2009.24

20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55611732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The lack of requirements engineering expertise in the
software development industry suggests a serious need for
further education [3]. Creating an appropriate course re-
quires careful attention to the skills of the target audience
and the number of hours available. We assume that our
students have a first-level academic degree in computing,
which means that they have solid basic skills in computing
and that they are familiar with a computational approach
to problem-solving. This typically implies that the students
will have great strength in software construction but may
lack other software engineering competencies, such as soft-
ware process, software method, project management, and
organizational issues.

Due to market pressure, companies are sometimes not
willing to allow their employees to spend much time in
educational activities. It is also the case that employees are
not interested in further education in software engineering,
either because they do not recognize the usefulness of
further education, or because they rate further education as
less important to their careers than other activities. These
observations imply that a program of further education
courses needs to be very attractive to potential students and
provide them with skills and knowledge that can be rapidly
and directly applied to their daily tasks. Requirements en-
gineering is highly suited for this purpose. As a discipline,
it encompasses a large set of competences and knowledge
areas, which include elicitation, analysis, documentation,
review, modeling, conflict resolution, prioritisation, team
communication, and problem identification. All of these are
directly applicable in the daily life of a software develop-
ment professional.

The course described here totals 48 contact hours. Given
the limited amount of time available in the course, it is not
possible to cover the entire scope of requirements engineer-
ing and management. Therefore, one of the main challenges
in devising the course was to select topics that give the
students a general idea of the main concepts, approaches,
theories, and challenges associated with requirements en-
gineering and management, as well as some practical and
useful methods, guidelines and hints for applying these
concepts, approaches, theories, and challenges to real-world
software projects.

The course begins with an introduction, followed by six
units that address key topics in requirements engineering and
management:

1) Introduction to requirements engineering;
2) Requirements elicitation;
3) Requirements prioritization;
4) Requirements negotiation;
5) Guidelines for writing requirements;
6) Requirements modeling and specification;
7) Interdependencies and impact analysis.
Each unit consists of 6 contact hours, so that the units

can be completed in two sessions of 3 hours each. In total,

the course consists of 48 contact hours: 42 are used for the
sessions, and 6 hours are used for intermediate and final
assessments.

Wherever possible, each unit begins with a small exercise
that the students are asked to solve, either individually or
in small groups. In this way, the students get a feeling for
the problems addressed by the unit. Some of the exercises
are games or invented situations that the students must play
or analyse. After the students spend 30 minutes working
on the exercise, the instructor makes a presentation and
encourages discussion of the relevant topics. This typically
takes approximately 4 hours and 30 minutes. Before the
instructor’s presentation, the students are asked to identify
some of the topics that they expect to be discussed. For
example, in the unit on requirements elicitation, the students
are asked to describe the requirements elicitation process that
they follow and the elicitation techniques that they use or
know about. In the remainder of the unit, students spend
about one hour working again on the initial exercise, but
they now solve it using the techniques presented in the
unit. The students’ solutions are then discussed by all of
the participants in order to promote discussion and to allow
the instructors to get immediate feedback from the students.

The learning objectives for the course state that students
that successfully complete the course should be able:

• To define the intervention that the requirements en-
gineers must execute during the software life cycle
and to identify the expected involvement of all the
stakeholders.

• To decide how requirements should be captured, specif-
ically by identifying all sources of requirements and the
techniques that should be used.

• To detect and solve conflicts among the candidate
requirements, based on agreed and negotiated solutions.

• To handle the requirements document from structure,
quality and verifiability perspectives. This document
should address both the user and the system require-
ments.

• To analyze and evaluate the requirements document to
make sure that it describes the system under considera-
tion, by inspecting (or formally revising) the document,
or by constructing prototypes.

• To construct models of user and system requirements
based on information obtained during the elicitation
activities.

• To manage requirements change during the software
life cycle by adopting traceability techniques.

3. Course units

In this section, all the seven training units that are part of
the devised training course are described. We explain which
topics are covered by each training unit and show how it is
organized.

21

3.1. Introduction to Requirements Engineering

In this unit, the instructor focuses on the software re-
quirements knowledge area as a critical domain of software
engineering, as outlined in the IEEE Computer Society’s
Software Engineering Body of Knowledge (SWEBOK) [1].
This unit focuses on defining what a requirement is, on the
distinction among different types of requirements (user re-
quirements vs. system requirements; functional requirements
vs. non-functional requirements), and on discussing the
requirements process and its associated activities. Despite
the fact that this unit is primarily devoted to the instructor’s
presentation of the material, students are encouraged to
participate by asking questions or making comments, and
also to reflect on the specific requirements problems they
face daily. The material for this course unit is mainly based
on [1], [2], [17].

3.2. Requirements Elicitation

In this unit, the instructors make a short presentation about
requirements elicitation. They define the concept and empha-
size its communicative nature. Subsequently, the students are
asked to list all the requirements elicitation techniques they
know about. All the techniques mentioned are written on
the blackboard. When a student names a technique, he or
she is asked to describe it succinctly. This initial exercise is
used to draw the attention of the trainees to the full range
of techniques used for requirements elicitation: interviews,
questionnaires, task analysis, domain analysis, introspection,
group work, brainstorming, joint application development,
ethnography, prototypes, goal modelling, scenarios, view-
points, persona, video and photographs, wikis and blogs,
mind maps, creativity workshops, family therapy.

All of these techniques are presented to the class by the
instructor and then discussed. The instructor focuses on the
techniques that the students seem to use or enjoy the most,
but also covers other techniques that he or she feels might
improve the practices of the students. The unit ends by
showing students some project contexts and asking them
to identify the techniques that seem most appropriate for
eliciting the project requirements. This promotes discussion
and gives the instructors immediate feedback on the stu-
dents’ comprehension and retention of the material taught.
The material for this unit is mainly based on [17], [22].

3.3. Requirements Prioritization

The unit begins by asking each student to prioritize a
set of requirements for a software system. The students are
given no criteria or prioritization techniques to be used in
this exercise. However, this exercise provides background for
the rest of the unit, where the following issues are presented
and discussed:

1) the need for requirements to be prioritized,
2) the aspects of requirements prioritization (importance,

penalty, cost, time, risk, volatility),
3) the prioritization techniques (AHP, 100-unit test, nu-

merical assignment, ranking, top-10 requirements),
and

4) the stakeholders involved in the prioritisation process.
The unit ends by asking the students to redo the initial

exercise, but this time to do so by selecting a set of criteria
and a particular technique. The material for this unit is
mainly based on [6].

3.4. Requirements Negotiation

The unit begins by asking each student to choose six
people (from a list of twelve) who are to be put in a
bunker in case of a bombing attack. For this exercise, the
students are expected to apply some of the prioritization
techniques addressed in the previous unit. Students are later
asked to form groups. Each group is asked for a list of the
people who will go to the bunker. The preparation of group
lists requires some sort of negotiation. Students are later
asked to play a small collective game, that follows some of
the characteristics of the Prisoner’s Dilemma, a well-known
problem in game theory. The experience acquired in these
two exercises provides background for the rest of the unit,
which presents and discusses:

1) the need for requirements to be negotiated,
2) the negotiation process, and finally
3) the dimensions of requirements negotiation (conflict

resolution strategy, collaboration situation of stake-
holders, and degree of tool support).

The material for this unit is essentially based on [8], [9].

3.5. Guidelines for Writing Requirements

In this unit, students are initially challenged with two
small requirements documents: one document is very dif-
ficult to understand, while the second has a well-structured
set of requirements. The students’ experience with trying
to understand the requirements for the two systems spurs
discussion about the advantages of having requirements
written in a clear, methodical, and unambiguous way. The
unit focuses on describing a set of practical guidelines for
writing good requirements (e.g., using simple sentences, us-
ing a limited vocabulary, and defining verifiable criteria) and
on analyzing the structure of a requirements specification
template. The material for this course unit is mainly based
on [2], [17].

3.6. Requirements Modeling and Specification

This unit addresses modeling issues in software engineer-
ing, focusing on the models that are most relevant for the

22

activities of the requirements engineering process. At the
beginning of the unit, students are asked to identify different
types of models that they typically use in their software
development projects.

Later, the instructor introduces the notions of abstrac-
tion, refinement, and complexity, and then presents the key
characteristics of a useful model: abstract, understandable,
accurate, predictive, and inexpensive [18]. Several types
of models particularly relevant to requirements engineering
are also introduced and described: state-oriented models
(finite-state machines and high-level Petri nets), activity
oriented models (use case models, data-flow diagrams and
flowcharts), structure-oriented models (UML deployment
and component diagrams), and data-oriented models (entity-
relationship diagrams and Jackson structured diagrams). At
the end of the unit, students are given a small software
problem and are asked to model it with the techniques
introduced in the unit. The models built by the students are
presented and discussed in the session. The material for this
training unit is mainly based on [13].

3.7. Interdependencies and Impact Analysis

This unit deals with questions related to requirements
traceability. The instructors introduce horizontal and vertical
traceability and requirement interdependencies (structural,
constraint, cost/value). Issues related to impact analysis,
including automatable and manual strategies and metrics
are also discussed. At the end of the unit, students are
given a set of requirements related to a software system and
are requested to use the concepts introduced in the unit to
describe their dependencies. Later, changes to the require-
ments are progressively introduced; students are then asked
to use appropriate techniques to deal with these changes.
The solutions obtained by the students are presented and
discussed in the session. The material for this course unit is
mostly based on [4], [11], [7].

4. Academic and Professional Certification

Although the course described above was explicitly cre-
ated for the immediate use of software development profes-
sionals, we believe that the life-long learning efforts of these
professionals can be formally recognized both for academic
and professional credentials.

Since the requirements engineering course is designed for
software developers with first-level (i.e., equivalent to U.S.
Baccalaureate) academic degrees in computing, the course
content, the level of detail and the approach towards problem
solving justifies considering the course as a second-level
(equivalent to U.S. Master’s level) education activity. The
learning outcomes of the course are compatible with those
defined for second-level academic degrees by the EU Dublin
Descriptors that were adopted in the Bologna Process [12].

These general descriptors are concerned with the following
student competences: (1) knowledge and understanding,
(2) applying knowledge and understanding, (3) making
judgments, (4) communication skills, and (5) learning skills.
The course was therefore designed with explicit attention to
the principles stated in the EU Bologna Declaration.

The course is given over a period of 8 weeks; each week
consists of 2 sessions of 3 hours. These 16 sessions corre-
spond to a total of 48 contact hours. In addition to attending
the course sessions, each student must devote up to 92 hours
to self-study, project development and writing an essay. The
global effort of the training course therefore consists of
140 hours, which corresponds to 5 ECTS (European Credit
Transfer and Accumulation System) units.

At the end of the training course, each student who
accomplishes the course’s learning outcomes is credited
with 5 ECTS units toward one of Universidade do Minho’s
Master’s programs that include a major in software en-
gineering. This mechanism is used for each of the five
software engineering courses (requirements engineering and
management, software architecture and design, software
process and maturity, software project planning and control,
software costs and management) that Universidade do Minho
has been offering to the local software industry. Each student
who has completed the five courses is granted the equivalent
of the first year of a Master’s program and is allowed to start
the Master’s dissertation.

The instructors of the requirements engineering course
are faculty members with research interests in requirements
engineering as well as experience with real-world industrial
problems. These faculty members have a strong background
in requirements engineering, as well as an understanding
of the specific needs and motivation of the students. They
can therefore discuss the way in which the methods and
techniques presented in the course are used to solve real-
world problems.

When applying for the CSDP certification offered by
the IEEE Computer Society (www.computer.org/csdp), a
software developer must possess a minimum of 9 000 hours
of software engineering experience within at least six of
the eleven knowledge areas covered by the CSDP program:
(I) business practices and engineering economics, (II) soft-
ware requirements, (III) software design, (IV) software con-
struction, (V) software testing, (VI) software maintenance,
(VII) software configuration management, (VIII) software
engineering management, (IX) software engineering process,
(X) software engineering tools and methods, and (XI) soft-
ware quality. The IEEE Computer Society offers an on-
line course to prepare software professionals for the CSDP
examination. However, this course is intended as a review
for professionals who have already acquired the necessary
knowledge. For software professionals who have not had
much exposure to particular topics in software engineering,
additional training is generally needed. The course in re-

23

quirements engineering and management described in this
paper is intended to provide the necessary training in this
area. It covers all the material included in CSDP knowledge
area II (software requirements) and its fundamental biblio-
graphic resources are the three volumes referenced by the
CSDP program [20], [21], [15].

We feel that our effort to assure a complete alignment
of our industrial courses with the first academic year of
the Master’s program at Universidade do Minho, as well
as with the software requirements knowledge area of the
CSDP examination, is a key feature that is very beneficial
to students, whether they only seek additional professional
training or intend to continue their formal education with
the eventual goal of acquiring a Master’s degree.

5. Conclusions and Related Work

In our opinion, the major challenge is how to introduce
a practical component into the course in the eight weeks
available. From student feedback, it seems clear that most
of the students from industry enjoy the material presented
in the course units, because it usually presents topics that
the students were not taught in their undergraduate studies.
However, the students also expect a more practical flavor
in the course, so that they can see how to rapidly put into
practice some of the concepts, techniques, and approaches.

It might be a good idea to use some of the ideas proposed
in [5]. In this paper, Beatty and Agouridas suggest the use
of extended exercises to help students practice requirements
engineeriing techniques and become aware of the associated
limitations and potentials.

We would like also to put into practice the tag-team lec-
turing approach, as proposed in the context of requirements
engineering by Svahnberg and Gorschek [19]. This approach
uses two instructors in the classroom. One is responsible
for the lecture in the traditional way. The second instructor
gives supplementary information, whenever appropriate. We
have already used tag-team lecturing in workshops on re-
quirements engineering and management for industry, and
feedback indicates that this style of lecturing is seen as
making lectures more dynamic. In particular, we believe
that tag-team lecturing facilitates students’ participation in
class discussions. Once students have seen that multiple
perspectives are acceptable, they are more willing to share
and discuss their own perspectives with the class.

The experiences in teaching WinWin described in [10,
sect. 5.2] are also interesting, since the authors discuss some
practical issues related to teaching requirements negotiation
topics. We expect to incorporate some of those ideas in
future delivers of the course.

It has proved to be difficult to get students’ full attention to
courses that are offered at their place of employment, due to
the proximity of daily work demands. We highly recommend
that software engineering courses directed to professionals

be delivered outside of the daily work environment. Ideally,
this should take place in university facilities.

In summary, we feel that the requirements engineering
course has been very successful, and we regard it as a
template for courses in the other SWEBOK/CSDP areas.

As future work, we plan to similarly analyze and describe
courses in other software engineering knowledge areas (soft-
ware architecture and design, software process and maturity,
software project planning and control, software costs and
management) that we have been offering to professionals
working in the software industry in our region. The sharing
of our experiences with these courses will enable the assess-
ment of the adequacy of this set of topics as components
of a life-long learning program for experienced software
professionals who want to proceed towards second-level
academic qualifications and/or professional certification.

References

[1] Alain Abran, James W. Moore, Pierre Bourque, and Robert
Dupuis. Guide to the Software Engineering Body of Knowl-
edge: 2004 Edition — SWEBOK. IEEE CS Press, New York,
United States, 2004. ISBN 0-7695-2330-7.

[2] Ian F. Alexander and Richard Stevens. Writing Better Re-
quirements. Addison-Wesley, 2002. ISBN 978-0-321-13163-
8.

[3] Jocelyn Armarego. Educating Requirements Engineers in
Australia: effective learning for professional practice. Ph.D.
thesis in Information Technology, School of Computer and
Information Science, University of South Australia, February
2007.

[4] Robert Arnold and Shawn Bohner. Software Change Impact
Analysis. Wiley-IEEE Computer Society Press, June 1996.
ISBN 978-0-8186-7384-9.

[5] Joy Beatty and Vassilis Agouridas. Developing Requirements
Engineering Skills: A Case Study in Training Practitioners. In
Didar Zowghi and Jane Cleland-Huang, editors, Proceedings
of the First and Second International Workshop on Require-
ments Engineering and Training (REET2005 and REET2007),
pages 6–17. Aardvark Global Publishing, March 2008. ISBN
978-1-4276-3012-4.

[6] Patrik Berander and Anneliese Andrews. Requirements
Prioritization. In A. Aurum and C. Wohlin, editors, Engi-
neering and Managing Software Requirements, pages 69–94.
Springer, 2005. DOI 10.1007/3-540-28244-0 4.

[7] Åsa G. Dahlstedt and Anne Persson. Requirements Inter-
dependencies: State of the Art and Future Challenges. In
A. Aurum and C. Wohlin, editors, Engineering and Managing
Software Requirements, pages 95–116. Springer, 2005. DOI
10.1007/3-540-28244-0 5.

[8] Roger Fisher and William L. Ury. Getting to Yes: Negotiation
Agreement Without Giving. Penguin Books, 1983. ISBN 0-
1400-6534-2.

24

[9] Paul Grünbacher and Norbert Seyff. Requirements Negotia-
tion. In A. Aurum and C. Wohlin, editors, Engineering and
Managing Software Requirements, pages 143–162. Springer,
2005. DOI 10.1007/3-540-28244-0 7.

[10] Paul Grünbacher, Norbert Seyff, Robert O. Briggs, Hoh Peter
In, Hasan Kitapci, and Daniel Port. Making Every Student
a Winner: The WinWin Approach in Software Engineering
Education. Journal of Systems and Software, 80(8):1191–200,
August 2007. DOI 10.1016/j.jss.2006.09.049.

[11] Per Jönsson and Mikael Lindvall. Impact Analysis. In
A. Aurum and C. Wohlin, editors, Engineering and Managing
Software Requirements, pages 117–142. Springer, 2005. DOI
10.1007/3-540-28244-0 6.

[12] JQI. Shared ‘Dublin’ descriptors for Short Cycle, First Cycle,
Second Cycle and Third Cycle Awards. Technical report,
Joint Quality Initiative Informal Group, 2004. Available at
www.jointquality.nl. Accessed 22.09.2008.

[13] Ricardo Machado, Isabel Ramos, and João M. Fernandes.
Specification of Requirements Models. In A. Aurum and
C. Wohlin, editors, Engineering and Managing Software
Requirements, pages 47–68. Springer, 2005. DOI 10.1007/3-
540-28244-0 3.

[14] Oliver Minor and Jocelyn Armarego. Requirements Engineer-
ing: A Close Look at Industry Needs and a Model Curricula.
Australasian Journal of Information Systems, 13(1):192–208,
September 2005.

[15] J. Fernando Naveda and Stephen B. Seidman. IEEE Computer
Society Real-World Software Engineering Problems: A Self-
Study Guide for Today’s Software Professional. Wiley-IEEE
Computer Society Press, 2006. ISBN 978-0-471-71051-6.

[16] Uolevi Nikula, Jorma Sajaniemi, and Heikki Kälviäinen. A
State-of-the-practice Survey on Requirements Engineering
in Small- and Medium-sized Enterprises. Technical report,
Telecom Business Research Center, Lappeenranta University
of Technology, Lappeenranta, Finland, 2000.

[17] Suzanne Robertson and James C. Robertson. Mastering the
Requirements Process. Addison-Wesley, 2006. ISBN 978-0-
321-46797-3.

[18] Bran Selic. The Pragmatics of Model-Driven Develop-
ment. IEEE Software, 20(5):19–25, September 2003. DOI
10.1109/MS.2003.1231146.

[19] Mikael Svahnberg and Tony Gorschek. Multi-perspective
Requirements Engineering Education with focus on Industry
Relevance. In Didar Zowghi and Jane Cleland-Huang, editors,
Proceedings of the First and Second International Work-
shop on Requirements Engineering and Training (REET2005
and REET2007), pages 88–97. Aardvark Global Publishing,
March 2008. ISBN 978-1-4276-3012-4.

[20] Richard H. Thayer and Mark J. Christensen. Software
Engineering: Volume 1, The Development Process. Wiley-
IEEE Computer Society Press, 3rd edition, December 2005.
ISBN 978-0-471-68417-6.

[21] Richard H. Thayer and Merlin Dorfman. Software Engi-
neering: Volume 2, The Supporting Processes. Wiley-IEEE
Computer Society Press, 3rd edition, September 2005. ISBN
978-0-471-68418-3.

[22] Didar Zowghi and Chad Coulin. Requirements Elicitation: A
Survey of Techniques, Approaches, and Tools. In A. Aurum
and C. Wohlin, editors, Engineering and Managing Software
Requirements, pages 19–46. Springer, 2005. DOI 10.1007/3-
540-28244-0 2.

25

