
Session F3H

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

F3H-5

Teaching Embedded Systems Engineering in a
Software-Oriented Computing Degree

João M. Fernandes1 and Ricardo J. Machado2

1 Dep. Informática / CCTC - 2 Dep. Sistemas de Informação
Universidade do Minho

 Braga, Portugal

Abstract - Traditional software-oriented computing
degrees do not include courses on embedded systems
design in their syllabus, since in the past embedded
applications were seen as small-sized solutions developed
without the need of engineering approaches. This reality
has dramatically changed in the last decade and nowadays
several embedded systems are quite complex. Embedded
systems present several idiosyncrasies that make their
development more difficult and complex than desktop
solutions, namely when considering non-functional
requirements, time-related deadlines, or the correctness of
the solution.
To be well prepared for their professions, students of
software-oriented computing degrees must acquire skills
and competencies in embedded systems engineering. Being
able to master high-level programming languages and to
develop solutions only for desktop computers means that
the students cannot consider numerous opportunities, after
graduation.
This paper discusses which topics in embedded software
design to include in a second cycle degree on Software
Engineering that was structured to consider the Bologna
Declaration that is now being used in Europe to recast all
university degrees. The syllabus of a 15-ECTS module
dedicated to teach the fundamental concepts of embedded
systems engineering and embedded software development
is also described.

Index Terms - Bologna declaration, Embedded systems,
Master degree, Software engineering.

INTRODUCTION

Nowadays, the majority of the computer-based systems are
embedded devices (i.e., hardware-software solutions quite
different from desktop computers). Additionally, it was
estimated or predicted that by 2010, around 90% of the
programming code will be developed for embedded devices
[1].

However, the dominance of embedded applications in the
market was not yet accompanied by a change in computer
science education [2, 3]. Currently, computer science
education is mainly directed towards the limited needs of the
desktop computing, where students are exposed to the
classical von Neumann architecture and to high-level
programming languages. This has mainly two disadvantages:

(1) students do not see the complete set of potential
employment opportunities; (2) graduates do not have the
adequate skills for working in many application areas.

In a considerable number of universities, the typical
content in an introductory course in embedded systems and
microprocessor design employs an 8-bit processor, so that
students learn how to program in assembly language and how
to implement hardware interfacing to the outside world on a
prototyping board. A modern course in embedded systems
must include a 32-bit processor [4] and several topics related
to the methodological development of systems, namely give
great attention to the analysis and design activities [5].

Embedded systems present a set of characteristics that
make their development extremely hard, especially when it is
necessary to handle non-functional requirements, to meet
time-related deadlines, or to guarantee the correctness of the
solutions. These restrictions are not typically present during
the development of desktop applications.

Additionally, small computing platforms, like PDAs
(Personal Digital Assistants) or mobile phones, are
approaching the capabilities of desktop computers. Overall,
this implies that the level of complexity for developing an
embedded system is similar to the one needed to develop a
desktop application, but the former presents a bigger number
of restrictions that make the development of the software to
run on those devices much more difficult.

The lack of engineers, with specific skills to develop
software for embedded devices, seems to be currently a
common and severe problem in all industrial countries and
application areas [6-8]. This fact, associated with the growing
body of knowledge produced in the field, is creating a growing
interest in proposing curricula on embedded software and
systems for university-level education. A good overview of
some current issues in embedded systems education can be
found in eight articles of the August 2005 issue of the ACM
Transactions on Embedded Computing Systems [9].

This paper discusses which topics in the embedded
computing field must be included in a computing degree that
mainly concentrates on software development, so that its
graduates can approach the market better skilled to face all the
software development problems, namely in the embedded
arena. The focus of the discussion is clearly on the software
parts of embedded systems, even though design of those
systems involves both hardware and software expertise. Our
experience in teaching embedded systems in software-oriented

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55611726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Session F3H

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

F3H-6

courses has shown us that, generally speaking, students are not
motivated for topics in control, electronics, and hardware
design; a similar observation is also reported in [10].
Therefore, we believe that the topics to be taught must give
the students the opportunity to acquire skills in developing
software for embedded devices. This requires them to have the
general knowledge of hardware design that is typically part of
CS, CE and EE curricula.

EMBEDDED SYSTEMS

Some authors claim that defining embedded systems is not
easy. In fact, embedded computing is often defined in a
negative form, by stating that it is “not” application software
executing on the CPU of a general-purpose or desktop
computer [11].

An embedded system can be defined as a combination of
computer hardware and software, and perhaps additional
mechanical and others parts, developed to perform a specific
or dedicated function. Typically, an embedded system is part
of some larger system.

I. Categories of Embedded Systems

Embedded applications vary so much in characteristics: two
embedded systems may be so different, that any resemblance
between both of them is hardly noticed. In fact, the term
“embedded” covers a surprisingly diverse spectrum of systems
and applications, including simple control systems, such as the
controller of a washing machine implemented in a 4-bit micro-
controller, but also complex multimedia or telecommunication
devices with severe real-time constraints or distributed
industrial shop-floor controllers.

Embedded systems can be found in applications with
varying requirements and constraints such as [12]:
• Different production units, from a unique system for a

specific client to mass market series, implying distinct
cost constraints;

• Different types of requirements, from informal to very
stringent ones, possibly combining quality issues, such as
safety, reliability, real-time, and flexibility;

• Different operations, from short-life to permanent
operation;

• Different environmental conditions in terms of radiation,
vibrations, and humidity;

• Different application characteristics resulting in static
versus dynamic loads, slow to fast speed, compute versus
interface intensive tasks;

• Different models of computation, from discrete-event
models to continuous time dynamics.

Koopman et al. divide, from an application point of view,
embedded computing in the following twelve distinct
categories [11]: (1) small and single microcontroller
applications, (2) control systems, (3) distributed embedded
control, (4) system on chip, (5) networking, (6) embedded
PCs, (7) critical systems, (8) robotics, (9) computer
peripherals, (10) wireless data systems, (11) signal processing,
and (12) command and control.

This large number of application areas, with very distinct
characteristics, leads us to the inevitable conclusion that
embedded systems are quite hard to define and describe. This
clearly makes generalizations difficult and complicates the
treatment of embedded systems as a field of engineering.

One possible solution is to agree on a division of the
embedded field, and consider, for example, four main
categories: (1) signal-processing systems, (2) mission critical
control systems, (3) distributed control systems, and (4) small
consumer electronic devices [13]. For each category, different
attributes, such as computing speed, I/O transfer rates,
memory size, and development costs apply. Furthermore,
distinct models of computation, design patterns and modeling
styles are also associated with those categories.

An alternative and simpler classification is proposed in
[14]: (1) reactive, (2) interactive and (3) transformational
embedded systems. The important message to retain here is
that generalization about embedded systems may sometimes
only apply to a specific category.

II. Characteristics and Idiosyncrasies of Embedded Systems

Even though some computing scientists consider very naïvely
or arrogantly that embedded software is just software that is
executed by small computers, the design of this kind of
software seems to be tremendously difficult [15]. An evident
example of this is the fact that PDAs must support devices,
operating systems, and user applications, just as PCs do, but
with more severe cost and power constraints [16]. In this
section, we argue that embedded software is so diverse from
conventional desktop software that new paradigms of
computation, methods and techniques, specifically devised for
developing it, need to be devised and taught.

The principal role of embedded software is not the
transformation of data, but rather the interaction with the
physical world, which is apparently the main source of
complexity in real-time and embedded software [17]. The role
of embedded software is to configure the computer platform in
order to meet the physical requirements. Software that
interacts with the physical environment, through sensors and
actuators, must acquire some properties of the physical world;
it takes time to execute, it consumes power, and it does not
terminate (unless it fails). This clearly and largely contrasts
with the classical notion of software as the realization of
mathematical functions as procedures, which map inputs into
outputs. In traditional software, the logical correctness of the
algorithm is the principal requirement, but this is not sufficient
for embedded software [18].

Another major difference is that embedded software is
developed to be run on machines that are not just computers,
but rather on cars, radars, airplanes, telephones, audio
equipments, mobile phones, instruments, robots, digital
cameras, toys, security systems, medical devices, network
routers, elevators, television sets, printers, scanners, climate
control systems, industrial systems, and so on. An embedded
system can be defined as an electronic system that uses
computers to accomplish some specific task, without being
explicitly distinguished as a computer device. The term

Session F3H

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

F3H-7

“embedded”, coined by the US DoD, comes actually from this
characteristic, meaning that it is included in a bigger system
whose main (the ultimate) function is not computation. This
classification scheme excludes, for example, desktop and
laptop computers from being embedded systems, since these
machines are constructed to explicitly support general-purpose
computing. As a consequence of those divergent
characteristics, the embedded processors are also quite
different from the desktop processors [19].

The behavior of embedded systems is typically restricted
by time, even though they may not necessarily have real-time
constraints [20]. As stated by Zave: “Embedded is almost
synonymous with real-time” [21]. The correctness of a real-
time system depends not only on the logical results of the
computation, but also on the time at which those results are
produced [22]. A common misconception is that a real-time
system must respond in microseconds, which implies the need
to program it in a low-level assembly language. Although
some real-time systems do require this type of answer, this is
not at all universal. For example, a system for predicting the
weather for the next day is a real-time system, since it must
give an answer before the day being forecasted starts, but not
necessarily in the next second; if this restriction is not
fulfilled, the prediction, even if correct, is useless from a
practical point of view.

Embedded systems are also typically influenced in their
development by other constraints, rather than just time-related
ones. Among them one can include: liveness, reactivity,
heterogeneity, reliability, and distribution. All these features
are essential to guarantee the correctness of an embedded
program. In particular, embedded systems are strongly
influenced in their design by the characteristics of the
underlying computing platform, which includes the computing
hardware, an operating system, and eventually a programming
framework (such as .NET or EJB) [23]. Thus, designing
embedded software without taking into account the hardware
requirements is nearly impossible, which implies that, at least
currently, “Write Once Run Anywhere” (WORA) and the
Model-Driven Architecture (MDA) principles are not easily or
directly applicable.

Reactive systems, a class of systems in which embedded
systems can be included, have concurrency as their essential
feature [24]. Put in other words, development of embedded
software requires models of computation that explicitly
support concurrency. Although software must not be, at all,
executed in sequence, it is almost universally taken for granted
that it will run on a von Neumann architecture and thus, in
practice, it is conceived as a sequential process. Since
concurrency is inherent in all embedded systems, it must be
undoubtedly included in every development effort.

With all these important distinctions, one clearly notices
that the approaches and methods that are used for traditional
software are not suitable for embedded software. Embedded
software requires different methods, techniques and models
from those used generically for software. The methods used
for non-embedded software require, at a minimum, major
modifications for embedded software; at a maximum, entirely

new abstractions are needed that support physical aspects and
ensure robustness [25].

The inadequacy of the traditional methods of software
engineering for developing embedded systems appears to be
caused by the increasing complexity of the software
applications and their real-time and safety requirements [26].
These authors claim that the sequential paradigm, embodied in
several programming languages, some object-oriented ones
included, is not satisfactory to adequately model embedded
software, since this type of software is inherently concurrent.

One of the problems of object-oriented design, in what
concerns its applicability for embedded software, is that it
emphasizes inheritance and procedural interfaces. Object-
oriented methods are good at analyzing and designing
information-intensive applications, but are less efficient,
sometimes even inadequate, for a large class of embedded
systems, namely those that utilize complex architectures to
achieve high-performance [27].

According to Lee [25], for embedded software, we need
a different approach that allows us to build complex systems
by assembling components, but whose focus is concurrency
and communication abstractions, and admits time as a major
concept. He suggests the term “actor-oriented design” for a
refactored software architecture, where the components are
not objects, but instead are parameterized actors with ports.
Actors provide a uniform abstract representation of concurrent
and distributed systems and improve on the sequential
limitations of passive objects, allowing them to carry out
computation in a concurrent way [28, 29]. Each actor is
asynchronous and carries out its activities potentially in
parallel with other actors, being thus control distributed among
different actors [30]. The ports and the parameters define the
interface of an actor. A port represents an interaction with
other actors, but does not necessarily have call-return
semantics. Its precise semantics depends on the model of
computation, but conceptually it just represents
communication between components.

M.SC. DEGREE IN SOFTWARE ENGINEERING

The M.Sc. degree runs in four semesters and consists of a total
of 120 ECTS (European Credit Transfer and Accumulation
System). The ECTS system is based on the principle that 60
credits measure the workload of a full-time student during one
academic year. The general structure of the degree is
presented in table 1. More details, namely the contents of the
first year’s modules, are available in [31]
The course’s first year is divided in two one-year modules.
Each 30-ECTS module is composed of five curricular units,
with one of them devoted to integrate the module’s topics, by
adopting a set of laboratorial and practical experiments. The
second year includes either a professional or a scientific path.
In the former, students enroll, during the first semester, in two
15-ECTS modules and, in the second semester, develop an
industrial project. In the latter, students enroll, during the first
semester, in just one 15-ECTS module and start a research
oriented master dissertation, which they continue in full time

Session F3H

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

F3H-8

in the second semester. Each 15-ECTS module is composed of
three 5-ECTS curricular units.

TABLE I
GENERAL STRUCTURE OF THE M.SC. DEGREE

first semester second semester

Module on Analysis and Design (30 ECTS)
first
year

Module on Quality and Management (30 ECTS)

Professional path Scientific path

first sem. second
sem. first sem. second

sem.

1st Module
(15 ECTS)

Module
(15 ECTS)

second

year

2nd Module
(15 ECTS)

Industrial
Project

(30 ECTS) Master Dissertation
(45 ECTS)

Each 15- or 30-ECTS module must obey the following

issues:
• There is a unique assessment (i.e., it exists only one

unique mark for the module, even though it is composed
of five internal curricular units).

• The module is supported by a set of teachers, being one of
them the coordinator.

• Each laboratory must cover a major part of the subjects
included in the other four internal curricular units. All
teachers of the module must accompany it, so that they
can adjust their materials to better support the execution
of the project.

• The project must develop not only the technical
competences of the students, but also planning and
management skills.

The 15-ECTS modules must address one application area

of the main topics of the master course. Each 15-ECTS
module must incorporate the methodological approaches
covered by the first year modules. Examples of these 15-
ECTS modules are: (1) data–oriented enterprise applications;
(2) pervasive software and ubiquitous services; (3) real–time,
embedded and critical systems; (4) industrial informatics and
automation. Students must choose either one or two 15-ECTS
modules, depending on the chosen path (professional or
scientific). In the next section, we present and discuss a
possible syllabus for one of those modules in Embedded
Systems Engineering.

MODULE IN EMBEDDED SYSTEMS ENGINEERING

We propose embedded systems engineering topics, with an
emphasis on the software parts, to be included in a 15-ECTS
module, for both the professional and the scientific paths of
the M.Sc. degree. This 15-ECTS workload seems to be
sufficient to guarantee that students acquire the needed skills
to develop embedded software at a professional level.

The emphasis of the module is on embedded software
development, with hardware-related concepts being only
superficially addressed whenever necessary. Thus, it is
important that students become aware of the differences
between desktop (or traditional) software and embedded
software.
Internally, the module is divided into three courses that will
run in parallel. These three courses are aimed to provide the
students with:
1. The general overview of the principles and

characteristics of embedded systems, as well as a solid
foundation of all the techniques specifically needed to
deal with the design of embedded software solutions.
This course is entitled “Engineering of Embedded
Systems”.

2. The technological capability of programming embedded
solutions by adopting solid architectural models and
patterns and efficient frameworks and development
environments. This course is entitled “Embedded
Software Programming”.

3. The systematic approach of creating decision support
models to analyze conflicting attributes and to help the
adoption of design trade-offs, within a global quality
assessment of architectural and behavioral solutions.
This course is entitled “Modeling and Simulation of
Reactive Systems”.

After completing this 15-ECTS module in Embedded

Systems Engineering, students will be able:
• to make a precise description of an embedded software

system;
• to idealize different solutions to solve the same problem

and evaluate (justifying) which one is the best with
respect to its design quality;

• to configure best practices of software referential design
processes to support the development of embedded
software solutions;

• to use development tools to make the previous tasks
more efficient;

• to identify the technologies that can be used to realize the
specified embedded software solutions.

We present in the next subsections these courses, and for each
one we introduce its topics and discuss its aims.

I. Engineering of Embedded Systems

This course aims to provide students with a general
appreciation of the current trends and application domains of
embedded (hardware/software) systems. It is intended to
characterize the foundations of embedded systems engineering
as a global approach to the development of computer–based
solutions with strong non-functional constrictions to be
integrated in non-computing environments. In particular,
students who successfully complete the course understand the
interplay between the different requirements in a complex
embedded software design, involving issues such as
concurrency, reliability, and timing constraints.

Session F3H

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

F3H-9

The course contents is organized as follows:
1. Introduction (principles and characteristics of embedded

systems).
2. Target architectures (von Neumann architecture, Harvard

architecture, DSPs, ASIPs, reconfigurable technologies,
custom computing machines).

3. Interfacing techniques (pooling and interrupts).
4. Scheduling strategies (rate-monotonic and earliest

deadline first).
5. Models of computation (data-flow, control, synchronous,

reactive).
6. Quality attributes, focusing on non-functional ones

(performance, real-time, dependability, inter-operability,
portability, etc).

7. Application domains (telecommunications, industrial
informatics, home automation).

II. Embedded Software Programming

This course aims to provide students with skills on
programming embedded systems. Students who successfully
complete the course master the principles underlying the
development of software for embedded systems, by adopting
solid methodic approaches. They also have the ability to
compare different models of computation (especially data-
flow and object-oriented) and apply the most adequate ones to
the systems under consideration.

The course contents is organized as follows:
1. Introduction (fundamental concepts and principles of

software design for embedded systems).
2. Embedded software architectures (reference models,

catalogue of patterns).
3. Behavioral composition and synthesis (operational

semantics, transactional and state-orientation
interpretation).

4. Programming languages for embedded systems (Esterel,
Ada, Lustre, C#)

5. Data-flow programming (LabVIEW framework).
6. Object oriented programming (.NET, Java).
7. Code compilation and optimization techniques.

III. Modeling and Simulation of Reactive Systems

This course intends to put students in contact with topics
related to modeling and simulation of behavior-intensive
software systems, which need to address issues like
concurrency, resource sharing, synchronization, and
performance. Students who successfully complete the course
are able to produce models that can be simulated, animated,
and analyzed by tool-supported processes, in order to reason
about the behavioral properties of the system under
development, taken also into account how the environment
affects it.

The course contents is organized as follows:
1. Introduction to quality assessment (properties estimation,

requirements validation).
2. Conflicting attributes and design trade-offs (design space

exploration, design decisions, prioritization).

3. Evaluation of architectural solutions (performance and
dependability analysis).

4. Modeling and analysis of behavior (statecharts, Petri
nets, data-flow diagrams).

5. Simulation, animation and performance evaluation
(Arena and CPN Tools).

CONCLUSIONS

This paper intends to propose a 15-ECTS module on
Embedded Systems Engineering, integrated in a 2-year M.Sc.
degree in Software Engineering. This proposal is made under
the evidence that software engineers with skills in embedded
systems engineering are nowadays needed (and will be even
more in the future) by the industry to design and build
complex embedded computing systems.

The broad competences needed in embedded computing
systems demand careful integration in current degrees, namely
to not unbalance the degree in other important topics.

We hope that the proposal made in this paper helps in
promoting a discussion on the computer science, software
engineering, and education communities about the role and
position that Embedded Systems Engineering deserves in
Computing degrees in general and more specifically in
Software Engineering ones.

ACKNOWLEDGMENT

The authors' views on educational issues were influenced by
internal discussions at their institution about possible
evolution of its software engineering program. The authors are
indebted to their colleagues and other discussion partners who
helped to shape their perspectives. However, the views
presented in this paper carry no institutional endorsement.

REFERENCES

[1] Hartenstein R, “The Digital Divide of Computing”, 1st Conference on
Computing Frontiers (CF ’04), ACM Press, 2004, pages 357–62. DOI:
10.1145/977091.977144.

[2] Mordechai B-A, “The Invisible Programmers”, Conference on Methods,
Materials and Tools for Programming Education (MMT ’06). Tampere
Polytechnic - University of Applied Sciences Publications, 2006.

[3] Cardoso JMP, “New Challenges in Computer Science Education”, 10th
Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’05), ACM Press, 2005, pp. 203–7. DOI:
10.1145/1151954.1067502.

[4] Nooshabadi S, Garside J, “Modernization of Teaching in Embedded
Systems Design? – An International Collaborative Project”, IEEE
Transactions on Education 49(2):254–262, 2006. DOI:
10.1109/TE.2006.872402.

[5] Wolf W, Madsen J, “Embedded Systems Education for the Future”,
Proceedings of the IEEE 88(1):23–30, 2000. DOI: 10.1109/5.811598.

[6] Pak S, Rho E, Chang J, Kim MH, “Demand-driven Curriculum for
Embedded System Software in Korea”, ACM SIGBED Review 2(4):15–
9, 2005. DOI: 10.1145/1121812.1121816.

[7] Yamamoto M, Tomiyama H, Takada H, Agusa K, Mase K, Kawaguchi
N, Honda S, Kaneko N, “NEXCESS: Nagoya University Extension
Courses for Embedded Software Specialists”, ACM SIGBED Review
2(4):20–4, 2005. DOI: 10.1145/1121812.1121817.

Session F3H

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI
37th ASEE/IEEE Frontiers in Education Conference

F3H-10

[8] Broy M, “Challenges in Automotive Software Engineering”, 28th
International Conference on Software Engineering (ICSE 2006), ACM,
2006, pp. 33–42. DOI: 10.1145/1134285.1134292.

[9] Burns A, Sangiovanni-Vincentelli A, “Editorial”, ACM Transactions on
Embedded Computing Systems 4(3):469–71, 2005. DOI:
10.1145/1086519.1086520.

[10] Jogesh K. Muppala, Bringing embedded software closer to computer
science students, ACM SIGBED Review 4(1): 11–16, 2007. DOI:
10.1145/1217809.1217812.

[11] Koopman P, Choset H, Gandhi R, Krogh B, Marculescu D, Narasimhan
P, Paul JM, Rajkumar R, Siewiorek D, Smailagic A, Steenkiste P,
Thomas DE, Wang C, “Undergraduate Embedded System Education at
Carnegie Mellon”, ACM Transactions on Embedded Computing Systems
4(3):500–28, 2005. DOI: 10.1145/1086519.1086522.

[12] Grimheden M, Törngren M, “What is Embedded Systems and How
Should It Be Taught? — Results from a Didactic Analysis”, ACM
Transactions on Embedded Computing Systems 4(3):633–51, 2005.
DOI: .

[13] Koopman P, “Embedded System Design Issues (The Rest of the Story)”,
IEEE International Conference on Computer Design (ICCD ’96), 1996,
pp. 310–7. DOI: .

[14] Edwards S, Lavagno L, Lee EA, Sangiovanni-Vincentelli A, “Design of
Embedded Systems: Formal Models, Validation, and Synthesis.
Proceedings of the IEEE 85(3):366–90, 1997. DOI:
10.1145/1086519.1086528.

[15] Wirth N, “Embedded Systems and Real-Time Programming”. 1st
International Workshop on Embedded Software (EMSOFT 2001),
Springer, 2001, pp. 486–92.

[16] Wolf W, “What is Embedded Computing?”, IEEE Computer,
35(1):136–7, 2002. DOI: 10.1109/2.976929.

[17] Selic B, “Turning Clockwise: Using UML in the Real-Time Domain”,
Communications of the ACM 42(10):46–54, 1999. DOI:
10.1145/317665.317675.

[18] Sztipanovits J, Karsai G, “Embedded Software: Challenges and
Opportunities. 1st International Workshop on Embedded Software
(EMSOFT 2001), Springer, 2001, pp. 403–15.

[19] Conte TM, “Choosing the Brain(s) of an Embedded System”, IEEE
Computer 35(7):106–7, 2002. DOI: 10.1109/MC.2002.1016908.

[20] Stankovic JA, “Real-Time and Embedded Systems”, ACM Computing
Surveys 28(1):205–8, 1996. DOI: 10.1145/234313.234400.

[21] Zave P, “An Operational Approach to Requirements Specification for
Embedded Systems”, IEEE Transactions on Software Engineering SE-
8(3):250–69, 1982.

[22] Stankovic JA, “Misconceptions About Real-Time Computing: A Serious
Problem for Next-Generation Systems”, IEEE Computer 21(10):10–9,
1988. DOI: 10.1109/2.7053.

[23] Selic B, “Physical Programming: Beyond Mere Logic”. Embedded
Software, 2nd International Workshop on Embedded Software
(EMSOFT 2002), Springer, 2002, pp. 399–406.

[24] Manna Z, Pnueli A, “The Temporal Logic of Reactive and Concurrent
Systems: Specification”. Springer, 1992.

[25] Lee EA, “Embedded Software”, Advances in Computers 56, 2002.

[26] Balarin F, Lavagno L, Passerone C, Watanabe Y, “Processes, Interfaces
and Platforms. Embedded Software Modeling in Metropolis”, 2nd
International Workshop on Embedded Software (EMSOFT 2002),
Springer, 2002, pp. 407–21.

[27] Bhatt D, Shackleton J, “A Design Notation and Toolset for High-
Performance Embedded Systems Development”, Lectures on Embedded
Systems, European Educational Forum School on Embedded Systems,
Springer, 1998, pp. 249–67.

[28] Hewitt C, “Viewing Control Structures as Patterns of Passing
Messages”, Journal of Artificial Intelligence 8(3):323–64, 1977.

[29] Agha G, Actors: A Model of Concurrent Computation in Distributed
Systems, MIT Press, 1986.

[30] Ren S, Agha G, “A Modular Approach for Programming Embedded
Systems”, Lectures on Embedded Systems - European Educational
Forum School on Embedded Systems, Springer, 1998, pp. 170–207.

[31] Fernandes JM, Machado RJ, “A Two-Year Software Engineering M.Sc.
Degree designed under the Bologna Declaration Principles”, 1st
International Conference on Software Engineering Advances (ICSEA
2006), IEEE Computer Society Press, 2006. DOI:
10.1109/ICSEA.2006.13.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

