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Sensitivity Analysis for Time Lag Selection to Forecast Seasonal
Time Series using Neural Networks and Support Vector Machines

Paulo Cortez

Abstract— Multi-step ahead forecasting is an important issue
for organizations, often used to assist in tactical decisions. Such
forecasting can be achieved by adopting time series forecasting
methods, such as the classical Holt-Winters (HW) that is quite
popular for seasonal series. An alternative forecasting approach
comes from the use of more flexible learning algorithms, such
as Neural Networks (NN) and Support Vector Machines (SVM).
This paper presents a simultaneous variable (i.e. time lag)
and model selection algorithm for multi-step ahead forecasting
using NN and SVM. Variable selection is based on a backward
algorithm that is guided by a sensitivity analysis procedure,
while model selection is achieved using a grid-search. Several
experiments were devised by considering eight seasonal series
and the forecasts were analyzed using two error criteria
(i.e. SMAPE and MSFE). Overall, competitive results were
achieved when comparing the SVM and NN algorithms with
HW.

I. INTRODUCTION

The ability to forecast the future based on past data is
an important tool to support individual and organizational
decision making. Multi-step ahead predictions (e.g. issued
several months in advance), are needed for tactical decisions,
such as planning production resources [1]. The field of
Time Series Forecasting (TSF) predicts the behavior of given
phenomenon based solely on the past patterns of the same
event [2]. Developments from the Operational Research has
led to statistical TSF methods, such as the Holt-Winters
(HW) [3]. The HW is from the family of exponential
smoothing methods and it is quite used to predict series
with trended and seasonal factors [4]. However, this method
was developed decades ago, when higher computational
restrictions prevailed (e.g. memory and computational power)
and adopts a rather fixed model (i.e. with multiplicative or
additive seasonality), that may not be suited when more
complex components are present in the data.

Advances in information technologies have made it pos-
sible to collect and process massive datasets. Data mining
(DM) techniques [5] aim at extracting useful knowledge
from raw data. There are several DM algorithms, each one
with its own advantages. For example, Neural Networks
(NN) have become popular after the (re-)introduction of
the backpropagation algorithm in 1986 [6]. More recently,
Support Vector Machines (SVMs) have also been proposed
[71[8]. It should be noted that SVMs present theoretical
advantages over NNs, such as the absence of local minima
in the learning phase. Both NNs and SVMs are more flexible
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(i.e. no a priori restriction is imposed) when compared
with classical TSF models, presenting nonlinear learning
capabilities. Thus, NNs and SVMs have been rapidly applied
to TSF [9][10].

When applying NNs and SVMs to TSF, variable and
model selection are critical issues. A sliding time window
is often used to create a set of training examples from
the series. A small time window will provide insufficient
information, while using a high number of time lags will
increase the probability of having irrelevant inputs. Thus,
variable selection is useful to discard irrelevant time lags,
leading to simpler models that are easier to interpret and
that usually give better performances [11][12]. On the other
hand, both NN and SVM have hyperparameters that need
to be adjusted (e.g. number of NN hidden nodes or kernel
parameter) [5]. Complex models may overfit the data, losing
the capability to generalize, while a model that is too simple
will present limited learning capabilities.

Sensitivity analysis is a simple procedure that is applied
after the training phase and analyzes the model responses
when the inputs are changed. This procedure is useful for
measuring input importance and has also been proposed
for variable selection, outperforming other input selection
techniques (e.g. Forward Selection and Genetic Algorithms)
in [13]. Originally proposed for NN, this sensitivity method
can also be applied to other algorithms, such as SVM. In
[14], we presented a new computationally efficient procedure
that performs a simultaneous variable and model selection for
DM tasks. In this paper, we adapt such method for multi-step
ahead forecasting. The sensitivity analysis is used to guide
a backward selection search for the best time lags, while
a grid-search is used for model selection. This approach is
compared with the classical HW method over eight seasonal
series from different domains.

The paper is organized as follows. Firstly, the time series
data, evaluation and forecasting methods are presented in
Section II. Next, the experiments and obtained results are
presented and discussed in the Section III. Finally, closing
conclusions are drawn (Section 1V).

II. MATERIALS AND METHODS
A. Time Series Data

A time series is a collection of time ordered observations
(1,92, ---,yt), each one being recorded at a specific time
t (period) [4]. A time series model (7;) assumes that past
patterns will occur in the future. Another relevant concept is
the horizon or lead time (h), which is defined by the time in
advance that a prediction is issued. Multi-step ahead forecasts
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(h € {1,...,N}) are often performed over monthly series
and are used to support tactical decisions (e.g. leasing of
plant and equipment) [1]. cars

In this work, we address seasonal data, since we believe S K=12
that time lag selection is particularly useful for these series,
as seasonal lags should have a stronger affect in multi-step
forecasts than other ones. This type of series is commonly
present in several domains, such as Agriculture, Finance,
Sales and Production [4]. We selected eight time series, with & —-f-{-{---------7--------t-1--t-14-------------
different characteristics and from different domains (Table I | | I 1 .
and Figure 1). The first seven datasets were selected from > i j i T T
the Time Series Data Library (TSDL) repository [15], while
the last chaotic series is described in [16]. ‘ ‘ ‘ ‘ ‘
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TIME SERIES DATA o _| suns
g ] K=10
Series  Description (years) <
cars Monthly car sales in Quebec (1960-1968) = 7
pigs Monthly number of pigs slaughtered in Victoria (1980-1995) ~ |
pass Monthly international airline passengers (1949-1960) S bbb ] I ,,,,,,,,,,,,,,,,,
gas Monthly gasoline demand in Ontario (1960-1975) L I |

houses  Monthly sales of U.S. houses (1965-1975)

cradfq  Monthly critical radio freq. in Washington, D.C. (1934-1954)
suns Annual Wolfer sunspot numbers (1770-1889)

MG Mackey-Glass chaotic series
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The autocorrelation coefficient is a useful tool to detect =
seasonal components or if a time series is random. It mea-
sures the correlation between a series and itself, lagged of k
periods, and can be computed by [17]:
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where y1,¥2,...,yp stands for the time series and 7y; for } N‘I{' ””””””””””
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the series’ average. Some examples of autocorrelations are
plotted in Figure 2 (z-axis shows the time lags, while y-axis
denotes the 7y, values). In the plots, the seasonal period (K)
is clearly visible. Also, several rj, values are above the 95% o 5 10 15 20
degree of confidence normal distribution bounds (horizontal Fig. 2. Autocorrelations for the cars, suns and MG series (only training
dashed lines), showing that these series are not random and  data was used)

thus can be predicted. It should be noted that autocorrelations

should not be used for time lag model selection (e.g. NN or

SVM), since they only measure linear relationships. Still, we

used the r; values to detect/confirm the seasonal periods (K) TABLE Il

presented in Table II.
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B. Evaluation

. . Seri S 1 Traini Test Set  Total

The global performance of a forecasting model is eval- eres PZ:?S:;‘? K) Dat:";ir;ﬁ Si;: ( 1\$) é)izae

vated by an accuracy measure, such as the Mean Squared cars 12 96 2 108

Error (MSE), Relative Squared Error (RSE) and Symmetric pigs g };g }g }ii
. pass

Mean Absolute Percentage Error (SMAPE): sas 12 173 19 192

er = — 10 houses 12 120 12 132

t =Yt ?t’tfl’;JrN cradfg 12 216 24 240

MSE = 5>, oL, €} suns 10 264 25 289

PN 2 ) MG 17 735 56 791
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Fig. 1. Plots of the time series data (with training and test sets)



where e; denotes the forecasting error at time ¢; y; the desired
value; 9, the predicted value for period ¢ and computed
at period p; P is the present time and N the number of
forecasts. In all M SE, RSE and SM APE metrics, lower
values indicate better forecasts. RSE and SMAPE have
the advantage of being scale independent. A value of RSE
lower than 100% shows that the forecasting model is better
than the naive average predictor, while the SM APE values
range from 0% to 200%.

The holdout validation is commonly used to estimate
the generalization capability of a model [18]. This method
randomly partitions the data into training and test subsets.
Due to the temporal nature of the forecasting domain, we
adopt here a sequential (i.e. time ordered) holdout [19]. Also,
when there is variance in the results (i.e. for NN), we apply
30 runs to the selected model and statistical confidence is
given by the t-student test at the 95% confidence level [20].

C. Holt-Winters Method

The Holt-Winters (HW) is a popular forecasting technique
from the family of Exponential Smoothing methods. The
predictive model is based on underlying patterns, such as
trends and seasonality, that are distinguished from random
noise by averaging the historical values [3]. Its popularity
is due to advantages such as reduced computational demand,
simplicity of use and accuracy of the forecasts, specially with
seasonal series. The multiplicative model is defined by [4]:

Level St = OCDZJEK + (]. — OZ)(Stfl + thl)
Trend Tt = ﬁ(St — Stfl) + (1 — B)Tt,l
Seasonality Dy =4 + (1 —7)Di—k

ttht = (St + hTy) X Dyi_gqn

where Sy, T; and D; denote the level, trend and seasonal
estimates and «,  and ~ are the model parameters. When
there is no seasonal component, the ~y is discarded and the
D;_ 4 factor in the last equation is replaced by the unity.
To optimize the HW parameters, we adopt a grid search
for the best training error (i.e. M SFE), which is a common
procedure within the forecasting field.

3)

D. Neural Networks

Neural Networks (NNs) are innate candidates for forecast-
ing due to their nonlinear and noise tolerance capabilities.
The use of NNs for TSF began in the late eighties with en-
couraging results and the field has been consistently growing
since [9][1][11][19].

Any regression algorithm (e.g. NN, SVM) can be ap-
plied to TSF by adopting a sliding time window, defined
by the set of time lags {ki,ko,...,kr} used to build a
forecast. For a given time period ¢, the model inputs are
Yt—kys- -+ Yt—ko,Yt—k, and the desired output is y:. For
example, let us consider the series 61, 109, 143, 184,235 (y+
values). If the {1,3} window is adopted, then two training
examples can be created: 6,14 — 18 and 10,18 — 23.
After training, the last known values are fed into the model
and multi-step forecasts are built by iteratively using 1-ahead
predictions as inputs [19].

Input Layer: Hidden Layeri Output Layer

+1

Fig. 3. Example of a multilayer perceptron

We use fully connected multilayer perceptrons (the most
popular NN), with one hidden layer of H nodes and bias
connections (Figure 3). To introduce nonlinearity, the logistic
activation function is applied on the hidden nodes, while in
the output node uses a linear function, to scale the range of
the outputs [11]. The overall model is given in the form:

~ o—1
Yt,t—1 = Wo,0 + Zj:[+1

(Y imt Yemr—ien Wi + W50 Wo,

“
where w; ; denotes the weight of the connection from node
j to ¢ (if 5 = O then it is a bias connection), o denotes the
output node and f the logistic function (H_%).

Since NN training is not optimal, the final solution is
dependent of the choice of starting weights. To solve this
issue, the solution adopted is to use an NN ensemble, where
R different networks are trained and the final prediction
is given by the average of the individual predictions [5].
In general, ensembles are better than individual learners,
provided that the errors made by the individual models are
uncorrelated, a condition easily met with NNs, since the
training algorithms are stochastic in nature [21].
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Fig. 4. Boxplots of the effect of increasing the NN ensemble size

To show the effect of increasing the ensemble size (R €
{1,3,5,7,9}, Figure 4), we selected series gas, the sliding
time window {1,2,...,13}, a NN with 13 inputs and 6
hidden nodes (H = 6). The training data (173 elements) was
divided into training (with the first 154 values) and validation
sets (last 19 values). We applied 30 runs for each ensemble
and measured the forecasting error (SM APE values) on



the validation set. From the figure, it is clear that when
R is increased, both the mean and standard deviation of
the errors are reduced. We found that such effect was also
consistent for other series. Since increasing R also increases
the computational effort, in this work we fixed the ensemble
size to a reasonable R = 7.

E. Support Vector Machines

Several works also proposed the use of Support Vector
Machines (SVM) to the forecasting domain [10][12]. In
SVM regression [8], the input Y = (Ye—k,, - - - » Yt—ko» Yt—k; )
is transformed into a high m-dimensional feature space,
by using a nonlinear mapping (¢) that does not need to
be explicitly known but that depends of a kernel function.
Then, the SVM algorithm finds the best linear separating
hyperplane, tolerating a small error (¢) when fitting the data,
in the feature space:

m
Gei1 =wo+ Y wici(y) S
i=1
The e-insensitive loss function sets an insensitive tube around

the residuals and the tiny errors within the tube are discarded
(Figure 5).

support- -+~
vectors -

Fig. 5. Example of a linear SVM regression and the e-insensitive loss
function (adapted from [8])

We adopt the popular gaussian kernel, which presents
less parameters than other kernels (e.g. polynomial) [22]:
exp(=Al|z—2'||?), A > 0. The SVM performance is affected
by three parameters: A, € and C' (a trade-off between fitting
the errors and the flatness of the mapping). To reduce the
search space, the first two values are set using the heuristics
[23]: C = 3 (for a standardized output) and ¢ = &/ VN,
where 6 = 1.5/N x Zﬁvzl(yi — 4;)? and g; is the value
predicted by a 3-nearest neighbor algorithm.

F. Variable and Model Selection

Given the setup adopted, the forecasting performance of
the DM algorithms is affected by both time lag and model
selection. A better generalization, due to the reduced input
space, is achieved if only relevant time lags are fed into the
models [12]. On the other hand, a NN with few hidden nodes
has limited learning capabilities, while an excess value of H
leads to overfitting. Regarding the SVM, the kernel parameter
(M) produces the highest impact in the SVM performance
(when compared to C' or €), with values that are too large or
too small leading to poor predictions.

Sensitivity analysis [13] is a procedure that is applied
after the training phase and analyzes the model responses
when the inputs are changed. Let §;_(j) denote the output
obtained by holding all input variables at their average values
except y:—k, which varies through its entire range with
j € {l,...,L} levels. If a given input variable (y;_j) is
relevant then it should produce a high variance (V}). Thus,
its relative importance (Rj) can be given by:

Vi = Y (Ge-r() — 9e-rG)? /(L= 1)
Ry = Vi/Yi_, Vix 100 (%)

This is a simple procedure that only measures single input
variance and not interactions of inputs. Yet, even with this
limitation, this computationally fast procedure has outper-
formed other more sophisticated algorithms (e.g. genetic
algorithms) for variable selection [13].

To show how the sensitivity analysis works, Figure 6 plots
the responses (y—axis) when the lags k1 = 1, k5 = 5 and
k13 = 13 are varied through L = 6 levels for series cradfq
(using only training data). In this example, we fitted a SVM
with 13 inputs and A = 27°. In the plot, it is clear that the
first lag is most important one (leading to a higher V), while
the lag k5 = 5 hardly affects the SVM responses.
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Fig. 6. Example of the sensitivity analysis procedure

We propose a simultaneous variable and model selection
procedure for multi-step ahead forecasting (Algorithm 1).
The method starts with all time lags and iteratively deletes
one input until there are no time lags. The sensitivity analysis
is used to select the least relevant lag to be deleted in each
iteration, allowing a reduction of the computational effort
by a factor of I when compared to the standard backward
procedure. During a given iteration, a grid search is used to
find the best model hyperparameter (p € {p1,...,pn}). The
training data is divided into training and validation sets. The
former, with 2/3 of the training data, is used to train the DM
model. The latter, with the remaining 1/3, is used to estimate
the model generalization capabilities. After the variable and
model selection phase, the final model is retrained using all
training data.

Algorithm 1 Variable and model selection for TSF



Input: K,,,, — the maximum time lag, S — the time series,
M — the DM model (e.g. NN or SVM), {p1,...,pn} —
the model parameter grid search set

1. Gy < inf; W —{1,2,..., Kjnas} (time window)
2. while #W >0

3. do D « create training data using S and W

4. split D into training (7") and validation sets (V')
5. Gbp «— inf

6. for p — {p1,...,pn}

7. do Myy, < fit model M with T" and p

8. G, « error estimate of My, in V

9. if Gp < Gbp

10. then Gy, — Gp; pp — p

11. Ry < compute relative importances of My,
12. Rypin + min(Ry)

13. if Gy < G

14. then Gy — Gop; Wi — W5 pow < D

15. W « delete R,,;, from W

16. D « create training data using S and W,
17. Mw, p,., < fit model of type M with D and py,,
18. return My, p, .

III. EXPERIMENTS AND RESULTS

All experiments reported in this work were written in the
R environment, a open-source tool for statistical and data
analysis [24]. In particular, we adopted the rminer library
[25], which facilitates the use of NN and SVM in R. We
adopted the default R parameters for all models. The HW
models are based on the implementation provided by the
stats R package. Before fitting the NN/SVM models, the
data was first standardized to a zero mean and one standard
deviation [26]. In the training stage, the NN initial weights
were randomly set within the range [—0.7,0.7] and then
trained using 100 epochs of the BFGS algorithm (nnet
package), while the SVM fit is based on the Sequential
Minimal Optimization implementation provided by LIBSVM
(kernlab package). After training, the NN/SVM outputs
were post-processed with the inverse of the standardized
transform.

The HW parameters were optimized using a 0.01 grid
search and are presented in Table III. The seasonal coefficient
(7y) is used by all series. The trended component (3) was
detected in all cases except cars, suns and MG.

TABLE III
HOLT-WINTERS FORECASTING MODELS

Series «a I6] ¥
cars 0.30 0.00 0.31
pigs 0.33  0.01 040
pass 0.33  0.03 1.00
gas 0.03 028 0.34
houses 0.79 0.03 0.89
cradfq 044 0.06 0.52
suns 0.92 0.00 1.00
MG 093 0.00 1.00

Regarding NN and SVM, we set K., = K + 1 (e.g.
Knar = 13 for the cars series). The intention is to include
all up to the seasonal lag plus an additional one that may
be relevant for trended series. The hyperparameters were
searched within the ranges H € {0,1,...,9} [5] and
A€ {2715 2713 23} [22] (in a total of 10 searches
for each NN/SVM). We used the M SE metric during the
model selection stage. The rationale is to reduce extreme
errors that may highly affect multi-step ahead forecasts. The
sensitivity analysis parameter was set to L. = 6. The best
forecasting models, as detected by the variable and model
selection algorithm, are shown in Tables IV and V. Linear
NN models were selected for series pigs, pass, gas and suns,
while the highest number of H = 9 was selected for MG.
The A values range from 277 to 273. Regarding the selected
time lags, the seasonal period (/) was kept for all models,
except for sun (SVM) and MG (NN and SVM) series This
is not a surprising result, as the autocorrelation analysis is
less valid for nonlinear series. In some cases, few or no lags
were deleted (e.g. series cars), while a substantial reduction
was performed for the last two series (e.g. 9 lags of the
suns series were deleted for both NN and SVM). As an
example, Figure 7 plots the best validation error (in terms of
MSE/MSEy, where M SEj is the error when all time lags
are used, y—axis) during the search for the best set of time
lags for series MG and SVM. In this case, after 7 deletions,
an improvement of 64 pp is achieved.
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Fig. 7. Example of search for the best MG time lags

TABLE IV
BEST NN FORECASTING MODELS

Series H  Window #lag deletions
cars 1 {1,2,..., 13} 0
pigs 0 {1,2...., 13} 0
pass 0 {1.2,..., 13} 0
gas 0 {2,3,4,7,9,1 1,12} 6
houses 1 {1,2,3,4,5,7,8,10,11,12,13} 2
cradfq 4 {1,2,8,9,12,13} 7
suns 0 {1,2,3,9,10} 9
MG 9 {1,2,4,5,6,7,8,11,12} 9




TABLE V
BEST SVM FORECASTING MODELS

Series X Window #lag deletions
cars 2-7  {1,2,...,12} 1
pigs 2-7  {1,2,3,4,6,8,10,12} 5
pass 2=7  {6,7,10,12,13} 8
gas 279 {1,2,3,45,6,7.9,10,11,12} 2
houses 277 {1,3.4,6,7,8,9,10,11,12,13} 2
cradfg  27°%  {1,24,6,7.8,9,10,11,12,13} 2
suns 277 {1,2,48,11} 9
MG 273 {2,456,7.89,10,11,12,15} 7

After the model selection stage, the forecasts were per-
formed for each method, using a lead time from i =1 to NV
(the NV values are shown in Table II); i.e. no test set data
was used to compute the predictions. In case of the NN,
30 runs were applied to the selected model and the results
are presented in terms of the average and respective 95%
confidence intervals.

Tables VI and VII show the forecasting errors (over the
test data) for each method. In the tables, the best values are
in bold. Paired t-tests were used to compare the NN results
with the remaining methods for each series. In all cases, the
differences are significative (i.e. p-value< 0.05). The last row
denotes the average for each method, when the considering
all eight series. For table VII, the average was computed
using RSFE (and not M SFE) values, since RSE errors are
scale independent.

In terms of the SMAPE metric (Table VI), SVM is
the best method in 5 of the 8 series, while HW and NN
achieved the best results in 2 and 1 cases, respectively. When
comparing NN and HW, the former outperforms the latter
in 6 of the 8§ series (in particular, HW performs poorly for
series houses, suns and MG). Thus, the average SM APFE
for all eight series favors NN when compared to HW. It
is interesting to notice that the M SFE results (Table VII)
show similar rankings for the forecasting methods. The few
exceptions are series pigs, where SVM is better than HW,
and cradfq, where HW outperforms NN. In some cases, the
differences between the errors are higher when compared to
Table VI. For instance, the SVM performance is much better
than NN and HW for series cradfq. Overall, SVM presents
the best results (best method in 5 series and lowest RSE
average). Next comes NN, which outperforms HW in 5 series
and presents the second lowest RSFE average.

For demonstrative purposes, Figure 8 plots two examples
of the NN/SVM forecasts (x-axis denotes the lead time,
i.e. h). To improve clarity, only the last 20 predictions are
presented for MG. Both graphs show a good fit by the
SVM forecasts, in particular for the MG series. Another
relevant issue is related with the computational complexity.
The proposed approach does not require heavy computation.
With an Intel Core 2 Duo 2.53 GHz processor, the variable
and model selection algorithm processing times for the two
examples were: gas — 14s for SVM and 54s for NN; MG —
84s for SVM and 178s for NN.

TABLE VI
COMPARISON OF THE FORECASTING ERRORS (SM APE VALUES, IN %)

Series HW NN SVM
cars 7.98 9.2540.01 9.72
pigs 6.82 6.30+0.00 7.20
pass 3.60 4.88+0.00 9.08
gas 7.89 7.67+0.00 4.08
houses 42,53  15.4940.02 10.68
cradfq 24.64 2221£1.36 10.71
suns 75.21  59.80+£0.00 42.33
MG 32.45 3.7240.75 2.11
Average 25.14 16.17 11.99
TABLE VII

COMPARISON OF THE FORECASTING ERRORS (M SE VALUES)

Series HW NN SVM
cars 3.46x10° 3.7840.00 x 10° 4.05x10°
pigs 7.47%107 5.7440.00 x 107 6.85x107
pass 3.39x10? 5.60+0.00 x 102 28.93x102
gas 4.10x108 4.0540.00 x 108 1.32x108
houses 30.9x 10! 5.70+0.01 x 10" 2.93x10!
cradfq 17.29x10~1  29.07+£3.81 x 10~!  6.65x10~!
sun 2.64x103 1.56+0.00 x 103 1.03x103
MG 103.55x10~3 1.654£0.63 x 1073 0.46x10~3
Average® 147.9% 94.5% 47.2%

@ — Average of RSE values.

IV. CONCLUSIONS

Multi-step ahead forecasting is an important tool to sup-
port tactical decisions, such as planning production resources.
Such type of predictions can be achieved using Time Series
Forecasting (TSF) methods, which predict the future based
on past values of the same event. Several classical TSF
methods have been proposed, such as the Holt-Winters (HW)
model, which is popular for seasonal series. An interesting
alternative comes from the use of more powerful and flexible
algorithms, such as Neural Networks (NNs) and Support
Vector Machines (SVMs) For TSF, the performance of these
algorithms depends on a correct setting of inputs (i.e. time
lags used to build the training cases) and hyperparameters
(e.g. number of hidden nodes of the NN architecture or SVM
kernel parameter).

In this work we proposed a computationally efficient
variable and model selection algorithm for multi-step ahead
forecasting, where time lag selection is based on a backward
selection procedure that is guided by a sensitivity analysis
and model selection is based on a grid-search. We applied
such algorithm to both NN and SVM techniques over eight
seasonal time series and the obtained multi-step forecasts
were analyzed under two error criteria: SM APFE and M SE.
Competitive results were achieved, with SV M being the best
method in 5 of the 8 series. The NN was ranked as the
second best method, outperforming HW in 6 (SM APE) and
5 (M SFE) of the series, while presenting also a lower average
(over all series) forecasting error. In particular, high quality
results were achieved by SVM for the Mackey-Glass chaotic
series.
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Fig. 8. Example of the multi-step ahead forecasts for series gas and MG

As future work, we intend to explore additional forecasting
methods, such as Random Forests [27]. We also intend
to apply the proposed forecasting techniques to real-world
applications, such as Internet traffic and spam email arrival
prediction.
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