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AABBSSTTRRAACCTT  

Most solid tumours rely on glycolysis for energy production, even in conditions of high 

oxygen tension (‘‘aerobic glycolysis’’, also known as the Warburg effect), giving rise to enhanced 

lactate production. This lactate production is responsible for extracellular acidification, which, 

conditioning the tumour environment, favours tumour invasion and suppresses anticancer immune 

response. Transport of lactate across the plasma membrane is mediated by a family of proton-

coupled monocarboxylate transporters (MCTs), which comprises 14 members. The isoforms 

MCT1-MCT4 are proton symporters that exhibit different affinities for lactate, leading to different 

levels of tissue expression. Since some MCT isoforms (especially MCT1 and MCT4) play a role 

in the intracellular pH homeostasis, by exporting the accumulating lactic acid, they are up-

regulated in glycolytic tumours, where high levels of lactate are produced, such as high grade 

gliomas, colorectal carcinomas and lung cancer. However, the role of MCTs in tumours is far from 

being well understood and their potential as therapeutic targets is poorly explored, being the main 

aim of this work to further elucidate the significance of MCT expression in solid tumours. 

Thus, MCTs expression and their clinic-pathological value were evaluated in human series 

of colorectal, cervical, gastric and breast carcinomas. Also, MCT regulation by chaperones was 

further investigated by analysing CD147 in cervical, gastric and breast carcinomas series, as well 

as performing a screening in colorectal, breast, lung and ovary tumour samples, where CD44 

expression was evaluated, as a putative MCT chaperone, in addition to CD147. Finally, some in 

vitro studies were performed, to determine the contribution of MCTs to cancer cell metabolic 

profile and viability. 

Importantly, up-regulation of MCTs, in particular MCT1, was found in colorectal, cervical 

and breast carcinomas, but not in gastric carcinomas, which, in fact, showed a decrease of MCT4 

along towards malignancy. Also, MCT1 was associated with poor prognosis, especially in breast 

carcinomas, as well as in gastric carcinoma where MCT1/CD147 co-expression was associated 

with poorer patient prognostic. Also, as anticipated, CD147 was found to be co-expressed with 

both MCT1 and MCT4 in the large series studied (cervical, gastric and breast carcinomas). In the 

tumour screening, CD44 was only associated with MCT1 in lung cancer, however, series were 

very small and some results warrant further attention. Finally, the in vitro studies showed a CHC-

induced inhibition of cell proliferation in human breast cancer cell lines that was, in some cases, 

accompanied by metabolic alterations. 
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In conclusion, the results presented in this thesis have an important impact on the 

comprehension of MCT contribution to malignant phenotype and pave the way for further studies 

aiming to the development of cancer therapies directed to MCTs. 
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RREESSUUMMOO    

A maioria dos tumores sólidos depende da glicólise para produção de energia, mesmo em 

condições de alta pressão parcial de oxigénio (“glicólise aeróbia”, também conhecida como o 

efeito de Warburg), dando origem a uma maior produção de lactato. Esta produção de lactato é 

responsável pela acidificação extracelular, o que condiciona o ambiente do tumor, favorecendo a 

invasão tumoral e a supressão da resposta imune contra o tumor. O transporte de lactato através da 

membrana plasmática é mediado pelos transportadores de monocarboxilatos (MCTs), que 

pertencem a uma família composta actualmente por 14 membros. O transporte mediado pelas 

isoformas MCT1-MCT4 é um simporte com protões e cada isoforma possui afinidade distinta para 

o lactato, apresentando uma distribuição diferente nos vários tecidos. Uma vez que algumas 

isoformas (especialmente o MCT1 e o MCT4) desempenham um papel na homeostasia 

intracelular, ao exportar o ácido láctico acumulado, está descrito um aumento destas isoformas em 

alguns tumores glicolíticos, onde são produzidos níveis elevados de lactato, como seja em gliomas 

de alto grau, carcinomas colorectais e cancro do pulmão. No entanto, o papel dos MCTs em 

tumores está longe de ser completamento elucidado e o seu potencial como alvo terapêutico ainda 

se encontra pouco explorado, sendo o objectivo principal deste trabalho caracterizar o papel dos 

MCTs em tumores sólidos. 

Assim, a expressão e valor clínico-patológico dos MCTs foram avaliados em séries humanas 

de carcinoma colorectal, do colo do útero, do estômago e da mama. Para além disso, a regulação 

dos MCTs por proteínas chaperonas foi investigada, analisando a expressão da CD147 nas séries 

de carcinoma do colo do útero, do estômago e da mama, assim como a realização de um estudo-

piloto onde a expressão da CD44, outra possível chaperone dos MCTs, foi avaliada em tumores 

colorectais, da mama, do pulmão e do ovário, para além da CD147. Finalmente, alguns estudos in 

vitro foram realizados de modo a elucidar a contribuição dos MCTs para o perfil metabólico e 

viabilidade das células tumorais. 

De notar que um aumento na expressão dos MCTs, em particular do MCT1, foi encontrado 

nos carcinomas colorectal, do colo do útero e de mama, mas não nos carcinomas gástricos, que, na 

realidade, mostraram uma diminuição do MCT4 com o aumento da malignidade. Além disso, a 

expressão do MCT1 foi associada a um pior prognóstico, em especial nos carcinomas da mama, 

assim como no carcinoma gástrico, onde a co-expressão do MCT1 com a CD147 foi associada a 

um pior prognóstico do paciente. Como antecipado, a CD147 estava co-expressa quer com o 

MCT1 quer com o MCT4, quando avaliado nas séries de maior dimensão (carcinomas do colo 

uterino, gástrico e da mama). No estudo-piloto, a CD44 estava associada apenas com o MCT1 no 
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cancro do pulmão, no entanto, o tamanho das séries era muito reduzido e alguns dos resultados 

obtidos merecem ser explorados no futuro. Finalmente, os estudos in vitro mostraram que o 

tratamento com CHC induz uma inibição da proliferação celular em linhas celulares de tumor da 

mama, a qual foi, em alguns casos, acompanhada por alterações metabólicas. 

Em conclusão, os resultados apresentados nesta tese têm um grande impacto na 

compreensão da contribuição dos MCTs para o fenótipo maligno e abrem caminho para estudos 

posteriores que visem ao desenvolvimento de terapias anti-tumorais direccionadas aos MCTs. 
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AAIIMMSS  AANNDD  TTHHEESSIISS  LLAAYYOOUUTT  

Accumulation of lactate in the tumour microenvironment is a widely described event and 

this lactate has been associated with poor prognosis in cancer patients. Also, lactate has been 

recently described as the key metabolic intermediate in the metabolic symbiosis between 

glycolytic cancer cells and oxidative cancer cells. Monocarboxylate transporters (MCTs), as 

facilitators of lactate efflux from cells, mainly the isoforms 1 and 4, are key proteins in cancer cell 

metabolism and survival. Actually, these membrane proteins have been pointed out several times 

as promising cancer therapeutic targets. However, studies on MCT contribution to the malignant 

phenotype are still scarce and more basic scientific efforts on this matter are needed, which will 

probably result in important findings, with clinical implications. 

Therefore, the main aim of this thesis was to further characterise MCT expression in 

different human solid tumours, as well as to give a contribution to understand the role of MCT in 

cancer cell hyper-glycolytic phenotype, providing evidence for the exploitation of MCTs as 

potential targets for cancer therapy. 

 

In Chapter 1, a general introduction to the thesis subject is provided, with special emphasis 

on MCT family members, their role in homeostasis and disease, as well as their regulation and 

inhibition. The current knowledge on MCT contribution to tumour microenvironment, lactate 

production and its contribution to the malignant phenotype and the potential of MCTs as targets in 

cancer therapy are also reviewed. 

 

In Chapters 2-5, MCT characterisation in human solid tumours, including results already 

published, is presented, giving a contribution to the knowledge on MCT behaviour in cancer 

metabolic adaptations. Characterisation of MCT expression in colorectal carcinoma is presented in 

Chapter 2. In Chapter 3, MCT expression, as well as expression of MCT1 and 4 chaperone, 

CD147, in cervical carcinoma are shown. Characterisation of MCT and CD147 expression in 

gastric carcinomas is included in Chapter 4. Finally, Chapter 5 provides the results obtained in 

breast cancer, both in human samples and in in vitro models. Besides the published results on 

MCT and CD147 characterisation in breast carcinoma, Chapter 5 also includes results, already 

submitted for publication, where the expression of MCTs was associated with proteins implicated 

in the metabolic adaptation to hypoxia, i.e. CAIX and GLUT1. Also, unpublished results of in 

vitro MCT inhibition in human breast cancer cell lines, to evaluate the contribution of MCTs for 

cancer cell metabolic profile and survival, are presented in Chapter 5. 
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Moreover, as MCT regulatory mechanisms are still poorly elucidated, Chapter 6 presents 

the published results of a screening study (in a commercial tissue microarray containing breast 

carcinomas, colon adenocarcinomas, non-small cell lung cancer and ovarian adenocarcinomas), 

where the recently described MCT regulation by CD44 is explored, in addition to CD147. 

 

Finally, in Chapter 7, the main conclusions of Chapters 2-6 are summarised and further 

discussed, and some important future directions are suggested. 
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11..11..  MMOONNOOCCAARRBBOOXXYYLLAATTEE  TTRRAANNSSPPOORRTTEERRSS  

Monocarboxylic acids play a major role in cellular metabolism, with lactate, the end product 

of glycolysis, being especially important. For some highly glycolytic tissues such as red blood 

cells, white muscle and tumour cells, which rely on glycolysis for energy supply, lactate is 

produced in high rates and so must be rapidly expelled out of the cell, to maintain high rates of 

glycolysis. On the other hand, in brain or cardiac and red muscles, where lactate is oxidised as a 

respiratory fuel, or kidney and liver were lactate is the major gluconeogenic substrate, lactate must 

be rapidly transported into the cell [1]. Transportation of monocarboxylates through the plasma 

membrane was originally thought to be via non-ionic diffusion of the free acid, however, 

following demonstration that lactate and pyruvate transport into human erythrocytes could be 

strongly inhibited after treatment with chemicals [2], a specific monocarboxylate transport 

mechanism was recognised. After extensive characterisation of monocarboxylate transport in 

different cell types like erythrocytes, cardiac myocytes and hepatocytes, among others, the 

different characteristic observed led to the hypothesis of the existence of a family of 

monocarboxylate transporters (for review see [3]). 

 

 

11..11..11..  TTHHEE  MMCCTT  FFAAMMIILLYY    

The monocarboxylate transporter (MCT) family is presently composed by 14 members 

(Table 1), and belongs to the major facilitator superfamily [4]. MCTs are encoded by the SLC16 

gene family [5], which is conserved among species, including rat, mouse, chicken and others. 

Hydropathy plots predict 10-12 α-helical transmembrane domains (TMD) for MCT members, with 

both N- and C-termini located within the cytoplasm [5], as illustrated in Figure 1 for MCT1. Like 

members of other families, MCTs exhibit the highest sequence conservation in TMDs and in the 

shorter loops between TMDs. In contrast, the hydrophilic regions (N- and C-termini as well as the 

loop between TMDs 6 and 7) show little conservation, indicating that these regions are unlikely to 

be directly involved in transport, being probably critical in other functional aspects such as 

substrate specificity or regulation of activity [6]. Theoretical predictions [6] and experimental 

evidence [7,8] indicate that none of the MCT family members is glycosylated. To function, an 

MCT translocates a proton and a monocarboxylate through the plasma membrane by an ordered 

mechanism in which H+ binding is followed by monocarboxylate binding to the protonated 
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transporter [9]. Therefore, MCT activity is dependent on both substrate concentration and proton 

gradient. 

 
Table 1. The human SLC16 family of transporters (from [10]). 

 
 

Although lactate is the monocarboxylate whose transport across the plasma membrane is 

quantitatively more important, MCTs are also important for the transport of many other 

metabolically important monocarboxylates such as pyruvate, the branched-chain oxoacids derived 

from leucine, valine and isoleucine, and the ketone bodies acetoacetate, β-hydroxybutyrate and 

acetate [1]. Consequently, MCTs have a central role in mammalian cell metabolism and are 

critical for the communication between cells [3], as illustrated in Figure 2. 

Besides being a family of 14 members, only the first four (MCT1-MCT4) have been 

demonstrated experimentally to facilitate the proton-linked transport of metabolically important 

monocarboxylates [8,11-13]. MCT3, formerly known as REMP (from retinal epithelial membrane 
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protein), was firstly described the chicken retinal pigment epithelium [14] and then functionally 

characterised and renamed MCT3 [8]. Subsequent studies showed the very particular distribution 

of MCT3, limited to the retinal pigment and choroid plexus epithelia [15-18], indicating that these 

isoform seems to be a very specialised MCT. Therefore, this introduction will only focus on 

MCT1, MCT2 and MCT4 isoforms, whose function is responsible for the name of the family of 

transporters. 

 
Figure 1. MCT1 protein diagram (from [19], see Appendix I). 

 

 

11..11..11..11..  MMCCTT11  

Most of the early functional studies on plasma membrane lactate transport were performed 

using red blood cells, since a homogeneous population of these cells could be readily obtained. 

However, MCTs were biochemically studied for many years before their molecular 

characterisation was performed [2,20-23]. The discovery and cloning of a mutant allele encoding a 

protein with preferential transport of the cholesterol precursor mevalonate (Mev) in Chinese 

hamster ovary cells resulted in new information about the molecular features of MCTs. When 

characterising the Mev mutation [24], it was found that the wild-type protein preferentially 

transported pyruvate [25]. This novel protein was designated monocarboxylate transporter 1 
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(MCT1) and kinetically resembles the biochemically characterised erythrocyte MCT. 

Human MCT1 gene, SLC16A1 (for review see [19], Appendix I), firstly cloned in 1994, by 

Garcia and colleagues [26], is located chromosome 1 (1p13.2-p12). Structural gene organisation as 

well as isolation and characterisation of SLC16A1 promoter was achieved in 2002, by Cuff and 

Shirazi-Beechey [27]. SLC16A1 comprises 5 coding exons [27] and, although there are no 

evidences for alternative splicing in the 5’ and 3’ untranslated regions (UTR) [1], 6 transcripts 

have been identified, 4 resulting in proteins of different sizes and 2 with no translation product 

(ENSG00000155380 [28]). MCT1 functional protein is composed by 500 amino acids and has a 

molecular weight of 53,958 Daltons (P53985, [29]). 

 

 
Figure 2. Metabolic pathways involving monocarboxylate transport across the mitochondrial and plasma 

membranes (adapted from [1]). Abbreviations: Ac, acetoacetate; βHB, β-hydroxybutyrate; Glc-1-P, glucose 1-

phosphate; Glc-6-P, glucose 6-phosphate. 

 

MCT1 has an ubiquous distribution in human tissues, with higher expressions in heart and 
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muscle [6,12,30]. Although conserved among species, MCT1 expression levels in tissues is 

species-specific [31]. The wide pattern of expression observed for MCT1 may be explained by its 

substrate affinities that indicate that MCT1, with intermediate substrate affinities, may be involved 

in both uptake and efflux of monocarboxylates from cells (Table 2). MCT1 transports a variety of 

substrates including short chain (C2-C5) unbranched aliphatic monocarboxylates such as acetate 

and propionate. Monocarboxylates with C2 or C3 substitutions (excluding amino- and amido-

substitutions) are also transported or even preferred (e.g. pyruvate, L-lactate, acetoacetate and β-

hydroxybutyrate) [32-34]. The simplest monocarboxylate, formate, is a poor substrate (Km>100 

mM) whereas bicarbonate, dicarboxylates, tricarboxylates and sulphonates are not transported [5]. 

Also, as can be seen in Table 2, MCT1 is stereoselective for lactate but not for β-hydroxybutyrate. 

Although plasma membrane expression is required to the export or uptake of 

monocarboxylates, MCT1 has also been described to be expressed in mitochondria [35-41] and 

peroxisome [42]. In these organelles, MCT1 is believed to participate in a lactate oxidation 

complex to maintain organelle redox and proper functioning. 

 
Table 2. Km values (mM) of different mammalian MCT isoforms for a range of monocarboxylates. 

 MCT1[33,34,43] MCT2[44] MCT4[13,45] 

L-Lactate 2.2-4.5 0.7 28.0-34.0 

D-Lactate 51.0  519.0 

Pyruvate 0.6-1.0 0.08 153.0 

L-β-hydroxybutyrate 8.1-11.4  824.0 

D-β-hydroxybutyrate 8.1-10.1 1.2 130.0 

Acetoacetate 5.5 0.8  

Propionate 1.5   

Acetate 3.5   
 

 

11..11..11..22..  MMCCTT22  

In 1995, the second MCT isoform was cloned and sequenced from a hamster liver cDNA 

library [46]. The SLC16A7 gene, which encodes for MCT2, is located in chromosome 12 (12q13) 

[12], comprises 5 coding exons and, although only one transcript is identified in a public database 

for human SLC16A7 (ENSG00000118596, [28]), there is evidence for alternatively spliced mRNA 

species in human and rat [12,31], but no evidence of splice variants of the protein. This isoform 
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shares approximately 50% sequence identity with MCT1, contains 478 amino acids and has a 

molecular weight of 52,186 Da (O60669, [29]). 

Northern blot analysis of human tissues showed a much more restricted tissue distribution of 

MCT2, as compared to MCT1, with MCT2 mRNA found in spleen, heart, kidney, pancreas, 

skeletal muscle, brain, and leukocyte [12]. These results were subsequently validated by Western 

blot analysis [30]. The fact that, when both MCT1 and MCT2 are expressed in the same tissue, the 

expression pattern is cell-specific, suggests a distinct functional role between these isoforms [46-

49]. Subsequent expression of human MCT2 in Xenopus oocytes revealed its unique biochemical 

feature of facilitating the proton-linked transport of a range of monocarboxylates, especially 

pyruvate, with a considerable high affinity, supporting the previous evidence of an alternative 

biological role [12,44]. Therefore, MCT2 emerges as a high affinity transporter (Table 2), being 

adapted to perform the uptake of monocarboxylates into cells. As a result, MCT2 is found in 

tissues that use lactate as a respiratory fuel, like brain [30,48-51] or cardiac and skeletal muscle 

[30,46], and kidney and liver were lactate is the major gluconeogenic substrate [30,31,46]. As 

MCT1, MCT2 is also found in mitochondria [38,41]. 

 

 

11..11..11..33..  MMCCTT44  

In 1998, Price and colleagues subsequently cloned four additional human MCT isoforms [6]. 

These are now referred to as MCT4, MCT5, MCT6 and MCT7, formerly known as MCTs 3-6 [1]. 

When these four new sequences were identified, one of them, was more closely related to chicken 

MCT3 than to MCT1 and MCT2, and, despite the much broader tissue distribution [6], the protein 

was named mammalian MCT3 (SLC16A3) [6]. However, Philp and colleagues subsequently 

cloned rat and mouse MCT3 (SLC16A8). This new MCT3, having an expression confined to the 

retinal pigment epithelium [16,17], as the chicken MCT3 [8,14], suggests that this was the true 

mammalian equivalent to the chicken MCT3. Therefore, the MCT3 identified by Philp and 

colleagues maintained the name, while the four isoforms identified as MCT 3-6 by Price and 

colleagues were renamed MCT 4-7 [1]. 

The human SLC16A3 gene (for review see [52], Appendix II), which encodes for MCT4, is 

located in chromosome 17 (17q25.3), comprises 5 exons and 3 transcripts, with different initiation 

sites but no difference in protein product has been identified (ENSG00000155380, [28]). The 

protein is constituted by 465 residues, corresponding to a molecular weight of 49,469 Da (O15427, 

[29]). 
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Like MCT1, and in opposition to MCT2 and MCT3, MCT4 has a broader distribution, being 

particularly observed in highly glycolytic tissues such as white skeletal muscle fibers, astrocytes, 

and white blood cells [6,13,53]. This led to the hypothesis that MCT4 may be of particular 

importance in tissues that rely on glycolysis to meet their energy demands, producing high 

amounts of lactate that need to be rapidly exported [1,53]. In fact, the kinetic properties of MCT4 

show that this isoform is adapted to the export of lactate [13,45]. MCT4 shows a much lower 

affinity for substrates than MCT1 and MCT2 (Table 2), with  Km values of around 30 mM for L-

lactate [13,45] and 150 mM for pyruvate [45]. 

 

 

11..11..11..44..  OOTTHHEERR  MMCCTT  IISSOOFFOORRMMSS  

Although performing functions different from the family related isoforms MCT1-MCT4, 

other MCT isoforms have been characterised in the last years. SLC18A10 gene encodes for an 

aromatic amino-acid transporter (T-type amino-acid transporter 1, named TAT1 rather than 

MCT10) [54] and has been also recently described, in parallel with MCT8 (SLC16A2) [55], as a 

thyroid hormone transporter [56]. Importantly, mutations in SLC16A2 have been associated with X 

linked severe mental retardation and neurological dysfunction [57-61]. MCT6 (SLC16A5) 

transports bumetanide, but neither L-lactic acid nor L-tryptophan. Butemanide transports is 

sensitive to pH and membrane potential but does not depend on proton gradient [62]. Although the 

substrate for MCT12 (SLC16A12) is still unknown, recent studies suggest a function in the 

establishment and/or maintenance of homeostasis in the eye lens and probably also in the kidney, 

and a mutation SLC16A12 has been associated with development of cataracts [63,64]. 

Furthermore, SLC16A12 has been identified as a possible biomarker for colon, prostate and breast 

carcinoma, due to gene hypermethylation [65]. Finally, a polymorphism in SLC16A9 (encoding 

MCT9) was found to be associated with altered serum uric acid [66], however MCT9 substrate is 

still unknown, as for the remaining members of the family (MCT5, MCT7, MCT11, MCT13 and 

MCT14). 

 

 

11..11..22..  RROOLLEE  OOFF  MMCCTTSS  IINN  MMEETTAABBOOLLIICC  HHOOMMEEOOSSTTAASSIISS  

As already mentioned, monocarboxylate transporter across the plasma membrane, both 

efflux and uptake, is of extreme importance to maintain the cellular metabolic homeostasis. Rapid 
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efflux of lactic acid across the plasma membrane is essential to all mammalian cells that are 

glycolytic or become glycolytic due to environmental conditions like hypoxia [3]. Lactic acid may 

be exported by MCT1; however, in cells that rely on glycolysis for energy production, MCT4 

appears to be the major isoform. MCT4 has a high Km for pyruvate, so, unlike MCT1, ensures that 

this metabolite is not lost from the cell but reduced to lactic acid, regenerating NAD+, therefore 

allowing glycolysis to continue [5]. Uptake of lactate is also of great importance in tissues such as 

liver and kidney, where lactic acid is transported into the cell to support gluconeogenesis and 

lipogenesis, and in tissues like heart, skeletal muscle and brain, where lactate, together with ketone 

bodies, is used as a major respiratory fuel [1]. Both skeletal muscle and heart express MCT1 to 

meet this role, while in liver, kidney and brain both MCT1 and MCT2 can be used, with the latter 

providing a higher affinity lactate uptake mechanism [1]. Despite the role of MCTs in a wide 

tissue range, no detectable MCT activity is found in the β-cells of the Islets of Langerhans in the 

endocrine pancreas. This phenomenon is also of major physiological relevance, since, by not 

allowing the for pyruvate and lactate, that could enter the citric acid cycle and produce ATP, 

ensures that adequate amounts of insulin are secreted [67]. 

Importantly, lactate is a quantitatively important oxidisable substrate and gluconeogenic 

precursor, being responsible for coordination of intermediary metabolism in diverse tissues. This 

role of lactate as oxidative and gluconeogenic substrate, as well as in cell signalling, is explained 

by the “cell-cell” and “intracellular lactate shuttle” concepts [68-70]. According to the “cell-cell 

lactate shuttle” hypothesis, lactate produced in glycolytic cells will be utilised continuously under 

fully aerobic conditions. This is the case of lactate exchanges between glycolytic astrocytes and 

oxidative neurons [71], between white-glycolytic and red-oxidative fibres within a working 

muscle, and between tissues of net release of lactate and gluconeogenic tissues [72]. In the 

“intracellular lactate shuttle”, mitochondria play a fundamental role in the oxidative catabolism of 

lactate, thanks to a lactate oxidation complex composed of lactate dehydrogenase (LDH) and 

MCTs, which is associated with the electron transport chain [39,40,73]. An “intracellular lactate 

shuttle” is also present in the peroxisome [42]. As lactate is more reduced than pyruvate, lactate 

oxidation to pyruvate (or exchange with pyruvate, and subsequent oxidation) induces a change in 

the cell redox balance. Hence, lactate production in one compartment and its removal from 

another, whether the compartments are at the cellular or tissue level, represents a major signalling 

mechanism [5]. In this regard, MCTs, as responsible for lactate shuttling, play an important role in 

metabolic coordination, linking glycolysis to oxidative metabolism and gluconeogenesis [69], as 

well as providing some harmonisation to the cytosolic redox potential [5]. 
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Two cell-cell lactate shuttles have been described with more detail, one in the brain and the 

other in skeletal muscle, as presented bellow. 

 

 

11..11..22..11..  BBRRAAIINN  LLAACCTTAATTEE  SSHHUUTTTTLLEE  

The classical view of neuroenergetics describes that normal brain is restricted almost 

exclusively to glucose as the substrate for energy production, which is directly delivered to 

neurons via the blood supply [74]. However, recent evidence revealed a more complex metabolic 

pathway, where astrocytes play a role in providing lactate as an additional energy source for 

neurons (for review see [75-77]). 

It was previously shown that lactate produced by muscle during exercise could be used by 

the brain [78-80], as well as that astrocytes have the capacity of producing lactate in the presence 

of normal oxygen levels [81]. With the description of MCT cell-specific expression by both in 

vitro and in vivo studies, new evidence for a complementary metabolism between neurons and 

astrocytes was provided [48-51,82-84]. MCT1 expression is found in astrocytes [48-51,82-84], as 

well as in brain endothelial cells [51,82]. Although firstly reported in astrocytes [82,84], MCT2 is 

exclusively found in neurons [48-51,83], while MCT4 presents a strong expression in the plasma 

membrane of astrocytes [51]. Thus, a mechanism of cell-cell lactate shuttle between astrocytes and 

neurons (Figure 3) is consistent with, on one hand, the fact that neurons contain more 

mitochondria than astrocytes [85], hence neurons are mainly oxidative while astrocytes are mainly 

glycolytic, and, on the other hand, the Km values of each MCT isoform (Table 2). Thus, glycolytic 

astrocytes consume glucose supplied by the blood flow and the resultant lactate is exported 

through MCT1 and MCT4 to the extracellular space; this lactate will be transported by the high 

affinity MCT2 into the oxidative neurons, to be used as a energy substrate for mitochondrial 

oxidation [51,71,75-77]. As mentioned above, MCT activity is not limited to plasma membrane as 

neurons contain a mitochondrial lactate oxidation complex that has the potential to facilitate both 

intracellular and cell-cell lactate shuttles in brain [73]. 
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Figure 3. Schematic illustration of lactate shuttle between astrocytes and neurons (adapted from [51]). 

Abbreviations: GLUT, glucose transporter; LDH, lactate dehydrogenase; MCT, monocarboxylate transporter; Ox 

Phos, oxidative phosphorylation; TCA, tricarboxylic acid. 

 

 

11..11..22..22..  SSKKEELLEETTAALL  MMUUSSCCLLEE  LLAACCTTAATTEE  SSHHUUTTTTLLEE  

It is known that lactate is released from diverse tissues like skeletal muscle, skin and red 

blood cells, but the high glycolytic rates of skeletal muscle makes this tissue the main producer of 

lactate in the body. This lactate derived from glycolytic skeletal fibers may be consumed by 

adjacent oxidative skeletal fibers or enter the blood flow and be taken up by other tissues such as 

heart and brain to be used as a respiratory fuel, or liver as substrate of gluconeogenesis [1]. MCT1 

and MCT4 are both found in skeletal muscle; however, their relative amounts are dependent on the 

type of muscle fiber. MCT1 expression is prominent in slow twitch (red) muscle fibers [30,53,86-

89], which present oxidative metabolism, and correlates with the concentration of mitochondria 

[86]. In contrast, MCT4 is preferentially expressed in glycolytic fast twitch (white) muscle fibers 

[30,53,87-89]. MCT fiber-specific distribution and differences in MCT affinity for lactate (Table 

2), support the hypothesis of a cell-cell lactate shuttle in skeletal muscle where lactate produced by 

glycolytic fibers is exported by the low affinity MCT4 [13,45], and subsequently imported by 

oxidative fibers through MCT1, which has a higher affinity for lactate than MCT4. The major role 
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of MCTs in muscle function is supported by the increase in the density of both MCT isoform, 

especially MCT1, after training periods [90-98]. 

 

 

11..11..33..  MMCCTTSS  IINN  DDIISSEEAASSEE  

Considering the fundamental role of lactate transporters in key metabolic processes like 

glycolysis and gluconeogenesis, it is not surprising that alterations in MCT expression or function 

are associated with physiological dysfunctions. In fact, MCT4 overexpression was reported in a 

patient with a mitochondrial myopathy [99] and MCT4 down-regulation (35% lower expression) 

was described in the vastus lateralis muscle of patients with chronic obstructive pulmonary 

disease [100]. However, these alterations in MCT4 expression appear to be more a consequence 

rather than a cause of the disease. 

In contrast, SLC16A1 mutations associated with exercise-induced hyperinsulinism [101] 

and erythrocyte lactate transporter defect [102], as well as a decrease in SLC16A1 gene 

transcription in inflammatory bowel diseases, have been described and will be further explored 

below. 

 

 

11..11..33..11..  EEXXEERRCCIISSEE--IINNDDUUCCEEDD  HHYYPPEERRIINNSSUULLIINNIISSMM  

Exercise-induced hyperinsulinism is characterised by inappropriate insulin secretion by 

pancreatic β-cells, especially during anaerobic exercise, in response to exogenous catabolic 

metabolites such as lactate and pyruvate [103-105]. As previously mentioned, pancreatic β-cells 

show no MCT activity [67], however, an increase of MCTs in β-cells plasma membrane, will 

allow the entry of pyruvate into the cell and a consequent increase in ATP production and insulin 

secretion. Although no mutations were detected in the coding regions of eight MCT genes in 

earlier studies [104], sequencing of the 5’ UTR and promoter regions of the SLC16A1 gene 

brought new insights on the mechanism for this disease [101]. By studying affected members of a 

Finnish family, segregating autosomal dominant exercise-induced hyperinsulinemic 

hypoglycemia, Otonkoski and colleagues identified two functional alterations in SLC16A1. First, a 

+163G-A transition in exon 1, located within a binding site for nuclear matrix protein-1 (NMP1) 

and predicted to disrupt the binding sites of 2 potential transcriptional repressors (albumin 

negative factor (ANF) and acute myeloid leukemia-1a (AML-1a)), and, second, a 25-bp insertion 
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between nucleotides -23 and -24, introducing additional binding sites for the ubiquitous 

transcription factors simian-virus-40-protein-1 (SP1), upstream stimulatory factor (USF) and 

myeloid zinc finger 1 (MZF1). The first variation leads to a 3.5-fold increase in transcription while 

the second variation leads to a 10-fold increase in transcription. These mutations were not found in 

94 Finnish and German controls, excluding the probability of being polymorphisms [101]. 

 

 

11..11..33..22..  EERRYYTTHHRROOCCYYTTEE  LLAACCTTAATTEE  TTRRAANNSSPPOORRTTEERR  DDEEFFEECCTT  

In 1986, a rare condition in which apparently healthy patients suffered severe chest pain and 

muscle cramping after vigorous exercise, was associated with an impaired capacity of lactate 

transport by skeletal muscle and red cells [106]. More recently, Merezhinskaya and colleagues 

identified three heterozygous transitions in the SLC16A1 gene, in patients with erythrocyte lactate 

transporter defect. Firstly, a 610A>G transition (resulting in a lys204-to-glu (K204E) substitution 

in a highly conserved residue); secondly, a 1414G>A transition (resulting in a gly472-to-arg 

(G472R) substitution halfway along the cytoplasmic C-terminal chain, in a non-conserved 

residue); and thirdly, a 1470A>T transition (resulting in a glu490-to-asp (E490D), which revealed 

to be a common polymorphism) were identified in patient’s muscle biopsies. Erythrocyte lactate 

clearance in patients with the 2 mutations was 40 to 50% that of normal control values, while for 

patients with the polymorphism erythrocyte lactate clearance was 60 to 65% of mean normal 

[102]. However, heterologous expression of the MCT1 K204E mutant, considered the most 

important alteration due to its location in a conserved residue, failed to support any difference in 

its properties from wild type MCT1 [5]. Thus, it remains unclear if mutations in MCT1 are 

responsible for cryptic exercise intolerance. 

 

 

11..11..33..33..  IINNFFLLAAMMMMAATTOORRYY  BBOOWWEELL  DDIISSEEAASSEESS  

Butyrate, a monocarboxylate commonly referred to as a short-chain fatty acid, is produced in 

the lumen of the colon by microbial fermentation of dietary carbohydrates that escape digestion in 

the small intestine. This monocarboxylate is the major energy source for colonic epithelial cells 

and exerts a variety of effects important to intestinal health and function [107]. Impaired oxidation 

of butyrate has been associated with inflammatory bowel disease, but the mechanism was not 

known [108,109]. Recently, it was observed that inflammation caused down-regulation of MCT1 
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expression in the colonic tissue, the MCT isoform responsible for butyrate uptake in colonic 

epithelial cells [110]. Also, treatment of intestinal epithelial cell lines with pro-inflammatory 

cytokines (interferon-gamma (INF-γ) and tumour necrosis factor-alpha (TNF-α) induced down-

regulation of MCT1 gene transcription, which was associated with a reduction in butyrate uptake 

and subsequent oxidation. Thus, reduction in MCT1-mediated butyrate uptake is the cause of 

butyrate oxidation deficiency in intestinal inflammation [111]. 

 

 

11..11..33..44..  CCAANNCCEERR  

It is known that tumour cells are highly glycolytic, producing lactic acid in excess, and both 

biochemical and molecular evidence suggest the up-regulation of MCTs in some tumour cells 

[112]. However, since the role of MCTs in solid tumours is the main subject of this thesis, a more 

detailed review of the state of the art is included latter on. 

 

 

11..11..44..  MMCCTT  RREEGGUULLAATTIIOONN  

Reports on MCT expression variations, especially MCT1, have been described in different 

physiological as well as pathological conditions including, among others, MCT up-regulation in 

skeletal muscle in response to training [90-98], down-regulation after muscle denervation [53] and 

in inflammatory bowel diseases [111], changes in MCT expression during development [113-117] 

or substrate-induced MCT1 up-regulation [118-120]. Importantly, regulatory mechanisms vary 

among MCT isoforms, which allow induction of specific isoforms upon different stimuli, adapting 

cells to different energy demands. 

Although the regulatory mechanisms of MCT expression are far from being completely 

unveiled, plenty of evidence indicates that MCTs are regulated at various points up to the 

functional protein, including both transcriptional, and post-transcriptional [31,88,95,119,120] 

regulation that affects protein amounts as well as regulators of transporter activity, like 

chaperone proteins. Further, hormone regulation has also been described for MCTs, as well as 

regulation by signalling pathways like insulin-like growth factor receptor type I (IGF-IR) 

activation, which up-regulates MCT1 [121]. 
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11..11..44..11..  TTRRAANNSSCCRRIIPPTTIIOONNAALL  LLEEVVEELL  

Transcriptional regulation of genes is a complex mechanism involving intervention of many 

regulatory proteins, including transcription factors, functioning as enhancers or repressors of gene 

transcription [122]. Analysis of SLC16A1 5’-flanking region allowed the identification of putative 

binding site sequences for the transcription factors USF, nuclear factor-kappaB (NF-κB), activated 

protein 1 and 2 (AP1 and AP2) and stimulating protein-1 (Sp1) [27]. In fact, USF1 and USF2 have 

been described as potential repressor proteins for MCT1 [123], NF-κB pathway has been involved 

in the butyrate-induced MCT1 up-regulation [124], while AP2 has been associated to protein 

kinase C (PKC)-dependent stimulation of the SLC16A1 promoter [125]. 

Additionally, lactate-induced increase in MCT1 has been linked to activation of NF-κB and 

nuclear factor erythroid 2 (NF-E2) pathways, as well as cAMP-response element-binding protein 

(CREB) and NF-E2 related factor 2 (Nrf2) transcription factors, the last three elements possessing 

also putative transcription binding sites in the SLC16A1 5’-flanking region [120].  

More recently, the co-activators peroxisome proliferator-activated receptor gamma, co-

activator 1 alpha (PGC-1α) [126] and peroxisome proliferator-activated receptor alpha (PPARα) 

[127,128] have been associated with MCT1, but not with MCT2 and MCT4 up-regulations. In 

fact, promoter analyses of MCT1, MCT2 and MCT4 have shown that the SLC16A1 promoter 

contains two peroxisome proliferator-activated receptor response elements (PPRE) while 

SLC16A7 and SLC16A3 each contain one PPRE [126].  

In expression studies, SLC16A1 was also shown to be activated by c-myc and n-myc proto-

oncogenes [129-131], while the pro-inflammatory cytokines IFN-γ and TNF-α, have also been 

implicated in the transcriptional control of MCT1, by down-regulating SLC16A1 transcription 

[111]. 

Hypoxia conditions, which are known to induce the glycolytic phenotype, are also associated 

with altered expression of MCTs [132-138]. The first report described a tissue-specific change in 

MCT expression after chronic hypoxia, where MCT1 did not change in heart, soleus, or 

gastrocnemius muscles, while MCT4 increased significantly in heart muscle. However, in the 

plantaris muscle, both MCT1 and MCT4 showed a significant decrease after chronic hypoxia 

[132]. A subsequent study suggested that the increase in neuronal, astrocytic and endothelial 

MCT1 expression, observed after permanent occlusion of the left middle cerebral artery, is 

mediated by the hypoxia-inducible factor-1alpha (HIF-1α) [133], the major transcriptional 

regulator of adaptation to hypoxic stress; however, this view was promptly contested by Ullah and 

collaborators who, after performing functional studies with MCT1, MCT2 and MCT4 promoters, 
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showed that only MCT4 promoter was activated by hypoxia and that this response was mediated 

by HIF-1α [135]. Additionally, MCT4, but not MCT1, was shown to be up-regulated by hypoxia 

in human bladder cancer cells [134] and in trophoblast cells [136], and MCT1 and hypoxia were 

described as being mutually exclusive [137]. However, recent evidence describe a hypoxia-

mediated increase in both MCT1 and MCT4 and decrease in MCT2, with MCT1 and MCT4 

change being HIF-1α-dependent [138]. From this, one can conclude that evidence so far, 

especially on MCT1 regulation by hypoxia, is very controversial and more efforts have to be made 

to enlighten the knowledge on MCTs’ regulation by hypoxia. 

 

 

11..11..44..22..  PPOOSSTT--TTRRAANNSSCCRRIIPPTTIIOONNAALL  LLEEVVEELL  

The relatively long 3’UTR of SLC16A1 (1.6kb), on which initiation factors and regulatory 

proteins interact to enhance or repress translation [139], suggests that MCT1 expression, but not 

MCT2 nor MCT4 which have much shorter 3’UTRs, might also depend on translational regulation 

[1,5]. 

MicroRNAs (miRNAs) are a group of small non-coding RNAs (approximately 22 

nucleotides) that play a critical role in a variety of biological processes, like development, 

differentiation and apoptosis. Mature miRNAs negatively regulate their targets through 

complementary sequence pairing with the 3′ UTR of mRNA targets, inducing transcript 

degradation or translational repression (for review see [140]). One of the most well characterised 

miRNAs in mammalian nervous system is miR-124, which has been described to regulate MCT1; 

miR-124 regulates SLC16A1 through binding to its 3′ UTR and MCT1 protein level is reduced 

after miR-24 transfection [141]. Regulation of SLC16A1 mRNA stability has already been 

described in the context of MCT1 regulation by butyrate [119]. 

 

 

11..11..44..33..  TTRRAANNSSPPOORRTTEERR  AACCTTIIVVIITTYY  LLEEVVEELL  

Other factors that may regulate functional expression of MCTs are accessory proteins that 

are involved in trafficking and anchoring of membrane proteins to specific cellular locations. In 

this context, CD147 emerges as the major and better studied regulator of MCT expression. 

CD147, also known as basigin, EMMPRIN, OX-47 and HT7, is a broadly distributed plasma 

membrane glycoprotein discovered in 1982 [142], which belongs to the immunoglobulin 
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superfamily [143]. Originally identified as a tumour surface protein with the ability of inducing 

matrix metalloproteinases, with a critical role in tumour progression, CD147 expression is found 

in cells other than tumour cells where it plays an important role in fetal, neuronal, lymphocyte and 

extracellular matrix development as well as tissue repair (for review see [144,145]). Co-

immunoprecipitation and chemical cross-linking studies showed that CD147 specifically interacts 

with MCT1 (Figure 4) and MCT4, but not MCT2. Also, co-transfection of CD147 allowed active 

expression of MCT1 and MCT4, but not MCT2, in the plasma membrane of MCT-transfected 

cells. When CD147 was not co-transfected, MCT accumulated in a peri-nuclear compartment 

[146]. The close association between CD147 and both MCT1 and MCT4 within the plasma 

membrane was confirmed by co-localisation studies [67,147,148].  

 

 
Figure 4. Monocarboxylate transporter 1 (MCT1) and CD147 predicted interaction (from [146]). This 

interaction is proposed to involve an arginine residue within the transmembrane segment 8 of MCT1 and a glutamic 

acid residue in the transmembrane segment of CD147. 

 

Importantly, subsequent studies showed that, besides being important for MCT membrane 

location [149-153], CD147 has also a role in MCT1, 3 and 4 expression [18,151,153,154] and 

improvement of MCT activity [149,155]. On the other hand, MCT1 and MCT4 have also shown to 

be regulators of CD147 maturation and trafficking to the plasma membrane [150,151]. As 

mentioned above, although also requiring an ancillary protein for proper expression, MCT2 does 

not interact with CD147 nor is influenced by CD147 expression [18,146]. This function is fulfilled 

by another member of the immunoglobulin superfamily, the gp70 protein [156], which, in co-
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immunoprecipitation and co-localisation studies, was found to interact with MCT2 [155]. Gp70 

has also been described as interacting with MCT1 in rat erythrocytes [157]. 

More recently, other players were included in the MCT/CD147 complex. The widely 

distributed transmembrane glycoprotein CD44 and its main ligand, hyaluronan, were implicated in 

the regulation of lactate efflux and membrane localisation of MCTs, in human breast carcinoma 

cells [158]. In fact, CD44 co-immunoprecipitates with MCT1, MCT4 and CD147 and co-localises 

with these proteins in the plasma membrane. Perturbation of endogenous hyaluronan, using 

hyaluronan oligosaccharides, induced intracellular accumulation of CD44, MCT1 and MCT4. 

These observations suggest that constitutive interactions between hyaluronan, CD44 and CD147 

regulate MCT localisation and function of MCT1 and MCT4 [158]. Importantly, a role of CD44 

activation has been described in cell growth control, adhesion, migration, invasion, and 

chemoresistance [159-161], which may count on the contribution of MCTs.  

Additionally, other modulators of transporter activity may directly affect MCT function, 

independently of affecting protein amounts and location, including carbonic anhydrase (CA) II, 

which enhance both MCT1 and MCT4 activity by direct binding [162-164], prion-related protein 

(PrP) [165] and intracellular calcium [166]. 

 

 

11..11..44..44..  HHOORRMMOONNAALL  RREEGGUULLAATTIIOONN  

Hormonal regulation of MCTs may involve transcriptional and post-transcriptional 

mechanisms. MCTs’ regulation by hormones has been firstly described in 2002, as luminal leptin 

was shown to significantly up-regulate MCT1-mediated butyrate uptake, in Caco2-BBE cell 

monolayers. This increased uptake was achieved through two distinct mechanisms: an increase in 

the intracellular pool of MCT1 protein, with no changes in CD147 amounts, and translocation of 

MCT1/CD147 to the apical membrane of Caco2-BBE cell monolayers [167]. Shortly after, the 

hormones thyroid-stimulating hormone (TSH), noradrenaline, triiodothryonine (T3)  and 

somatostatin were also described as modulators of MCT expression [168-171]. TSH regulates 

MCT1 protein expression in rat thyroid cells, increasing SLC16A1 transcription, and also increases 

CD147 protein levels [170]; noradrenaline induces MCT2, but not MCT1 expression, in mouse 

neurons, at the translational level, with the requirement of an yet unknown transcriptional step 

[168]; MCT4, but not MCT1, is induced by T3 in rat skeletal muscle [169]; and somatostatin 

increases MCT1 association with CD147 at the plasma membrane, with an increase in the apical 

membrane levels of MCT1 protein in parallel to a decrease in the intracellular MCT1 pool [171]. 
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11..11..55..  IINNHHIIBBIITTIIOONN  OOFF  MMCCTT  AACCTTIIVVIITTYY  

Several agents are known to inhibit MCT activity, in an isoform-dependent manner. These 

include classical inhibitors like α-cyano-4-hydroxycinnamate (CHC) or quercetin, inhibitors that 

influence MCT activity in a specific manner like AstraZeneca inhibitors, and molecules that, being 

used in particular contexts, have also been described as inhibitors of MCT activity like cholesterol 

synthesis inhibitors (statins) and non-steroidal anti-inflammatory drugs (NSAIDs) (for review see 

[10]). 

 

 

11..11..55..11..  CCLLAASSSSIICCAALL  IINNHHIIBBIITTOORRSS  

Identification of MCT inhibitors was achieved during characterisation of MCT1, as the most 

studied MCT isoform. Bulky or aromatic monocarboxylates were among the first inhibitors of 

lactate transport to be identified, which, as substrate analogues, are competitive inhibitors of 

MCT1 [3]. Later on, other types of molecules were identified as inhibiting MCT1 activity, as well 

as the activity of other isoforms.  

Classical reversible inhibitors of MCTs fall into three broad categories (for review, see 

[3,5,11]): 

(1) Bulky or aromatic monocarboxylates like phenyl-pyruvate and CHC. In this 

category, the derivatives of α-cyanocinnamate are the most potent, with Ki values of 50-500 

µM. However, although CHC is often used as a MCT1 specific inhibitor [137,172,173], it 

also inhibits the mitochondrial pyruvate transporter with a Ki<5 µM, as well as the anion 

exchanger 1 (AE1), which is responsible for Cl-/HCO3
- membrane exchange [174]. 

(2) Amphiphilic compounds with widely divergent structures like bioflavonoids (e.g. 

phloretin and quercetin) [175] and inhibitors of anion transport (e.g. niflumate). Phloretin 

and quercetin are particularly potent inhibitors of MCT1 but, like the majority of MCT 

classical inhibitors, they also inhibit other membrane transport systems. 

(3) Stilbenedisulphonates (e.g. 4,4'-diisothiocyanostilbene-2,2'-disulphonate (DIDS)). 

These inhibitors are some of the most effective MCT inhibitors with Ki<40 µM, however, 

with much lower affinity than for AE1. 

Additionally, miscellaneous inhibitors including thiol reagents, such as the organomercurial 

thiol reagent p-chloromercuribenzene sulphonate (pCMBS), and amino reagents (e.g. pyridoxal 

phosphate and phenylglyoxal) irreversibly inhibit MCTs (for review, see [3,5,11]). 
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Importantly, these inhibitors have different affinities among MCT isoforms. MCT2 is more 

sensitive to CHC, DIDS and phloretin than MCT1 [44], but is not sensitive to pCMBS, due to the 

different ancillary protein [155]; MCT3 is insensitive to CHC, pCMBS and phloretin [176]; and 

MCT4, although also sensitive to CHC, DIDS and pCMBS, inhibition is achieved with a much 

lower affinity, which is in accordance with the low affinity characteristics of this transporter 

[13,45]. 

 

 

11..11..55..22..  SSPPEECCIIFFIICC  IINNHHIIBBIITTOORRSS  

As mentioned above, none of the MCT classical inhibitors is either MCT specific or MCT 

isoform specific. Therefore, to investigate the role of MCT in cellular function, MCT specific 

inhibitors should be used. 

T cell activation is dependent on glycolysis and this leads to a high rate of lactate 

production, due to a higher energetic demand during proliferation and cytokine production [177]. 

In the immunological context this may be of great importance, as inhibition of T cell activation has 

therapeutic implications in immunosuppressive therapy. It was in this perspective that specific 

MCT1 inhibitors arose, when MCT1 was identified as the target for newly developed 

AstraZeneca immunomodulatory compounds, that potently inhibit human and rat T lymphocyte 

activation [178,179]. These compounds have shown promising results in allograft rejection both in 

mouse and rat [180,181], having also been used in the context of the astrocytes-neuron lactate 

shuttle, where inhibition of both MCT1 and MCT2 was achieved [182]. In fact, some of these 

compounds appear to be MCT isoform specific [178], while others, although binding with higher 

affinity to MCT1, also bind to other MCT isoforms [182]. 

 

 

11..11..55..33..  OOTTHHEERR  IINNHHIIBBIITTOORRSS  

Lonidamine is a derivative of indazole-3-carboxylic acid, which for a long time, has been 

known to inhibit glycolysis in cancer cells. Although this action was originally attributed to 

hexokinase inhibition [183], further studies revealed that lonidamine inhibits lactate efflux from 

cancer cells [184,185], through inhibition of MCT1 and MCT4 [130]. Actually, despite a lack of 

knowledge of its precise mechanism of action, lonidamine has been effective in clinical trials 

against various tumours, especially as a sensitizer to other chemotherapies [186]. 
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Statins are 3-hydroxyl-3-methylglutaryl coenzyme A (HMGCoA) reductase inhibitors, 

which are used as safe and effective drugs for managing hypercholesterolemia [187]. Lipophilic 

compounds, such as fluvastatin, atorvastatin, lovastatin acid, simvastatin acid and cerivastatin, 

have monocarboxylate structures within the compounds, making these molecules putative MCT 

substrates. Actually, these statins have been shown to be MCT4 substrates and, therefore, 

inhibitors of lactate and other substrates’ transport [188-190]. The interaction of simvastatin with 

MCT4 accounts for the simvastatin-induced muscular toxicity, observed in MCT4 expressing 

skeletal muscle but not in MCT1 expressing heart muscle [191]. 

Although apparently being transported through a transport system other than MCT in 

trophoblast BeWo cells [192], NSAIDs have been described as partially transported by MCT1 in 

Caco-2 cells [193], and also described as potent inhibitors of lactate transport [188,189,192]. 

 

 

11..22..  RROOLLEE  OOFF  MMCCTT  IINN  CCAANNCCEERR  CCEELLLL  MMEETTAABBOOLLIICC  PPHHEENNOOTTYYPPEE  

The role of MCTs in physiological homeostasis is widely accepted and described in detail in 

some tissues. Also, as mentioned previously, MCT has also a role in disease. However, in what 

concerns tumour biology, a lot of work is needed to shed some light in that area. Even though, if 

one looks at the microenvironmental scenario and molecular events that occurs in carcinogenesis, 

it is possible to anticipate an important contribution of MCTs in the progression to malignancy. 

 

 

11..22..11..  CCAANNCCEERR  HHAALLLLMMAARRKKSS::  CCOONNTTRRIIBBUUTTIIOONN  OOFF  MMIICCRROOEENNVVIIRROONNMMEENNTT    

Over the last years, much attention has been given to the genetic and epigenetic alterations 

occurring in cancer development, which ultimately leads to emergence of invasive cancer. In fact, 

conceptual models of epithelial carcinogenesis are typically based on Darwinian dynamics and 

depict a sequence of heritable changes, as described in the genetic model of colorectal 

tumourigenesis described by Fearon and Volgestein [194], that give rise to a population of cells 

possessing the hallmarks of invasive cancer (Figure 5) [195]. Therefore, in general, cancer 

evolution consists in accumulation of alterations in oncogenes, proto-oncogenes and tumour 

suppressor genes that will increase growth-promotion signals and decrease growth inhibitors 

[196]. However, this classical view does not account for the other component of Darwinian 

dynamics, where the environment exerts a selection force that will only allow the emergence of 
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successful adaptations. In this context, the specific changes that occur in tumour 

microenvironment are emerging as key components in carcinogenesis.  

 

 
Figure 5. The hallmarks of cancer. Although through various mechanistic strategies, all cancers have acquired 

the same set of functional capabilities during their development (from [195]). 

 

 

11..22..11..11..  TTHHEE  WWAARRBBUURRGG  EEFFFFEECCTT  

More than half a century ago, Otto Warburg demonstrated that cancer cells rapidly convert 

the majority of glucose into lactate, even in the presence of sufficient oxygen to support 

mitochondrial oxidative phosphorylation [197]. This phenomenon is presently known as “aerobic 

glycolysis” or “Warburg effect” (Figure 6). Although Warburg’s hypothesis that impaired 

mitochondrial metabolism underlies the high rates of glycolysis has proven incorrect [198-200], 

the original observation of increased glycolysis in tumours has been confirmed repeatedly. In fact, 

this increased glucose uptake by cancer cells is the rationale behind the whole-body non-invasive 
18F-fluorodeoxyglucose positron emission tomography (FdG-PET) technique. This widespread 

clinical application is used for diagnosis, initial staging, restaging, prediction, monitoring of 

treatment response and surveillance in a variety of cancers [201].  
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Figure 6. Schematic representation of the main differences between oxidative phosphorylation, anaerobic 

glycolysis and aerobic glycolysis (adapted from [202]). 

 

Aerobic glycolysis, where metabolism of glucose to lactate generates only around 4 ATP per 

molecule of glucose (Figure 6), is a much less efficient energetic pathway than mitochondrial 

oxidative phosphorylation, where complete oxidation of one molecule of glucose through yields 

around 30 ATP [203]. Additionally, the metabolic products of glycolysis, including lactic acid and 

H+, cause a consistent acidification of the extracellular space [204-207], which might result in 

cellular toxicity. Therefore, why do cancer cells engage into the glycolytic phenotype, where only 

a fraction of the energy is obtained from glucose and possibly harmful products are produced? At 

first glance, cancer cells have no proliferative advantage in having a glycolytic metabolism, 

however, as discussed below, this apparent deleterious feature is, in fact, the key cellular trait that 

allows selection for cancer cells [208]. 
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11..22..11..22..  MMIICCRROOEENNVVIIRROONNMMEENNTTAALL  HHYYPPOOXXIIAA  AANNDD  AACCIIDDOOSSIISS::  TTHHEE  EEMMEERRGGEENNCCEE  OOFF  TTHHEE  HHYYPPEERR--

GGLLYYCCOOLLYYTTIICC  AACCIIDD--RREESSIISSTTAANNTT  PPHHEENNOOTTYYPPEE  

Epithelial cells and the underlying stroma are physically separated by a basement membrane. 

As carcinogenesis occurs, the epithelial cell layer becomes increasingly thicker, driving cells 

towards a lumen that is further away from blood supply, as blood vessels are confined to the 

stroma (Figure 7). Therefore, early carcinogenesis and development of the malignant phenotype 

occur in an avascular environment, and cancer cells become dependent on glucose and oxygen 

diffusion through blood vessels and basement membrane to fulfil the major metabolic demands 

[208,209]. The first limiting substrate for cell growth is oxygen, with hypoxia expected at 

distances between 100 to 150 µm from the vessel wall [210-212], while glucose diffusion 

distances are substantially larger [196,211,213]. 

 

 
Figure 7. Model for cell-environment interactions in carcinogenesis (adapted from [208]). Cell colours 

represent different cell types: grey for normal epithelial cells, pink for hyper-proliferative cells, blue for hypoxic cells, 

green for glycolytic cells and yellow for motile cells. Light orange nuclei represent one mutation while dark orange 

nuclei represent more than one mutation. Blebbing membranes show apoptotic cells. Abbreviations: HIF-1α, hypoxia-

inducible factor 1alpha; VEGF, vascular endothelial growth factor. 
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Hence, if early hyperplastic lesions develop further than a few layers beyond the basement 

membrane, regional development of hypoxia will occur, limiting cell growth. This intermittent 

hypoxia will promote selection for cells with anaerobic glycolysis constitutively up-regulated, 

allowing further cell growth [208,209,214]. However, how could the cell benefit from entering an 

energetically less efficient metabolism? Besides being a successful adaptation to hypoxic 

microenvironment, anaerobic glycolysis allows cancer cells to use the most abundant extracellular 

nutrient, glucose, to produce ATP, which, thanks to the high glycolytic rates (more than 30-fold 

higher than normal cells [215]), can easily exceed the ATP yield of oxidative phosphorylation 

[216]. Additionally, excess pyruvate provides a source for anabolic substrates essential for 

biosynthetic pathways, including ribose sugars for nucleotides, glycerol and citrate for lipids, and 

nonessential aminoacids [216,217]. Importantly, aerobic glycolysis may protect DNA from 

damage by oxygen radicals produced by oxidative phosphorylation [218]. 

The next limiting step was originally thought to be the glucose diffusion limit [208], 

however, new evidence demonstrates that the microenvironment acidosis created by the glycolytic 

phenotype is responsible for further selection, in this case, of an acid-resistant phenotype 

[196,209,214]. Since prolonged exposure to an acidic microenvironment typically results in 

necrosis or apoptosis [219,220], additional adaptations of cancer cells will include resistance to 

acid-induced apoptosis and up-regulation of membrane pH regulators [208]. This potential 

disadvantage of hyper-glycolytic phenotype, in fact provides further competitive advantage [208] 

since, on one hand, the significant decrease in local extracellular pH generates a microenvironment 

that is fatal to the surrounding normal cells, but harmless to cancer cells and, on the other hand, 

facilitates cancer cell invasion behaviour [221-224] through the acid-induced degradation of the 

extracellular matrix [225,226] and angiogenesis [227,228]. 

Therefore, adaptation to hypoxia and acidosis will force the emergence of an adaptive 

phenotype with constitutive up-regulation of glycolysis and resistance to acid-induced toxicity, 

that will invade the normoxic regions and ultimately breach the basement membrane towards 

invasion (Figure 7) [196]. Hence, aerobic glycolysis, a common feature in primary tumours, is 

pointed as an additional hallmark of cancer, as it is required for evolution of invasive human 

cancers (Figure 8) [208,229]. 
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Figure 8. The hallmarks of cancer (adapted from [229]). The eight rectangular icons represent the hallmarks of 

cancer, while the three circular icons indicate three important components of the physiological microenvironment that 

must be overcome in cancer progression. Abbreviation: CiS, carcinoma in situ. 

 

 

11..22..11..33..  MMOOLLEECCUULLAARR  MMEECCHHAANNIISSMMSS::  CCOONNTTRRIIBBUUTTIIOONN  OOFF  HHIIFF--11αα  

As mentioned above, the glycolytic phenotype arises as an adaptation to the hypoxic 

environment. It is widely known that the major regulator of adaptation to hypoxic stress is the 

transcriptional factor HIF-1α, which has been widely associated with cancer progression [230-

235]. In fact, many enzymes from the glycolytic pathway like the glucose transporter 1 (GLUT1) 

[236,237], lactate dehydrogenase A (LDH-A) [238], pyruvate dehydrogenase kinase 1 (PDK1) 

[239,240], among others [235,241,242], are HIF-1α targets (Figure 9). With the increase in 

glucose uptake into the cell, due to higher amounts of glucose transporters, as well as clearance of 

pyruvate by rapid conversion of pyruvate into lactate through LDH-A (with regeneration of 

NAD+), high glycolytic rates can be maintained. Actually, metastatic cancer cells expressing high 

levels of HIF-1α, are highly glycolytic, even under normal oxygen conditions, whereas non-

metastatic cancer cells consume low amounts of glucose and have low HIF-1α levels [243]. 

Additionally, by up-regulating PDK1 (which inactivates the tricarboxylic acid (TCA) cycle 

enzyme pyruvate dehydrogenase (PDH)), HIF-1α will also contribute to suppress the 
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mitochondrial metabolism, rescuing cells from ROS generation and hypoxia-induced apoptosis 

[239,240]. Besides contributing to the constitutive glycolytic metabolism, HIF-1α also contributes 

to the acid-resistant phenotype, by up-regulating, at least, two important pH regulators, MCT4 

[135,138] and CAIX [244-246]. As mentioned above, by co-transporting lactate with H+, MCT4 

has an important function as pH regulator. In fact, MCT4 will not only be important for the acid-

resistant phenotype, but also for the hyper-glycolytic phenotype in the way that, by exporting 

newly formed lactate, will allow continuous conversion of pyruvate to lactate and, therefore, 

continuous aerobic glycolysis. CAIX catalyses the extracellular hydration of CO2 into HCO3
- and 

H+. Then, HCO3
- enters the cell through AE1 where, in combination with the accumulating H+ 

derived from the glycolytic metabolism, forms CO2 and H2O, that will exit the cell by diffusion, 

causing trapping of the H+ in the extracellular milieu [174,247]. Therefore, HIF-1α plays a major 

role in inducing the hyper-glycolytic acid-resistant phenotype. 

 

 
Figure 9. Major signalling network to regulate metabolism in proliferating cells (from [216]). Abbreviations: 

3-PG, 3-phosphoglycerate; AAs, aminoacids; Ac-CoA, acetyl-coenzyme A; FH, fumarate hydratase; GF, growth 

factor; glc, glucose; glc-6-P, glucose-6-phosphate; GLUT1, glucose transporter 1; HIF-1α, hypoxia-inducible factor-

1alpha; Lac, lactate; LDH-A, lactate dehydrogenase A; mTOR, mammalian target of rapamycin; ROS, reactive 

oxygen species; PDH, pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1; PI3K, phosphatidylinositol 

3-kinase; PTEN, phosphatase and tensin homolog; Pyr, pyruvate; SDH, succinate dehydrogenase; TCA, tricarboxylic 

acid; TSC, tuberous sclerosis complex; VHL, von Hippel-Lindau. 
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Additionally, constitutive up-regulation of the glycolytic phenotype may occur through 

oncogene activation or tumour suppressor inactivation. Among others, AKT [248-250] and c-myc 

[251-253] oncogenes have been described as activating aerobic glycolysis (Figure 9), the last one 

in cooperation with HIF-1α [254-256]. Loss of the tumour suppressor p53 has also been 

implicated in the glycolytic phenotype [257,258]. 

 

 

11..22..22..  AARREE  MMCCTTSS  SSUUIITTAABBLLEE  TTAARRGGEETTSS  FFOORR  CCAANNCCEERR  TTHHEERRAAPPYY??  

The frequency and severity of tumour hypoxia and its association with malignant 

progression make the hypoxia-induced metabolic adaptations promising targets for cancer therapy 

[259]. Actually, the development of treatments that target tumour metabolism is receiving renewed 

attention, with several potential drugs targeting metabolic pathways currently in clinical trials 

(Table 3, for review see [260]). However, MCTs are not yet included in this list of metabolic 

targets for cancer therapy. 

 
Table 3. Compounds targeting tumour glycolysis metabolism (adapted from [260]).  
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As mentioned, the acid-resistant phenotype is essential for cancer cell survival. Hence, 

different pH regulating systems are present in the plasma membrane of cancer cells (Figure 10), 

including the Na+/H+ exchanger 1 (NHE1), CAIX and AE1. Intracellular H+ ions are primarily 

extruded by NHE1, while lactic acid together with H+ are exported by MCTs, in particular MCT1 

and MCT4. CAIX, as already described, works in collaboration with AE1 to trap H+ ions in the 

extracellular space (for review see [261]). Although MCTs are not the major H+ transporters, they 

perform a double role in the adaptation to hypoxia: export of lactate, essential to the hyper-

glycolytic phenotype, and pH regulation, important to the acid-resistant phenotype. Thus, MCTs 

appear as very promising targets in cancer cells with hyper-glycolytic acid-resistant phenotype. 

 

 
Figure 10. Therapeutic targets for manipulation of metabolism in malignant tumours (from [260]). 

Abbreviations: 5-FU, 5-fluorouracil; αKG, alpha-ketoglutarate; ACLY, ATP citrate lyase; CA, carbonic anhydrase; 

CINN, α-cyano-4-hydroxycinnamate; DCA, dichloroacetate; FASN, fatty acid synthase; G6P, glucose-6-phosphate; 

Glut, glucose transporter; HK, hexokinase; IGF1, insulin-like growth factor 1; IGF1R, IGF1 receptor; LDH, lactate 

dehydrogenase; Mal, malate; MCT, monocarboxylate transporter; NHE1, Na+/H+ exchanger 1; OAA, oxaloacetate; 

PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; PEP, phosphoenol pyruvate; PK, pyruvate 

kinase; R5P, ribose 5-phosphate; TCA, tricarboxylic acid. 
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11..22..22..11..  LLAACCTTAATTEE  AASS  AA  CCOONNTTRRIIBBUUTTOORR  FFOORR  TTHHEE  MMAALLIIGGNNAANNTT  PPHHEENNOOTTYYPPEE  

As mentioned before, tumour acidity is associated with cancer cell invasion behaviour, i.e. 

increased migration, invasion and metastases. Additionally, cancer acidosis is also associated with 

mutagenesis/clastogenesis, radioresistance and resistance to anthracyclines [208]. It has long been 

known that lactic acid is the main source of tumour acidity, as hyperglycemia acidifies the tumour 

microenvironment [204,262,263]. Although lactate has been proven to cause acidification of the 

extracellular milieu [264-268], other sources of acidity, like carbon dioxide, which were described 

later on, probably have higher contribution to acidification of tumour microenvironment [264-

267]. Although sharing its role as tumour acidifier, lactate has other properties which contribute 

modestly to the malignant behaviour of cancer cells. As mentioned above, T cell activation is 

dependent on high rates of glycolysis, therefore, dependent on a rapid efflux of lactate from T cells 

[177]. However, if extracellular concentration of lactate is high, lactate efflux from T cells will be 

inhibited. This is the case of the tumour micromilieu and, as a consequence, T cell metabolism and 

function will be disturbed, decreasing the immune response against tumour cells [268]. Also, 

evidence shows that both lactate and pyruvate regulate hypoxia-inducible gene expression, 

independently from hypoxia, by stimulating the accumulation of HIF-1α [269]. This indicates that, 

lactate, per se, stimulates the hyper-glycolytic phenotype, providing a positive feed-back. 

Moreover, exogenous lactate was demonstrated to increase cellular motility [270], vascular 

endothelial growth factor (VEGF), the major angiogenic factor [271-273], as well as hyaluronan 

and its receptor CD44, which are molecules involved in the process of cancer invasion and 

metastisation [274,275]. Altogether, this evidence shows the various biological activities of lactate 

that can enhance the malignant phenotype of tumour cells, contributing to the association of high 

tumour lactate concentrations with incidence of metastases [276-279], tumour recurrence, patient 

survival [278,279] and radioresistance [280]. 

Although glucose is the major source of lactate in most solid tumours, it is important to note 

that other cancer pathways rather than glycolysis can culminate in the production of lactate. This is 

the case of glutaminolysis and serinolysis [281-284]. Nevertheless, lactate will always be a 

metabolic end-product, either cancer cells use glycolysis or other energetic pathways for energy 

and biomass production. 

As already mentioned, lactate, besides being an end-product of different metabolic 

pathways, may also be a substrate for oxidative phosphorylation. Actually, as described in skeletal 

muscle and in brain, a cell-cell lactate shuttle as been proposed for cancer cells. Therefore, a 

metabolic symbiosis between glycolytic and oxidative cancer cells was described, in which the 
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peripheral and oxygenated oxidative cells consume the lactate produced by the central and less 

oxygenated glycolytic cells [137]. As discussed below, this might have important therapeutical 

implications. 

 

 

11..22..22..22..  MMCCTT  EEXXPPRREESSSSIIOONN  IINN  HHUUMMAANN  SSOOLLIIDD  TTUUMMOOUURRSS  

Giving the increased lactate and acid production by cancer cells, one can anticipate that 

MCTs, especially MCT1 and MCT4, as the transporters responsible for lactate efflux from cells, 

with a pH regulation function, are increased in tumours. Also, as already mentioned, MCTs are 

regulated by HIF-1α [133,135,138] and c-myc oncogene [129,131], which are key molecular 

players in the metabolic adaptations in cancer progression. Although less explored than other 

proteins involved in the glycolytic pathway or even than other pH regulators, reports on the 

importance of MCTs in cancer are becoming more frequent with years. 

The first report on MCT expression in human tumour samples described a decrease of 

MCT1 expression (by Western blot) in colonic transition from normality to malignancy [110], 

which was further supported by a larger study analysing MCT1, MCT2, and MCT4 expressions by 

Northern blot, Western blot and, only for MCT1, immunohistochemistry, in 25 healthy colon 

samples, 20 adenomas and 30 carcinomas. MCT1 decrease was confirmed, while MCT2 and 

MCT4 protein expression was not detected, despite mRNA expression of MCT4 [285]. However, 

evidence from Koukourakis and collaborators [286] showed a clear and strong membranous 

expression of MCT1 in cancer cells in all the 70 colorectal carcinomas analysed but not in the 20 

normal colonic samples. These contradictory results are probably due to antibody specificity, with 

special attention to the fact that the first immunohistochemical study failed to show MCT1 

expression in the plasma membrane of cancer cells, which is essential for plasma membrane 

lactate efflux. Koukourakis and collaborators also found MCT1 expression in tumour-associated 

fibroblasts, favouring absorption of the accumulating lactate from the extracellular matrix, to be 

used as energy source, as well as lack of endothelial MCT1, to avoid lactate absorption and 

vascular destruction by acidosis. Additionally, MCT2 was strongly expressed in the cytoplasm of 

cancer cells and tumour-associated fibroblasts, indicating a possible role of MCT2 in the 

mitochondrial uptake of pyruvate. Finally, MCT4 was weakly expressed in the tumour 

micromilieu, suggesting a minimal role in the metabolic intratumoural communication. Besides 

MCTs, other relevant metabolic proteins were studied and a model of complementary metabolism 

between cancer cells, tumour-associated fibroblasts and vessels is proposed (Figure 11) [286]. A 
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similar metabolic cooperation between lung cancer cells and tumour-associated stroma was 

described, where overexpression of MCT1 was found in all tumours examined, with MCT2 and 

MCT4 also expressed in cancer cells. Tumour-associated stroma weakly expressed MCTs while 

no expression of MCTs was found in normal lung [287]. MCT1, in association with its chaperone 

CD147, was also described in alveolar soft part sarcoma [148]. 

 

 
Figure 11. Model of metabolic cooperation between cancer cells, tumour-associated fibroblasts and endothelial 

cells (from [286]). Step 1, glucose (G) reaches cancer cells through the tumour-associated vasculature followed by 

absorption by glucose transporter 1 (GLUT1). Glucose absorption by stromal fibroblasts is much lower, while, 

endothelial cells absorb glucose directly from the blood. Step 2, in cancer cells, glucose is transformed into pyruvate 

(P) and subsequently to lactate (L). Cancer cells may, therefore, have minimal requirements for oxygen so that oxygen 

use is reduced. Step 3, the high concentrations of lactate in the cancer cell cytoplasm is rapidly extruded to the 

extracellular matrix through the intense activity of the monocarboxylate transporter 1 (MCT1). Step 4, the high 

expression of MCT1 in stromal fibroblasts results, under low pH conditions, in intense absorption of lactate that is 

eventually used as a fuel to acquire energy after its oxidation back to pyruvate. Aerobic metabolism is, therefore, the 

main source of energy acquired by fibroblasts; thus, the oxygen diffused from the tumour-associated vessels is used 

mainly by the stroma and not by cancer cells. Step 5, excess pyruvate production within fibroblasts creates a gradient 

between cytoplasm and extracellular matrix, with MCT1 exporting pyruvate that can be used subsequently by cancer 

cells as a fuel, ending again in lactate production. Abbreviations: LDH, lactate dehydrogenase; m, mitochondria; PDH, 

pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase. 
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In neoplastic human tissues of the central nervous system, strong expression of MCT1 was 

found in ependymomas, hemangioblastomas and high grade glial neoplasms (anaplastic 

astrocytomas and glioblastoma multiforme (GBM)), whereas low-grade glial neoplasms 

(oligodendrogliomas and astrocytomas) were either negative or showed weak MCT1 expression. 

MCT1 expression was also present in microvessels and ependymocytes of normal tissues [288]. 

Additionally, Western blot analysis in total protein extracts from normal brain and primary brain 

tumours (GBMs) demonstrated that normal brain predominantly expressed MCT3, whereas MCT1 

and MCT2 were the major isoforms present in GBM tumours. MCT4 was not detected in any of 

the tumour tissues [289]. A more recent study on a sympathetic nervous system tumour, 

neuroblastoma, showed, by mRNA quantification, that MCT1 expression in this type of tumour is 

also high and is associated with age >1 year at diagnosis, stage 4 disease, unfavourable Shimada 

histopathology, DNA diploid index, n-myc amplification and high-risk clinical group (Children’s 

Oncology Group criteria) [130]. 

As expected, a general up-regulation of MCTs, especially MCT1, is found in solid tumours. 

However, evidence for MCT down-regulation is not only observed in colon carcinoma [110,285]. 

In fact, silencing of SLC16A1 by gene promoter hypermethylation in 4 of 20 breast cases (20%) is 

suggested, however, the resultant decrease of mRNA and protein were not demonstrated [290]. 

 

 

11..22..22..33..  MMCCTT  TTAARRGGEETTIINNGG  IINN  TTUUMMOOUURR  MMOODDEELLSS  

Inhibition of MCTs will have a direct effect on monocarboxylate transport, as well as on pH 

homeostasis, therefore having an important effect on cancer cell viability. Also, considering the 

above mentioned cell-cell lactate shuttle in cancer cells, where MCT1 has a crucial role as the 

gatekeeper of metabolic symbiosis of cancer cells, by importing lactate into oxidative cells, 

targeting of MCT1 will have important implications in cancer homeostasis (Figure 12). Blocking 

the capacity of aerobic cells to use lactate will force them to use glucose, depriving hypoxic 

tumour cells of adequate amounts of glucose and, therefore, favouring hypoxic cell death. 

Radiotherapy is then particularly suited to eliminate the remaining oxygenated cells in the vicinity 

of blood cells [137]. Finally, taking into account all the biological activities of lactate that can 

enhance the malignant phenotype, together with the fact that MCTs’ up-regulation has been 

described in some tumours, MCT inhibition may be a useful therapeutic approach in cancer, 

counteracting lactate effects and, therefore, among others, increase the immune response against 

tumour cells and decrease migration capacity of cells. 
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Figure 12. Model for therapeutic targeting of lactate-based symbiosis in tumours (from [137]). Hypoxic 

tumour cells depend on glucose and glycolysis to produce energy. Lactate, the end-product of glycolysis, diffuses 

along its concentration gradient towards blood vessels. In contrast, oxygenated tumour cells import lactate through 

monocarboxylate transporter 1 (MCT1) and oxidise it to produce energy. In the respiration process, lactate is preferred 

over glucose. As a consequence, glucose freely diffuses through the oxygenated tumour cells to fuel glycolysis of 

distant, hypoxic tumour cells. This metabolic symbiosis can be disrupted by MCT1 inhibition. Upon MCT1 inhibition, 

oxidative tumour cells switch from lactate oxidation to glycolysis, thereby preventing adequate glucose delivery to 

glycolytic cells, which die from glucose starvation. This glycolytic switch is associated with a decrease in oxygen 

consumption of surviving tumour cells, which is responsible for increased tumour pO2. MCT1 inhibition is thus a 

potent antitumour strategy that indirectly eradicates hypoxic/glycolytic tumour cells. Abbreviation: GLUT, glucose 

transporter. 

 

Actually, it was demonstrated that MCT1 inhibition decreases intracellular pH 

[130,137,172], leads to in vitro cell death [130,137,172,173,289] and enhances cancer cell 

radiosensitivity [173]. Additionally, silencing of MCT4 results in decreased cancer cell migration 

[151], by mechanisms that also involve interaction of MCT4 with β1-integrin [291]. Importantly, 

promising results using in vivo models have also been reported, where administration of CHC 

retarded tumour growth and rendered tumour cells sensitive to radiation [137]. 
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Over the last few years, different approaches have been used to disrupt the function of 

tumour MCTs, including the already mentioned CHC [130,137,172,173] and lonidamine [130]. 

Additionally, since these inhibitors have also other targets rather than MCTs, small-interfering 

RNAs (siRNAs) have also been used to inhibit MCT activity in a more direct manner 

[130,137,289]. The use of MCT1 specific inhibitors designed by AstraZeneca may also be an 

effective strategy to block MCT1 tumour activity both in vitro and in vivo and, perhaps, may also 

be adequate compounds to use in the clinical context. As CD147 has an important role in MCT 

trafficking to the plasma membrane and MCT activity [18,146,149-155], indirect MCT inhibition 

through CD147 has also proven to have the ability of reducing the malignant potential of cancer 

cells [152-154]. 
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22..11..  CCHHAAPPTTEERR  OOVVEERRVVIIEEWW  

It is known that butyrate plays an important role in the maintenance of colonic homeostasis. 

This short-chain fatty acid is implicated in the regulation of colonic mucosa growth and in vitro 

cell proliferation and differentiation, involving the activation of several differentiation-specific 

genes. Additionally, butyrate has a potent effect in inhibiting inflammation and carcinogenesis (for 

review see [1]). Transport of butyrate into the colonic epithelial cells is mostly done through 

MCT1 [2], conferring to this MCT isoform a major role in colonic homeostasis. 

The multistep colon carcinogenesis is generally known to result from the accumulation of 

molecular genetic alterations, mainly activation of oncogenes; inactivation of tumour-suppressor 

genes; and abnormalities in genes involved in DNA mismatch repair [3]. However, other 

alterations have been described that point to an important metabolic switch from butyrate β-

oxidation to glycolysis [4], including up-regulation of GLUT1 [5,6] and production of high levels 

of glycolytic metabolites, such as lactate [7]. 

As mentioned previously, data on MCT1 expression in colorectal cancer is quite 

controversial with reports showing a decrease of MCT1 in the transition from normality to 

malignancy [5,8], as well as absence of MCT2 and MCT4 expression in colon carcinoma [5], 

while another describes an increase of MCT1 in colorectal carcinoma, as well as a strong 

expression of MCT2 in cancer cells cytoplasm, when comparing to normal colonic tissues [6]. In 

this regard, the evaluation of MCT1, as well as other MCT isoforms in colorectal carcinoma 

compared to non-neoplastic tissues, will give an important contribution to the understanding of the 

adaptations that occur toward the metabolic switch occurring in colon carcinogenesis. 

In this chapter, MCT1, MCT2 and MCT4 expressions were evaluated in a comprehensive 

series of 126 colorectal samples. In this study, already published in an international scientific 

periodical with referees, a significant increase of MCT1, MCT2 and MCT4 expressions was 

observed. Importantly, while the increase in MCT1 and MCT4 was associated with an increase in 

cancer cell plasma membrane expression, in the case of MCT2, the increase in cytoplasm 

expression was accompanied by a loss of plasma membrane expression, pointing to a possible role 

of MCT2 in an intracellular organelle, possibly mitochondria. Importantly, analysis of MCT 

expression in regard to the clinic-pathological parameters showed associations of MCT1 plasma 

membrane expression with vascular invasion as well as a borderline association of MCT4 overall 

expression with smaller tumours, which will need further confirmation. 
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22..22..  PPUUBBLLIISSHHEEDD  RREESSUULLTTSS  

The results presented in this chapter were published in an international scientific periodical 

with referees: 

Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S, Pellerin L, Rodrigues 

M, Alves VA, Schmitt F, Baltazar F (2008). Increased expression of monocarboxylate transporters 

1, 2 and 4 in colorectal carcinomas. Virchows Arch 452:139-146. 

 

 

 

 

 

 

 

 

 

The results presented in this chapter were also presented as oral communication in the following 

national scientific meeting: 

XLI Congresso Sociedade Portuguesa de Microscopia 2006, Braga, Portugal. Pinheiro C, Longatto 

A, Ferreira L, Scapulatempo C, Alves VAF, Milanezi F, Schmitt F, Baltazar F. Characterization of 

monocarboxylate transporters in colorectal carcinomas. 

 

Additionally, these results were presented as poster in the following international scientific 

meetings: 

Twenty-seventh International Congress of the International-Academy-of-Pathology, 2008, Athens, 

Greece. Scapulatempo C, Longatto A, Simoes K, Pinheiro C, Schmitt F , Baltazar F, Alves V. Apoptosis 

detected by cleaved cytokeratin 18 (M30) immunohistochemistry in colorectal cancer is related to acidic 

tumoral microenviroment. Abstract published in conference proceedings (Histopathology 53 (Sp. Iss. 

1):159-160); 

Twenty-first European Congress of Pathology, 2007, Istambul, Turkey. Pinheiro C, Longatto-Filho 

A, Ferreira L, Scapulatempo C, Alves VAF, Pellerin L, Schmitt F, Baltazar F. Altered expression of 

monocarboxylate transporters 1, 2 and 4 in colorectal carcinomas. Abstract published in conference 

proceedings (Virchows Arch 451:325); 

Tenth Cancer Research UK Beatson International Cancer Conference, 2007, Glasgow, United 

Kingdom. Pinheiro C, Longatto-Filho A, Ferreira L, Scapulatempo C, Pellerin L, Alves VAF, Schmitt F, 

Baltazar F. Monocarboxylate transporters as new targets for colorectal cancer therapy? 
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33..11..  CCHHAAPPTTEERR  OOVVEERRVVIIEEWW  

Cervical carcinogenesis is probably the best defined carcinogenic mechanism. In fact, it is 

widely accepted that cervical carcinogenesis is triggered by human papillomavirus (HPV) 

infection, which, present in virtually all cervical tumours, is a necessary cause for cervical cancer 

development [1]. Although the glycolytic metabolism has been associated with cervical tumours 

since long time ago [2,3], it was recently demonstrated that HPV-16 E7 oncogene is associated 

with increased glutaminolysis [4] as well as an increase in transketolase-like enzyme 1, a crucial 

enzyme of the non-oxidative pathway of the pentose phosphate pathway [5,6]. However, although 

the relevance of glycolysis in cervical neoplasia is still unknown, lactate, which can result from, 

besides glycolysis, glutaminolysis and other metabolic pathways [4,7-9], continues being a 

metabolic end-product that needs to be transported out of the cell. 

Despite the important role of lactate in cervical cancer, where high lactate levels have been 

described as predictor of poor prognosis [10,11], expression of MCTs has not yet been described 

in human cervical carcinoma samples. 

In the following studies, published in international scientific periodicals with referees, the 

expressions of MCT1, MCT2 and MCT4, as well as the MCT1/MCT4 chaperone CD147, were 

assessed in a large series of cervical lesions, which included 29 chronic cervicitis (non-neoplastic), 

30 low-grade squamous intraepithelial lesions, 32 high-grade squamous intraepithelial lesions, 49 

squamous cell carcinomas, 51 adenocarcinomas, and 30 adenosquamous carcinomas of the uterine 

cervix. In the first study, a significant increase in overall and plasma membrane expression of 

MCT1 and MCT4 was observed from pre-invasive to invasive squamous lesions and from normal 

glandular epithelium to adenocarcinomas. For MCT2, the significant alterations in the expression 

along the progression to the invasive phenotype did not follow a clear increase/decrease pattern. 

Importantly, it was quite interesting to note that both MCT1 and MCT4 were only expressed in the 

parabasal and basal cell layers of the normal squamous epithelium, are lost in the upper layers, but 

‘‘reappear’’ in altered cells. It seems that these altered cells recover the MCT expression 

phenotype of the parabasal cell layer, which represents the main proliferative pool of cells. Also, 

MCT2 was more frequently observed in squamous cell carcinomas, while MCT4 was more 

frequently observed in adenocarcinomas. Importantly, HPV-positive pre-invasive cases expressed 

more MCT1 and MCT4 than HPV negative pre-invasive cases, and also presented more MCT1 in 

plasma membrane. In the second study, CD147 expression was evaluated in the same series of 

cervical lesions, aiming to evaluate the association between CD147 and MCT expression and 

support, in human samples, the role of CD147 as a chaperone of MCT1 and MCT4. CD147 was 
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increased in all cervical lesions, as compared to normal corresponding tissues, and, importantly, 

CD147 was more frequently expressed in MCT1 and MCT4 positive cases. However, it is 

important to note that these associations were not between plasma membrane expressions, 

excluding the role in protein trafficking to the plasma membrane. Moreover, co-expression of 

MCT1 and CD147 was associated with lymph-node metastasis in adenocarcinomas. 

In conclusion, these results point to an important role of both MCT1 and MCT4, as well as 

their co-expression with CD147, in cervical cancer cell metabolic and microenvironmental 

adaptations along progression to invasive carcinomas. 
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44..11..  CCHHAAPPTTEERR  OOVVEERRVVIIEEWW  

The primary epithelial tumour of the stomach is the adenocarcinoma, which develops from 

the stomach mucosa, usually maintaining glandular differentiation [1]. Clinical and 

epidemiological studies have suggested a link between gastric cancer and concurrent or previous 

infection with a bacterium or virus. In this context, Helicobacter pylori emerges as a contributor 

for gastric cancer in around 60% of cases and multiple studies have shown that H. pylori infection 

is associated with a 2.7- to 12-fold increase in risk of gastric cancer development [2]. 

It is widely known that the normal gastric environment is very acidic and many pH 

regulators are involved in cellular homeostasis, including AE, NHE and Na+/HCO3
- co-transporter 

[3]. Gastric mucosa is protected from the acidic environment by different mechanisms, including 

the mucus-bicarbonate-phospholipid “barrier” [4]; however, this barrier may be impaired in 

different clinical conditions, such as H. pylori infection [5,6], contributing to perpetuation of 

chronic inflammation and gastric carcinogenesis [5]. 

Little is known on the metabolic features of gastric cancer cells, however, recent studies 

point at an enhanced glycolytic metabolism in gastric carcinoma [7,8]. 

In the following study, already published in an international periodical with referees, aiming 

to determine if MCTs may have an important role in gastric cancer, MCT1, MCT4 and CD147 

expressions were evaluated in a series of 190 gastric primary tumours, as well as in 71 non-

neoplastic tissues and 42 lymph-node metastases. In contrast to what was found in the previous 

types of tumours, neither MCT1 nor MCT4 were up-regulated in gastric adenocarcinomas. 

Actually, MCT4 expression was more frequently observed in normal gastric mucosa than in 

gastric cancer cells and even less frequently observed in lymph-node metastasis, indicating a 

progressive loss of this MCT isoform with disease progression. Also, MCT4 expression was 

associated with Lauren’s classification of intestinal-type carcinoma. MCT1 and CD147 were 

expressed similarly in normal gastric mucosa, primary tumours and lymph-node metastasis; 

however, MCT1 was present in the majority of samples (around 80%) while CD147 was present in 

less than a half of the samples. This may indicate that MCT1 has a major contribution in gastric 

homeostasis, which is maintained along carcinogenesis, while CD147 should have a more modest 

role in this type of cancer. Both MCT1 and MCT4 expressions were positively associated with 

CD147 and, importantly, the prognostic value of CD147 was associated with co-expression with 

MCT1, but not with MCT4. 

In conclusion, these results suggest that, although not up-regulated in gastric carcinoma, the 

complex MCT1/CD147 may have an important prognostic value in this type of tumour. 
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55..11..  CCHHAAPPTTEERR  OOVVEERRVVIIEEWW  

As the majority of carcinogenesis processes, the progression of normal mammary epithelium 

into invasive carcinoma is widely accepted as a multistep process, where different events like loss 

of tumour-suppressor function, abnormal oncogene activation, abnormal response to growth 

factors, among others, take place [1]. 

FdG-PET is considered the most reliable imaging technique for the diagnosis and prognosis 

of breast cancer, especially regarding the detection of distant metastases, recurrent disease as well 

as monitoring response to therapy [1]. As increased glucose uptake by cancer cells is on the basis 

of this imaging technique, breast cancer cells have to exhibit enhanced glycolytic rates, which has 

been confirmed by some studies [2,3]. 

Although MCT expression has been evaluated in some breast cancer cell lines, no data on 

the frequency or prognostic value of MCT expression in human breast carcinoma was available. 

In this chapter, three distinct studies in breast carcinoma are presented. Firstly, results 

already published in an international periodical with referees showed an increase of MCT1 

expression in breast carcinoma, in a series comprising 249 samples. Also, both MCT1 and MCT4 

expressions were associated with CD147. Importantly, MCT1 and CD147, alone or in co-

expression, were associated with basal-like subtype (a more aggressive breast cancer group) and 

other poor prognostic variables, pointing at a role of MCT1/CD147 in breast carcinoma 

aggressiveness. In the second study, already submitted for publication, GLUT1 and CAIX were 

evaluated as indicators of the hypoxia-induced adaptations towards a glycolytic phenotype. 

Importantly, both MCT1 and CD147, but not MCT4, were significantly associated with GLUT1 

and CAIX. Also, additional data on the prognostic value of GLUT1 and CAIX was provided, 

showing the association of these two proteins with poor prognostic variables, and supporting the 

association of CAIX with shorter disease-free survival. Finally, in vitro studies were performed to 

shed some light into the contribution of MCT1 to breast cancer cell metabolism and viability. For 

that, MCT1 inhibition studies were performed in a variety of human breast cancer cells. In this 

work, after analysing the expression of MCT1, MCT4, CD147, as well as GLUT1 and CAIX in 

the human breast cancer cell lines MCF-7/AZ, SkBr3, MDA-MB-468, BT-20, MDA-MB-231 and 

Hs578T, MCT1 inhibition studies were carried out using the MCT1 classical inhibitor CHC. This 

inhibitor induced a significant decrease in total biomass of almost all cell lines, though at different 

magnitudes, which did not correlate with MCT1 expression. Importantly, MDA-MB-468, a basal-

like subtype breast cancer line, showed a CHC-induced inhibition of total biomass, which was 

accompanied with a decrease in glucose consumption and lactate production, evidencing the role 
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of MCT1 in this group of breast carcinomas. However, the most sensitive cell line, MDA-MB-

231, was negative for MCT1 expression and CHC-induced inhibition was not accompanied by 

extracellular decrease in lactate amounts, suggesting an off-target effect of CHC. 

Overall, the results presented in this chapter point at MCT1 as a potential therapeutic target 

in breast cancer, with special emphasis on basal-like subtype, which so far does not have a specific 

molecular therapy. 
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ABSTRACT 

The goal of the present work was to evaluate the correlation of glucose transporter 1 (GLUT1) and carbonic 

anhydrase IX (CAIX) with the monocarboxylate transporters 1 (MCT1) and 4 (MCT4) and their chaperone, CD147, in 

breast cancer. The clinico-pathological value of GLUT1 and CAIX was also evaluated. For that, we analysed the 

immunohistochemical expression of GLUT1 and CAIX, in a large series of invasive breast carcinoma samples 

(n=124), previously characterised for MCT1, MCT4 and CD147 expression. GLUT1 expression was found in 46% of 

the cases (57/124), while CAIX expression was found in 18% of the cases (22/122). Importantly, both MCT1 and 

CD147, but not MCT4, were associated with GLUT1 and CAIX expression. Also, GLUT1 and CAIX correlated with 

each other. Concerning the clinico-pathological values, GLUT1 was associated with high grade tumours, basal-like 

subtype, absence of progesterone receptor and presence of vimentin and Ki67 expression. Additionally, CAIX was 

associated with high tumour size, high histological grade, basal-like subtype, absence of estrogen and progesterone 

receptors and presence of basal cytokeratins and vimentin expression. Finally, patients with CAIX positive tumours 

had a significant shorter disease-free survival.  

The association between MCT1 and both GLUT1 and CAIX may result from the hypoxia-mediated 

metabolic adaptations, which will confer a glycolytic, acid-resistant and more aggressive phenotype to cancer cells. 

 

Keywords: GLUT1; CAIX; monocarboxylate transporters (MCT); CD147/EMMPRIN; breast carcinoma; 
immunohistochemistry. 
Abbreviations: CA (carbonic anhydrase); ER (estrogen receptor); GLUT (glucose transporter); HIF-1α (hypoxia 
inducible-factor 1 alpha); MCT (monocarboxylate transporter); PR (progesterone receptor). 
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INTRODUCTION 

Early epithelial carcinogenesis occurs under 

hypoxic conditions, since altered cells are separated 

from the vascularised stroma, source of oxygen and 

nutrients. To maintain the needed ATP levels, cancer 

cells increase their rates of glycolysis, acquiring a 

significant proliferative advantage. However, this 

phenotype leads to an overload of lactic acid, which 

must be exported from the cell, causing a decrease in the 

extracellular pH.  

Constitutive up-regulation of glycolysis requires 

additional adaptations, namely, resistance to apoptosis 



Role of monocarboxylate transporters in solid tumours Pinheiro C 
 

134  
 

and up-regulation of membrane transporters to maintain 

normal intracellular pH 1. The need to increase glucose 

uptake, to allow high glucose consumption rates, is 

achieved by up-regulation of glucose transporters 

(GLUT) in the plasma membrane of cancer cells, 

especially the hypoxia-responsive GLUT1 2;3. The role 

of GLUT1 in breast cancer remains poorly elucidated 4;5. 

Besides being an adaptation to high glycolytic 

phenotype, acidic environment represents per se a 

significant advantage for tumour cells since it is 

associated with increased migration, invasion and 

metastases, among others 1;6;7. Although lactate 

produced by glycolysis under hypoxic conditions is a 

significant contributor to the acidic extracellular pH, 

there is also a substantial contribution from carbonic 

acid 8. In this context, the hypoxia-responsive carbonic 

anhydrase isoforms, CAIX and CAXII, emerge as 

important contributors to the regulation of cancer cell 

intracellular pH 9-11, with CAIX, in particular, being 

associated with poor prognosis in breast cancer 12-15.  

Another important group of proteins involved in 

intracellular pH regulation are monocarboxylate 

transporters (MCTs), which are also responsible for 

transmembrane transport of lactate 16. By performing 

these two inter-dependent activities (lactate transport 

coupled with a proton), MCTs appear as strong potential 

targets for cancer therapy. Indeed, there are evidences 

for the up-regulation of MCTs in tumours, such as high 

grade glial neoplasms 17;18, colorectal 19;20, lung 21, 

cervical 22, and breast carcinomas 23. Besides analysing 

MCT expression in tumours, our group also assessed for 

the first time the clinico-pathological value of their 

overexpression 20;22-24. MCT expression appears to be 

influenced by altered physiologic conditions; however, 

the underlying molecular events involved in MCT 

regulation are poorly understood. Recently, it was 

demonstrated that proper expression and activity of 

MCT1 and MCT4 requires co-expression of CD147, 

also known as EMMPRIN or Basigin 25-27. Based on 

this, we described the association between CD147 and 

both MCT1 and MCT4 in human cervical 28, gastric 24 

and breast cancer 23. Furthermore, the hypoxia 

inducible-factor 1 alpha (HIF-1α), which regulates many 

genes codifying proteins involved in the glycolytic 

pathway (like GLUT1) and pH regulation (like the 

Na+/H+ exchanger NHE1 and both CAIX and CAXII) 29, 

also regulates MCT1 30 and MCT4 30;31. However, there 

is some controversy around MCT1 regulation by 

hypoxia, with some studies reporting MCT1 repression 

by hypoxia 31;32. 

One of the goals of the present study was to 

evaluate the association between the HIF-1α 

downstream targets GLUT1 and CAIX and both MCT1 

and MCT4, as well as their chaperone, CD147, in 

invasive breast carcinomas. We also intended to 

strengthen the clinico-pathological value of GLUT1 and 

CAIX in breast cancer. 

 

 

MATERIALS AND METHODS 

Case selection 

Case selection was based on availability of follow 

up information and amount of material, ensuring 

adequate numbers for statistical analysis. Thus, a series 

of 124 formalin-fixed paraffin embedded breast 

carcinoma tissues was retrieved from the files of the 

Department of Pathology, Hospital do Divino Espírito 

Santo, Azores, Portugal, and from the Federal 

University of Santa Catarina, Florianopolis-SC, Brazil. 

Haematoxylin/eosin stained sections of all cases were 

reviewed by three pathologists (R.D., D.V. and F.S.). 

Tumour samples were organised into 14 tissue 

microarrays (TMAs), with 20 tumour cores (2 mm 

diameter) each, also including several samples of 

normal breast tissue. Each case was represented in the 

TMA by at least two cores. Relevant clinico-

pathological data included tumour size (TNM), 

molecular subtype, histological grade, estrogen receptor 

(ER) and progesterone receptor (PR), human epidermal 

growth factor receptor 2 (HER2), epidermal growth 
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factor receptor 1 (EGFR), basal cytokeratins (CK5 and 

CK14), vimentin and Ki67 expression status. 

Information on lymph-node metastasis, disease-free 

survival and overall survival was also available. These 

tumour samples were previously analysed by our group 

for MCT1, MCT4 and CD147 expressions 23. 

 

Immunohistochemistry 

GLUT1 and CAIX detection 

Immunohistochemistry was performed based on 

the streptavidin–biotin–peroxidase complex principle 

(Ultravision Detection System Anti-polyvalent, HRP, 

Lab Vision Corporation, Fremont, CA), using rabbit 

polyclonal primary antibodies raised against GLUT1 

(ab15309, AbCam, Cambridge, UK, diluted 1:500) and 

CAIX (ab15086, AbCam, Cambridge, UK, diluted 

1:2000). Briefly, deparaffinised and rehydrated sections 

were immersed in citrate buffer (0.01M, pH 6.0) heated 

up to 98ºC, in a water bath, for 10 minutes (GLUT1) or 

20 minutes (CAIX) and washed in PBS. Endogenous 

peroxidase activity was blocked with 3% hydrogen 

peroxide in methanol for 10 minutes, followed by 

washing with PBS. Tissue sections were incubated with 

blocking solution for 10 minutes and incubated at room 

temperature with the primary antibody for 2 hours. 

Sections were then sequentially washed in PBS and 

incubated with biotinylated goat anti-polyvalent 

antibody for 10 minutes, streptavidin peroxidase for 10 

minutes, and developed with 3,3’-diamino-benzidine 

(DAB+ Substrate System, Dako, Carpinteria, CA) for 10 

minutes. Negative controls were performed by using an 

adequate serum controls for the primary antibodies 

(N1699, Dako, Carpinteria, CA) and skin and gastric 

mucosa were used as positive controls for GLUT1 and 

CAIX, respectively. Tissue sections were counterstained 

with haematoxylin and permanently mounted. 

 

Immunohistochemical evaluation 

As described for MCT and CD147 23, GLUT1 and 

CAIX immunohistochemical reactions were scored 

semi-quantitatively for plasma membrane staining as 

follows: 0: 0% of immunoreactive cells; 1: <5% of 

immunoreactive cells; 2: 5-50% of immunoreactive 

cells; and 3: >50% of immunoreactive cells. Also, 

intensity of staining was scored semi-qualitatively as 

follows: 0: negative; 1: weak; 2: intermediate; and 3: 

strong. The final score was defined as the sum of both 

parameters (extension and intensity), and grouped as 

negative (score 0 and 2) and positive (score 3-6), as 

previously described.  

 

Statistical analysis 

Data were stored and analysed using the Statview 

statistical software (SAS Institute Inc., Cary, NC). All 

comparisons were examined for statistical significance 

using Pearson’s chi-square (χ2) test or Fisher’s exact 

test, as adequate, being the threshold for significance p 

values <0.05. Disease-free and overall survival curves 

were plotted using the method of Kaplan-Meier and data 

compared using the log-rank test. A cut-off of 60 

months (5 years) was considered, since in the first 5 

years following primary therapy recurrence rates are 

expected to be highest, especially in series with high 

number of ER negative cases like ours, where the hazard 

of recurrence is higher 33. Cases lacking one or more of 

the clinico-pathological variables were not included in 

the specific statistical analysis. 

 

 

RESULTS 

A total of 124 breast carcinoma samples, organised 

into TMAs (Tissue Microarrays), were assessed for 

GLUT1 and CAIX immunohistochemical expressions.  

In general, positive GLUT1 expression was 

observed in both plasma membrane and cytoplasm 

(Figure 1A), while CAIX expression was mainly 

observed in the plasma membrane, with some cases 

presenting also cytoplasm staining (Figure 1B). GLUT1 

expression was observed only in the epithelium cells of 

1 out 20 normal samples evaluated (5%), with a
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Figure 1. Immunohistochemical expression of glucose transporter 1 (GLUT1), carbonic anhydrase IX (CAIX) and monocarboxylate transporter 1 
(MCT1), in breast carcinoma samples. GLUT1 and CAIX expression was frequently observed in perinecrotic regions (A and B, respectively). 
CAIX expression was usually focal and mainly restricted to tumour cells. Lower panel shows a breast cancer case simultaneously positive for 
MCT1 (C), GLUT1 (D) and CAIX (E), with staining in the same tumour region. 

 
significantly higher frequency (46%) in tumour samples 

(57/124, p=0.0005), while CAIX expression was absent 

in normal tissue but was found in 18% (22/122) of 

breast cancer cases (p=0.0388). Importantly, the 

expression of both molecules was frequently observed in 

peri-necrotic regions, as can be observed in Figure 1 (A 

and B), especially CAIX which was usually focal and 

mainly restricted to tumour cells, adjacent to areas of 

necrosis. 

Importantly, when comparing the expression of the 

previously analysed MCT1, MCT4 and CD147 23 with 

GLUT1 and CAIX, we found that both MCT1 and 

CD147, but not MCT4, were more frequently expressed 

in GLUT1 and CAIX positive tumour samples (Table 

1). Also, as expected, GLUT1 and CAIX were 

significantly co-expressed, with 81.8% (18/22) of CAIX 

positive cases also positive for GLUT1 versus 37.5% 

(36/96) GLUT1 positive in the CAIX negative group, 

p=0.0002. Figure 1 (C, D, E) shows a breast cancer case 

simultaneously positive for MCT1, GLUT1 and CAIX, 

in the same tumour area.  
Assessment of the clinico-pathological value of 

GLUT1 and CAIX also retrieved important results 

(Table 2). We found significant associations between 

 
Table 1. Association of CAIX and GLUT1 with MCT1, MCT4 and CD147 expression in breast 

carcinoma samples. 

 n MCT1 
Positive (%) p MCT4 

Positive (%) p CD147 
Positive (%) p 

GLUT1 106  <0.0001  0.3473  0.0032 
Negative 55 1 (1.8)  4 (7.3)  2 (3.6)  
Positive 51 15 (29.4)  7  (13.7)  12 (23.5)  

CAIX 105  <0.0001  0.6897  0.0005 
Negative 84 6 (7.1)  8 (9.5)  7 (8.3)  
Positive 21 10 (47.6)  3 (14.3)  8 (38.0)  
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GLUT1 expression and high grade tumours (p=0.0014), 

basal-like subtype (p=0.0008), absence of progesterone 

receptor (p=0.0162), presence of vimentin (p=0.0033) 

and high Ki67 expression (p=0.0339). Additionally, 

CAIX was associated with the majority of the clinico-

pathological parameters analysed, including tumour size 

(p=0.0034), histological grade (p=0.0263), molecular 

subtype (p=0.0050), ER and PR negativity (p=0.0014 

and p=0.0292, respectively), expression of CK5 

(p=0.0002), CK14 (p=0.0102) and vimentin (p=0.0004). 

Analysis of GLUT1 expression and patient’s survival 

(disease-free survival and overall survival) showed no 

significant differences between negative and positive 

groups (data not shown), but, importantly, patients with 

CAIX positive tumours had a lower disease free-

survival than patients with CAIX negative tumours 

(43.2 versus 52.4 months, respectively, p=0.045) (Figure 

2). No significant differences in overall survival were 

observed between the CAIX negative group and the 

CAIX positive group. 

 
Table 2. Associations of CAIX and GLUT1 expression with clinico-

pathological data from breast cancer cases. 

Clinico-pathological data 

GLUT1 CAIX 

n Positive 
(%) p n Positive 

(%) p 

T size (TNM) 121  0.5218 119  0.0034 
T1 46 23 (50.0)  45 6 (13.3)  
T2 63 25 (39.7)  63 9 (14.3)  
T3 12 6 (50.0)  11 6 (54.5)  

Histological grade 124  0.0014 122  0.0263 
I 23 5 (21.7)  24 2 (8.3)  

II 55 22 (40.0)  51 6 (11.8)  
III 46 30 (65.2)  47 14 (29.8)  

Subtype 114  0.0008  113  0.0050 
Luminal 78 31 (39.7)  79 8 (10.1)  

Basal-like 25 20 (80.0)  24 9 (37.5)  
HER2 overexpressing 11 3 (27.3)  10 3 (30.0)  

Estrogen receptor 124  0.1059 122  0.0014 
Negative 45 25 (55.6)  42 14 (33.3)  
Positive 79 32 (40.5)  80 8 (10.0)  

Progesteron e receptor 124  0.0162 122  0.0292 
Negative 75 41 (54.7)  73 18 (24.6)  
Positive 49 16 (32.6)  49 4 (8.2)  

HER2 overexpression 123  0.5885 121  0.4556 
Negative 110 51 (46.4)  109 19 (17.4)  
Positive 13 5 (38.5)  12 3 (25.0)  

EGFR 124  >0.9999 122  0.6643 
Negative 115 53 (46.1) 113 20 (17.7)  
Positive 9 4 (44.4)  9 2 (22.2)  

CK5 124  0.1188 122  0.0002 
Negative 98 42 (42.8)  97 11 (11.3)  
Positive 26 15 (57.7)  25 11 (44.0)   

CK14 121  0.0508 121  0.0102 
Negative 114 51 (44.7)  115 18 (15.6)  
Positive 7 6 (85.7)  6 4 (66.7)  

Vimentin 106  0.0033 106  0.0004 
Negative 89 38 (42.7)  88 12 (13.6)  
Positive 17 14 (82.4)  18 9 (50.0)  

Ki67 124  0.0339 122  0.5214 
< 20% 65 24 (36.9)  63 10 (15.9)  
> 20% 59 33 (55.9)  59 12 (20.3)  

Lymph-node metastasis 117  0.6326 115  0.5840 
Absent 58 24 (41.4)  55 8 (14.5)  
P resent 59 27 (45.8)  60 11 (18.3)  
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Figure 2. Disease-free survival (DFS) curve regarding CAIX immunoreaction in breast cancer patients. Patients 

with positive tumours for CAIX expression show shorter disease-free survival (interrupted line) than patients with 

CAIX negative tumours (continuous line) (p = 0.045). 
 

DISCUSSION 

Up-regulation of glucose conversion into lactate, 

even in the presence of oxygen (Warburg effect), has 

been described as a possible adaptive mechanism to 

overcome intermittent hypoxia in pre-malignant lesions. 

This metabolic switch leads to an increase in acid 

production by cancer cells and, therefore, the need for 

further adaptation by means of intracellular pH 

regulation and resistance to extracellular acidity 1. In 

this perspective, MCTs emerge as important 

contributors to cancer cell adaptation due to their 

function, on one hand, of lactate export, allowing 

continuous glycolysis, and, on the other hand, of tumour 

intracellular pH regulation and induction of extracellular 

acidosis, by co-transporting lactate and a proton. 

Although some literature review the contribution of 

MCTs to the glycolytic and acidic phenotype of tumours 
34;35, the significance of tumour MCT expression in this 

context is still not clear 19;21. Thus, the main aim of the 

present work was to determine if glycolytic and acid-

resistant tumours, with up-regulation of GLUT1 and 

CAIX, present a higher expression of MCTs, supporting 

the involvement of these transporters in the metabolic 

adaptations of cancer cells. 

GLUT1, involved in glucose uptake, is up-

regulated in a variety of tumours (for review see 36), 

being the hypoxia transcription factor HIF-1α the major 

regulator of its expression in cancer cells 37;38. HIF-1α, 

the master transcriptional regulator of tumour cell 

adaptation to hypoxic stress, activates a number of 

genes, many of which code for protein involved in O2 

delivery, angiogenesis, energy preservation (including 

glucose transporters and glycolytic enzymes), and other 

processes essential to tumour cell survival, proliferation, 

and spread 29. Moreover, GLUT1, CAIX and MCT4 are 

downstream targets of HIF-1α 30;31;39 and both GLUT1 

and CAIX are also recognised as tumour hypoxia 

markers 40.  However, in our study, MCT4 expression 

was not increased in GLUT1 or CAIX positive tumours. 

In contrast, MCT1 was more frequently expressed in 

both GLUT1 and CAIX positive tumours, pointing to a 

hypoxia dependent up-regulation of this MCT isoform, 

which is accompanied by co-expression of its chaperone 

CD147, essential for plasma membrane localisation and 

transporter activity 25-27;41;42. This finding is of major 

importance since it reinforces the induction of MCT1 
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expression by hypoxia 30, which is contested by some 

groups 31;32. With these associations, one can support the 

role of functional MCT1 as the lactate transporter 

responsible for lactate efflux in highly glycolytic breast 

cancer cells, especially in basal-like tumours. The 

transport activity of MCT1 is considered one of the most 

important mechanisms of intracellular pH regulation 16. 

Besides MCTs, carbonic anhydrases, especially CAIX, 

play a major role in maintenance of intracellular (and 

extracellular) pH levels, by contributing to the extrusion 

of the protons generated by the high metabolic rates of 

glycolytic cancer cells. At the tumour cell surface, 

CAIX catalyses the extracellular trapping of acid by 

hydrating the cell-generated CO2 into HCO3
- and H+ 11. 

Thus, it is not surprising to see an association between 

MCT1 and both GLUT1 and CAIX, which is likely a 

result of the overall HIF-1α-mediated metabolic 

adaptations, conferring a glycolytic, acid-resistant 

phenotype to cancer cells.  

According to the previously described 14;43;44, in 

our tumour series, GLUT1 and CAIX were mainly 

observed in the vicinity of necrotic areas (a consequence 

of tumour hypoxia), which supports the hypoxia-

mediated regulation of the expression of these proteins. 

Both hypoxia markers were absent in the normal breast 

tissue, but up-regulated in breast tumour tissues, with 

expression frequencies concordant with previous reports 
4;5;12;13;15;45. Although the clinico-pathological value of 

GLUT1 and CAIX in breast cancer has already been 

studied by others 5;12-15, our data strengthens the 

importance of these proteins as prognostic markers, 

especially GLUT1, which has been few explored in 

breast cancer 4;5. So far, GLUT1 has been associated 

with lower disease-free survival, loss of ER and PR 4 

and both higher grade 4;5 and proliferative activity 

(through Ki67 expression) 5. In the present work, 

although we did not find associations of GLUT1 with 

disease-free or overall survival, GLUT1 was more 

frequently expressed in high grade tumours, negative for 

PR and with high proliferative index (Ki67). 

Importantly, we found GLUT1 to be more frequently 

expressed in basal-like tumours, as well as in vimentin 

positive tumours. In respect to CAIX, more data has 

been published in breast carcinomas, which identifies 

CAIX as a good marker of aggressive tumour behaviour. 

This protein was positively correlated with higher 

tumour size, basal-like 15 and high grade tumours, loss 

of ER 12;14;15;46 and PR 46 as well as with shorter disease-

free survival 13-15.  Here, we support all the previous 

findings described by other groups, by associating 

CAIX expression with high histological grade, loss of 

ER and PR and, importantly, basal-like subtype and 

disease-free survival. These results suggest that the 

basal-like subtype tumours may be more representative 

of the glycolytic, acid-resistant phenotype proposed for 

cancer cells and this hypoxia mediated phenotype may 

explain, at least partly, the more aggressive phenotype 

of this breast carcinoma subtype. 

In the present study, we investigated the expression 

of the key hypoxia regulated proteins GLUT1 and 

CAIX. Importantly, they were positively associated with 

the major lactate transporter, MCT1, especially in a 

subset of aggressive breast carcinomas (basal-like), 

where these proteins are more frequently expressed. 

Since this subtype of tumours does not have a specific 

molecular therapy 47, the development of therapeutic 

approaches targeting these particular metabolic features 

could be a promising strategy to be explored in the 

treatment of basal-like breast tumours.  
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55..44..  UUNNPPUUBBLLIISSHHEEDD  RREESSUULLTTSS  

Finally, this chapter also comprises the following unpublished results, entitled “Sensitivity 

of breast cancers to CHC, a monocarboxyate transporter 1 inhibitor”, to be submitted for 

publication in an international scientific periodical with referees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following results were also presented as poster in the following national scientific meeting: 

XIX Porto Cancer Meeting, 2010, Porto, Portugal. Pinheiro C, Pinheiro S, Gonçalves V, Vieira A, 

Paredes J, Schmitt F, Baltazar F. Sensitivity of breast cancer cells to CHC, an inhibitor of 

monocarboxylate transporter 1. 
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55..44..11..  SSEENNSSIITTIIVVIITTYY  OOFF  BBRREEAASSTT  CCAANNCCEERR  CCEELLLLSS  TTOO  CCHHCC,,  AA  MMOONNOOCCAARRBBOOXXYYLLAATTEE  

TTRRAANNSSPPOORRTTEERR  11  IINNHHIIBBIITTOORR
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ABSTRACT 

Tumour microenvironment is known to be acidic due to the high glycolytic rates of tumour cells. 

Monocarboxylate transporters (MCTs) are one of the major players responsible for the maintenance of tumour 

intracellular pH, which is achieved by the transport of lactate coupled with a proton, through the cell plasma 

membrane. It is widely known that acidification of the extracellular microenvironment has important implications in 

tumour progression and, therefore, MCTs have been suggested as potential targets for cancer therapy. We have 

recently described the up-regulation of monocarboxylate transporter 1 (MCT1) in breast carcinomas and its 

association with poor prognostic variables, such as basal-like subtype and high grade tumours. Therefore, we aimed to 

evaluate the effect of MCT1 inhibition in different breast cancer cell lines. 

The human breast cancer cell lines MCF-7/AZ, SkBr3, MDA-MB-468, BT-20, MDA-MB-231 and Hs578T were 

used for this study. MCT1, MCT4 and CD147 expressions, as well as CAIX and GLUT1, were evaluated by 

immunocytochemistry in paraffin cell blocks. Also, the effect of the MCT1 inhibition in cancer cell viability and 

metabolic profile was evaluated using the MCT1 classical inhibitor α-cyano-4-hydroxycinnamate (CHC). 

MCT1, MCT4 and CD147 were differently expressed among the breast cancer cell lines, being MCF-7/AZ, 

SkBr3 and MDA-MB-231 negative and MDA-MB-468, BT-20 and Hs578T positive for MCT1 plasma membrane 

expression. In MDA-MB-468, the CHC-induced inhibition (IC50 value of 9.3 mM) was accompanied by a decrease in 

both glucose consumption and lactate production. Although negative for MCT1 expression, MDA-MB-231 showed 

the lowest IC50 value after inhibition with CHC (5.3 mM); however, this inhibition in cell proliferation/viability was 

not accompanied by a decrease in glucose consumption and lactate production. BT20 showed the highest IC50 value 

(23.5 mM), with no effect on glucose or lactate extracellular concentrations. 

In this study, we evaluated, for the first time, the sensitivity of different breast cancer cell lines to the classical 

MCT1 inhibitor CHC. The results obtained here led us to hypothesise that MCT1 inhibition may be a good therapeutic 

strategy to treat breast cancer, with special emphasis on basal-like subtype, which so far does not have a specific 

molecular therapy. 
 

Keywords: Monocarboxylate transporter, breast carcinoma, lactate, CHC, metabolism. 
Abbreviations: AE (anion exchanger); CA (carbonic anhydrase); CHC (α-cyano-4-hydroxycinnamate); DMSO 
(dimethyl sulfoxide); FBS (fetal bovine serum); FdG-PET (18F-fluorodeoxyglucose positron emission tomography); 
GLUT (glucose transporter); HIF-1α (hypoxia inducible-factor 1 alpha); MCT (monocarboxylate transporter); siRNA 
(small-interfering RNA). 
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INTRODUCTION 

The increased uptake of glucose by cancer cells 

is a widely described phenomenon, being the rationale 

behind the whole-body noninvasive 18F-

fluorodeoxyglucose positron emission tomography 

(FdG-PET). This imaging technique is considered to 

be the most reliable for the diagnosis and prognosis of 

breast cancer, especially regarding the detection of 

distant metastases, recurrent disease as well as 

monitoring therapy response [1]. This increased 

uptake of glucose, especially through glucose 

transporter 1 (GLUT1), is a consequence of an 

increased glycolytic metabolism that generates acids 

inside the cell, inducing the up-regulation of some pH 

regulators, like carbonic anhydrases IX (CAIX) [2], to 

maintain physiological pH inside the cell, causing 

extracellular acidosis. The increased glycolytic 

metabolism ultimately leads to an increase in lactate 

release by cancer cells, contributing also to 

microenvironmental acidosis, as well as increased 

invasion capacity [3] and suppression of anticancer 

immune response [4]. More recently, a metabolic 

symbiosis between glycolytic and oxidative cancer 

cells was described, in which the peripheral and 

oxygenated oxidative cells consume the lactate 

produced by the central and less oxygenated glycolytic 

cells [5]. In this context, lactate has a central role and 

lactate transporters are currently seen as potential 

therapeutic targets in cancer treatment, with promising 

results using in vitro and in vivo models [5-11]. 

Presently, monocarboxylate transporters (MCTs) are a 

family of 14 members, with isoforms 1 to 4 being 

lactate proton symporters that exhibit different 

affinities for lactate [12]. MCT1 isoform has been 

described as the gatekeeper of cancer metabolic 

symbiosis, by up-taking lactate in the oxidative cancer 

cells [5]. Therefore, MCT1 would probably be the 

most promising isoform in this context and reports on 

MCT1 upregulation in a variety of tumours are 

becoming more frequent [8,10,13-17]. We also 

described the association of MCTs, especially MCT1, 

with poor prognostic variables [15,17,18], reinforcing 

the potential of MCT1 as cancer therapeutic target. 

Recently, our group described an increase of MCT1 

expression in breast carcinoma, when comparing with 

normal tissue. Importantly, this enhanced MCT1 

expression, as well as the expression of CD147 

(MCT1 chaperone), were associated with basal-like 

subtype tumours and other poor prognostic parameters 

[17]. 

Over the last years, different approaches have 

been used to inhibit lactate efflux from cancer cells, 

including MCT small-molecule inhibitors like α-

cyano-4-hydroxycinnamic acid (CHC) [5,6,9] and 

MCT small-interfering RNA (siRNA) [5,8,10]. 

Continued inhibition of lactate efflux inhibits pyruvate 

reduction to lactate and, therefore, prevents NAD+ 

recycling, causing metabolic crisis in tumour cells. 

MCT inhibition studies are providing evidence for the 

effectiveness of targeting the end stage of glycolysis, 

with data showing a reduction of tumour malignancy, 

enhancement of radio-sensitivity and induction of cell-

death in MCT targeted tumour tissue (for review, see 

[11]). 

Despite the promising results obtained by MCT 

inhibition, we are still far from definitely pointing at 

MCTs as effective targets for cancer therapy. Without 

doubt, more efforts are needed to increase evidence 

supporting that inhibition of metabolism, more 

specifically lactate transport and pH regulation, may 

be an alternative therapeutic strategy to use in cancer 

treatment, in a near future. Therefore, the present work 

is an attempt to provide new data supporting in the 

exploitation of MCTs as targets in breast cancer 

therapy. 

 

 

MATERIALS AND METHODS 

Cell lines  

Human breast cancer cell lines MCF-7/AZ, 
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SkBr3, MDA-MB-468, BT-20, MDA-MB-231 and 

Hs578T were obtained from ATCC or from 

collections developed in the laboratories of Drs Elena 

Moisseva (Cancer Biomarkers and Prevention Group, 

Departments of Biochemistry and Cancer Studies, 

University of Leicester, UK), Marc Mareel 

(Laboratory of Experimental Cancerology, Ghent 

University Hospital, Belgium) and Eric Lam (Imperial 

College School of Medicine, Hammersmith Hospital, 

London, UK). 

Cell culture 

All cell lines were grown in commercially 

available culture medium (DMEM, Invitrogen), 

supplemented with 10% heat-inactivated Fetal Bovine 

Serum (FBS, Invitrogen) and 1% antibiotic solution 

(penicillin–streptomycin, Invitrogen). All cell lines 

were routinely cultured at 37ºC, in a humidified 

atmosphere with 5% CO2.  

 

Protein expression assessment 

Paraffin cytoblock 

Concentrated cell suspensions were made by 

centrifuging fresh cell suspensions at 1200 rpm for 5 

minutes. After discarding the supernatant, cell pellets 

were incubated with formaldehyde 3.7% overnight 

and re-centrifuged. Cell pellets were then processed in 

an automatic tissue processor (TP1020, Leica), before 

inclusion into paraffin (block-forming unit, EG1140H, 

Leica). 

Immunocytochemistry 

Immunocytochemistry was performed for MCT1, 

MCT4, CD147 (MCT1 and MCT4 chaperone [19-

21]), GLUT1 and CAIX as previously described 

[15,22]. Briefly, deparaffinised and rehydrated 4 μm 

cytoblock sections were submitted to the adequate 

antigen retrieval, followed by inactivation of 

endogenous peroxidase activity. Slides were then 

incubated with the primary antibody and 

immunoreactivity was visualised with 3,3’-diamino-

benzidine (DAB+ Substrate System, Dako). Please see 

Table 1 for detailed aspects of each antibody used. 

Negative controls were performed by using adequate 

serum control for the primary antibodies (N1699, 

Dako). Cytoblock sections were counterstained with 

haematoxylin and permanently mounted. Cells were 

evaluated for positive expression, distinguishing 

cytoplasmic from membrane expression. 

 
 

Table 1. Detailed aspects of the immunocytochemical procedure used to visualise the different proteins. 
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Figure 1. Immunocytochemical expression of different proteins in human breast carcinoma cell lines (400x 
magnification). MCT1 was mainly found in the plasma membrane of MDA-MB-468, BT20 and Hs578T cells, while 
MCT4 was only found in the cytoplasm of all cell lines. CD147, GLUT1 and CAIX were observed at the plasma 
membrane of some tumour cell lines, at varying levels. 
 
Evaluation of the metabolism/Metabolic behaviour 
of human breast cancer cell lines 

Glucose and lactate quantification 

The metabolic behaviour of the different cell 

lines was determined by analysing basic metabolic 

parameters, i. e., extracellular concentrations of 

glucose and lactate. For metabolic studies, to minimise 

variations due to cell growth and size, as well as 

obtain measurable variations of glucose and lactate in 

a short period of time, assays were performed with 

confluent cells, in 24-well plates. After reaching 

confluence, spent medium was replaced with fresh 

complete culture medium (supplemented with FBS 

and antibiotics) and aliquots were retrieved, after 24 

and 48 hours. Glucose and lactate were quantified 

using commercial kits (Roche and SpinReact, 

respectively), according to the manufacturer’s protocol 

but scaled down to microplate volumes. Results are 

expressed as total μg/500 µl medium. 

MCT1 in vitro inhibition using the classical 
inhibitor CHC 

IC50 estimation 

To determine the CHC IC50 value for the 

different breast cancer cell lines, cells were plated in 

96-well plates, at a density ranging from 10000 to 

20000 cells per well, depending on cell growth rates. 

Cells were allowed to grow overnight prior to 

incubation with culture medium (without serum) 

containing 3-15 mM of CHC (Sigma-Aldrich, stocks 

at 0.3-1.5 M in dimethyl sulfoxide (DMSO)). Controls 
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were performed by adding DMSO to cell culture 

medium at the same dilution (1:100). The effect of 

CHC on cell number (total biomass) was evaluated by 

the Sulforhodamine B assay (SRB, TOX-6, Sigma-

Aldrich), following the manufacturer’s 

recommendations. IC50 values were estimated from 

three independent experiments, each one in triplicate, 

using the GraphPad Prism 5 software, applying a 

sigmoidal dose-response (variable slope) nonlinear 

regression, after logarithmic transformation.  

Glucose and lactate quantification 

For metabolic studies, as previously described, assays 

were performed with confluent cells, in 24-well plates. 

After reaching confluence, cells were incubated with 

2.5, 5 and/or 10 mM of CHC, as indicated in the 

results section. Cell culture medium (30 μl) was 

retrieved at 4, 8 and 12 hours, assuring confluences 

similar to the ones observed in the control. Glucose 

and lactate were quantified as mentioned above. Data 

from two independent experiments, each one in 

triplicate, was stored in GraphPad Prism 5 software. 

All conditions were examined for statistical 

significance using two-tailed Student’s t-test for mean 

comparison, being threshold for significance p values 

<0.05. 

 

 

RESULTS 

 

Protein expression 

Human breast cancer cell lines MCF-7/AZ, SkBr3, 

MDA-MB-468, BT-20, MDA-MB-231 and Hs578T 

were evaluated for MCT1, MCT4, CD147, GLUT1 

and CAIX immunocytochemical expression, as 

depicted in Figure 1. Membrane expression of MCT1 

was only observed in MDA-MB-468, BT20 and 

Hs578T cell lines, while MCT4, although differently 

expressed in the cytoplasm of all cell lines analysed, 

was not found in the plasma membrane of any of the 

cell lines. CD147 was observed in the plasma 

membrane of the 6 cell lines studied; however, MCF-

7/AZ, MDA-MB-468 and Hs578T expressed this 

protein at very low levels. GLUT1 was expressed at 

the plasma membrane, at different levels in all cell 

lines, and CAIX was only detected in a low percentage 

of cells in MDA-MB-468 and Hs578T and, at even 

lower levels in MCF-7/AZ. 

 

Metabolic behaviour of human breast cancer cell 
lines 

Glucose and lactate quantification in the culture 

medium showed different metabolic behaviours 

among the breast cancer cell lines studied (Figure 2A 

and 2B). 
 

 
Figure 2. Extracellular amounts of glucose (A) and 
lactate (B) in the different human breast carcinoma 
cell lines, along time. Results are expressed as 
mean±SEM. 

 
In general, cells consuming more glucose along 

time also produced more lactate. SkBr3 and MDA-

MB-468 showed the highest glucose consumption 

rates, followed by Hs578T and MCF-7/AZ, while 

BT20 and MDA-MB-231 presented the lowest 

consumption of glucose. On the other hand, SkBr3, 

Hs578T and MDA-MB-468 produced more lactate 
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Figure 3. CHC-induced phenotypic alterations in the human breast carcinoma cell lines MCF-7/AZ (A- control, B- 
CHC treated), SkBr3 (C- control, D- CHC treated), MDA-MB-468 (E- control, F- CHC treated), BT20 (G- control, H- 
CHC treated), MDA-MB-231 (I- control, J- CHC treated) and Hs578T (K- control, L- CHC treated). 
 

than MCF-7/AZ, MDA-MB-231 and BT20, by this 

order. 

 

MCT1 inhibition using CHC 

Human breast cancer cell lines were treated once 

with CHC at increasing concentrations (3-15 mM) 

and, 24 hours later, total cell biomass was determined 

with SRB assay (estimation of IC50 values). 

Microscopically, morphological alterations were 

detected after 24 hours of treatment with CHC. In 

general, cell volume decreased and cells became round 

(Figure 3), possibly due to loss of cell viability. For 

MDA-MB-468, which in normal growth conditions 

has a very round shape (Figure 3E), it was possible to 

observe a more elongated form in part of the 

population (Figure 3F), after CHC treatment. In the 

case of BT20, the morphological alterations were very 

subtle (Figure 3G vs. Figure 3H), anticipating a lower 

sensibility to CHC. 

IC50 values show that MDA-MB-231 is the cell 

line most sensitive to CHC-induced decrease in cell 

biomass (Figure 4E), MCF-7/AZ and MDA-MB-468 

have an intermediate sensitivity to CHC (Figure 4A 

and 4C, respectively), while SkBr3 and Hs578T have 

the highest IC50 value (Figure 4B and 4F, respectively) 

being slightly less sensitive than the formers. For 

BT20, the IC50 was not within the range of 

concentrations used (Figure 4D), thus this cell line 

was considered resistant to CHC, for 24 hours of 

treatment. 

To understand if the inhibitory effect induced by 

CHC in the different cell lines was due to metabolic 

disturbance, glucose consumption and lactate 

production were analysed, using a CHC concentration 

around the IC50 value (5 mM for MDA-MB-231 and 

10 mM for the remaining cell lines), as well as a lower 

concentration (2.5 mM for MDA-MB-231 and 5 mM 

for the other cell lines) to observe if cancer cell 

metabolism is affected, at concentrations inducing a 

reduced effect in total biomass. Quantification of 

extracellular glucose and lactate along time showed 

that MDA-MB-468 is the only cell line where the 

CHC-induced inhibition leads to a significant decrease 

in glucose consumption and lactate production, the 
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latter in a dose dependent manner (Figure 5A and 5D, 

respectively). MCF-7/AZ, SkBr3 and Hs578T 

produced a significantly lower amount of lactate (soon 

after 4 hours for MCF-7/AZ and Hs578T) for both 

CHC concentrations used, and in a dose dependent 

manner for Hs578T (Figure 5B, 5C and 5G, 

respectively), however, this alteration in lactate 

production was not accompanied by a decrease in 

glucose consumption (data not shown). BT20 also 

showed a decrease in lactate production, but only 

when treated with 10 mM of CHC (Figure 5E) and 

also with no decrease in glucose consumption (data 

not shown), while MDA-MB-231 showed no 

alteration in both CHC concentrations at the different 

time points (Figure 5F). 

 

 

DISCUSSION 

We have previously described the up-regulation 

of MCT1 in breast cancer and, importantly, we 

observed that MCT1 was more frequently expressed in 

high-grade tumours, as well as in the basal-like 

subtype [17]. Basal-like tumours have a more 

aggressive clinical behaviour when compared to 

 

 
Figure 4. Effect of CHC in total cell biomass, evaluated by SRB assay. Results are represented as mean±SD. 
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Figure 5. Effect of CHC in MDA-MB-468 glucose uptake (A) and in lactate production in the human breast 
carcinoma cell lines. Results are represented as mean±SEM. 

 

luminal and normal-like breast carcinomas [23-27] 

and, in contrast to the other groups, do not have a 

specific molecular therapy [28,29]. This entails the 

search for new molecular targets in this aggressive 

group of tumours, and, considering the increased 

expression of MCT1 in basal-like tumours as well as 

recent evidence for using MCTs as effective anti-

cancer targets [5,6,8-10], MCT1 emerges as a 

promising therapeutic target, that needs to be further 

explored in breast cancer. 
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In the present work, we analysed MCT1 

expression, as well as the expression of other relevant 

proteins in cancer metabolism, in a variety of human 

breast cancer cell lines. Plasma membrane expression 

of MCT1 was found in MDA-MB-468, BT20 and 

Hs578T, which are basal-like subtype cell lines, being 

in accordance with our findings in human breast 

carcinoma samples [17]. However, in MDA-MB-231, 

another basal-like subtype cell line, MCT1 was not 

detected, as described by others [19,30,31], and the 

same was observed for the luminal subtype cell line 

(MCF-7/AZ) and the HER2 positive subtype cell line 

(SkBr3). The other MCT isoform involved in the 

glycolytic phenotype, MCT4, was strongly expressed 

in some cell lines, namely MCF-7/AZ, SkBr3 and 

MDA-MB-468, however, the immunocytochemical 

staining did not reveal any plasma membrane 

expression. This strong expression of MCT4 may 

reflect the involvement of MCT4 in other cell 

functions, such as in lactate/pyruvate transport through 

the mitochondrial/peroxisomal membranes. Actually, 

MCT4, as well as MCT1, has been described to be 

present in the mitochondrial membrane [32,33]. To 

infer on MCT4 but especially on MCT1 activity, 

CD147 expression was analysed, since proper plasma 

membrane expression and activity of these MCT 

isoforms requires this chaperone [19-21]. However, 

MDA-MB-468 and Hs578T, having a strong plasma 

membrane expression of MCT1, presented low and 

absent CD147 expression, respectively. This indicates 

that CD147 may not be the only chaperone required 

for MCT trafficking to the plasma membrane, 

hypothesis already raised by us and others in previous 

studies [17,34,35]. As expected, since all cell lines 

consume glucose, GLUT1, one of the major glucose 

transporters, was expressed in all cell lines analysed. 

However, GLUT1 staining intensity was not 

associated with the glucose consumption rates 

observed for each cell line, which may be explained 

by the presence of other GLUT isoforms, such as 

GLUT12 [36]. CAIX, which is highly induced by 

hypoxia inducible-factor 1 alpha (HIF-1α), was 

analysed as a surrogate marker of HIF-1α stabilisation. 

Although HIF-1α also induces MCT1, MCT4 and 

GLUT1 expressions [37-39], no associations were 

observed between these proteins and CAIX. Actually, 

focal CAIX expression was only found in MDA-MB-

468, Hs578T and with a very faint staining in MCF-

7/AZ. Probably, if cell lines were cultured up to a 

higher confluence, CAIX would be more extensively 

expressed, as described in confluent but not in sub-

confluent MDA-MB-231 cells [40]. 

Inhibition of lactate transport can be achieved by 

different ways but, considering the outstanding results 

obtained by Sonveaux and colleagues [5] with CHC, 

we decided to use this MCT1 inhibitor in our studies 

in human breast cancer cells.  Importantly, we applied 

a not so conventional assay to determine the inhibitory 

effect of CHC, the SRB assay, since it has been 

described by others that conventional assays like MTS 

or MTT are not adequate when inhibiting MCTs’ 

activity [8]. 

Our results show that the human breast cancer 

cell lines studied have a different response to CHC 

and the underlying mechanisms seem to vary among 

these cell lines. In fact, the most CHC sensitive cell 

line, MDA-MB-231, besides being negative for MCT1 

and producing less lactate then the other lines, showed 

no alterations in glucose consumption or lactate 

production after CHC treatment. Additionally, CHC 

has been described as an effective MCT1 inhibitor in 

vitro and in vivo at concentrations ≥10 mM [9]; 

however, we determined the lowest IC50 for MDA-

MB-231, which is negative for MCT1. These puzzling 

results led us to hypothesise that CHC, in this 

particular cell line, should have other means of action, 

not related to lactate efflux or the glycolytic 

metabolism. CHC has also been described as a potent 

inhibitor of the mitochondrial pyruvate transporter 

[41], however, permeability studies carried out by 
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others show that CHC is not internalised in U-87MG 

glioma cells [9]. Additionally, CHC has also been 

pointed out as an inhibitor of the anion exchanger 1 

(AE1) [42], an important pH regulator that is 

responsible for Cl-/HCO3
- membrane exchange [43]. 

Therefore, further studies to unveil the alterative target 

for CHC inhibitory activity are warranted. In contrast, 

MDA-MB-468 and Hs578T, both basal-like, MCT1 

positive cell lines, which consume high amounts of 

glucose and produce high amounts of lactate, suffered 

a significant decrease in glucose consumption (only 

for MDA-MB-468) and lactate production in a dose 

dependent manner, simultaneously with a decrease in 

total biomass. This was the expected result in a highly 

glycolytic cell line after inhibition of MCT1. The 

blockage of lactate efflux likely led to accumulation of 

lactate in the cytoplasm, arrest of glycolysis and 

subsequent decrease in glucose uptake. Inhibition of 

cell proliferation and/or induction of cell death will be 

caused not only by arrest of the metabolic pathway of 

energy production but also due to a decrease in 

intracellular pH, as MCT1 also functions as a pH 

regulator [7]. Additionally, BT20 basal-like subtype 

cell line, although positive for MCT1, was insensitive 

to CHC treatment. This may be due to the low 

glycolytic metabolism of this cell line and dependence 

on other metabolic pathways for energy production. 

The reason why BT20 expresses high levels of MCT1 

in the plasma membrane, regardless of the low 

amounts of lactate produced, remains unclear, but has 

probably to do with the uptake of an alternative source 

of energy from the culture medium, that is also a 

substrate for MCT1, such as pyruvate. Unexpectedly, 

MCF-7/AZ and SkBr3 were sensitive to CHC-induced 

decrease in total biomass in a metabolic dependent 

manner (extracellular lactate was significantly 

decreased, although independent from CHC dose and 

at a lower magnitude than that observed for MDA-

MB-468 and Hs578T), albeit being negative for 

MCT1 expression at the plasma membrane. MCT4 

could be pointed as another target of CHC, however, 

Ki values for MCT4 should be 5-10 times higher than 

for MCT1, ranging the 50 to 100 mM, which is not the 

case observed in this cell lines. 

The results herein presented are very promising 

and need to be completed with other functional 

analysis such as apoptosis, invasion and migration 

assays to further characterise the alterations induced 

by CHC as well as anticipate the practical effect of 

MCT1 inhibition. However, one should always be 

careful when using CHC as a MCT1 inhibitor, always 

confirming the inhibition of the metabolism, avoiding 

looking only to viability and/or proliferating rates. In 

this perspective, other more particular approaches 

such as siRNA or specific MCT1 inhibitors like the 

ones developed by AstraZeneca [44-46] should be 

used. We are currently optimising the use of MCT1 

and MCT4 siRNA to evaluate the effect of MCT 

silencing in cancer cell viability, proliferation, 

apoptosis, invasion and migration. 

The importance of metabolism as a disease 

progression driving force and a strategic therapeutic 

target in cancer has becoming more explored over the 

last years. Evidence provided by experimental data, as 

well as mathematical models, show that the 

hyperglycolytic, acid-resistant phenotype of cancer 

cells, besides providing a growth advantage over 

normal cells, is also critical for the ability of cancer 

cells to invade the surrounding tissue [47-52]. 

Therefore, the targeting of this phenotype will 

probably retard or prevent transition from in situ to 

invasive cancer. Here, by targeting lactate efflux 

through CHC-induced inhibition of MCT1 activity, we 

took a little step forward in the direction to accept 

metabolism targeting as an effective way to control 

tumour and, in particular, to consider the development 

of therapeutic approaches targeting MCT1 as a 

promising strategy to treat basal-like breast tumours. 

However, other in vitro as well as in vivo approaches 

are necessary to confirm these conjectures. 
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66..11..  CCHHAAPPTTEERR  OOVVEERRVVIIEEWW  

The regulatory mechanisms of MCT expression are far from being completely understood, 

however, regulation by the chaperone CD147 is a well characterised mechanism, supported by 

many in vitro studies [1-8]. Other regulatory mechanisms have also been identified but further 

evidence is needed. One of those alternative mechanisms is MCT regulation by CD44, as only one 

study describes the association between this protein and MCT1, MCT4, as well as CD147 [9]. 

Therefore, a tumour screening was performed aiming to confirm CD44 as a putative 

chaperone of MCTs. For that, CD44 and CD147 expressions, as well as MCT1, MCT2 and MCT4 

were evaluated, in four different types of tumours: breast carcinoma, colon adenocarcinoma, non-

small cell lung cancer and ovarian adenocarcinoma. In this work, published in an international 

periodical with referees, evidence is presented for the possible association of CD44 and MCT1 in 

lung cancer. Further, MCT1 was associated with CD147 in ovarian cancer, while MCT4 was 

associated with CD147 in breast and lung cancer. Notably, a relatively important number of cases 

expressed MCT1 at the plasma membrane of cancer cells but neither CD147 nor CD44 were 

present, suggesting that other mechanisms of regulation for correct trafficking of MCTs to the 

plasma membrane might exist. Also, MCT4 plasma membrane expression was decreased in lung 

cancer, as compared to normal tissue, while MCT1 was expressed in a considerable number of 

ovary tumours, warranting further studies in larger series of these types of tumours.  
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66..22..  PPUUBBLLIISSHHEEDD  RREESSUULLTTSS  

This chapter comprises the following paper, published in an international scientific 

periodical with referees:  

Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F (2010). 

Expression of monocarboxylate transporters 1, 2 and 4 in human tumours and their association 

with CD147 and CD44. J Biomed Biotechnol 2010, Article ID 427694. 
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77..11..  OOVVEERRVVIIEEWW  OONN  TTHHEE  CCOONNTTRRIIBBUUTTIIOONN  TTOO  TTHHEE  SSTTAATTEE  OOFF  TTHHEE  AARRTT  

Carcinogenesis has been viewed as an evolutionary process described as “somatic evolution” 

as it requires a sequence of genetic changes; however, recent models of carcinogenesis integrate 

the neo-Darwinian evolution, stating that phenotypic properties are retained or lost based on their 

contribution to fitness for survival, with cell-environment interactions. This new concept of 

carcinogenesis was applied to explain the Warburg phenomenon, i.e., the preference for the 

glycolytic phenotype, even in the presence of oxygen. Thus, as cancer progression proceeds, 

mutations in tumour cells increase and traits that are found in invasive cancers, like the hyper-

glycolytic and acid-resistant phenotypes, arise as adaptive mechanisms to environmental 

proliferative constraints, such as hypoxia. Many players have been associated with these cellular 

adaptations; however, although an important role of lactate transporters could be anticipated in the 

context of the Warburg effect, the underlying role of MCTs in solid tumours are far from being 

characterised. Although pointed out some times as potential therapeutic targets, information on 

MCTs’ expression in human solid tumours is still very scarce. To be used as therapeutic targets in 

cancer, MCTs must be differently expressed, either in quantity or in isoform. Thus, there is an 

urgent need to determine MCTs’ expression during the carcinogenesis process. Some information 

is provided for human tumours from the nervous system, colon and lung [1-8], but similar studies 

are lacking for other types of tumours. Importantly, only one of these studies analysed the clinico-

pathological value of MCT1 [7]. Also, additional functional studies are needed to comprehend the 

overall contribution of MCTs to tumour malignancy. 

 

 

77..11..11..  MMCCTT  EEXXPPRREESSSSIIOONN  IINN  SSOOLLIIDD  TTUUMMOOUURRSS  

In this work, an important step forward was taken towards the possibility of exploiting 

MCTs as targets for cancer therapy. In fact, colorectal, cervical and breast carcinomas were found 

to express MCTs, especially MCT1, more frequently than the corresponding normal tissues (Table 

1). 

Importantly, MCT1 was associated with poorer patient prognosis, especially in gastric and 

breast carcinomas. Although MCT1 was not up-regulated in gastric carcinoma, MCT1/CD147 co-

expression was associated with parameters of poor prognosis, such as tumour invasion and 

metastasis, implying a role of MCT1 in tumour aggressiveness. 
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Table 1. Overview on MCT1, MCT2 and MCT4 expression and prognosis in different tumour types. 

Tumour type MCT1  MCT2 MCT4 

Brain 
Strongest in high grade glial 

neoplasms, compared to low grade 
glial neoplasms [2] 

(+) in glioblastoma and (-) in normal 
tissue [5] 

↑ in glioblastoma, compared 
to normal tissue [5] (-) in glioblastoma [5] 

Breast 

↓ due to gene hypermethylation [9] 

↑ in tumour cells, compared to 
normal epithelium / associated with 
basal-like subtype, high histological 
grade, estrogen and progesterone 
receptors, cytokeratins 5 and 14 

and vimentin (alone or co-expressed 
with CD147)  

(+) in tumour cells 
cytoplasm, but not in plasma 

membrane 
(+) normal epithelium  

 

Tendency to be ↑ in tumour 
cells, compared to normal 

epithelium 

Cervical ↑ from preinvasive to invasive / 
associated with metastases in AC 
(when co-expressed with CD147) 

No progressive change from 
preinvasive to invasive / ↑ 

ASC 

↑ from preinvasive to 
invasive / ↑ AC 

Colorectal 

↓ from normality to malignancy [1,3]  
(+) in tumour cells but (-) normal 

epithelium [6] 

↑ in tumour cells, compared to 
normal epithelium / associated with 

vascular invasion 

Not detected in either normal 
or tumour tissues [3] 

+ in tumour cells cytoplasm, 
but not in plasma membrane 

[6]  

 ↑ in cytoplasm expression 
but ↓ in tumour cells plasma 

membrane compared to 
normal epithelium 

Not detected in either normal 
or tumour tissues [3] 

Weak in tumour 
microenvironment [6] 

↑ in tumour cells, compared 
to normal epithelium 

Gastric 

No change along progression / 
associated with advanced gastric 
cancer, Lauren’s intestinal type, 

stage III+IV and lymph-node 
metastases when (co-expressed with 

CD147) 

 

↓ from normal tissue, to 
primary tumour, to lymph-
node metastases / associated 

with early gastric cancer 
and Lauren’s intestinal type 

Lung 

Cytoplasmic accumulation 
in alveolar soft-part 

sarcoma [4] 
(+) in tumour cells but (-) normal 

epithelium [8] 

(+) in tumour cells and normal 
epithelium 

(+) in tumour cells but (-) 
normal epithelium [8] 

(+) in tumour cells 
cytoplasm, but not in plasma 

membrane 
(+) normal epithelium 

(+) in tumour cells but (-) 
normal epithelium [8]  

↓ in tumour cells, compared 
to normal epithelium 

Ovarian (+) in tumour cells[10] 
(+) in tumour cells 

cytoplasm, but not in plasma 
membrane[10] 

(+) in tumour cells 

Neuroendocrine 

(+) in neuroblastoma / associated with 
age >1 year at diagnosis, stage 4 
disease, unfavourable Shimada 

histopathology, DNA diploid index, 
n-myc amplification and high-risk 
clinical group (COG criteria) [7] 

  

Results from this thesis are shown in bold. ↑, up-regulated;↓, down-regulated; (+) positive, (-), negative. 

Abbreviations: AC, adenocarcinoma; ASC, adenosquamous carcinoma; COG, Children’s Oncology Group. 

 

Additionally, it is important to highlight that both MCT4 and CD147 alone, or MCT1 in 

association with CD147, were more frequently observed in gastric tumours of intestinal-type 
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(Lauren’s classification). This may indicate that the carcinogenic process leading to intestinal-type 

gastric carcinoma, which includes evolution of normal gastric mucosa through chronic gastritis, 

atrophic gastritis (which are common to the diffuse-type gastric carcinogenesis), as well as 

intestinal metaplasia and adenoma/dysplasia (exclusive of the intestinal-type carcinogenesis) [11], 

may require metabolic adaptations involving MCT up-regulation, which are not required during 

carcinogenesis towards diffuse-type gastric carcinomas. Also, in breast carcinoma, an important 

association between MCT1 and basal-like subtype was found. This finding is of great importance 

as, although being a less frequent group of breast tumours, accounting for around 15% of cases 

[12], basal-like subtype tumours have a more aggressive clinical behaviour and, until now, does 

not have a specific molecular therapy. In this scenario, MCT1 arises as a promising therapeutic 

target for this particular group of breast tumours. Considering these findings in the light of the 

microenvironmental model of carcinogenesis, where MCTs shall have a vital role in the 

emergence of both the hyper-glycolytic and acid-resistant phenotypes, one can easily justify the 

up-regulation of MCTs, as well as their contribution to a more aggressive tumour behaviour. By 

enabling lactate efflux from cancer cells, as well as regulate the intracellular pH and, 

consequently, acidifying the extracellular microenvironment, MCT activity will promote the 

aggressive behaviour by enhancing migration, invasion and angiogenesis, among others [13-33].  

Furthermore, in view of the recent model of metabolic symbiosis between glycolytic and 

oxidative cancer cells, where lactate plays a key role as the metabolic intermediate, MCTs are 

essential players in this process. It is proposed in this model that lactate release from 

glycolytic/hypoxic cancer cells occurs through the low-affinity lactate transporter MCT4 and 

lactate uptake by the oxidative/oxygenated cancer cells occurs through MCT1. Moreover, MCT1 

inhibition will lead to a switch from lactate oxidation to glycolysis in oxidative tumour cells, 

thereby preventing the necessary glucose delivery to glycolytic cells, which will die from glucose 

starvation [34]. However, it is important to note that, in the breast carcinoma series herein 

analysed, in contrast to the previous model, MCT1 was expressed in the peri-necrotic/hypoxic 

regions and was expressed in the same cells than the hypoxia markers CAIX and GLUT1, 

important in glycolytic metabolism. This indicates that MCT1, besides being important in 

oxidative cancer cells, may also be important in glycolytic cancer cells. In fact, the kinetic 

parameters of MCT1 make this isoform suitable for both the uptake and efflux of substrates, 

therefore, MCT1 is also appropriate for lactate efflux from glycolytic cancer cells. The role of 

MCT1 in both types of metabolic cancer cells makes it an even more interesting therapeutic target. 

Characterisation of MCT expression in series of human solid tumours provided the first 

evidence of this thesis, suggesting MCT1 as promising therapeutic target for cancer therapy, in 
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sub-groups of colorectal, cervical and breast carcinomas. However, in this regard, gastric 

carcinoma was an exception as, besides not having MCT up-regulation, MCT4 expression was, 

actually, decreased along progression to malignancy. Therefore, MCT1 will probably not be a 

good therapeutic target in gastric cancer, since is not increased in comparison to the normal tissue, 

but may be an additional marker for prognosis, as it is associated, when co-expressed with CD147, 

to patient’s poor outcome. 

Due to the lack of relevant alterations in the expression of MCT2 in colorectal and cervical 

carcinomas, as well as the lack of associations with clinic-pathological variables, data from this 

MCT isoform expression was not included in the subsequent series. Indeed, MCT2 was also 

evaluated in gastric and breast carcinomas, however with no relevant results (data not shown). 

Importantly, one should never exclude a possible role of MCT2, especially in tumours with non-

glycolytic metabolism. Actually, preliminary results in prostate carcinoma suggest an up-

regulation of MCT2 in tumour cells, as compared to normal epithelium. Importantly, the similar 

specificity and sensitivity of MCT2 staining, as compared with the prostate tumour marker 

AMACR, led to the hypothesis that this MCT isoform may be explored as a new marker of 

prostate carcinoma. 

 

 

77..11..22..  MMCCTT  RREEGGUULLAATTIIOONN  

With this thesis, some contribution was also made to understand the possible mechanisms 

underlying MCT regulation. 

Firstly, the regulation of MCT1 and MCT4, but not MCT2, by CD147, was supported by 

evidence on human tissues, complementing the in vitro and some in vivo studies previously 

described by others [35-42]. Indeed, the prognostic value of CD147 appears to be associated with 

its co-expression with MCT1, as observed in breast and gastric carcinomas. Therefore, targeting 

CD147, which will also impair MCT activity, appears to be a rational therapeutic approach against 

human cancer, as already described both in vitro and in vivo [41-43]. Besides the role of CD147 as 

chaperone for MCT1 and MCT4 plasma membrane trafficking and activity, these MCT isoforms 

also have been implicated in CD147 proper membrane expression [38,40]. Thus, the contribution 

of MCTs to the malignant phenotype is not limited to their own function as lactate transporters and 

pH regulators, but may also be further enhanced by their role in regulating CD147 expression. If 

so, MCTs may also have major roles in tumour growth and angiogenesis, as well as cancer cell 

migration and invasion, as described for CD147 [44-46].  
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Additionally, CD44 was analysed as a putative chaperone of MCT1 and MCT4 [47]. 

Although CD44 was only associated with MCT1 in lung cancer, the number of cases was small 

and the results obtained demand further analysis, with a higher number of cases. Indeed, as for 

CD147, which was not associated with MCT1 in the breast carcinoma screening but the tendency 

observed was confirmed in the study with the larger series (with a significant association between 

MCT1 and CD147), CD44 association with MCTs will most likely be also confirmed in larger 

series. As a result, MCT expression may also have a role in cell growth control, adhesion, 

migration, invasion, and chemoresistance [48-50], through interaction with CD44. Importantly, 

although CD147 was associated with both MCT1 and MCT4 in all series analysed, in cervical 

cancer, association was only at the overall expression level and not at the plasma membrane level. 

Additionally, in the other tumour types (gastric and breast carcinoma), there was a relevant 

number of cases with MCT plasma membrane expression that lacked CD147 plasma membrane 

co-expression. Further, in the tumour screening, this absence of CD147 was not overcome by 

CD44. These findings suggest that a not yet identified chaperone may be involved in MCT 

trafficking to the plasma membrane. 

HPV is present in virtually all cervical cancer cases, being a necessary cause for this type of 

cancer [51]. In this thesis, an association between HPV and both MCT1 and MCT4 expression was 

observed in pre-malignant cervical lesions, presenting the first evidence for a possible HPV-

dependent MCT regulation. High-risk HPVs exert their malignant action by constitutively 

expressing two major oncoproteins E6 and E7 [52]. The well-known functions of E6 and E7 are 

that E6 targets p53, resulting in cell resistance to apoptosis, and E7 associates with retinoblastoma 

protein (pRB), promoting cell cycle progression [53]. However, other mechanisms of HPV-

induced carcinogenesis take place, and include activation of transcription factors such as HIF-1α 

and c-myc [54,55]. As these transcription factors are regulators of MCT expression [56-60], one 

can hypothesise that the molecular alterations induced by HPV oncoproteins, which are required 

for cervical carcinogenesis, include up-regulation of MCTs. 

Study on MCT regulation by hypoxia has provided puzzling results, especially in what 

concerns regulation of MCT1 isoform [34,57,58,60-63]. While MCT4 expression has been 

associated with hypoxic conditions and promoter regulation by HIF-1α [58,60-63], MCT1 

regulation by hypoxia points to both directions: induction and repression [34,57,58,60,61,63]. 

Here, additional evidence on MCT regulation by hypoxia is provided, by evaluating the co-

expression of MCTs with the hypoxia-inducible proteins GLUT1 and CAIX, recognised as tumour 

hypoxia markers [64], in breast carcinomas. MCT4, unexpectedly, was not increased in GLUT1 or 

CAIX positive tumours; however, MCT1 was more frequently expressed in both GLUT1 and 
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CAIX positive tumours, pointing to a hypoxia dependent up-regulation of this MCT isoform that is 

accompanied by co-expression of its chaperone CD147. Therefore, it seems that, in breast 

carcinoma, the MCT isoform induced by the hypoxic microenvironment is MCT1, since this 

isoform is present in tumours presenting a hypoxia induced profile, which, in turn, is also 

associated with the basal-like subtype. Importantly, these findings are relevant for the metabolic 

characterisation of basal-like breast tumours, and may have important therapeutic implications as 

new potential targets may arise for this aggressive tumour type. 

 

 

77..11..33..  EEFFFFEECCTT  OOFF  MMCCTT  IINNHHIIBBIITTIIOONN  IINN  IINN  VVIITTRROO  MMOODDEELLSS  OOFF  SSOOLLIIDD  TTUUMMOOUURRSS  

As MCTs play a key role in tumour cell viability and, probably, aggressiveness, some 

groups have performed in vitro inhibition studies targeting MCT expression and activity 

[5,7,34,65,66]. Although with very promising results, these studies are still very scarce and further 

efforts are needed to support the exploitation of MCTs as therapeutic targets. 

Importantly, in this thesis, some in vitro studies were performed for the first time in breast 

cancer cell lines. CHC induced a decrease in total cancer cell biomass, in accordance to results 

described by others in different in vitro models. In the majority of the cell lines, this inhibition was 

accompanied by a decrease in lactate efflux. MDA-MB-468 cell line, presented the most notable 

results, with a CHC-induced inhibition of proliferation, accompanied by a dose dependent 

inhibition of glucose uptake and lactate production. Interestingly, this is a basal-like subtype breast 

cancer cell line, supporting the important role of MCT1 expression demonstrated in the results 

obtained with the breast cancer series. However, this was not observed in all cell lines studied and, 

surprisingly, the most sensitive breast cancer cell line, MDA-MB-231, was negative for MCT1 

and maintained the same level of lactate production and glucose consumption. Therefore, a CHC-

induced inhibition of proliferation that does not have an impact on cancer cell metabolism 

suggests an off-target effect of CHC. In fact, CHC has been described as a potent inhibitor of other 

transporters, such as AE1 [67], but, if those off-target effects of CHC are, in fact, harmful for 

cancer cells as observed in MDA-MB-231, this CHC lack of specificity could actually be an 

advantage, by inducing a more effective cancer cell death. However, to correctly infer on the role 

of MCTs in cancer survival and aggressiveness, more specific inhibitions are needed. One of those 

more directed strategies is the use of siRNAs, which have already shown promising results in 

other models [5,7,34], and some preliminary results in the cervical cancer cell line HeLa point in 

the same direction (data not shown). Also, AstraZeneca MCT1 specific inhibitors currently studied 
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in immunosupression for allotransplantation also anticipate promising results in the cancer 

research field.  

Additionally, it is important to draw attention to the fact that some compounds described as 

MCT inhibitors have been pointed out as chemopreventive agents, such as quercetin, NSAIDs and 

cholesterol synthesis inhibitors (statins) [68-75], as well as effective anti-cancer agents in clinical 

trials, like lonidamine [76]. In fact, NSAIDs and statins were shown to prevent ER-negative breast 

cancer [72,74], which are described in this thesis as having an increased MCT1 expression. Hence, 

MCT1 inhibition may contribute to the chemopreventive and anti-cancer effects of these 

compounds, and further studies on the additional mechanisms underlying their beneficial 

properties are needed. 

When considering MCTs as targets for therapy, it is imperative to bear in mind and evaluate 

toxicity to normal tissue. Systemic delivery of MCT inhibitors, more specifically MCT1, will 

probably affect almost every organ of the body. In skeletal muscle, as MCT1 participates in the 

lactate shuttle, possible side effects will include muscle fatigue and inability to tolerate moderate- 

to high-intensity training due to accumulation of lactate and H+ in the extracellular milieu, as 

oxidative muscle fibers will no longer perform lactate uptake. In the colon, as MCT1 is 

responsible for butyrate transport in colonic epithelium, MCT1 inhibition may inhibit cell 

proliferation and proper differentiation [77]. Importantly, as MCT1 is fundamental for T cell 

activation and, as MCT1 specific inhibition is being studied for immunosupression in 

transplantation, MCT1 inhibition in the cancer context will likely cause immunosupression and 

further inhibition of the immune response against cancer cells. However, in practice, MCT1 

inhibition may have manageable side-effects like myalgia, asthenia, testicular pain, and 

gastrointestinal discomfort, with no serious organ toxicity or myelosupression, as observed for 

lonidamine. Nevertheless, these adverse effects may be decreased or eliminated in association with 

other therapies [76]. Although MCT1 inhibition is prone to cause some important side-effects, one 

should never forget that some drawbacks are acceptable if the benefit is justified, as it happens 

with virtually all drugs. 

 

 

77..22..  CCOONNCCLLUUSSIIOONNSS  AANNDD  FFUUTTUURREE  PPEERRSSPPEECCTTIIVVEESS  

In general, the results here presented support the hypothesis of a major role of MCTs in the 

emergence of the hyper-glycolytic and acid-resistant phenotypes, as adaptations to the hypoxic 

microenvironment. The up-regulation of MCTs in the plasma membrane of colorectal, cervical 
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and breast cancer cells is most likely an adaptive mechanism to allow continuous high glycolytic 

rates, by exporting the accumulating end-product, lactate, as well as to counteract acid-induced 

apoptosis or necrosis. This may not be the case for all tumour types as gastric carcinoma revealed 

no up-regulation of MCTs. As “aerobic glycolysis” is considered a new hallmark of cancer 

[78,79], and MCTs are key players in the adaptations to hypoxia and acidosis, further efforts 

should be made on the exploitation of these proteins, especially MCT1, as therapeutic targets in 

cancer. 

 

Although much was achieved with this work, many other doors are now open that should be 

explored. Importantly, characterisation of MCT expression in other tumour series would be of 

great value, as additional promising results are anticipated. Ovarian carcinoma, which presented 

high amounts of MCT1 in the tumour screening study, as well as lung cancer that, similarly to 

gastric carcinoma, presented, in opposition to results from other groups [8], a loss of MCT4 

expression, would be two interesting tumour series to proceed with. Additionally, characterisation 

of MCT expression in tumours that are known to have a different metabolic behaviour, such as 

prostate tumours, which rely mainly on fatty acid oxidation rather than glycolysis [80], will also be 

of great interest. Many other tumours, where the contribution of MCTs is still unknown, could 

benefit from additional metabolic studies with evaluation of MCT expression. 

Additional in vitro studies with MCT specific inhibition, evaluating parameters of aggressive 

behaviour, such as migration, invasion and colony formation capacity will shed some light on the 

true value of MCTs. Indeed, MCT4 has already been associated with migration capacity [40,81]. 

Also, by studying the possible contribution of MCT inhibition to the chemopreventive and/or anti-

cancer effects of compounds such as quercetin, NSAIDs, statins and lonidamine, MCTs may stand 

out as important molecular players in cancer and promising therapeutic targets. However, one 

should always bear in mind that the main goal of MCT1 inhibition is the possible clinical 

application, so, MCT inhibitors should be subjected to experimental an clinical studies. 

As an alternative not yet identified chaperone is suggested to be involved in MCT trafficking 

to the plasma membrane, additional studies assessing protein interactions with MCTs may bring 

some new knowledge on MCT regulation. For that, databases of protein interactions would be an 

important tool to explore. 

Besides the more obvious lines that can be further explored, other directions on the 

assessment of the role of MCTs can be taken, such as the study of other metabolic pathways 

important in cancer, like glutaminolysis (where lactate is also produced), microenvironmental 

conditions like acidity and hypoxia, and other players in MCT regulation such as, among others, 
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HIF-1α, AKT, c-myc and, possibly, HPV. Also, other mechanisms by which MCT expression may 

be controlled, including gene mutations or methylation, could also provide relevant information 

regarding MCT tumour alterations. 

Importantly, since cell culture does not mimic all real tumour conditions, including O2 and 

nutrient limitation, key factors in metabolism, it is fundamental to assess the effects of MCT 

inhibition in animal models, in what concerns tumour survival and aggressiveness. Therefore, in 

vivo studies, evaluating the effect of MCT inhibition in, among others, tumour growth, 

angiogenesis and metastisation will be essential. In parallel, as MCTs are also important in 

physiological homeostasis, toxicological studies to determine MCT inhibition side effects will 

determine the real potential of MCTs as therapeutic targets in cancer. 

 

In conclusion, the results herein presented encourage the exploitation of MCTs, especially 

MCT1, as potential targets for cancer therapy, and pave the way for further efforts to understand 

the role of MCTs in solid tumours. Although major advances have been made with the present 

work, it elicits for many other studies to complement the present knowledge on MCTs’ role in 

tumour survival and aggressiveness. 
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