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Abstract. Bayesian statistics is has been very successful in describing
behavioural data on decision making and cue integration under noisy
circumstances. However, it is still an open question how the human brain
actually incorporates this functionality. Here we compare three ways in
which Bayes rule can be implemented using neural fields. The result is a
truly dynamic framework that can easily be extended by non-Bayesian
mechanisms such as learning and memory.
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1 Introduction

Bayesian statistics has become a popular framework for describing various kinds
of human behaviour under circumstances of uncertainty [1,2,3]. Generally, it is
assumed that populations of neurons could encode probability distributions and
indeed this can be used to predict overt behaviour in monkey [4]. One way to
implement Bayes’ rule is to let each neuron represent the likelihood of an entire
probability distribution [5,6]. However, in these studies Bayes’ rule is implicit in
the decoding mechanism. Another way is to represent probability distributions
in the log domain [7], so that Bayes’ rule can be implemented by simply adding
neuronal activities.

The neural field architecture has been quite successful in explaining behavioural
data [8,9,10] and as a control architecture in cognitive robots [11]. Neural fields can
support bi-stable activity patterns [12,13], which makes them suitable for mem-
ory and decision mechanisms [14,9]. However, these neural field properties are
non-Bayesian. For one, the reported neural fields cannot support sustained multi-
modal activity patterns in a way that is necessary for representing arbitrary prob-
ability distributions. On the other hand, Bayesian statistics does not incorporate
any temporal dynamics. We wondered whether it is possible to combine the best of
both worlds. In particular, we wanted to know whether it is possible to implement
Bayes’ rule with neural fields.
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V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 228–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55611641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Implementing Bayes’ Rule with Neural Fields 229

2 Neural Fields of Leaky Integrate-and-Fire Neurons

A common model of a neuron in computational neuroscience is the so-called
sigma node representing the average behaviour of leaky integrate-and-fire neu-
rons [15]. Each sigma node has an internal state ui(t), which is analogous to a
biological neuron’s membrane potential, and an output activity ri(t), which is
analogous to a biological neuron’s firing rate [15]. For ease of reference we will
use the names of the biological analogies. The sigma node reflects the average
behaviour of one or more biological neurons. The firing rate is related to the
membrane potential by:

ri(t) = f(ui(t))

where f is a thresholding function such as the Heaviside step function or the
sigmoid function. The function f is often called the activation function.

The membrane potential changes dynamically depending on the input from
other neurons and the leaking current.

τ
dui(t)

dt
= h − ui(t) +

∑
wijf(uj(t)) , (1)

where τ is a time constant, h is the equivalent of the resting potential, and wij

are the connection weights between neuron i and neuron j. The first term on
the right hand side results in an exponential decay of the membrane potential
with time constant τ and the second term on the right hand side reflects the
weighted sum of inputs from other sigma node neurons (Fig. 1A).
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Fig. 1. a) Schematic diagram of a sigma node neuron i. b) Graphs of the lowered
Gaussian and Mexican hat function with long and short inhibitory tails, respectively.

The structure of a neural network is determined by the connection weights
wij in (1). It has been observed that in biological neural tissues neurons excite
and inhibit nearby neurons in a centre-surround fashion (see e.g. [4]). In the con-
tinuous limit we obtain a neural field, whose dynamics are governed by Amari’s
equation for a neural field [16]:

τ
∂u(x, t)

∂t
= h − u(x, t) + (w ∗ f(u))(x, t) + S(x, t) . (2)
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Here u(x, t) denotes the membrane potential of a neuron at location x, and w is
the kernel imposing the centre-surround structure within the neural field and ∗
denotes spatial convolution, which is defined as f ∗ g =

∫
f(x − y)g(y)dy. The

term S(x, t) denotes the external input of the neural field. The constant h in
Amari’s equation can easily be absorbed in the definitions of u(x, t) and f , so
we will omit it hereafter. The centre-surround excitation-inhibition is commonly
modelled by a lowered Gaussian (Fig. 1B):

w(x − y) = A exp
(
− (x − y)2

2σ2

)
− winhib , (3)

where A and σ denote the amplitude and width of the lowered Gaussian, re-
spectively. The constant winhib determines the amount by which the Gaussian is
lowered. The Gaussian shaped kernel effectively smoothes the neural field activ-
ity locally because it averages the activity of nearby neurons. Other commonly
used kernels, such as the Mexican hat function (Fig. 1B), have similar proper-
ties. With a suitable choice of parameters A and winhib neural fields governed
by (2)(3) can sustain a self-stabilised local bump of activity [12,14,13]. This is
clearly useful for memory-like functions especially because the self-stabilising
capability makes the neural field very robust against noise. The global inhibi-
tion winhib prevents the co-existence of two or more self-stabilising bumps. The
Mexican hat function (Fig. 1B) does admit multiple bumps [14], but their am-
plitudes cannot vary independently. This rules out the possibility to represent
multi-modal probability distributions in this way.

3 Amari’s Equation and Robustness against Noise

3.1 Amari’s Equation with Linearised Recurrent Connection Kernel

Robustness against noise is a key concept that leads to Amari’s equation (2).
In order to obtain robustness against noise, the field activity must be smoothed
spatially as time progresses. A simple way to achieve this is by replacing at every
time step Δt a fraction of the field activity by the smoothed field activity. In the
presence of sustained external input, another fraction is replaced by the external
input. The latter is necessary to prevent exponential growth of the total field
activity. If u(x, t) denotes the activity of neuron x at time t and S(x, t) represents
external input, we can formalise this in the following way:

u(x, t + Δt) = (1 − ε)u(x, t) + αε (k ∗ u)(x, t) + (1 − α)εS(x, t) , (4)

where u(x, t+Δt) is the updated neural field activity, k(x)is the smoothing kernel
and α, ε are constants. The constant α controls the balance between smoothing
and external input, and ε controls the updating rate. We can rewrite this as a
partial differential equation by having ε = Δt

τ and taking the limit Δt → 0 to
obtain:

τ
∂u(x, t)

∂t
= −u(x, t) + α (k ∗ u)(x, t) + (1 − α)S(x, t) . (5)

where τ is some time constant.
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When the external input S(x, t) = s(x) is constant over time, the neural field
activity u(x, t) decays to a stationary solution. Let u∞(x) denote the stationary
solution, then it is easy to show that the external input must have the following
form:

s(x) = (kext ∗ u∞)(x) ≡ 1
1 − α

((δ − αk) ∗ u∞)(x) , (6)

where δ(x) is Dirac’s delta function. The kernel defined in (6) has an interesting
property. Suppose that a second neural field receives external input from the
first using connection weights given by kext(x) = (δ(x) − αk(x))/(1 − α), then
the stationary solution of the second field equals the firing rate of the first field.
In other words, the neural field activity u(x, t) decays exponentially to s(x). To
make this statement more precise, we can show that the total activity decays
exponentially over time. If we define the total activity of a neural field z(x, t) as:

z̄(t) =
∫

z(x, t)dx , (7)

then we can rewrite 5 using 7 to:

τ
dū(t)

dt
= −ū(t) + αKū(t) + (1 − α)S̄(t) . (8)

Here we have used the shift invariance of the kernel and defined K =
∫

k(x−y)dx.
If the total external input S̄(t) = s̄ is constant, the solution of (8) is simply:

ū(t) = A exp(−(1 − αK)
t

τ
) +

1 − α

1 − αK
s̄ . (9)

This shows that the total activity ū(t) decays exponentially with time constant
(1 − αK)/τ to a constant times s̄. This constant equals 1 independently of the
value of α when K = 1.

3.2 Non-linear Dynamics of Amari’s Equation

Equation (5) resembles Amari’s original equation (2): the constants α and 1−α
can easily be absorbed in the definitions of the kernel and the external input, but
the activation function f introduces a non-linearity that cannot be removed so
easily. However, when the field activity is in the linear range of f , the dynamics of
(5) will approximate that of (2). Amari’s original equation can thus be obtained
by replacing the convolution term k ∗ u → k ∗ f(u). This gives:

τ
∂u(x, t)

∂t
= −u(x, t) + α(k ∗ f(u))(x, t) + (1 − α)S(x, t) . (10)

We obtain the stationary solution of the external input for the non-linear Amari’s
equation in a similar way as in (6):

s(x) =
1

1 − α
(u∞(x) − α(k ∗ r∞)(x)) (11)

≈ (kext ∗ r∞)(x) , (12)
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where r∞(x) = f(u∞(x)). Clearly, the latter approximation is valid only when
the activation function f is approximately linear.

4 A Probabilistic Interpretation for Neural Fields

In Bayesian decision making the likelihood of an event y for a given hypothesis
x is transformed into a belief in that hypothesis. This inference is governed by
Bayes’ rule, which is defined as:

p(x|y) =
p(y|x)p(x)

p(y)
, (13)

where p(x) is the prior probability, p(x|y) the posterior probability, and p(y|x)
the likelihood of x. Typically, x is variable and y is constant so that the prob-
ability p(y) is an arbitrary normalisation constant. In many decision problems,
making a decision amounts to finding the value of x that maximises the posterior
probability - the so-called maximum-a-posteriori.

In order to implement Bayes’ rule with neural fields we need to represent
the probabilities in such a way that Bayes’ rule can be computed using simple
addition of neural field activities. This can be achieved by representing proba-
bility distributions in the log domain [7]. However, if the dynamics of the neural
fields are governed by Amari’s equation (2) the activation function introduces a
non-linearity in the system. In order to obtain similar dynamics as in the lin-
earised version of Amari’s equation (5) we need to scale the log-probabilities to
the linear range of the activation function. In particular, if we use the following
sigmoid function:

f(x) =
1

1 + exp
(−4(x − 1

2 )
) , (14)

then f(x) is approximately linear within the range (0,1) with slope f ′(1
2 ) = 1 at

x = 1
2 . Thus, we wish the function g(x) to linearly remap the log-probabilities

to the range (0, 1). However, the log-probabilities lie in the range (−∞, 0), so
that such a linear transformation does not exist. Therefore, we define a mini-
mal probability value, say pmin = 10−16, below which we ignore approximation
errors. Then, we can define the function g as:

g(x) = 1 − x

ln pmin
, (15)

which maps the range (ln pmin, 0) to (0, 1). We can now make the following
identification:

u(x, t) = g(ln(pt(x))) , (16)

where u(x, t) is the neural field activity of neuron representing x at time t, and
pt(x) is some probability distribution of x at time t. With this identification
we can incorporate Bayes’ rule in the following way. Suppose neural field A is
encoding the likelihood pt(y|x) of x at time t and neural field B is encoding the
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prior probability pt(x). We need to construct a third neural field C receiving
inputs from neural fields A and B as external input, so that it encodes the
posterior probability pt(x|y). Let

uA(x, t) = g(ln pt(y|x)) ,

uB(x, t) = g(ln pt(x)) , (17)
hC = −g(ln p(y)) ,

where uA(x, t) and uB(x, t) are the activities of neural fields A and B and hC is a
constant reflecting homogeneous global inhibition of neural field C. In case of the
linearised Amari’s equation , the stationary activity of neural field C can be shown
to encode the posterior probability pt(x|y) by setting the external input to:

SC,linear(x, t) = (kext ∗ uA)(x, t) + (kext ∗ uB)(x, t) +
1 − αK

1 − α
hC , (18)

where kext is the kernel defined in (6). Here we have used the shift-invariance of
the kernel k (see (8)) to simplify the constant term involving hC . By construction
the external input of neural field C equals kext ∗g(ln pt(x|y)) and it follows from
(6) that the steady state activity encodes the posterior probability as desired.

In a similar way we obtained the expression for the non-linear Amari’s equa-
tion without approximating the kernel (11) and with approximated kernel (12):

SC,non−linear(x, t) =
1

1 − α
(uA(x, t) − α(k ∗ f(uA))(x, t)

+ uB(x, t) − α(k ∗ f(uB))(x, t) (19)
+ hC − αKf(hC)) ,

SC,approximate(x, t) = (kext ∗ rA)(x, t) + (kext ∗ rB)(x, t) +
1 − αK

1 − α
f(hC) .(20)

In the remaining part of this paper we will refer to neural fields with exter-
nal inputs given by (18), (19) and (20) by linear, non-linear and approximate,
respectively.

5 Neural Field Simulations

For the simulations we used a scenario where the field position x represents the
angular position subdivided in 100 intervals. The simulations were done using
discrete versions of (5),(2) using Euler discretisation of both space and time. We
used n = 100 neurons for encoding field position (xi = iΔx with i = 0, . . . , n−1
and Δx = 1). Time was discretised as shown in (4) with Δt = 1. The parameters
τ and α were set to τ = 10 and α = 1

2 . To prevent edge effects we used circular
neural fields so that neuron i = 99 neighbours neuron i = 0. For the recurrent
connections kernel we used a Von Mises distribution - the circular equivalent of
the Gaussian normal distribution - so that K = 1. The Von Mises distribution
is given by:

vonmises(x, κ) =
1

2πI0(κ)
expκ cos(

2πx

nΔx
) , (21)
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where κ is a width parameter and Im(κ) is the modified Bessel function of
the first kind with m = 0. The width parameter was set to κ = 3−2 which
approximately corresponds to a Gaussian width of σ = 3. For the likelihood
p(y|x) and the prior p(x) we used Von Mises distributions centred on x = 60
and x = 30, respectively. The corresponding widths were set to κ = 2−2 and
κ = 3−2. In order to simulate Bayes’ rule the external inputs of the neural fields
representing the posterior distribution are given by (18)-(20). White noise was
added to the external input directly with an amplitude of ±0.05.

How the neural field activities change over time is shown in the top row
of Fig. 2 for linear (left), non-linear (middle), and approximate (right) neural
fields. In the bottom row the corresponding firing rates are shown. Both the
linear and non-linear neural fields converge to the posterior field activity, but the
approximate neural field shows noticeable differences: the neural field activities
are restricted to the range (0,1) due to the sigmoid activation function in (14).
Consequently, the neural field activity due to the prior and the associated firing
rates are not fully suppressed as is evident by the bumps at x = 30.

Fig. 3 shows the decoded probability distributions of the linear (left), non-linear
(middle) and approximate neural fields (right). All neural fields build up activities
at approximately the same location on similar time scales, but their amplitudes
differ considerably. The amplitude of the approximate neural field (right) is much
less than the other two. This is also evident if we plot the cross-section at different
times in comparison to the true posterior probability distribution (bottom). It can
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Fig. 2. Neural field activities u(x, t) (top) and firing rates r(x, t) (bottom) for linear
(left), non-linear (middle) and approximate kernel. Neural field activities and firing
rates are shown for every 10th of 100 iterations (dashed curves). The solid curves
indicate the stationary state corresponding to the true posterior.
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be seen that the approximations of the non-linear and approximate neural fields
mainly affect the amplitudes of the decoded probability distributions.

The error in amplitude is easily amended by normalising the decoded proba-
bility distributions. To address this we compared the location and width of the
normalised decoded probability distribution with those of the true posterior. In
Fig. 4 the average error in peak location (left) and peak width (right) is shown
as a function of time. For the peak location we used the expected value of the
posterior distribution. For the peak width we used the standard deviation. The
averages were taken from 200 randomly generated Von Mises priors and likeli-
hoods. The location of the Von Mises distributions of both prior and likelihood
were randomly drawn from a uniform distribution covering the entire neural field
(x ∈ [0, 99]). The width of the distributions was uniformly drawn from σ ∈ [1, 25]
with κ = 1/σ2. From Fig. 4 it is clear that the average error in peak location
lies within 1 neuronal unit ( 2π

100 = 3.6◦) irrespective of which type of neural field
was used. The average error in peak width is initially largely overestimated after
which it decays to a constant value. Both the linear and non-linear neural fields
approximately converge to the true posterior width within about 20 iterations.
The rate of convergence is somewhat faster for the non-linear field. The approx-
imate neural field does not converge to zero but stabilises on an overestimate
of 3 neuronal units (10.8◦). The angular error can be reduced by increasing the
number of neurons. This is shown by the thin dashed line in Fig. 4. The error
in decoded peak location for n=1000 is the same as for n=100 showing that the
angular error is decimated (left). The error in decoded peak width is about ten
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Fig. 4. The mean error in peak location (left) and width (right) of the decoded peak.
The lines indicate the errors obtained for linear (solid line), non-linear (dashed line)
and approximate (dotted lines) neural field. The time constant was set to τ = 10.

times larger (initial value 100.2) reflecting the fact that the probability distrib-
utions are ten times wider when expressed in neuronal units.

6 Discussion and Conclusions

We have developed a way in which Bayes’ rule can be represented using neural
fields. To do so we superimposed the neural field activities representing the
log-likelihood and the log-prior distribution. Due to the non-linear activation
function in Amari’s equation the superposition of field activities leads to an
approximation error that mainly affects the decoded amplitude of the poste-
rior distribution. The approximation error can be fixed by normalisation, but
the approximate neural field overestimates the width of the decoded posterior
distribution. The approximation error depends on how well the neural field ac-
tivities fall in the linear range of the activation function. If necessary, the linear
approximation could be reduced by adjusting this mapping, but the signal-to-
noise ratio will deteriorate.

The proposed implementation of Bayes’ rule can be used to build a dynamic
version of Bayesian decision making as was used in [17]. Whether the dynamics is
in agreement with experimental findings is still an open issue. An additional ben-
efit is that Bayesian inference can now be smoothly coupled with non-Bayesian
mechanisms such as Hebbian learning, memory and decision mechanisms.
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