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Summary . MPCC can be solved with specific MPCC codes or in its nonlinear 
equivalent formulation (NLP) using NLP solvers. Two NLP solvers - NPSOL and 
the line search filter SQP - are used to solve a collection of test problems in AMPL. 
Both are based on SQP (Sequential Quadratic Programming) philosophy but the 
second one uses a line search filter scheme. 

1 Introduction 

There has been an enormous amount of interest in developing algorithms to 
solve Mathematical Programs with Complementarity Constraints (MPCC). 
A series of problems tha t arise from realistic applications in engineering and 
economics is the main reason for such interest. 

In recent years, the advances in computer technology have increased the 
capability of a modeler to solve large scale problems with complementarity 
constraints. On the one hand, the appearance of modelling systems allows to 
directly express complementarity conditions as part of their syntax and to 
pass on the complementarity model to the solver. On the other, the ability 
of a modeler to generate realistic large scale models enables the solvers to be 
tested on much larger and more difficult classes of models, producing in this 
way new enhancements and improvements in the solver. 

However, solving M P C C is a harder task because it can be shown that 
constraint qualifications typically assumed to prove convergence of s tandard 
NLP algorithms fail for MPCC. As a result, applying specific M P C C solvers is 
problematic. To circumvent these problems, various reformulations of M P C C 
have been proposed. One of these approaches involves the possibility of solving 
M P C C by transforming it to a well-behaved nonlinear program. This endeavor 
is important because it allows to extend the body of analytical and computa­
tional expertise of nonlinear programming to this new class of problems. 
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In this work it is analyzed the possibihty of solving MPCC in its NLP 
reformulation using certain SQP algorithms. Two NLP solvers based on SQP 
philosophy are used to solve a set of problems - NPSOL and the line search 
filter SQP. The last one is a promising recent algorithm developed by our 
research group still in improvement phase. Another goal of this study is testing 
this new algorithm for MPCC problems in their NLP reformulation. This 
study is included in a MSc project. 

The organization of this paper is as follows. Section 2 introduces the Math­
ematical Programs with Complementarity Constraints. The next section de­
fines an equivalent nonlinear program. In Section 4, the NLP solvers (NPSOL 
and line search filter SQP) are presented as well as their main characteris­
tics. Numerical results obtained with a collection of AMPL test problems are 
presented in Section 5. Finally, the main conclusions are shown. 

2 Mathematical Programs with Complementarity 
Constraints 

A Mathematical Program with Complementarity Constraints is an optimiza­
tion problem with equality and inequality constraints. In fact, it is a nonlinear 
optimization problem where the constraints have the same form as the first-
order optimality conditions for a constrained optimization problem. 

A Mathematical Program with Complementarity Constraint (MPCC) is 
defined as: 

min f{z) 
s.t. CE{Z) = 0 , . 

ci{z) > 0 ^̂ ^ 
0>Zi±Z2<0 

where z = {zo,Zi,Z2), ZQ G M^ is the control variable and Zi,Z2 € W are 
the state variables; CE and cj are the sets of equality and inequality con­
straints, respectively. The presence of complementarity constraints is the most 
prominent feature of a MPCC that distinguishes it from a standard nonlinear 
optimization problem. 

To solve this kind of problems one might be tempted to use a standard 
nonlinear programming algorithm. Unfortunately, the feasible set of MPCC 
is ill-posed since the constraints qualifications which are commonly assumed 
to prove convergence of standard nonlinear programming algorithms do not 
hold at any feasible point of the complementarity constraints [16]. 

A number of special purpose algorithms have been developed for MPCCs, 
such as branch-and-bound, implicit nonsmooth approaches, piecewise sequen­
tial programming [4, 14]. Nevertheless, most of the algorithms for solving 
MPCC need strong assumptions to ensure convergence. Hence, the research 
on the development of effective algorithms remains vigourous. 
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This kind of problems gained lot of popularity in the last decade, because 
the concept of complementarity is synonymous of equilibrium and many real 
applications can be modelled by MPCC. 

In Economics, complementarity is used to express Walsarian and Nash 
equilibrium, spatial price equilibria, invariant capital stock, game-theoretic 
models and Stackelberg lender-follower games, used in oligopolistic market 
analysis [3, 5]. More complex general equilibrium models are used for various 
aspects of policy design and analysis, including carbon abatement and trade 
form. Other applications use game theory, where new examples are becoming 
popular due to deregularization of electricity markets. 

Engineering applications of MPCC include contact and structural mecha­
nics, structural design, obstacle and free boundary problems, elastohydrody-
namic lubrification and traffic equilibrium. Recently, MPCC has been used in 
optimal control problems for multiple robot systems [9, 15]. In optimization, 
this kind of problems involves the formulation of the Karush-Kuhn-Tucker 
conditions. 

3 Nonlinear Programs 

An extensive theory of first and second order optimality conditions for MPCC 
has been developed. However, the numerical analysis of large-scale MPCCs is 
still an area of investigation. Some recent papers have suggested reformulating 
the MPCC problem as a standard NLP. The idea behind this approach is to 
take advantage of certain NLP algorithms features in order to obtain rapid 
local convergence. 

Notice that (1) can be written in the equivalent NLP form: 

min f(z) 
s.t. CE{Z) = 0 

ci{z) > 0 
1̂ > 0 ^"^^ 
Z2>0 

Z'[Z2 < 0 

For the success of NLP solvers, Leyffer suggested to replace the usual com­
plementarity condition z'iZ2 = 0 by the relaxed equivalent condition z[z2 < 0. 
Without this relaxation, several methods cannot converge quadratically near 
a strongly stationary point. 

Unfortunately, the complementarity constraint implies that the KKT con­
ditions are rarely satisfied by MPCC since it can be shown that there always 
exists a nonlinear abnormal multiplier [17]. Boundedness of the set of KKT 
multiplier vectors is equivalent to the Mangasarian Fromovitz constraint qual­
ification condition arising in nonlinear programming. 

Recall that, for a point z* and active set A{z*) = EU {i e I \ Ci{z) = 0}, 
Mangasarian Fromovitz Constraint Qualification (MFCQ) holds if there exists 
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a vector w GW^ such that: 

Vci{z*fw > 0, for all i e A{z*) D I 

Vci{z*fw = 0, for allieE 

Vci{z*),i G E are linearly independent 

In MPCC formulation all the feasible points are nonregular in the sense 
that they do not satisfy MFCQ, which is the usual condition for global con­
vergence of a NLP algorithm. Nonregularity implies that the multiplier set is 
unbounded, that the normal vectors to active constraints are linearly depen­
dent, and that the linearization of the NLP formulation can be inconsistent, 
arbitrarily close to a stationary point - all arguments against the use of the 
NLP technique for solving MPCCs. 

Recent investigation brings good news: studies concluded that new well-
established nonlinear programming solvers with minor modifications present 
exciting computational results. 

4 NLP Solvers 

Upon the success of SQP methods for nonlinear programming, the SQP ap­
proach has been extended to solve MPCC as well. In this work, it is presented 
two NLP solvers using SQP algorithms - NPSOL and the line search filter 
SQP. 

4.1 NPSOL 

NPSOL was created by Gill, Murray, Saunders and Wright [10]. NPSOL is a 
Fortran Package designed to solve the nonlinear programming problem: the 
minimization of a smooth nonlinear function subject to a set of constraints 
on the variables. The functions should be smooth but not necessarily con­
vex. NPSOL employs a SQP algorithm and is specially effective for nonlinear 
problems whose functions and gradients are expensive to evaluate. The inner 
QP subproblem is solved by a LSSOL subroutine. An augmented Lagrangian 
merit function using a line search scheme promotes convergence from arbitrary 
starting points. The Hessian matrix of the Lagrangian function is updated 
with a BFGS quasi-Newton approximation. 

4.2 Line Search Filter SQP 

The line search filter SQP is a new algorithm for solving NLP problems, 
developed by Antunes and Monteiro [2] and still in improvement phase. It is 
based on a SQP algorithm with a filter scheme whose goal is to avoid the need 
of a merit function. This function requires difficult decisions in order to choose 



Solving MPCCs with Nonlinear Solvers 419 

the penalty parameters and handle other difficulties like nondifferentiability. 
We now proceed to briefly explain the filter scheme. For simplicity, consider 
the NLP problem written in the form: 

min f(x) 
s.t. c(x) 5 0 

where c : Bn + Bm is a function incorporating all the constraints, possibly 
simple bound constraints. 

Problem (1) can be reinterpreted as a problem which consists in minimizing 
simultaneously the objective function f (x) and the term 

representing the sum of the constraints violation. A filter is a list of pairs 
(f(i), h(i)) such that any pair dominates any other (dominance concept from 
multicriteria optimization [13]). A pair (f (4, h(i)) obtained on iteration i is 
said to dominate another pair (f (j) , h(j)) if and only if both f 5 f (j) and 
h(i) < h(j). 

The line search filter SQP is based on a Fletcher and Leyffer idea [6] pre- 
sented in 2000. While these authors used a trust region (TR) approach, the 
line search filter SQP uses a line search strategy to promote global conver- 
gence. The inner QP subproblem is solved using LSSOL subroutine from the 
NPSOL. For more details see [I, 21. 

4.3 NPSOL us Line Search Filter SQP 

Fig. 1. Scheme of NPSOL Fig. 2. Scheme of the line search filter 
SQP 
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As seen in Figures 1 and 2 for both codes the inner QP subproblem of 
the SQP algorithm is solved by LSSOL which is a subroutine of the NPSOL. 
The line search strategy is used also by the two solvers to promote global 
convergence. The only difference between these codes is the process to obtain 
the scalar a from the line search - NPSOL uses a merit function and the line 
search filter SQP consults the filter. 

5 Numerical Examples 

5.1 MacMPEC 

In order to perform some computational experiments using these solvers, a 
library was used: MacMPEC [11], that is a collection of MPCC models written 
in the AMPL language [8]. It is a recent library compiled by Sven Leyffer that 
contains an extensive collection of MPCC problems. Not all the problems 
in MacMPEC are included in this study. Due to memory limit, it wasn't 
possible to solve large problems. The numerical tests were done on a Pentium 
IV 2600Mhz processor with 512Mb Ram in a WindowsXP operating system. 
More details about the problems and solvers results can be found in Appendix. 

5.2 Numerical Results 

For all the problems the usual complementarity condition in MPCC formu­
lation (1) was replaced by the equivalent nonlinear condition with relaxation 
(1). All starting points are standard and fixed by default of AMPL. For both 
solvers, the stop criterium tolerance was e = 1.0^ — 06 or 1000 iterations. 

For some problems, the solvers couldn't confirm optimality, because the 
iteration limit was reached - Table 1 shows, for each solver, the number of the 
problems where this happened. 

Table 1. Failures of NLP solvers 

Solver iter, limit 
NPSOL 4 

Line search filter SQP 10 

Note that the tested problems set contains some problems that are known 
not to have strongly stationary limit points. For instance, ex9.2.2, and 
scholtes4 have solutions which are not strongly stationary. Problem gauvin 
has a global minimum at a point where the lower-level problems fails a con­
straint violation, so the formulation as MPCC is not appropriate [12]. Both 
SQP codes are very robust solving MPCC problems in their NLP formulation. 
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Figure 3 shows the comparison of the CPU time, in seconds. The NPSOL 
is significantly faster than the line search filter SQP but note that the last one 
is still in improvement phase. 

Fig. 3. Percentage of problems with 
lower CPU time 

BNpsol 
n FilterSQP 

1 
^60% 

with 

^ ^ 60%^^^^^^^H • 

Fig. 4. Percentage of problen 
fewer iterations 

DNpsol 
D FilterSQP 

W 
IS with 

Figures 4 and 5 show the comparison in terms of iterations. Wi th respect 
to the number of iterations the line search filter SQP takes advantage when 
compared with NPSOL - it needs less number of iterations in 60% of problems. 
It presents also fewer number of iterations used in a general way to solve 
problems. 

Fig. 5. Number of iterations 

Figures 6 and 7 report the ranking of the number of function and gradient 
evaluations - in 60% of problems the line search filter SQP shows a best 
behaviour with respect to function and gradient evaluations. 
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6 Conclusions 

A set of MPCC problems were reformulated as NLP problems using the re­
laxed complementarity condition. Two NLP solvers were tested with these 
problems and the results confirm their surprising robustness. Using NLP 
solvers based on SQP algorithms provide an ability to solve a great num­
ber of complex problems. The line search filter SQP presents better results 
than NPSOL with respect to the number of iterations and to the number 
of function and gradient evaluations. In terms of the CPU time, NPSOL is 
faster but recall that it is a commercial software already optimized, whereas 
the line search filter SQP is still in a development phase. The performance of 
the line search filter SQP, when compared with the NPSOL, is encouraging 
and this new code should continue to be improved in the future. The research 
on this area is very important for the modelers, hence it can be a technique 
for answering important economic and engineering questions. 

Appendix - Detailed Numerical Results 

Problem 

bar-truss-3 
bardl 
bard2 
bards 

bardlm 
bardSm 
bilevell 
bilevel2 
bilevelS 

bilin 
dempe 

design-cent-1 
design-cent-2 
design-cent-4 

desilva 
d f l 

ex9.1.1 
6x9.1.2 
ex9.1.3 
ex9.1.4 
ex9.1.5 
6x9.1.6 
6x9.1.7 
6x9.1.8 
6x9.1.9 

6x9.1.10 
6x9.2.1 
6x9.2.2 
6x9.2.3 
6x9.2.4 
6x9.2.5 
6x9.2.6 
6x9.2.7 
6X9.2.8 
6x9.2.9 

flp2 
flp4-l 
flp4-2 
flp4.3 

gauvin 
gnashlO 
gnash 11 
gnash 12 
gnash 13 

CPU time 
Npsol 
0.031 

0 
0 
1 
0 
0 
0 

0.015 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.015 
0 
0 
0 
0 
0 

0.015 
0 
0 
0 
0 
0 

0.05 
0.016 
0.056 

0 
0.015 

0 
0 
0 

Number 
Filter SQP Npsol 

0.015 
0.031 

0 
0 
0 

0.015 
0 
0 

0.031 
0.031 
0,015 
0.234 

0 
0 
0 
0 
0 

0.015 
0.015 

0 
0 
0 
0 
0 
0 
0 
0 

0.047 
0 
0 
0 
0 
0 
0 
0 
0 

0.093 
0.156 
1.313 

0 
0 
0 
0 
0 

7 
6 
5 
1 
6 
1 
3 
5 

13 
1 

50 
29 
11 
6 
2 
2 
3 
2 
5 
1 
1 
1 
1 
1 
2 
1 
1 

25 
1 
5 
5 
1 
1 
1 
1 
5 
1 
1 
1 
3 

10 
10 
9 

10 

of iterations 
Filter SQP 

9 
3 
2 
2 
3 

5 2 
2 
4 

9 3 
104 

2 
1000 

19 

2 
4 
3 
5 
8 

10 
6 
6 
6 

Function Evaluations 
Npsol 

25 
8 
6 
2 
8 
2 
7 
8 

13 
2 

173 
61 
14 
7 
4 
4 
4 
3 
6 
5 
2 
1 
2 
4 
3 
4 
1 

39 
4 
7 
9 
1 
1 
1 
1 
7 
2 
2 
2 
6 
13 
13 
11 
13 

Filter SQP 
10 
4 
3 
3 
4 

2 1 2 
3 
5 

6 7 3 
6 8 5 
2 2 

19806 
4 
3 

2 7 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 

19 
4 

26 
9 

17 
7 
7 
7 

Gradient Evaluations 
Npsol 

25 
8 
6 
2 
8 
2 
7 
8 

13 
2 

173 
61 
14 
7 
4 
4 
4 
3 
6 
5 
2 
1 
2 
4 
3 
4 
1 

39 
4 
7 
9 
1 
1 
1 
1 
7 
2 
2 
2 
6 

13 
13 
11 
13 

Filter SQP 
2 4 
4 
3 
3 
4 

56 
3 
5 

94 
105 

3 
1001 

2 
3 

20 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
5 
4 
6 
9 
11 
7 
7 
7 
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Best Best 

Fig. 6. Ranking of function evalua- Fig. 7. Ranking of gradient evalua- 
tions 

Problem CPU time Number of iterations Function Evaluations Gradient  evaluation^ 
Npsol Filter SQP Npsol Filter SQP Npsol Filter SQP Npsol Filter SQP 

gnash14 0 0 10 T 13 8 13 s 
gnash15 0 
gnash16 0 
gnash17 0 
gnash18 0 
gnash19 0 
hskonacn 0 
hs044-i 0 

incid-sotl-8 0.593 
nsid-setlc-8 0.562 
incid-sst2-8 23.156 
ncid-sot2c-8 22.375 

j r l  0 
jr2 0 

k t h l  0 
kth2 0 
kth3 0 

liswstl-050 0.14 
nashl  0 

outrots31 0 
outrata32 0 
outrata33 0 
outrats34 0 
portfl-i-1 0.078 
portfl-i-2 0.046 
portfl-i-3 0.109 
portfl-i-4 0.062 
portfl-i-6 0.062 

qpec-100-1 0.0424 
qpsc-100-2 0.609 
qpee-100-3 0.984 
qpsc-100-4 0.89 

qpscl  0.031 
qpsc2 0.015 
ralphl  0 
ralph2 0 

ralphmod 3.375 
scholtss1 0 
acholtes2 0 
scholtes3 0 
aoholtas4 0 
ssholtss5 0 

a l l  0 
rtsckalhargl 0 

tap-09 0.062 
tap-15 71.641 

water-net 0.062 
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