
Solving Mathematical Programs
with Complementarity Constraints with
Nonlinear Solvers

Helena Sofia Rodrigues^ and M. Teresa T. Monteiro^

^ Computational Mathematic Master Student, University of Minho, Portugal
helena.rodrigue sQipb.pt

^ Production and Systems Department,University of Minho, Portugal
tmQdps. uminho. pt

Summary . MPCC can be solved with specific MPCC codes or in its nonlinear
equivalent formulation (NLP) using NLP solvers. Two NLP solvers - NPSOL and
the line search filter SQP - are used to solve a collection of test problems in AMPL.
Both are based on SQP (Sequential Quadratic Programming) philosophy but the
second one uses a line search filter scheme.

1 Introduction

There has been an enormous amount of interest in developing algorithms to
solve Mathematical Programs with Complementarity Constraints (MPCC).
A series of problems tha t arise from realistic applications in engineering and
economics is the main reason for such interest.

In recent years, the advances in computer technology have increased the
capability of a modeler to solve large scale problems with complementarity
constraints. On the one hand, the appearance of modelling systems allows to
directly express complementarity conditions as part of their syntax and to
pass on the complementarity model to the solver. On the other, the ability
of a modeler to generate realistic large scale models enables the solvers to be
tested on much larger and more difficult classes of models, producing in this
way new enhancements and improvements in the solver.

However, solving M P C C is a harder task because it can be shown that
constraint qualifications typically assumed to prove convergence of s tandard
NLP algorithms fail for MPCC. As a result, applying specific M P C C solvers is
problematic. To circumvent these problems, various reformulations of M P C C
have been proposed. One of these approaches involves the possibility of solving
M P C C by transforming it to a well-behaved nonlinear program. This endeavor
is important because it allows to extend the body of analytical and computa­
tional expertise of nonlinear programming to this new class of problems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55611531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

416 H.S. Rodrigues and M.T.T. Monteiro

In this work it is analyzed the possibihty of solving MPCC in its NLP
reformulation using certain SQP algorithms. Two NLP solvers based on SQP
philosophy are used to solve a set of problems - NPSOL and the line search
filter SQP. The last one is a promising recent algorithm developed by our
research group still in improvement phase. Another goal of this study is testing
this new algorithm for MPCC problems in their NLP reformulation. This
study is included in a MSc project.

The organization of this paper is as follows. Section 2 introduces the Math­
ematical Programs with Complementarity Constraints. The next section de­
fines an equivalent nonlinear program. In Section 4, the NLP solvers (NPSOL
and line search filter SQP) are presented as well as their main characteris­
tics. Numerical results obtained with a collection of AMPL test problems are
presented in Section 5. Finally, the main conclusions are shown.

2 Mathematical Programs with Complementarity
Constraints

A Mathematical Program with Complementarity Constraints is an optimiza­
tion problem with equality and inequality constraints. In fact, it is a nonlinear
optimization problem where the constraints have the same form as the first-
order optimality conditions for a constrained optimization problem.

A Mathematical Program with Complementarity Constraint (MPCC) is
defined as:

min f{z)
s.t. CE{Z) = 0 , .

ci{z) > 0 ^̂ ^
0>Zi±Z2<0

where z = {zo,Zi,Z2), ZQ G M^ is the control variable and Zi,Z2 € W are
the state variables; CE and cj are the sets of equality and inequality con­
straints, respectively. The presence of complementarity constraints is the most
prominent feature of a MPCC that distinguishes it from a standard nonlinear
optimization problem.

To solve this kind of problems one might be tempted to use a standard
nonlinear programming algorithm. Unfortunately, the feasible set of MPCC
is ill-posed since the constraints qualifications which are commonly assumed
to prove convergence of standard nonlinear programming algorithms do not
hold at any feasible point of the complementarity constraints [16].

A number of special purpose algorithms have been developed for MPCCs,
such as branch-and-bound, implicit nonsmooth approaches, piecewise sequen­
tial programming [4, 14]. Nevertheless, most of the algorithms for solving
MPCC need strong assumptions to ensure convergence. Hence, the research
on the development of effective algorithms remains vigourous.

Solving MPCCs with Nonlinear Solvers 417

This kind of problems gained lot of popularity in the last decade, because
the concept of complementarity is synonymous of equilibrium and many real
applications can be modelled by MPCC.

In Economics, complementarity is used to express Walsarian and Nash
equilibrium, spatial price equilibria, invariant capital stock, game-theoretic
models and Stackelberg lender-follower games, used in oligopolistic market
analysis [3, 5]. More complex general equilibrium models are used for various
aspects of policy design and analysis, including carbon abatement and trade
form. Other applications use game theory, where new examples are becoming
popular due to deregularization of electricity markets.

Engineering applications of MPCC include contact and structural mecha­
nics, structural design, obstacle and free boundary problems, elastohydrody-
namic lubrification and traffic equilibrium. Recently, MPCC has been used in
optimal control problems for multiple robot systems [9, 15]. In optimization,
this kind of problems involves the formulation of the Karush-Kuhn-Tucker
conditions.

3 Nonlinear Programs

An extensive theory of first and second order optimality conditions for MPCC
has been developed. However, the numerical analysis of large-scale MPCCs is
still an area of investigation. Some recent papers have suggested reformulating
the MPCC problem as a standard NLP. The idea behind this approach is to
take advantage of certain NLP algorithms features in order to obtain rapid
local convergence.

Notice that (1) can be written in the equivalent NLP form:

min f(z)
s.t. CE{Z) = 0

ci{z) > 0
1̂ > 0 ^"^^
Z2>0

Z'[Z2 < 0

For the success of NLP solvers, Leyffer suggested to replace the usual com­
plementarity condition z'iZ2 = 0 by the relaxed equivalent condition z[z2 < 0.
Without this relaxation, several methods cannot converge quadratically near
a strongly stationary point.

Unfortunately, the complementarity constraint implies that the KKT con­
ditions are rarely satisfied by MPCC since it can be shown that there always
exists a nonlinear abnormal multiplier [17]. Boundedness of the set of KKT
multiplier vectors is equivalent to the Mangasarian Fromovitz constraint qual­
ification condition arising in nonlinear programming.

Recall that, for a point z* and active set A{z*) = EU {i e I \ Ci{z) = 0},
Mangasarian Fromovitz Constraint Qualification (MFCQ) holds if there exists

418 H.S. Rodrigues and M.T.T. Monteiro

a vector w GW^ such that:

Vci{z*fw > 0, for all i e A{z*) D I

Vci{z*fw = 0, for allieE

Vci{z*),i G E are linearly independent

In MPCC formulation all the feasible points are nonregular in the sense
that they do not satisfy MFCQ, which is the usual condition for global con­
vergence of a NLP algorithm. Nonregularity implies that the multiplier set is
unbounded, that the normal vectors to active constraints are linearly depen­
dent, and that the linearization of the NLP formulation can be inconsistent,
arbitrarily close to a stationary point - all arguments against the use of the
NLP technique for solving MPCCs.

Recent investigation brings good news: studies concluded that new well-
established nonlinear programming solvers with minor modifications present
exciting computational results.

4 NLP Solvers

Upon the success of SQP methods for nonlinear programming, the SQP ap­
proach has been extended to solve MPCC as well. In this work, it is presented
two NLP solvers using SQP algorithms - NPSOL and the line search filter
SQP.

4.1 NPSOL

NPSOL was created by Gill, Murray, Saunders and Wright [10]. NPSOL is a
Fortran Package designed to solve the nonlinear programming problem: the
minimization of a smooth nonlinear function subject to a set of constraints
on the variables. The functions should be smooth but not necessarily con­
vex. NPSOL employs a SQP algorithm and is specially effective for nonlinear
problems whose functions and gradients are expensive to evaluate. The inner
QP subproblem is solved by a LSSOL subroutine. An augmented Lagrangian
merit function using a line search scheme promotes convergence from arbitrary
starting points. The Hessian matrix of the Lagrangian function is updated
with a BFGS quasi-Newton approximation.

4.2 Line Search Filter SQP

The line search filter SQP is a new algorithm for solving NLP problems,
developed by Antunes and Monteiro [2] and still in improvement phase. It is
based on a SQP algorithm with a filter scheme whose goal is to avoid the need
of a merit function. This function requires difficult decisions in order to choose

Solving MPCCs with Nonlinear Solvers 419

the penalty parameters and handle other difficulties like nondifferentiability.
We now proceed to briefly explain the filter scheme. For simplicity, consider
the NLP problem written in the form:

min f(x)
s.t. c(x) 5 0

where c : Bn + Bm is a function incorporating all the constraints, possibly
simple bound constraints.

Problem (1) can be reinterpreted as a problem which consists in minimizing
simultaneously the objective function f (x) and the term

representing the sum of the constraints violation. A filter is a list of pairs
(f(i), h(i)) such that any pair dominates any other (dominance concept from
multicriteria optimization [13]). A pair (f (4, h(i)) obtained on iteration i is
said to dominate another pair (f (j) , h(j)) if and only if both f 5 f (j) and
h(i) < h(j).

The line search filter SQP is based on a Fletcher and Leyffer idea [6] pre-
sented in 2000. While these authors used a trust region (TR) approach, the
line search filter SQP uses a line search strategy to promote global conver-
gence. The inner QP subproblem is solved using LSSOL subroutine from the
NPSOL. For more details see [I, 21.

4.3 NPSOL us Line Search Filter SQP

Fig. 1. Scheme of NPSOL Fig. 2. Scheme of the line search filter
SQP

420 H.S. Rodrigues and M.T.T. Monteiro

As seen in Figures 1 and 2 for both codes the inner QP subproblem of
the SQP algorithm is solved by LSSOL which is a subroutine of the NPSOL.
The line search strategy is used also by the two solvers to promote global
convergence. The only difference between these codes is the process to obtain
the scalar a from the line search - NPSOL uses a merit function and the line
search filter SQP consults the filter.

5 Numerical Examples

5.1 MacMPEC

In order to perform some computational experiments using these solvers, a
library was used: MacMPEC [11], that is a collection of MPCC models written
in the AMPL language [8]. It is a recent library compiled by Sven Leyffer that
contains an extensive collection of MPCC problems. Not all the problems
in MacMPEC are included in this study. Due to memory limit, it wasn't
possible to solve large problems. The numerical tests were done on a Pentium
IV 2600Mhz processor with 512Mb Ram in a WindowsXP operating system.
More details about the problems and solvers results can be found in Appendix.

5.2 Numerical Results

For all the problems the usual complementarity condition in MPCC formu­
lation (1) was replaced by the equivalent nonlinear condition with relaxation
(1). All starting points are standard and fixed by default of AMPL. For both
solvers, the stop criterium tolerance was e = 1.0^ — 06 or 1000 iterations.

For some problems, the solvers couldn't confirm optimality, because the
iteration limit was reached - Table 1 shows, for each solver, the number of the
problems where this happened.

Table 1. Failures of NLP solvers

Solver iter, limit
NPSOL 4

Line search filter SQP 10

Note that the tested problems set contains some problems that are known
not to have strongly stationary limit points. For instance, ex9.2.2, and
scholtes4 have solutions which are not strongly stationary. Problem gauvin
has a global minimum at a point where the lower-level problems fails a con­
straint violation, so the formulation as MPCC is not appropriate [12]. Both
SQP codes are very robust solving MPCC problems in their NLP formulation.

Solving MPCCs with Nonlinear Solvers 421

Figure 3 shows the comparison of the CPU time, in seconds. The NPSOL
is significantly faster than the line search filter SQP but note that the last one
is still in improvement phase.

Fig. 3. Percentage of problems with
lower CPU time

BNpsol
n FilterSQP

1
^60%

with

^ ^ 60%^^^^^^^H •

Fig. 4. Percentage of problen
fewer iterations

DNpsol
D FilterSQP

W
IS with

Figures 4 and 5 show the comparison in terms of iterations. Wi th respect
to the number of iterations the line search filter SQP takes advantage when
compared with NPSOL - it needs less number of iterations in 60% of problems.
It presents also fewer number of iterations used in a general way to solve
problems.

Fig. 5. Number of iterations

Figures 6 and 7 report the ranking of the number of function and gradient
evaluations - in 60% of problems the line search filter SQP shows a best
behaviour with respect to function and gradient evaluations.

422 H.S. Rodrigues and M.T.T. Monteiro

6 Conclusions

A set of MPCC problems were reformulated as NLP problems using the re­
laxed complementarity condition. Two NLP solvers were tested with these
problems and the results confirm their surprising robustness. Using NLP
solvers based on SQP algorithms provide an ability to solve a great num­
ber of complex problems. The line search filter SQP presents better results
than NPSOL with respect to the number of iterations and to the number
of function and gradient evaluations. In terms of the CPU time, NPSOL is
faster but recall that it is a commercial software already optimized, whereas
the line search filter SQP is still in a development phase. The performance of
the line search filter SQP, when compared with the NPSOL, is encouraging
and this new code should continue to be improved in the future. The research
on this area is very important for the modelers, hence it can be a technique
for answering important economic and engineering questions.

Appendix - Detailed Numerical Results

Problem

bar-truss-3
bardl
bard2
bards

bardlm
bardSm
bilevell
bilevel2
bilevelS

bilin
dempe

design-cent-1
design-cent-2
design-cent-4

desilva
d f l

ex9.1.1
6x9.1.2
ex9.1.3
ex9.1.4
ex9.1.5
6x9.1.6
6x9.1.7
6x9.1.8
6x9.1.9

6x9.1.10
6x9.2.1
6x9.2.2
6x9.2.3
6x9.2.4
6x9.2.5
6x9.2.6
6x9.2.7
6X9.2.8
6x9.2.9

flp2
flp4-l
flp4-2
flp4.3

gauvin
gnashlO
gnash 11
gnash 12
gnash 13

CPU time
Npsol
0.031

0
0
1
0
0
0

0.015
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.015
0
0
0
0
0

0.015
0
0
0
0
0

0.05
0.016
0.056

0
0.015

0
0
0

Number
Filter SQP Npsol

0.015
0.031

0
0
0

0.015
0
0

0.031
0.031
0,015
0.234

0
0
0
0
0

0.015
0.015

0
0
0
0
0
0
0
0

0.047
0
0
0
0
0
0
0
0

0.093
0.156
1.313

0
0
0
0
0

7
6
5
1
6
1
3
5

13
1

50
29
11
6
2
2
3
2
5
1
1
1
1
1
2
1
1

25
1
5
5
1
1
1
1
5
1
1
1
3

10
10
9

10

of iterations
Filter SQP

9
3
2
2
3

5 2
2
4

9 3
104

2
1000

19

2
4
3
5
8

10
6
6
6

Function Evaluations
Npsol

25
8
6
2
8
2
7
8

13
2

173
61
14
7
4
4
4
3
6
5
2
1
2
4
3
4
1

39
4
7
9
1
1
1
1
7
2
2
2
6
13
13
11
13

Filter SQP
10
4
3
3
4

2 1 2
3
5

6 7 3
6 8 5
2 2

19806
4
3

2 7
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3

19
4

26
9

17
7
7
7

Gradient Evaluations
Npsol

25
8
6
2
8
2
7
8

13
2

173
61
14
7
4
4
4
3
6
5
2
1
2
4
3
4
1

39
4
7
9
1
1
1
1
7
2
2
2
6

13
13
11
13

Filter SQP
2 4
4
3
3
4

56
3
5

94
105

3
1001

2
3

20
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
5
4
6
9
11
7
7
7

Solving MPCCs with Nonlinear Solvers 423

Best Best

Fig. 6. Ranking of function evalua- Fig. 7. Ranking of gradient evalua-
tions

Problem CPU time Number of iterations Function Evaluations Gradient evaluation^
Npsol Filter SQP Npsol Filter SQP Npsol Filter SQP Npsol Filter SQP

gnash14 0 0 10 T 13 8 13 s
gnash15 0
gnash16 0
gnash17 0
gnash18 0
gnash19 0
hskonacn 0
hs044-i 0

incid-sotl-8 0.593
nsid-setlc-8 0.562
incid-sst2-8 23.156
ncid-sot2c-8 22.375

j r l 0
jr2 0

k t h l 0
kth2 0
kth3 0

liswstl-050 0.14
nashl 0

outrots31 0
outrata32 0
outrata33 0
outrats34 0
portfl-i-1 0.078
portfl-i-2 0.046
portfl-i-3 0.109
portfl-i-4 0.062
portfl-i-6 0.062

qpec-100-1 0.0424
qpsc-100-2 0.609
qpee-100-3 0.984
qpsc-100-4 0.89

qpscl 0.031
qpsc2 0.015
ralphl 0
ralph2 0

ralphmod 3.375
scholtss1 0
acholtes2 0
scholtes3 0
aoholtas4 0
ssholtss5 0

a l l 0
rtsckalhargl 0

tap-09 0.062
tap-15 71.641

water-net 0.062

References

1. A.S. Antunes and M.T. Monteiro. A SQP-filter algorithm with line search in
nonlinear programming. Preprint, 2004.

424 H.S. Rodrigues and M.T.T. Monteiro

2. A.S. Antunes and M.T. Monteiro. A filter algorithm and other NLP solvers:
performance comparative analysis. Preprint, 2004.

3. S.C. Billups and K.G. Murty. Complementarity problems. JCAM inveted paper,
2000.

4. F. Facchinei, H. Jiang and L. Qi. A smoothing method for mathematical pro­
grams with equilibrium constraints. Tech. Rep. AMR 96/15, Univ. of New South
Wales, 1996.

5. M.C. Ferris and C. Kanzow. Complementarity and related problems: a survey.
In: P.M. Pardalos PM and M.G.C. Resende(eds), Handbook of Applied Opti­
mization. Oxford Univ. Press, New York, 514-530, 2002.

6. R. Fletcher and S. Leyffer. Nonlinear Programming without a penalty function.
Math. Programming 91:239-270, 2002.

7. R. Fletcher, S. Leyffer, and P.L. Toint. On the global convergence of a filter-SQP
algorithm. SIAM J. Optim., 13(1): 44-59, 2002

8. R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modelling Language for
Mathematical Programming. Duxburg Press, 1993.

9. R. Fourer, M.C. Ferris, and G.M. Gay. Expressing complementary problems and
communicating them to solvers. SIAM J. Optim., 9: 991-1009, 1999.

10. P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. User's guide for NPSOL
5.0: a fortran package for nonlinear programming. Tech. Rep. SOL 86-1 , 1998.

11. S. Leyffer. MacMPEC, webpage: www.mcs.anl.gov/~leyffer/MacMPEC/, 2000.
12. S. Leyffer. Complementarity constraints as nonlinear equations: theory and nu­

merical experience. Tech. Rep. NA/209, Univ. of Dundee, 2002.
13. K.M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Pub­

lishers, 1999.
14. Z.Q. Luo, J.S. Pang, and D. Ralph. Mathematical Programs with Equilibrium

Constraints, Cambridge University Press, 1996.
15. J. Peng, M. Anitescu, and S. Akella. Optimal control of multiple robot systems

with friction using MPCC. Tech. Rep. W-31-109-ENG-38, 2003.
16. H. Pieper. Algorithms for mathematical programs with equilibrium constraints

with applications to deregulated electricity markets. Dissertation, Stanford Uni­
versity, 2001.

17. J.J. Ye. Optimality conditions for optimization problems with complementarity
constraints. SIAM J. Optim., 9(2):374-387, 1999.

http://www.mcs.anl.gov/~leyffer/MacMPEC/

