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Abstract

An electric power market is studied as a Stackelberg game where two firms, A
and B, produce energy. It is analyzed two distinct situations, according to the firm
who plays the leader role: the first one, when the firm A is the leader and the other
firm is the follower, and the second that is the reverse of the players roles. The main
goal is to understand the behavior of the various agents that compose the electric
power network, such as transmissions capacity, quantities of power generated and
demanded, when changing leadership.

The problem is formulated as a Mathematical Program with Complementarity
Constraints (MPCC) and reformulated into a Nonlinear Program (NLP), allowing
the use of robust NLP solvers. Numerical results are presented and some final
considerations are carried out.
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1 Introduction

In the last years, the transformations of the electric power market has been a constant. It
becomes a liberalized activity, where planning and operation scheduling are independent
activities which are not constrained by centralized procedures.

In Europe, the liberalization process is under way in many countries. The market
has been faced with fusions and merges between companies. The directives of European
Union for an electric power liberality led up to increasing institutional and physical
connections between markets from different countries. Some papers about studies in
course, related with German, French and The Netherlands power markets have emerged
- see [4], [7] and [19] for more details.
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In a competition environment the main goal is to benefit the consumers through
price reduction. Although, ill effects can occur if the level of concentration in the market
grows dangerously and the generator companies combine prices between themselves.

According to [14], there are reasons to consider electric power as a special commod-
ity: all power travels over the same set of power lines, independently of the firm that
generated it; this difference is particularly marked when the networks contains loops
and there are transmission capacity limits; also electricity has unique physical proper-
ties, namely Kirchhoff voltage and current laws. As the electricity is difficult to store,
and the quantity of power must be instantly adjusted to the demand, the companies
that lead the market could easily manipulate the price, changing it to higher values,
specially in peak consumption periods.

In order to study the interaction of all market participants and to have a better
knowledge of the market conditions, firms and governments need suitable decision-
support models. The problem that is presented herein is related with the oligopolist
market modeled as a Stakelberg game [13]. In this game theory, there is a non compet-
itive situation, where one player - namely leader - takes as input his own perception of
the market and can anticipate the reactions of the other players, using the information
in order to select his optimal strategic. The other players - namely followers - do not
have the perception how their decisions have influence in leader decisions. Between
followers their behavior act like a non-cooperative Nash game, where each one observes
the actions of the others and no one can increase their own profit through unilateral
decisions.

The Stakelberg game theory was a great motivation for the study of the bilevel
optimization problems, because there are many similarities between both [8]. However,
solving this kind of problems is a hard task in optimization. But, if the bilevel problem
is convex in the second level [20], this level can be replaced by their own Karush-Kuhn-
Tucker (KKT) conditions, and the resulting problem is one level optimization problem
with complementarity constraints. In this paper, it is studied the transformations of
the electric power network, related to quantities of demanded and generated power in
each node, when the leader company changes.

The organization of this paper is as follows: section 2 introduces the definition of
Mathematical Program with Complementarity Constraints and it special features; it is
presented the nonlinear approach of the previous problem as a way of taking advantages
of the efficiently and robust NLP solvers. In section 3, we present two versions of the
electric power problem and we also provide the data specifying the network used in the
computational experiments. The numerical results are shown in section 4 and finally
we conclude in the last section.

2 MPCC-NLP approach

The interest on Mathematical Program with Complementarity Constraints (MPCC)
increased in the last decade due to the subjacent equilibrium concept present in many
applications (see [3, 5, 13] for some applications in the last years).
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Definition 2.1 MPCC Problem
Mathematical Program with Complementarity Constraints (MPCC) is defined as:

min
z

F (z)

s.t. ci(z) = 0, i ∈ E,
ci(z) ≥ 0, i ∈ I,
0 ≤ z1 ⊥ z2 ≥ 0,

(1)

where z = (z0, z1, z2), with the control variable z0 ∈ IRn and the state variables z1, z2 ∈
IRp; F is the objective function, ci, i ∈ E∪I are the equality and inequality constraints,
respectively. The sets E and I are the disjoint finite sets of indices. The objective
function F and the constraints ci, i ∈ E∪I are assumed twice continuously differentiable.
The constraints related to complementarity are defined with the operator⊥ and demand
that the product of the two nonnegative quantities must be zero, i.e., z1iz2i = 0, i ∈
{1, . . . , p}.

The MPCC problem is nonsmooth mostly due to the complementarity constraints.
The optimal conditions are complex and very difficult to verify. Besides, the feasible
set of MPCC is ill-posed since the constraint qualifications – namely the Mangasarian
Fromovitz (MFCQ) and the Linear Independent (LICQ) – which are commonly assumed
to prove convergence of standard nonlinear programming do not hold at any feasible
point [8, 16]. This implies mostly that the multiplier set is unbounded, the active
constraint normals are linearly dependent and the linearizations of the MPCC can
become inconsistent arbitrarily close to a solution.

The violation of constraint qualifications has led to a number of specific algorithms
for MPCCs. In spite off being specially designed to address MPCC problems they do not
represent a real solution, since by these algorithms still need rather strong assumptions
to ensure convergence. On the other side they also require significative computational
effort when compared with nonlinear solvers in the market. The search of new techniques
and algorithms in order to solve real problems with large dimension is still an intensive
research area.

Recently, some authors proposed to solve MPCC problems by reformulating into
an equivalent NLP problem [12]. This formulation allows to take advantage of certain
NLP algorithms features in order to obtain rapid local convergence. Reliability and
robustness of NLP solvers can also be acceded by using these problems for numerical
testing allowing also to see its performance under some specific problems irregularities.

A MPCC defined in (1) can be reformulated as an equivalent NLP problem of the
following form:

Definition 2.2 NLP formulation of the MPCC problem

min
z

F (z)

s.t. ci(z) = 0, i ∈ E,
ci(z) ≥ 0, i ∈ I,
z1 ≥ 0,
z2 ≥ 0,
zT
1 z2 ≤ 0.

(2)
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Recall that the complementarity constraint was replaced by a nonlinear inequality,
relaxing the problem. The transformation from a MPCC problem into a NLP problem
allows the use of standard NLP solvers.

One can easily show that the reformulated problem has the same properties as the
previous one, including the constraint qualifications violation and second-order condi-
tions. However, in the last few years, some studies show that strong stationarity is
equivalent to the KKT conditions of the MPCC-NLP problem [17, 18]. This fact has
advantages because strong stationarity is a useful and practical computation character-
ization, since it is relatively easy to find a stationarity point in a NLP solver, under
reasonable assumptions.

3 The electric power market problem

The problem described in this paper is based on the model proposed in [6]. It is a
competitive power market, formulated as an oligopolistic equilibrium model.

There are a number of generator firms, each owing a given number of units. These
make an hourly bid to an Independent System Operator (ISO). The ISO, taking in
consideration the network, solves a social welfare maximization problem, announces a
dispatch for each bidder and possibly distinct prices at each node. It decides how much
power to buy from generators and how much power to distribute to consumers and what
prices to charge. All these decisions are made with the optimal power flow in mind.

The leader generator first decides and takes as input all the perceptions and in-
formation that it could have about the market (including predictable bids of the other
firms, demand and supply functions) and maximizes its profit inside a set of spatial
price equilibrium constraints and Kirchhoff’s voltage and current laws. The followers
units make their own decisions taking into account the leader decision.

3.1 Formulation

The notation used in the mathematical formulation follows.
Indices:
i node in the network
ij arc from node i to node j
m number of Kirchhoff voltage loops in the network
Sets:
N set of all nodes
A set of all arcs
Sf set of generator nodes under control of leader firm f
P set of all generators nodes
D set of all demand nodes
L set of Kirchhoff’ voltage loops m
Lm set of ordered arcs (clockwise) associated with loop m

Recall that, a node can be, simultaneously a generator and a consumer, so P and
D are not necessarily disjoint and their union could be a proper subset of N . The
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uniqueness of the net flow on each arc is ensured by the Kirchhoff’s laws in the linearized
DC models and, consequently, the number of (independent) loops are #A − #N + 1
(where #X is the set X cardinality).

Parameters:
ai, bi intercept and slope of supply function (marginal cost) for the generator

at node i ∈ P
ci, di intercept and slope of demand function for consumer at node i ∈ D
αi upper bound of the bid for the unit at node i ∈ Sf

QSi
upper bound of production capacity for the unit at node i ∈ P

T ij maximum transmission capacity on arc ij ∈ A
rij reactance on arc ij ∈ A
sijm ±1 corresponding to the orientation of the arc ij ∈ A in loop m ∈ L

(+1 if ij has the same orientation as the loop m)
First-Level decision variable
α bid for the unit at node i ∈ P

In this model, it is assumed that the generator firms can only manipulate α (the
intercept in the bid function) and not the slope b, due to market and optimization
assumptions.

Let αi be fixed for the competitive firms (i.e., αi fixed ∀i ∈ P\Sf ) and variables
for the leader firms (i.e., αi variable ∀i ∈ Sf ).

Primal variables in the second-level
QSi vector defined by quantity of power generated by the unit at node i

(QSi = ai + biQSi if i ∈ P and QSi = 0 if i /∈ P )
QDi quantity of power demanded at node i

(QDi = ci − diQDi if i ∈ D and QDi = 0 if i /∈ D)
Tij matrix defined by MW transmitted from node i to node j
Dual variables in the second-level
λi marginal cost at node i
µi marginal value of generation capacity for unit at node i
θij marginal value of transmission capacity on arc ij
γm shadow price for Kirchhoff voltage law for loop m

Let ∆ be the matrix with the information about the pair (node,arc) in the electric
network:

∆il =





1, if l = ij ∈ A for somej ∈ N
−1, if l = ji ∈ A for some j ∈ N
0, other values

(3)

Let R be the matrix (arc, cycle) related with the reactance coefficients:

Rij ,m =
{

sijmrij , if ij ∈ Lm

0, otherwise (4)

The notation diag(w) represents the diagonal matrix whose diagonal entries are the
components of the vector w.

It is provided in [9] that due to the convexity of the second level problem, for
each vector α, there exists a unique globally optimal solution (QD(α), QS(α), T (α)).
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Replacing the second level of problem by its KKT optimality conditions leads to a
MPCC optimization problem. The maximization of the leader firm profit in the electric
power market is described by the following MPCC problem:

max Πf (λ,QD, QS , T, θ, λ, µ) ≡ ∑
i∈D

(
ciQDi − diQ

2
Di

)

−∑
i∈Sf

(
aiQSi + bi

2 Q2
Si

)
−∑

ij∈A θijT ij

−∑
i∈P\Sf

(
µiQSi

+ aiQSi + biQ
2
Si

)

s.t. 0 ≤ αi ≤ αi,∀i ∈ Sf

0 ≤ QS −QS ⊥ µ ≥ 0
0 ≤ QS ⊥ −λ + µ + α + diag(b)QS ≥ 0
0 ≤ QD ⊥ λ− c + diag(d)QD ≥ 0
0 ≤ θ ⊥ T − T ≥ 0
0 ≤ T ⊥ ∆T λ + θ + Rγ ≥ 0
QD −QS + ∆T = 0
RT T = 0
λ free
γ free

(5)

3.2 Data

The electric power network includes a circuit with 30 nodes. Six are nodes with gener-
ators – 3 for the leader and the 3 for the follower – and the remaining 21 are demand
nodes. Connecting the nodes there are 41 arcs and 12 loops. Figure 1 shows a network
scheme with additional information.

Figure 1: Electric network scheme
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The data related with production, demand, transmission values are based on [14].
The generator cost function, reactance and upper bounds for supply and transmission
flows values are also given. As a safety measure of the network the upper bounds values
for the transmission capacity are 60% of the values assumed in [14].

It is studied two distinct situations. The first one (case A), assumes firm A as leader
firm B as follower. The second case (B), the firms change their role by considering firm
B as the leader and firm A as the follower. To solve the both dominant firm situations
it is assumed that the bids for the units of the follower company are equals to their
marginal costs, which means αi = a, i ∈ P\Sf , where a is a constant.

The demand curve for each costumer node is determined by Pi = 40−diQDi where
di is chosen so that Pi = $30/MWh when QDi equals the value assumed in [1].

The code of these cases are in AMPL language and can be found in the MacMPEC
[11] with the name monteiro.mod and monteiroB.mod. Each problem has 136 variables,
201 constraints where 62 of them are complementarity constraints.

The MPCC-NLP approach was used to solve the problem, meaning that all com-
plementarity constraints were reformulated as nonlinear constraints according the defi-
nition (2).

4 Computational results

Three nonlinear solvers were used in order to solve both problem cases. These solvers
provide a sample for available nonlinear optimization software, implementing different
techniques.

Lancelot [10] is a standard Fortran 77 package for large scale nonlinear optimization,
developed by Conn, Gould and Toint. The software uses an augmented Lagrangian ap-
proach and combines a trust region approach adapted to handle the bound constraints.

Loqo [2] was developed by Vanderbei and is a software for solving smooth con-
strained optimization problems. It is based on an infeasible primal-dual interior point
method applied to a sequence of quadratic approximations. It uses line search to induce
global convergence and an exact Hessian matrix.

The Snopt, developed by Gill, Murray and Saunders, is a software package for
solving large-scale linear and nonlinear programs. The functions used should be smooth
but not necessary convex and it is specially effective for problems whose functions and
gradients are expensive to evaluate.

The NEOS Server [15] platform was used to interface with the selected solvers.
NEOS (Network Enabled Optimization System) is an optimization service that is avail-
able through the Internet. It is a large set of software packages considered as the state
of the art in optimization.

The numerical results using NLP solvers are presented in Table 1 where the objective
function and the first level variables are shown. Note that in case A, the bids of the
nodes 1, 2 and 5 are fixed. It is assumed that firm A, that is owner of the nodes 8, 11
and 13, knows the nodes bids that are under control of firm B. Conversely, when firm
roles changes in case B.
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Solver Profit function Bid (αf ) for each generator node
(πf ) 1 2 5 8 11 13

LANCELOT 37.53 20 17.50 10 35.83 40 29.80
Case A LOQO 37.53 20 17.50 10 35.83 36.09 20

SNOPT 37.53 20 17.50 10 35.83 39.99 0
LANCELOT 827.86 29.56 28.30 13.80 32.50 30 30

Case B LOQO 823.40 29.46 28.30 13.80 32.50 30 30
SNOPT 827.86 29.56 28.30 13.80 32.50 30 30

Table 1: Objective function and bid results

Although it has been reached an identical value for all solvers for the objective
function, in each case, the same did not happen for the bid variable, which take us to
believe for the existence of the several local optima.

The other variable values are also different. In Figure4, it is shown the electric
power transmitted between nodes over the power lines. The arcs that are emphasized
are the optimal electric power flow. It is possible to see that the only visual difference
between the two schemes are that in case B, it is transmitted electric power for the
node 5 to the node 7. In these figures, for visual issues, it is only visible the differences
in the nodes for the Lancelot solver. For more details about the behavior of the other
solvers it is possible consult Tables 2 and 3 in appendix.

Figure 2: Optimal electric power flow in
case A

Figure 3: Optimal electric power flow in
case B

In spite of the images seem quite similar, the values for generated and demanded
electric power in each node is different, as Figures 4 and 5 expose for the Lancelot solver.

There are some demand nodes that practically do not receive electric power. This
may be explained for two reasons: economical ones because it is possible that the
transportation of the energy for these places are too expensive and by the existence of
large demander nodes close to the generator units that absorb all the power produced.
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Figure 4: Generated power with Lancelot solver

Figure 5: Demanded power with Lancelot solver

5 Conclusions and further work

Due to the economics and politics importance, the electric power market has been a
target of many studies. In this paper it has been shown that the MPCC-NLP approach
is a reliable and robust approach to solve real problems, providing a powerful tool for
decision makers. These tools can indeed provide an advance to producers in presence
of information about the market conditions.

The power of information is a decisive factor in order to obtain the dominance
of the market. The behavior of the various agents that compose the electric power
network, such as transmissions capacity, quantities of power generated and demanded,
are different when there are distinct perspectives of the market.

As future work, we will study of this problem as a Nash model, where both firms
compete at the same level with the same market information.
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A Generated and demanded power for the two cases

Demanded Case A Case B
nodes LANCELOT LOQO SNOPT LANCELOT LOQO SNOPT
1 44.30 44.30 44.30 23.28 28.58 23.28
2 10.90 10.90 10.90 5.11 0 5.11
5 41.04 41.04 41.04 35.84 35.84 35.84
8 10.01 10.01 10.01 18.01 18.01 18.01
11 1.30e-05 1.60e-05 0 1.61e-07 1.61e-07 0
13 0 0 0 0 0 0

Table 2: Generated power



A MPCC approach on a Stackelberg game in an electric power market

Demanded Case A Case B
nodes LANCELOT LOQO SNOPT LANCELOT LOQO SNOPT
2 44.98 44.98 44.98 23.43 22.51 23.43
3 2.55 2.55 2.55 1.34 1.57 1.34
4 6.87 6.87 6.87 3.61 4.50 3.61
5 41.04 41.04 41.04 35.84 35.84 35.84
7 0 0 0 6.29e-09 0 0
8 10.01 10.01 10.01 18.01 18.01 18.01
10 0 0 0 0 6.68e-08 0
12 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 1.32e-05 0 1.32e-05 4.77e-08 0 0
17 1.32e-05 0 0 0 3.50e-09 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
26 0 0 0 0 0 0
29 0 0 0 0 0 0
30 0 0 0 0 0 0

Table 3: Demanded power


