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Some hints on using surface phenomena for the design and performance 
optimization of distinct biomedical devices 
 

Abstract 

 

The surface properties of materials in contact with biological systems play a key role in 

determining the outcome of biological-material interactions. Most of the conventional 

materials do not meet simultaneously the demands required for biomaterials surface and 

bulk properties. An effective approach for optimizing biomaterials performance is to modify 

the surface of a specific material which already has excellent functionality and bulk 

properties. Anionic scaffolds have been investigated in order to create tissue engineering 

substitutes mainly because of their capability to facilitate morphogenetic processes. For 

example, the negative charge of glucosaminoglycans (GAGs) is associated with their 

bioactivity via interaction with the positively charged amino groups of extracellular 

proteins. On the other hand, it is also reported that many bone promoting proteins 

naturally interact with acidic polymers. This thesis addresses the influence of such 

anionic, acidic groups on the surface of biomedical devices. In a first approach, plasma 

induced polymerization of vinyl monomers with pendent acidic moieties on chitosan 

membranes (2D) is described (Chapter 3). Acrylic acid and vinyl sulfonic acid was used to 

introduce respectively, carboxylic or sulfonic groups on the surface. A plasma activation 

method was chosen because it does not influence the bulk attributes of the material. On 

the other hand, carboxylic and sulfonic groups were studied because they are present as 

the major anionic functional groups on natural GAGs structures. In Chapter 4, the same 

strategy was followed to introduce phosphonic groups on chitosan membranes surface. 

The importance of the phosphonic groups, mimicking bone promoting proteins and 

mineral bone matrix, has been recognized before by the biomaterials scientific community. 

We have demonstrated herein that plasma induced polymerization is an effective 

methodology for grafting vinyl polymers on 2D chitosan membranes, without modifying the 

bulk properties of the material. Moreover, we found that the presence of sulfonic and 

phosphonic groups induced remarkably different osteoblast-like cells (SaOs-2) response 

in terms of attachment, spreading, viability and proliferation. In Chapter 5, the 

effectiveness of this surface modification method was tested on 3D structures with 

complex shapes. For that, the same modification process was used to introduce sulfonic 

and phosphonic groups on the surface of fiber mesh scaffolds made of a blend of starch 

and ε-polycaprolactone. We found that grafting of negatively charged units such as 



viii 

sulfonic and phosphonic groups induced rather different response in both protein 

adsorption from serum and osteoblast-like cells adhesion and proliferation. 

 

In the second part of the thesis, ionic thermo-responsive vinyl polymers were synthesized 

by conventional free radical polymerization. Random terpolymers composed of N-

isopropylacrylamide (NIPAAm), 2-Acrylamido-2-methyl-1-propanesulphonic acid (AMPS) 

and N-tert-butylacrylamide (NTBAAm) were obtained. The technological relevance of this 

type of polymer relies on their ability to form surfactant-free nanoparticles stabilized by 

surface charge above the low critical solution temperature (LCST) or to interact with 

oppositely charged macromolecules, allowing for instance surface modification using 

techniques of polyelectrolyte layer-by-layer construction. In Chapter 6 the effect of 

polymer composition, salt and polymer concentration in the aggregation-redissolution 

behavior in solution was evaluated. Turbidity was used to assess the macroscopic phase 

separation and dynamic light scattering (DLS) was employed to elucidate some aspects 

regarding the molecular scale mechanism of the temperature-induced phase separation. 

The cloud point temperature (CPT) determined by turbidimetry was found to be 

systematically much higher than the LCST determined by DLS; nanosized aggregates 

were observed at temperatures between the LCST and the CPT. Both CPT and LCST 

decreased when increasing the polymer hydrophobicity (molar ratio of NTBAAm). It was 

found that polymers with higher NTBAAm contents present a slow macroscopic phase 

separation and the large aggregates formed only redissolve when LCST is reached. This 

behavior was explained on the basis of a delicate balance between the electrostatic 

repulsion and the hydrophobic attractive forces, which contribute cooperatively to the 

formation of metastable nanosized aggregates. In addition, the behavior observed for 

more hydrophobic polymers was further explored in Chapter 7 as a way to develop a 

method for the synthesis of thermoresponsive nanoparticles providing a tight control over 

particle size (between 35 - 200 nm) and that can also be reversibly disentangled at a 

temperature below the LCST, with recovery of soluble terpolymer chains. The 

nanoassemblies are formed in aqueous and surfactants free medium. For that, the 

polymer solution is just maintaining at high temperature for some time and the 

temperature is decreasing to 21ºC when particles achieve the desired size. This 

thermoresponsive system may be potentially useful for a range of applications, including 

drug and gene delivery, biosensing, or separation and purification of biological molecules 

and cells. 
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Algumas considerações sobre o uso de fenómenos superficiais na concepção e na 
optimização do desempenho de diversos dispositivos biomédicos 
 

Resumo 

 
As propriedades superficiais de materiais em contacto com sistemas biológicos têm um 

papel determinante no resultado das interacções entre os dois meios. A maior parte dos 

materiais convencionais não obedece simultaneamente aos requisitos exigidos para as 

propriedades totais e superficiais dos biomateriais. Uma abordagem para a optimização 

do desempenho de biomateriais consiste na modificação da superfície dum material que 

já tenha demonstrado possuir propriedades totais e funcionalidade adequadas. 

Têm havido vários estudos sobre suportes poliméricos aniónicos para a formação de 

tecidos biológicos de substituição, advogando a sua capacidade de facilitar o processo de 

morfogénese. No caso dos glicosaminoglicanos (GAGs), carregados negativamente, a 

bioactividade foi associada a interacções com os grupos amina positivamente carregados 

das proteínas extracelulares. Por outro lado, também têm sido referido na literatura que 

muitas das proteínas que promovem a morfogénese óssea interagem naturalmente com 

polímeros acídicos.  

Esta tese debruça-se sobre a influência de grupos aniónicos (acídicos) na superfície de 

dispositivos biomédicos. Numa primeira abordagem, é descrita a polimerização de 

monómeros vinílicos com grupos funcionais laterais acídicos induzida em membranas de 

quitosano pré-tratadas por plasma (capítulo 3). Os ácidos acrílico e vinil sulfónico foram 

usados para introduzir na superfície grupos carboxílicos e sulfónicos, respectivamente. O 

método de activação por plasma foi escolhido, por não influenciar as propriedades totais 

dos materiais. Os grupos carboxílicos e sulfónicos foram escolhidos para estudo por 

serem os grupos funcionais aniónicos mais abundantes nas estruturas naturais dos 

GAGs. No capítulo 4, foi seguida a mesma estratégia para introduzir grupos fosfónicos na 

superfície de membranas de quitosano. A importância dos grupos fosfónicos, que 

mimetizam as proteínas que promovem a morfogénese e a própria matriz mineral do 

osso, foi anteriormente reconhecida pela comunidade científica dos biomateriais. Nesta 

tese demonstra-se que a polimerização induzida por plasma é uma metodologia 

adequada para o enxerto de vários polímeros vinílicos em membranas de quitosano (2D), 

sem modificar as propriedades totais do material. Também se observou que a presença 

de grupos sulfónicos e fosfónicos se traduz em diferenças notáveis na resposta celular de 

células do tipo osteoblasto (SaOs-2) em termos de adesão, morfologia, viabilidade e 

proliferação. No capítulo 5, a eficácia deste método de modificação superficial foi testada 
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em estruturas 3D com formas mais complexas. O mesmo método de modificação foi 

usado para introduzir grupos sulfónicos e fosfónicos na superfície de suportes para 

engenharia de tecidos à base de fibras de uma mistura polimérica de amido e ε-

policaprolactona. Concluiu-se que o enxerto de cadeias poliméricas com grupos 

sulfónicos e fosfónicos induzem um resposta diferente tanto em termos de adsorção de 

proteínas do soro, como, de adesão e proliferação de células do tipo osteoblasto.  

Na segunda parte da tese foram sintetizados polímeros iónicos com resposta à 

temperatura por métodos convencionais de polimerização radical, obtendo-se 

terpolímeros aleatórios compostos por N-isopropilacrilamida (NIPAAm), ácido 2-

acrilamida-2-metil-1-propanosulfónico (AMPS) e N-tert-butilacrilamida (NTBAAm). A 

relevância tecnológica deste tipo de polímeros está relacionada com a sua capacidade 

para formar nanopartículas, sem recurso a surfactantes, estabilizadas pela carga 

superficial quando acima da temperatura crítica de solubilidade inferior (LCST); ou pela 

sua capacidade de interagir com macromoleculas com carga oposta, permitindo, por 

exemplo, a modificação de superfícies por deposição electrostática alternando camadas 

de carga oposta. No capítulo 6, foi avaliado o efeito da composição do polímero e das 

concentrações de sal e polímero na agregação e redissolução. A separação de fases foi 

avaliada macroscopicamente pelo aparecimento de turbidez. Alguns dos aspectos dos 

mecanismos moleculares inerentes à separação de fases induzida pelo aumento da 

temperatura foram revelados por difusão dinâmica de luz (DLS). A temperatura de 

turvação (CPT), determinada por turbidimetria, foi sistematicamente superior à LCST 

determinada por DLS; agregados à escala nanométrica foram observados entre a LCST e 

a CPT. Tanto a CPT como a LCST diminuíram com o aumento da hidrofobicidade 

(fracção molar de NTBAAm). Polímeros com maior conteúdo em NTBAAm apresentaram 

uma separação de fases lenta a nível macroscópico, e os agregados de “grandes” 

dimensões entretanto formados apenas redissolveram quando arrefecidos abaixo da 

LCST. Este comportamento, observado para os polímeros mais hidrófobos, foi usado no 

capítulo 7 para desenvolver um método de síntese de nanopartículas com resposta à 

temperatura, permitindo um alto controlo sobre o tamanho de partícula (entre 35 - 200 

nm). Para isso, a solução de polímero foi mantida a temperatura elevada durante algum 

tempo e, quando as partículas atingiram o tamanho especificado, arrefecida a 21 ºC. 

Estas construções nanométricas são formadas em meio aquoso, sem recurso a 

surfactantes, e podem ser desagregadas reversivelmente a temperatura inferior à LCST, 

levando à redissolução das cadeias poliméricas. Este sistema com resposta à 

temperatura tem alto potencial para um conjunto de aplicações tão diversas como a 

administração localizada de fármacos e genes, o desenvolvimento de biosensores, ou a 

separação e a purificação de macromoléculas biológicas ou de células. 
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Chapter 1 – Introduction: Surface modification natural-based biomedical polymers 

1.1 Introduction  

 

Surface is defined as the outside or top layer of the material. If the analogy with a human 

is used, one can say that the bulk properties of a material determine its “character”, while 

the surface is its “face”. Similar to the human society, the initial acceptance or rejection of 

a biomaterial in the cell society is very dependent on its face whereas material character 

determines its long performance and proper function. Unfortunately, it is very difficult to 

find a biomaterial which simultaneously possesses both suitable mechanical properties in 

order to function properly in a certain bioenvironment and to not be harmful for the host 

tissue 1. Therefore, a common approach is to fabricate biomaterials with adequate bulk 

properties and then to make-up those by a specific treatment resulting in enhanced 

surface properties. 

The materials’ surfaces (as people faces) are very different and it is not possible to have a 

universal modification for all of them 2. Moreover, the environment and the role, which 

certain biomaterial is expected to play, call for a specific, unique and enough resistant 

modification which to ensure its good performance. To make this task even more 

complex, the requirements in the biomedical material research and development field are 

growing very fast. While few years ago, bioinert surfaces, protecting biomaterials from 

bacterial invasion, were sufficient for a material to be successful 3, over the past decade 

the requirements shift 4 to surfaces that interact and functionally integrate with their 

biological environment in a predictable and controllable way. Nowadays, design of 

surfaces helping the body to heal itself 5 by stimulating specific cellular responses at the 

molecular level is in the target of the research. 

 

1.2 Some terms and classifications 

 

A crucial concept to understand about the tissue-biomaterial interface is that many things 

happen there! The environment inside the body is dynamic and active, and the interface 

between an implanted biomaterial and the body is the location of a variety of dynamic 

biochemical processes and reactions 6. During contact of non-bio surfaces with biological 

fluids, protein adsorption occurs almost instantaneously. This proteins layer will further 

mediate the key bio/material interactions. Therefore, protein adsorption plays a 

fundamental role in dictating the cellular response elicited by biomedical systems 

implanted in the human body. Thus, the ability to control these phenomena at the 

biomaterial surface largely determines the biological performance of biomedical systems. 
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Prevention of non-specific adhesion of proteins and polymer functionalization with cell-

type specific molecules can propel to direct control of cell adhesion on biomaterials 7. 

In the field of biomaterials, two historical approaches have been utilized 8 to understand 

and tailor cell adhesion to the materials’ surfaces. The elder one, so-called material 
approach, correlates cell response (morphology, adhesion, retention or higher cellular 

function) to the character of the material surface. Different chemistry and physics based 

methodologies have been developed (Table 1.1) in order to tailor material surface in terms 

of composition, surface energy, morphology, and chemistry. 

 

Table 1.1 Material approach: Some of the used methods and related references 

Process Methods References 

Chemical  [9, 15, 16, 86, 87] Etching 

Physical [30-32, 36, 88, 89] 

Chemical [9-12]  Functionalization 

Oxidation Physical: 

• Plasma 

 

• UV irradiation 

 

[1, 21, 27-30, 32, 34-38, 40, 41, 

65, 88, 90] 

[40-42, 56] 

Chemical [23-26] Hydrolysis 

Enzymatic [91] 

Coatings Layer by Layer (LbL) [92, 93] 

Chemical [49-53, 64, 94-104] 

Enzymatic [105-107] 

Grafting[47, 48] 

Physical activation: 

• Plasma  

• Irradiation (gamma, 

UV, laser) 

 

[31, 33, 34, 51, 64, 72, 108-110] 

[54-56, 86, 111-114] 

 

According to the second, biology-driven approach, cell/biomaterial surface interactions 

are governed by the same biologically specific chemistry as cell/cell surface interactions. 

Following this approach, the material surface must be designed in a way to mimic the cell 

surface as close as possible (Table 1.2). Intensive exploration/exploitation of cell surface 

and its different components (e.g. proteins, phospholipids, enzymes, etc.) was the 

outcome from the development of this approach. 
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Nowadays, these two approaches have merged and combined methodologies using the 

best achievements from biology and material sciences are used for directing the 

interaction between tissue cells and biomaterials. 

 

1.3 Wet chemistry in surface modification 

 

Chronologically, this is the first surface modification approach used in order to improve 

surface properties of polymers. The wet chemical methods in the surface modification field 

can be compared with a cosmetic surgery (but not with a simple make up!!!) if the analogy 

material surface/human face is used. The ultimate goal of this approach is to create 

stable, well-defined functional substrates characterized by controlled surface 
properties, which are available for further chemistry. 

 

Table 1.2 Some bio-approaches: methods and applications 

Targeted 
Application 

Methods References 

Protein immobilization [53, 64, 115-117] Cell adhesion 

Active peptide sequences conjugation [69, 96, 98, 118-121] 

Drug delivery Self assembled structures (e.g. 

phospholipid cell membranes) 

[83, 84, 122-125] 

 Other chemical approaches [126, 127] 

 

The wet chemistry surface modification methods are based on the knowledge from 

general solution chemistry. Thus, for example starch-based blends have been surface 

oxidized by the well known oxidizing system acid-permanganate 9 or surface crosslinked 

using tri-sodium tri-meta phosphate solution 10; chitosan can be surface sulfonated by SO3 

11 or surface phosphonated by P2O5 
12 in different solvents. Although, the experience from 

the solution chemistry is indispensable, several specific “surface issues” must be 

considered: 

 

Which are the functional groups available on the surface? Are they the same as the ones 

in the bulk? 

 

Surface chemistry depends on the processing of the material. Therefore, prior any further 

modification, full surface characterization and knowledge of the processing “history” of the 
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material are required. When a solvent is involved in the preparation of the sample (e.g. 

solvent casting technique), the ability of the used solvent to form hydrogen bonds with the 

functional groups of the material, can show up or hide these functional groups. Usually 

polar, protic solvents result in more hydrophilic surfaces compared to aprotic ones. On the 

other hand, the mould’s surface, which is in contact with the sample, has similar effect via 

hydrophobic/hydrophilic forces. A simple example is the contact angle of PCL membranes 

prepared by solvent casting using different solvents: CHCl3 85.08 (Petri dish contact 

surface)/93.3 (air contact surface); THF 105.8 (Petri dish contact surface)/101.7 (air 

contact surface) 13. 

 

Where the reaction actually occurs? Are the wet chemistry methods surface modification 

methods? 

 

The dynamics of the surface chemical composition in the wet surface chemistry methods 

complicates additionally the process. In this case, a solvent is also involved in the 

modification step. Once again, its interactions with the material to be modified can alter 

the surface chemistry. Moreover, if these interactions result in swelling, the modification 

will not confined to the surface and will go deeply into the bulk of the material. 

All these issues must be considered in the choice of a system/method for surface 

modification of a certain material. The most common wet modification methods and some 

general trends in their application are described below. It must be noted that these 

methods are widely used in industry to treat large objects that would be difficult to treat by 

other commonly used techniques. 

 

1.3.1 Wet chemical etching 

 

Etching is a process of removal surface material, similar to the face lifting. It has a long 

history, starting in the beginning of the Middle Ages. The old masters such as Rembrandt 

and Goya used it as one of the main techniques to create their art works. However, the 

“art application” of this method is constricted only to metals as materials. The widely used 

nowadays micro- and nano-fabrication techniques 14 are based on the same principles. 

Natural-based polymers are much more sensitive and the strong acids, usually used for 

etching of metals or glasses, cannot be applied for them. Generally, weaker chemical 

etchants (e.g. diluted bases and acids 15, oxidizing agents 9, 16) are used to convert smooth 

hydrophobic surfaces to rough hydrophilic surfaces usually by dissolution of amorphous 
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regions and surface oxidation and hydrolysis. The alternative plasma etching or so-called 

dry etching is preferable for surface modification and surface cleaning of biopolymers. 

 

1.3.2 Oxidation by wet surface modification methods 

 

Which is the role of the oxygen in the surface chemistry of the applied biomaterials? Do 

we want it there, on the surface, or not? Which is its optimal surface content?  

Usually the surface oxidation alternates the proteins’ adsorption and therefore cell 

behavior via: 

(a) Modulation of the surface hydrophilicity; i.e. the physical bonds surface/proteins. 

Generally, the introduction of oxygen containing groups, such as hydroxyl (-OH), 

carbonyl (=C=O) or carboxyl (-COOH) groups, is related to an increase of the 

surface’s hydrophilicity. 

(b) Alternation of the surface charge. Negatively charged groups have shown 17-20 positive 

effect on cell adhesion and growth and this is attributed to the favourable protein 

conformation on these surfaces. The polarity of these groups allows formation of 

additional hydrogen bonds with the proteins, which will keep them fixed onto the 

surface.  

(c) Creating active places, where a chemical bond between the proteins and surface 

functional groups can occur. However, this process is not always advantageous since 

denaturation of the proteins could also occur. 

 

As mentioned before, the general knowledge from organic solution chemistry can be used 

and solutions with known oxidative properties can be adjusted (concentration) and 

applied. An example is the oxidation of starch-based biomaterials by the system nitric 

acid-potassium permanganate 9. The functionalization of the surface resulted (Figure 1.1) 

in both higher number of cells attached to the surface and changes in their morphology. 

Integrins, through which the cells communicate with the surrounding environment, 

recognize the introduced changes and prove them by binding to the surface. As a result, it 

was possible to observe cells spreading and extending their filopodia in an oriented way 

after the oxidation. 
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Figure 1.1 SaOs-2, cultured for 7 days on SPCL (A and B) and SEVA-C (C and D) before 

(A and C) and after (B and D) surface oxidation by potassium permanganate. 

 

It should be noticed that there must be a compromise between functionalization and 

hydrophilicity. Proteins need some active places (in terms of charge and functionality) on 

the surface, where they can bind. On the other hand, the introduction of these active 

places is related with an increase of the hydrophilicity. Generally, proteins have 

hydrophobic nature and therefore repulsion but not adhesion can be observed when 

surface with very high hydrophilicity is produced. Actually, surface passivation with 

hydrophilic molecules is used for modification of devices in contact with blood. The 

passivated surface reduces or prevents the adhesion of thrombogenic cells and proteins 

onto the underlying substrate or material, thereby preventing surface-induced blood 

clotting. After studying a wide variety of substrate polymers, Tamada and Ikada found 21 

that there is an optimal wettability for cell adhesion and that is approximately 70° water 

contact angle. 

 

1.3.3 Hydrolysis 

 

The ability of a material to be resorbed over time is an important property in many 

biomedical applications. Hydrolysis is the most common way through which the natural 

polymers degrade in the organism to normal metabolic compounds. All biomaterial 

surfaces are potentially susceptible to hydrolysis, simply due to the fact that they are 

7 
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surrounded of warm aqueous environment (the body fluids), containing hydrolyzing agents 

(e.g. enzymes). Catabolism of starch by α-amylase (Figure 1.2.), which is available in the 

human blood and in the saliva 22, is one example for those processes.  
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Figure 1.2 Enzymatic (α-amylase) hydrolysis of starch. 

 

Natural polymers containing ester, amid or other carboxylic derivative groups undergo 

degradation by a simple hydrolytic mechanism (Figure 1.3). The reaction is base- or acid 

catalyzed and sensitive to temperature above 37°C. Chitosan, well known biomaterial for 

different applications, is produced from chitin (Figure 1.4) using this process. 
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Figure 1.3 Hydrolysis of esters catalyzed by acid (up) or base (down) 
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On the other hand, the hydrolysis is a powerful surface modification method. More 

hydrophilic surfaces can be produced via the attack of a nucleophile agent 23-26. Sodium 

and potassium hydroxides are the most used nucleophiles. The alternated surface 

functionality can be used in the further chemistry 24-26 including immobilization of 

biomolecules. 
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Figure 1.4 Hydrolytic process involved in the conversation of chitin into chitosan. 

 

1.4 Physical methods for surface alternations 

 

1.4.1 Plasma activation and modification 

 

The plasma is considered as the forth state of the matter (Figure 1.5) 27. It contains 

various (atomic, molecular, ionic and radical) energetic, reactive, positively and negatively 

charged species but as a whole, the plasma is neutral. The energy required to create and 

sustain plasma is supplied by an external electrical field. Different plasma sources can be 

used: gaseous (radio frequency glow discharge and corona discharge), metallic, and laser 

based. The plasma state exists only at a low pressure (less than 1-10-2 torr). 

Several plasma techniques are widely used for surface modification of natural based 

polymers: 

 

• Plasma sputtering and etching;  

• Plasma functionalization; 

• Plasma polymerization. 
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Figure 1.5 Transitional states of the matter. 

 

All these plasma techniques have several advantages: 

(a) All processes are restricted to the topmost (angstroms) layer and therefore the 

modified material has similar chemical and physical properties to the original one; 

(b) Modification is fairly uniform over the whole surface even for samples with complex 

shapes; 

(c) Surfaces of all kind of materials can be modified, regardless of their structures and 

chemical reactivity. 

 

How does it work? When the plasma becomes in a contact with the biomaterial surface, 

the activated species are accelerated towards the substrate by the applied electric field. 

Since some parts of the surfaces are exposed to energies higher than the bonding energy 

of polymers, these parts undergo chain scission. Chain scission process will initiate 

different chemical and physical events 2, 28, 29. Surface degradation can be observed with 

sufficient sputtering time and enough (different for different materials) high power applied. 

Figure 1.6 shows an example of how the conditions, used for the plasma treatment, can 

alternate the surface morphology of a material. A blend of starch and cellulose acetate 

(50/50 %wt) was treated at different powers and for different time. As can be seen from 

the scanning electron microscopy (SEM) micrographs, all modified samples presented 

much rougher surface compared to the original one. 

10 
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Figure 1.6 Effect of plasma working conditions on the surface morphology of 

starch/cellulose acetate (SCA) blend (50/50 wt): SEM micrographs of untreated SCA (A); 

and Ar plasma modified SCA at 80W, 15 min (B); at 30W,15 min (C) and at 80W for 5 min 

(D). 

 

This effect depends on the used power, which determines the acceleration of the active 

species toward the material surface, as well as on the time during which the material is 

exposed to this bombarding with active species 30. Plasma etching can be used either for 

cleaning off the surface of the material or as a surface morphology modification technique. 

Engineering of new composites with improved adhesion between the components 31 and 

surfaces with better biocompatibility 30, 32 are only two examples of the enormous benefits, 

which surfaces with tailored roughness/surface area, can bring to the material sciences 

arena. 

On the other hand, the chain scission results in the formation of highly reactive radicals on 

the surface. Those radicals can be used either in a subsequent plasma 

depositions/polymerization processes 33, 34 or they can recombine (e.g. crosslinking 

reactions) with the other active species available in the reactor. Additionally to the power 

and the expose time, the working atmosphere is of main importance for these processes. 

Gases as CH4 
35 or CF4 

30, 36, 37 are usually used to decrease the wettability of the surface. 

Contrary, the use of oxygen (−OH, −C=O, −COOH groups introducing) or nitrogen (−NO2, 

−NH2, −CONH2 groups) plasma is one of the most powerful methods for increasing of 

material hydrophilicity which usually results in improved adhesion strength, 

biocompatibility, and other pertinent properties 29, 38. Chitosan, modified by oxygen 34 or 

nitrogen 32 plasma displayed higher number of cells attached on the surface (Figure 1.7) 
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and higher proliferation rate compared to the untreated chitosan membranes, for which 

next to no cell adhesion was observed. 

 

 
Figure 1.7 SEM micrographs showing the effect of oxygen plasma modification (30W, 15 

min) on SaOs-2 adhesion (3 days of culture): untreated chitosan membrane (A and B) and 

modified one (C and D). 

 

All these processes can be applied for three dimensional (3D) samples only if the 

holes/trenches are wider than the mean free path of the electrons and the Debye length 
39. Only in this case the discharge, which generates the active species, will be sustained. 

Highly porous and interconnected starch based (starch/polycaprolactone 30/70 wt%) 

scaffolds were modified by oxygen plasma. Dramatic improvement of human umbilical 

vein cells (HUVEC) adhesion on the modified samples can be seen on Figure 1.8. 

 

 
Figure 1.8 Immunostaining (PECAM, Phaloiedin and nuclei) of HUVEC cultured for 7 

days on SPCL untreated (left) fibers mesh and SPCL fibers mesh modified by oxygen 

plasma (right). 
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1.4.2 UV-irradiation 

 

The UV irradiation resembles getting the tan under the sun and the same rules are 

followed: time and intensity of the irradiation are important factors and “sunburn” could be 

caused if they are not in the limits. Similarly to the plasma treatment, the UV irradiation 

can result in chemical (photo-crosslinking, photo-oxidation in air, or photochemical 

reactions in reactive atmosphere) or physical (surface morphology, etc.) changes 38, 40-42. 

These photochemical reactions can be surface-limited or can take place deep inside the 

bulk (different from plasma!) depending on the UV absorption coefficient at the specific 

UV-wavelength (Lambert-Beer’s law). There are two groups of sources: continuous wave 

(CW) UV-lamps with a moderate light or pulsed laser. The laser sources cause mainly 

surface etching. They can be used to modify very small surface area and this is the 

reason for their wide application in micro- and nano-fabrication technologies. The CW UV-

lamps are used for surface oxidation 41, 42. Starch-based biomaterials have been modified 

by CW UV-lamp. As it was expected, no significant effect on surface morphology was 

observed. The irradiation resulted in surface oxidation and higher number of cells adhered 

to the surface (Figure 1.9). 

 
 

Figure 1.9 Optical micrographs of osteoblast-like cells stained with methylene blue and 

cultured on untreated (A, C) and UV-irradiated (B, D) SCA (up) and SPCL (down) for 7 

days. 
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1.4.3 β- and γ-irradiation 

 

The perfect sterilization procedure for natural based biomaterials is the one, which does 

not include any changes in the chemistry, the mechanical properties and the degradation 

behavior. In other words, the final make-up of a biomaterial should not destroy all the work 

done before. Radiation with γ- or β-rays is often used to sterilize extracorporeal and 

intracorporeal medical devices made from polymers. High-energy radiation in addition to 

killing bacterial life, may also affect material properties. The surface is not an exception - 

surface chemistry and surface energy could be inadvertently altered by cleaning and 

sterilization procedures 43. Sometimes, the sterilization process can be used as a surface 

modification technique. For example, it was found 44 that sterilization of membranes from 

chitosan-soybean protein isolate by β-irradiation increases the surface energy but does 

not affect the bulk properties of the material. Unfortunately, not always the synergy 

modification/sterilization works out. Studies 45, 46 on the effect of gamma irradiation on 

collagen structure clearly indicate chain scission resulting in a fraction of lower molecular 

weight material. Material degradation leads to a loss of mechanical properties as well as 

to change in the surface roughness. Additionally, crosslinking could occur. Crosslinking 

reactions affect initial tensile strength (increase), surface hydrophilicity (decrease) and the 

properties related to these. In general, aromatic polymers are more resistant to high-

energy radiation than aliphatic ones, while the presence of impurities and additives may 

enhance degradation and/or crosslinking. 

 

1.5 Grafting 

 

The main advantage of surface grafting is the long-term stability of the introduced chains 

onto the material surface. In contrast to physically coated polymer chains, in this method 

the chains are attached to the surface by covalent bonding which avoids their 

delamination 2, 47. Many different synthetic routes can be employed to introduce graft 

chains onto the surface of polymeric substrates but generally, the grafting methods can be 

divided into two groups 48. Grafting-from methods utilize active species created on the 

polymer surfaces to initiate the polymerization of monomers (usually acrylic or vinyl) from 

the surface toward the bulk phase. In the case of grafting-to methods, the reactive 

species are carried by the preformed polymer chains, which are going to be covalently 

coupled to the surface. The fundamental step in grafting is the creation of reactive groups 

on the substrate surface. This could be done either chemically 49-53 or more often by 
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irradiation 54-56. Great majority of grafting processes involves a radical mechanism of 

polymerization of vinyl monomers. 

Plasma processes can be also used 31, 33-35, 37, 51 for surface functionalization via grafting. 

In this process, created on the surface radicals interact with monomers which can be 

introduced in the plasma reactor either as vapor or by pre-adsorption 33 of the material 

surface. Alternatively, the surface can be pre-activated by plasma with subsequent 

immersing in the monomer solution. Some examples of the use of plasma treatment as a 

pre-activation technique are shown on Figures 1.10 and 1.11. Higher number of 

osteoblasts like cells, adhered to the surface of SPCL (starch/poly (ε-caprolactone 30/70) 

after acrylic acid grafting, was observed. However, the cell did not show (Figure 1.10) the 

typical osteoblasts morphology. When chitosan was modified in a similar fashion, cells 

were much more spread, with extended filopodias (Figure 1.11). 

 

 
Figure 1.10 SPCL untreated (left) and surface modified by acrylic acid grafting (Ar plasma 

activation, right): effect of the treatment on cell (SaOs-2) adhesion after 7 days of culture – 

methylene blue staining. 

 

 
Figure 1.11 SEM micrographs of SaOs-2 cultured for 7 days on untreated chitosan 

membranes (up) and membranes grafted with vinyl sulfonic acid after oxygen plasma 

activation (down). 
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1.6 Bio-approaches: Mimicking the cell-cell interactions 

 

As mentioned before, cells interact with a foreign device primary trough proteins adsorbed 

onto the surface. Parts 3 to 5 of this chapter described some methods for tailoring the 

protein adsorption and consequently the cell behaviour trough 

modification/functionalization of the material surface. However, the described methods are 

quite general, i.e. they are not selective for a certain protein or cell type. On the other 

hand, the body fluids are rich in highly competitive protein molecules and very often, the 

ones, which are not desired, are “faster” and cover the available space onto the surface. 

How to overcome this problem and to engineer a selective surface? One of the 

approaches is to pre-immobilize an instructive component on the surface, which will 

further direct the cell behavior. Carefully selected proteins, as a part of the communication 

system of the cell, can be used as an interpreter, which to translate the desired 

information surface-cell. On the other hand, phospholipids are the main building part of 

different bio-membranes. Therefore, they can be useful in a strategy, aiming to dupe the 

cell. Several methodologies for mimicking these two cell’s components are described 

bellow. 

 

1.6.1 Protein immobilization 

 

Several different methodologies have been used in order to immobilize different proteins 

on the material surface. Coating with proteins can be achieved by a simple physical 
adsorption. Protein physical adsorption will occur when the change in Gibbs free energy 

of the system decreases during the adsorption process. Generally, proteins adhere to 

hydrophobic surfaces 57, because of their hydrophobic nature, and are repelled by 

hydrophilic surfaces. A comparative study between starch-based materials showed 58 that 

the most hydrophilic blend (starch/cellulose acetate, 50/50 wt%, SCA) adsorbs less 

protein than the blend with the biggest water contact angle (starch-poly(ethylenevinyl 

alcohol, 50/50%, SEVA-C) in unitary (fibronectin or vitronectin) or complex proteins 

solution system. However, most of the natural available materials are reach in polar 

groups (-OH, -NH2, -COOH, -SO3H, etc.) and therefore relatively hydrophilic. How then 

proteins can be irreversible deposited on the natural materials’ surface? Fortunately, more 

of the natural polymers bear charges, which can be used in physical protein adsorption. 

Chitosan is an example for polycation and hyaluronic acid can illustrate what is the 

polyanion (Figure 1.12). 
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Figure 1.12 Two examples of natural polyions: chitosan (left) which is polycation at low 

pH and the polyanion hyaluronan (right). 

 

Electrostatic interactions between charged peptide residues presented by a protein's 

surface and surface functional groups greatly contribute to the Gibbs free energy of 

protein adsorption 59. The layer-by-layer technique (LbL) 60-62 is based on these 

interactions and follows quite simple procedure (Figure 1.13). Recently, it was reported63 

that both number of the deposited layers and the charge of the last layer influence the 

adsorption of fibronectin. Furthermore, modulation of HUVEC attachment on the natural 

polymers, modified by fibronectin adsorption by meaning of LbL technique, was achieved. 

When the surface does not bear a charge, pre-activation or pre-modification, using one of 

the described already techniques, and subsequent protein immobilization can be a 

solution. There are several examples when this step-treatment was very successful. 

Laminin was incorporated 64 onto chitosan, pre-activated by plasma or wet chemistry 

methods. Although significant increase of cell attachment was observed for both cases, 

plasma treatment was indicated as a better methodology for the protein grafting on 

chitosan membranes. Similar effect was reported 65 for starch-based biomaterials, pre-

activated by plasma and subsequently immersed in different protein solution. 

 

 
Figure 1.13 Schematic representation of layer by layer (LbL) deposition technique 

depicting film deposition starting with a positively charged substrate. 
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The use of whole proteins carries some disadvantages for the application in the medical 

field. Proteins must be isolated from other organism and purified. Consequently, they may 

elicit undesirable immune responses and increase infection risks. Normally they are 

expensive and often no available in a clinically acceptable form. Due their stochastic 

orientation on the surface, not all the proteins have the appropriate orientation for cell 

adhesion 66. The incorporation of short oligopeptides having specific binding domains can 

overcome most of the indicated problems. The advantages of using small peptides rather 

than whole proteins are that they are relatively inexpensive to synthesize and easy to 

purify. Additionally, they exhibit higher stability to sterilization processes, heat treatment 

and pH variation, storage and conformation shifting and they can be characterized easily 
67. Furthermore, when they are covalently bonded to the surface, they are more stable to 

cellular proteolysis than adsorbed cell adhesion proteins, since protein desorption is 

eliminated and the active groups are not exposed to soluble proteases.  

In 1984, Pierschbacher and Ruoslahti published a pioneer work 68, in which Arg-Gly-Asp 

(RGD) was identified as the first adhesive recognition sequence in fibronectin. 

Subsequently, the same motif was identified in other cell-adhesion proteins such as 

vitronectin, collagen or laminin 69. Nowadays, there are several short oligopeptides’ 

sequences used 69-71 to mediate cell-specific adhesion and function (Table 1.3). 

As in the grafting process several different methodologies can be used in order to create a 

chemical bond between the oligopeptides and the surface of the material. Photografting of 

GRGD onto chitosan was reported 72 to improve the adhesion and proliferation of 

endothelial cells on the modified surfaces. On the other hand, chemical methods can be 

also used.also used. Carbodiimide chemistry is very often used 73, 74 strategy for protein 

conjugation.This strategy has several advantages. Either membranes or samples with 

complex geometry can be coated. Moreover, the reaction can be performed in aqueous or 

organic media by using different carbodiimides. Therefore, the solubility should not be an 

obstacle for the process. Taking the advantage of the highly reactive chitosan amine 

group, GRGD was grafted74 on 3D chitosan structures. The peptide density on the surface 

was measured to be around 10-12 mol/cm2, promoting cell adhesion and proliferation as 

well as enhancing the formation of mineralized foci. Nevertheless, this reaction has a 

disadvantage. Two different acid moieties (end group on Ser and the carboxyl acid of Asp) 

in the RGD are present. This presence imposes additional step - protection of the acid 

group on Asp, without which the control of the reaction is difficult. There is an alternative 

strategy, which uses succinic anhydride 73 to generate carboxyl groups (but not amine) on 

the chitosan surface. The created carboxyl groups can further react with the free amine 

group of the peptide forming the necessary spacing between the surface and the peptide 
67. The same strategy was applied 75 for alginate hydrogels, which bring the carboxyl 
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groups in their native structure and no additional transformation before the conjugation is 

needed. 

 

Table 1.3 Some of the identified active sequences from different proteins and the 

receptors, which recognized them 

Protein Recognition sequence Receptor 

Fibronectin Gly-Arg-Gly-Asp-Se (RGD) α5β1, αIIbβ3, ανβ3, α3β1, ανβ1 

 Leu-Asp-Val α4β1 

 Arg-Glu-Asp-Va (REDV) α4β1 

Laminin Tyr-Ile-Gly-Ser-Arg (YIGSR) 67-kDa binding protein 

 Pro-Asp-Ser-Gly-Arg (PDSGR) ? 

 Arg-Tyr-Val-Val-Leu-Pro (RYVVLPR) ? 

 Leu-Gly-Thr-Ile-Pro-Gly (LGTIPG) 67-kDa binding protein 

 Arg-Gly-Asp (RGD) ? 

 Ile-Lys-Val-Ala-Val (IKVAV) 110- kDa 

Vitronectin Arg-Gly-Asp (RGD) ανβ3, ανβ5, αIIbβ3 

Fibrinogen Arg-Gly-Asp (RGD) ανβ3, αIIbβ3 

von Willebrand 

factor 

Arg-Gly-Asp (RGD) αIIbβ 

Entactin Arg-Gly-Asp (RGD) ? 

Collagen type I Arg-Gly-Asp (RGD) 30, 70, and 250 kDa 

 Asp-Gly-Glu-Ala (DGEA) α2β1 

 

Besides the surface functionality, which determines the binding oligopeptide-surface, the 

surface concentration and distribution of the immobilized active sequence are other 

issues, which need attention. The minimal RGD surface concentration necessary for 

maximal cell spreading is 1fmol/cm 276. The formation of focal contacts and stress fiber 

was observed at 10fmol/cm2. These values were calculated for RGD peptide immobilized 

on a poorly adhesive glass substrate. On the other hand, Jin Li, et al confirmed 73 the 

dependency on the concentration of the peptide, immobilized on chitosan membranes 

surfaces. Higher peptide concentration enhances process as cell attachment, proliferation, 

migration and mineralization. 
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Finally, there are also some disadvantages of using short protein sequences. Lost of both 

affinity and specificity of the sequence, when taken out of the context of the protein, are 

some of them. For example, the hexapeptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP), which 

is the active sequence from fibronectin, is 1000 times less effective.  

 

1.6.2 Lipid coatings 

 

Lipids are not always useless burden! Contrary, in the biomedical field they are even 

covetable. There are several reasons for this: 

(a) Fact that the lipid bilayers are the major building blocks of biological membranes; 

(b) Their hemo-compatible and non-thrombogenetic properties; 

(c) The ability of phospholipids to self-organize into specific supramolecular aggregates. 

 

A simple approach for generating membrane-mimetic surfaces is to create supported lipid 

mono- or bilayers at the surface of bulk materials 77. Different methodologies (Table 1.2) 

as self-assembling monolayers (SAMs), Langmuir-Blodgett technique or covalent binding 

can be applied. Similarly to the proteins, SAMs are used 57, 59, 77, 78 as models since they 

are well defined and organized structures. Langmuir-Blodgett technique (LB) is the main 

technique, used for the formation of lipids mono- or multilayers on natural-based polymers 
79-82. The principle of the LB is illustrated on Figure 1.14 Phospholipid bilayer formation on 

chitosan and agarose has been performed 79 using LB. It was found that the bilayer lipid 

membranes, cushioned by thin chitosan films, are more stable than the agarose-

cushioned membranes. Charge, which the chitosan poses, is most probably the reason 

for this stabilization. Molecular weight of the used polymer is another factor to be 

considered 83. 

Lipid coated vesicles but not membranes are also object of great scientific interest 77, 84 

because of their application as release systems. The cell membrane, which is built by 

phospholipids among other bioactive components, can not “recognize” the lipid vesicles 

and allow them to penetrate inside the cell and to deliver the target component which is 

previously loaded in the core of the vesicle. Phospholipid coating on plasmid DNA 

adsorbed starch-chitosan nanoparticles has been investigated 84 in order to create a 

barrier between DNAse sensitive genetic material and body fluids. Such a system posses 

both surface properties of a liposome and drug loading effectiveness of polymeric 

nanoparticles. Another example is so-called synthetic biomimetic supra molecular 

BiovectorTM (SMBVTM) 85, which has been proven in preclinical and clinical evaluation to 

be a suitable candidates for the delivery of nasal vaccines. In general, the SMBVTM is a 
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virus like particle made of an inner core of polysaccharide hydrogel. It can be further 

surrounded by a lipid bilayer formed by ionic/hydrophobic interactions. Due to their bi-

compartmental structure SMBVTM can be loaded with various active substances. All these 

studies show that fundamental biological processes can be successfully mimicked with 

the help of the lipid coated natural materials. 

 

 
 

Figure 1.14 Illustration of the Langmuir-Blodgett technique. 

 

9B1.7 Future directions 

 

Using the advances in the material sciences, biology and nanotechnology, we have learnt 

much from the Nature. These lessons imposed a shift toward third generation 5, 

resorbable nanostructured surfaces, enriched with specific biosignals, that once implanted 

will help the body healing itself. Nevertheless, we are still a long way from recreating the 

complexity and dynamics of the natural three-dimensional environment of cells, their 

ECM. It is likely that cells require the full context of this 3D nano-fibrous matrix to maintain 

their phenotypic shape and establish natural behaviour patterns. Achieving effective 

temporal control over the signals that are presented to cell in 3D artificial matrices is still a 

key challenge in optimization the outside-in signaling. 
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Chapter 2 

Materials and Methods 

 

The aim of this chapter is to describe and contextualized the experimental methods used 

throughout the thesis. Chapters 3 to 7 are based on submitted or published studies and 

have an own materials and methods section. However, this chapter includes additional 

experimental details helping for better understanding of the performed studies and 

permitting their faster replication. Furthermore, this chapter will explain the evolution 

process and the reason behind some decisions on the experimental design. 

The research performed in this thesis and described in the following 5 chapters can be 

divided in two parts. The first one (Chapters 3, 4 and 5) is focused on the surface 

functionalization of 2D and 3D biomaterial structures by plasma induced polymerization 

and the influence of the modification process on the surface properties and the material in 

vitro performance. The second part (chapters 6 and 7) describes the synthesis and 

characterization of thermoresponsive ionic polymers and their use for the production of 

nanoparticles with controlled size. The materials, procedures and characterization 

techniques used for each of this research lines are not related and hence, this chapter will 

be divided in two parts. 

 

2.1 Part I: Surface functionalization by plasma induced polymerization 

 

2.1.1 Materials 

 

Plasma induced polymerization was used for grafting of negatively charged functional 

groups on the surface of biomaterials devices previously proposed by 3B’s Research 

Group for different biomedical applications 1-4. Surface modification of chitosan 

membranes, described in chapters 3 and 4, is an example of strategies and 

characterization techniques which can be applied to 2D devices. Scaffolds made of a 

blend of starch with ε-polycaprolactone were modified and characterized in Chapter 5. 

The reported methodologies are examples for approaches useful in surface analysis and 

treatment of 3D scaffolds. 

Chitosan (CTS) is a biopolysaccharide obtained by an alkaline N-deacetylation of chitin 

which is the primary structural polymer in arthropod exoskeletons 5. It is composed of N-
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acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN) units linked by β-D (1→4) 

glycosidic bonds (Figure 2.1). In fact, the term chitosan refers to a series of deacetylated 

chitins with different molecular weight (50 kD to 2000 kD), viscosity, and degree of N-

deacetylation (40 to 98%) 6. CTS from crab shells was purchased from Sigma-Aldrich. A 

purification procedure was set up and the products obtained from independent 

purifications were mixed to obtain a final homogeneous batch of purified chitosan. This 

batch was used along the entire experimental work reported in this thesis to prevent 

concerns about the influence of the degree of N-deacetylation (DD)/ N-acetylation (DA) or 

molecular weight (Mw) on the material modification and in vitro behaviour. The purification 

process and the characterization of the purified chitosan are described below since the 

details of these processes are not presented in chapters 3 and 4. 
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Figure 2.1 Chemical structures of the compounds used in the part I of the thesis. (For 

starch are only showed the α-(1→4) linkages but α-(1→6) bonds are also possible). 

 

For the purification process, CTS was dissolved in an aqueous acetic acid solution (1%) at 

~1% (w/v). The obtained solution was filtrated (Whatman® ashless filter paper, 20-25 µm) 

and then precipitated by adding a NaOH solution (final pH ~ 8). The formed white gel was 
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sieved to remove the exuded liquid and thoroughly rinsed with distilled water until stable 

pH. The chitosan gel was further washed with ethanol, freeze-dried, ground to powder and 

dried at 60ºC overnight. Viscosity molecular weight (Mv) and degree of N-deacetylation 

(DD) of the purified CTS were determined as follow. 

The molecular weight was determined by viscosity. Viscosity depends on the 

hydrodynamic volume of the macromolecule, which is a function of the molecular weight, 

conformational properties and polymer-solvent interactions 7-9. Measurements of solution 

viscosity are made by comparing the flow time t required for a specific volume of polymer 

solution to flow through a capillary tube with the correspondent flow time t0 for the solvent. 

Relative viscosity (ηr) and specific viscosity (ηsp) are calculated from t and t0, according to 

the following equations:  

00r η/ηη t/t≅=          (2.1) 

1η
η
ηη

η r
0

0
sp −=

−
=          (2.2) 

Several mathematical equations are available for determining the intrinsic viscosity [η] of a 

polymer. These equations are found to be valid at sufficiently low concentrations, assuring 

that the polymer chains are free to move individually in the solvent, i.e., the kinetic units 

are not aggregates but single polymer molecules. The equations derived by Huggins8 

(equation 2.3) and Kraemer9 (equation 2.4) relate ηr and ηsp, respectively, with the 

polymer concentration in the solvent (C in g/dL or any other units proportional to this), 

according to the following expressions:  

[ ] [ ] CK
C
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H

sp ηη
η
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2
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r ηη
η ln

−=          (2.4) 

The Huggins (KH) and the Kraemer (KK) coefficients give information on the polymer-

solvent interactions, being the KH lower values (ranging from 0.25 to 0.5) and the KK 

negative values related to a better solvation of the polymer chains10. Theoretically, KH + KK 

should be equal to 0.5. The intrinsic viscosity [η] is a theoretical value calculated at the 

limit of infinite dilution using those equations: 

[ ] ( )
0cspηη

=
= /C   (Huggins)       (2.5) 

[ ] ( ) 0crη lnη == /C   (Kraemer)       (2.6) 

The graphical extrapolation (C=0) using both equations is expected to produce more or 

less the same values of [η] for a particular polymer-solvent system. The quality of the 

results was assessed by comparing the values of [η] and evaluating KH and KK. Fresh 

solutions of CTS were prepared with five different concentrations in the range that gives ηr 



Chapter 2- Materials and Methods 

36 

between 1.1 and 1.9. The flow time was obtained from five reproducible measurements 

for each solution, using an Ubbelohde viscometer (T = 25.0 ± 0.1ºC). The intrinsic 

viscosity [η] was calculated by linear regression plotting ηsp/C and ln(ηr)/C against C(g/dL) 

(Figure 2.1). The solutions were carefully prepared since the method is very sensitive to 

small errors in the concentration, solutions ageing and the presence of dust particles, 

which due to the small diameter of the capillary can decrease significantly the flow section 

area. The purified CTS powder was dried overnight and accurately weighted. In any case 

the amount of weighted chitosan was inferior to 20.0 mg in order to minimise weighting 

errors. The residual water was determined thermo-gravimetrically (TGA) and the weight 

was corrected accordingly. CTS was completely dissolved in 0.5 M acetic acid (AcOH). 

Then, sodium acetate (AcONa) was added to a final concentration of 0.2 M. The obtained 

solution was filtered and transferred to a volumetric flask. The volumetric flask was filled 

up to the mark with the same 0.5 M AcOH solution. The blank solution was prepared in 

the same way, but without adding chitosan. Finally, the pH was checked (it should be 

around 4.3-4.4) and the flow time was analysed immediately to avoid chitosan hydrolysis. 

η sp/C  = 10.614 + 35.326 C 
R2 = 0.9573
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Figure 2.2 Example of linear regressions obtained by plotting ηsp/C (Huggins) or ln(ηrel/C) 

(Kraemer) against C (Mv = 790 kDa, KH = 0.31;KK = 0.17). 

 

The viscosity average molecular weight (Mv) was calculated based on the Mark-Houwink 

equation: 

[ ] a
v )(Mη k=            (2.7) 

with, [η] in dL/g, Mv in Da, k = 3.5 x 10-4 and a = 0.76 for 0.5 M AcOH/0.2 M NaOAc 

aqueous solution as solvent at 25ºC (independent of the DD at these conditions)7, 11. For 

the purified CTS used in the thesis a Mv of 790 kDa was obtained. 
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The properties of chitosan vary considerably with the DD. Although the determination of 

DD appears to be a simple analytical problem, a huge number of methods have been 

proposed in the literature to obtain this value 12-28. In fact, these methods differ in 

reliability, robustness, precision and accuracy over the entire DD range. We have used 

several methods 12, 14, 24, 29 and compared them in terms of precision and accuracy of the 

obtained values, but we have also evaluated practical issues such as the amount and 

harmfulness of the produced residues or if the methods encompass time-spending and 

laborious procedures. The obtained DD values are shown in table 2.1. 

 

Table 2.1 Chitosan degree of deacetylation (DD) determined by different methods. 

(Average and standard deviation of N data points) 

Method DD (%) N 

FTIR – method I (A1655/A3450) 12 82.0 ± 2.2 5 

FTIR – method II (A1320/A1420) 14 93.6 ± 1.8 5 

FTIR – method III (A1320/A3450) 14 82.0 ± 4.4 5 
1H-NMR 24 92.9 ± 0.9 3 

1st derivative UV spectrophotometry 29 93.3 ± 0.1 3 

 

Fourier transformed infrared spectroscopy (FTIR) methods are widely used to determine 

CTS DD 12-15 In our first attempt to determine the DD by FTIR (Table 2.2.), we have used 

three different base line methods, previously optimized by several authors. The FTIR 

spectra were recorded in an IRPrestige 21 FTIR spectrophotometer with a resolution of 4 

cm-1 and averaged over 36 scans. 

 

Table 2.2 Calibration curves to determine the degree of deacetylation (DD) using the 

FTIR spectrum of chitosan. The absorbance (A) is the height at the band maximum 

corrected by the intercept with the respective baseline 

Method Band (cm-1) Baseline (cm-1) Calibration curve DD (%) 

A1655 1800 - 1600 
I 12  

A3450 4000 - 2500 
DD = 100 - (A1655/A3450) x 115  

A1320 1355 - 1270 
II 14 

A1420 1495 - 1405 
A1320/A1420 = 0.3822 + 0.03133 (100 - DD) 

A1320 1355 - 1270 
III 14 

A3450 4000 - 2500 
A1320/A3450 = 0.03146 + 0.00226 (100 – DD)
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Generally, the methods that use the –OH stretching band at 3450 cm-1 gave lower values 

than the ones obtained by using the band at 1420 cm-1. This is likely due to the fast uptake 

of moisture from the atmosphere that oven-dried chitosan materials present 29. 

Moreover, we found that the values obtained using as a reference the band at 1420 cm-1 

did not consistently match the DA obtained by 1H-NMR (Nuclear Magnetic Resonance 

spectroscopy). This discrepancy between the results obtained using different calibration 

curves or different reference methods has been described in the literature 13. The use of 

FTIR for quantification purposes have some drawbacks associated with the hydrogen-

bonding networks different for each chitin polymorphic form 13. Hence, the selection of 

suitable bands and baselines is quite problematic. Recently, statistical studies comparing 

the vast number of proposed bands and baselines combinations have been employed to 

optimize that selection based on robust criteria 15. Despite its drawbacks, FTIR has been 

often preferred because it is a quick, user-friendly and low-cost method, but mostly 

because it can also be applied to the insoluble chitin. Nevertheless, the construction of a 

specific calibration line for each particular isolation and deacetylation procedure may be 

necessary to obtain reliable values of DD 15. The calibration requires the use of standards 

previously assessed for the DD, which, in the case of insoluble samples, is normally done 

using solid state 13C-NMR as a reference method 13-15. Taking into consideration all those 

issues, we did not consider the FTIR technique as the most appropriate method to assess 

the DD of CTS raw-materials used in this thesis and focused on two other methods, 

namely 1H-NMR (Chapter 3) and 1st derivative UV spectrophotometry (Chapter 4). 

The NMR methods are often referred as the gold standard techniques, being employed to 

calibrate or to assess the accuracy of other methods. The experimental parameters 

should be carefully adjusted in order that the signal is proportional to the nuclei 

concentration. Unfortunately, the costs and complicate technical considerations hinder its 

widespread as routine technique at the industrial scale and in non-specialized 

laboratories. In our studies, we have dissolved 10 mg CTS in 1 ml of 0.4% (w/v) DCl in 

D2O solution at room temperature. In order to minimise the deacetylation catalysed by the 

presence of deuterium chloride, only freshly prepared solutions were used. The 1H-NMR 

spectra were acquired in a Varian Unity Plus (300 MHz) spectrometer at 70ºC, 

temperature at which the solvent signal (HOD) does not interfere with the chitosan peaks. 

The acquisition (64 transients) started after 10 min, considered to be enough to reach the 

thermal equilibrium. The pulse repetition delay, 6 s, and the acquisition time, 2 s, were set 

to assure complete relaxation of the nuclei before each pulse application. This procedure 

(repetition time of 8 s) guarantees that the relative intensities of the resonances correlate 

with the exact number of nuclei originating that signal. We have used several methods to 

calculate the DA, namely the method proposed by Hirai et al 24, which makes use of the 
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peak areas from the protons H2, H3, H4, H5, H6, H6’ (Figure 2.1) to estimate the sum of 

both monomers and the signal arising from the acetyl group protons (HAc) to the amount 

of GluNAc: 

( ) ( ) 100
66HH6H5H4H3H2

3HAc1%DD ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′+++++

−=     (2.8) 

Recently, it was reported 24 that despite the good internal consistency, the determination 

of DA by 1H-NMR may be  systematically affected by the choice of the peaks to be used in 

that calculation and in the way those peaks are combined to estimate the GluN and 

GluNAc quantities. Therefore, in chapter 4 the DD determination was performed using  a 

methodology proposed by our group 29. which involves the 1st derivative ultraviolet (UV) 

spectrophotometry firstly proposed by Muzzarelli and Rocchetti 19. The proposed method 

allows DD determination directly from the mass concentration of chitosan solutions and 

the first derivative value of its UV spectra at 202 nm (the acetic acid solutions zero 

crossing point), over the entire range of the DD of chitosan using a mathematical model. 

This approach avoids the use of empiric corrections for highly deacetylated samples. 

 

Blend of starch with ε-polycaprolactone (30/70 wt%). Starch (Figure 2.1) is a natural 

polymer present in plants as corn, rice and potato. It is composed by two isomers, 

amylase and amylopectine being the relative amount of both components dependent on 

the source of starch 30. Amylase is a linear molecule of (1→4) bonded α-D-glucopiranosyl 

units, slightly branched by α-(1→6) linkages, while amylopectine is a highly branched 

molecule containing both α-(1→4) and α-(1→6) bonds at 25-30 glucose units distance. 

We have used corn starch which contains approximately 30 % amylase and 70 % 

amylopectine. Because starch  has poor mechanical properties and it is difficult to 

process,  blends of starch with other polymers have been developed in order to join the 

low cost and widely availability of starch with the good mechanical properties and 

processing easiness of synthetic polymers31, 32. In this thesis, a commercial available 

blend of corn starch (30 %wt) with ε-polycaprolactone (70 %wt), previously used in many 

studies by our groups 1, 2, 33, 34, was employed. 

 

Monomers. Scaffolds, containing anionic units have been investigated because of their 

capability to facilitate morphogenetic processes for tissue engineering substitutes 35, 36. 

For example, the negative charge of glucosaminoglycans (GAGs) is associated with their 

bioactivity. GAGs interact with the positively charged amino groups of extracellular 

proteins and these interactions determine cell-matrix adhesion. Therefore, our aim was to 

study the effect of different negatively charged functional groups on biomaterials in vitro 
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behaviour. In chapter 3 we have investigated carboxylic (-COOH) and sulfonic groups (-

SO3) grafting on 2D chitosan membranes. Following the results and conclusions obtained 

from this first study, we have added to this set of anionic units the phosphonic groups (-

PO3) which was focussed in Chapter 4. Taking in consideration the outcomes obtained for 

2D structures, sulfonic and phosphonic groups were grafted on 3D scaffolds. Acrylic acid 

(AA, Merck), vinyl sulfonic acid sodium salt (VSA) and vinyl phosphonic acid (VPA) both 

from Sigma-Aldrich (Figure 2.1) were kept at room temperature and used without further 

purification  

 

2.1.2 Membranes/scaffolds production and modification 

 

Chitosan membranes with smooth surface used in chapters 3 and 4 were prepared by 
solvent casting method. Chitosan (1% wt.) was dissolved in acetic acid solution (1% v/v). 

The solution was carefully stirred in order to avoid the formation of any air bubble, poured 

on Petri Dishes (5 mg of chitosan/cm2) and dried at room temperature in a dust free 

environment. The obtained membranes (thickness approx. 50μm) were neutralized in 

0.1M NaOH solution for 10 min, washed thoroughly with distilled water and dried fixed in a 

frame. 

 

SPLC scaffolds. Fibers of SPCL were produced by melt spinning using a modular co-

rotating twin screw extruder (Leistritz AG-LSM 36/25D, Germany),  a screw speed of 3 

rpm and a temperature profile in the barrel (from feed to die zones) between 60 and 130 

°C. The average output rate was 0.3 kg/h. Upon extrusion through the die, the filament 

was spun in two consecutive steps to a final draw ratio of approximately 1:100. The 

cooling of the filament was performed in air (average temperature of 17 ºC). Melt spun 

fibers presented a diameter in the 105-345 µm range and a mean fiber diameter of 213 ± 

50 µm. The fibers were cut into 0.5 mm length segments and used in the production of 

fiber mesh scaffolds by a custom-designed mould. Fiber bundles were randomly displaced 

into the mould cavities and subjected to thermal treatment at 60°C for 30 minutes before 

predefined compression levels along the z-axis were applied for assuring the bonding 

between neighboring fibers using a final compression ratio of 22%. 

 

Surface modification of chitosan membranes and SPCL scaffolds. The modification 

of both 2D and 3D structures was performed by O2 plasma induced polymerization. A 

plasma could be considered as the forth state of matter and can be broadly defined as a 

gas containing charged and neutral species including some or all the following: electrons, 
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positive and negative ions, radicals, atoms and molecules 37. A glow discharge plasma is 

a low-temperature, relatively low-pressure gas in which a degree of ionization is sustained 

by energetic electrons. A glow discharge can be generated and sustained by applying an 

electric field to a gas under low pressure between two electrodes. Work with alternating 

electric field in the megahertz region (RF) provides a higher plasma density and better 

stability of RF plasma 37, 38. In this thesis, we have performed the surface activation in 

radio frequency (13.56 MHz) plasma reactor (Plasma Prep5, Gala Instrument, Germany) 

using oxygen as a working atmosphere. Oxygen and oxygen containing plasmas are 

commonly employed to modify polymer surfaces. In oxygen plasma two processes occur 

simultaneously: etching of the polymer surface and the formation of oxygen functional 

groups at the polymer surface. The balance of these two process depends on the 

operation parameters 37. In our studies, the samples were exposed to O2 plasma at 30W 

of power for 15 minutes. During the treatment the pressure inside the reactor was 

maintained below 20 Pa by adjusting the gas flow. Before the experiments, the plasma 

chamber was purged with a continuous flow of O2 to reduce the trace amounts of air. The 

activated samples with free radicals formed on the surface were subsequently immersed 

in a degassed monomer solution, where the present radicals act as initiator for the 

polymerization of the vinyl monomers. The specific conditions (temperatures, times and 

concentrations) are given in each chapter. At the final step, the membranes were 

thoroughly washed with the same solvent used in the polymerization to remove the 

unreacted monomer and dried at room temperature. 

 

2.1.3 Surface characterization 

 

Characterization methods are fundamental for checking the status of polymer surfaces, 

and even more importantly, for understanding the effectiveness of a modification 

technique. Since the objective of surface modification is just to change the composition 

and structure of the outer few atomic layers of materials, characterization techniques that 

detect changes in this small amount of the material are required. 

 

Fourier-transform infrared spectroscopy (FTIR) 
 
Fourier transform infrared spectroscopy (FTIR) is a standard analytical method that can 

reveal information about the sample chemical structure, since the absorption of infrared 

(IR) light is related to discrete energy transitions of the vibrational states of atomic and 

molecular units within a molecule. In transmission mode, the FTIR spectra give 
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information related to the bulk material. The attenuated total reflection (ATR) sampling 

mode can be used to increase the intensity of the surface signal, because it observes the 

region near the surface. However, FTIR-ATR is not truly surface sensitive due to the high 

penetration depth of the IR beam (1 – 5 µm) 39. Nevertheless, the rich structural 

information that the IR spectra provide makes the FITR-ATR an interesting technique to 

evaluate greater chemical changes, such as the grafting of polymers both at the surface 

and also at a broader region nearby the surface. Hence, in Chapter 3 we have used the 

FTIR to prove the success of the modification process on the chitosan membranes 

surfaces. Spectra were recorder on FTIR spectrophotometer (IRPrestige, 21 Shimadzu) 

with an attenuated total reflectance (ATR) with a resolution of 4 cm-1 and averaged over 

36 scans. 

 

X-ray photoelectron spectroscopy (XPS) 
 
The X-ray photoelectron spectroscopy (XPS) method (also called Electron Spectroscopy 

for Chemical Analysis, ESCA) is based on the photoelectric effect. The interaction of the 

X-rays focused on the sample with its atoms causes the emission of a core level (inner 

shell) electrons (photoelectrons). The energy of these photoelectrons is measured and its 

value provides information about the nature (survey spectrum) and environment (high 

resolution spectrum) of the atoms from which they came 37, 40. Being so, information about 

the elemental composition and chemistry can be obtained at the surface level of the 

sample within a depth of 10-250 Å 39. 

Chemical changes occurring on the surfaces as a result of the modifications performed in 

Chapters 3, 4 and 5 were evaluated by XPS. The spectra were obtained using an 

ESCALAB 200A instrument from VG Scientific (East Grinstead, UK) with PISCES 

software for data acquisition and analysis. A monochromatic Al-Kα radiation (hν = 1486.60 

eV) operating at 15 kV (300 W) was used. The measurements were performed in a 

constant Analyser Energy mode (CAE) and take off angle of 90º relative to the sample 

surfaces. Survey spectra were acquire using a pass energy of 50 eV, over a binding 

energy range of 0 to 1100 eV, and were used to calculate the elemental composition of 

the surfaces. Element atomic percentages were calculated from the integrated intensities 

of the survey spectra using the sensitivity factor of the instrument data system. High 

resolution spectra for different regions were obtained using a pass energy of 20 eV and 

were peak-fitted using a least-squares peak analysis software, XPSPEAK version 4.1, 

using the Gaussian/Lorenzian sum function. Background counts were subtracted using a 

linear baseline and the sample charging was corrected assigning a binding energy of 

285.0 eV to the saturated hydrocarbons C1s peak. 
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Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) 
 
Secondary Ion Mass Spectrometry (SIMS) is a very useful technique for high sensitivity 

elemental analysis. The use of SIMS in analyzing polymers has attracted a great deal of 

interest because is a good complement to XPS. It is a more surface-sensitive technique, 

with a typical sampling depth of approximately 1 nm 37. In a SIMS experiment, the surface 

is bombarded by energetic primary particles of low current density. The emitted or sputter 

particles consists largely of secondary neutral species with a small fraction of secondary 

positive and negative ions. The secondary ions are detected and analysed in a mass 

spectrometer. A detailed analysis of the positive and negative ion spectra can provide 

structural and chemical information about the polymer. Studies in Chapter 4 were 

performed using a ToF-SIMS IV instrument (ION-TOF GmbH, Germany). The samples 

were bombarded with a pulsed bismuth ion beam (25 keV) at 45º incidence over an area 

with size 500 μm2. The generated secondary ions were extracted with a voltage of 10 kV 

and their mass was determined by measuring their time of flight from the sample to the 

detector. Electron flood gun for charge compensation was necessary during the 

measurements. The experimental conditions (ion type, beam voltage and primary ion 

dose) were maintained constant for comparative studies. Additionally, high mass 

resolution spectra were obtained by bunching the raw pulse. These spectra can be 

attained without concurrent loss of counts, however, this is at cost of spatial resolution (in 

this mode no better than 2-5 μm). 

 

Contact angle measurements 
 

The energy of the surface, which is directly related to its wettability, is a useful parameter 

that has often been strongly correlated with the cell-biomaterial interfacial interactions. 

Unfortunately, there are not direct methods to measure surface energy or surface tension 

of solids. However, a number of indirect empirical and semi-empirical methods have been 

developed based on contact angle measurements. The contact angle of a liquid drop with 

a solid surface is a consequence of the force balance between the liquid-vapour surface 

tension of the drop and the interfacial tension between the solid and the drop. The surface 

energy can be calculated with data from liquids of different surface tensions. The contact 

angle methods are very surface-sensitive, being the analysed depth of around 3-20 Å 39. 

The equilibrium water contact angle (measured under static conditions) of some polymer 

substrates has been shown to correlate with the cell adhesion and proliferation, which are 

both optimal at around 70º 41. 
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In Chapter 3 and 4, contact angle (θ) measurements were undertaken at room 

temperature (c.a. 20ºC) using (contact angle meter OCA 15+ with high-performance 

image processing system from DataPhysics Instruments , Germany and sessile drop 

method At least six measurements were performed for each solvent. A 1 μl drop of the 

tested liquid was added at room temperature on the sample surface by a motor driving 

syringe. The surface tension ( sγ ) was calculated from the contact angle data by two 

different methods: the Owens, Wendt, Rabel and Kaelble (OWRK) method 42, that 

discerns polar ( p
sγ ) and dispersive ( d

sγ ) components of the surface energy; and the acid-

base method (AB method), which allows calculation of the Lewis acid ( +
Sγ ) and basic ( −

Sγ ) 

contributions using the van Oss-Chaudury-Good theory (vOCG) 43. Moreover, in chapter 4 

values of water adhesion tension (τ) are also given. The water adhesion tension is often 

used to predict or explain biomaterial-cell interactions as an alternative to surface energy 

and it is defined as: 

θγτ cos⋅= w           (2.9) 

where wγ  is the water surface tension. 

 

Scanning Electron Microscopy (SEM) 
 
Etching processes are unavoidable when polymers are exposed to plasma. Usually, these 

processes are very dependent on the used time and power and they are limited to the 

topmost material surface layer. Scanning electron microscopy (SEM) can be used to 

evaluate morphological changes. SEM images are obtained from the low-energy 

secondary electrons emitted from each spot of the sample where the focused electron 

beam impacts. It possess a penetration depth of 5 Å 39. The samples should be previously 

dehydrated. Non-conductive samples are typically coated with a thin, electrically 

deposited metal layer, to minimise charge accumulation. For our studies, we have used 

an SEM, (S360, Leica Cambridge, UK)). Micrographs at different magnification were taken 

in order to observe eventual morphological changes in details. 

 

Interferometric Optical Microscopy (Optical profiler) 
 
The surface profilometer is suitable for measuring surface macrostructures. Optical 

interferometers are specialized interference microscopes where nanometer level 

characteristics of a sample surface may be obtained through the interpretation of light 

reflected from a surface. The interference of two beams of light is used for characterizing 
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surface topographies. With optical interferometry is possible to  scan-samples with sizes  

up to a square millimetre with a vertical resolution of approximately 2 nm 44. This large 

scanned area (in comparison with the area scanned by atomic force microscopy, AFM) 

allows for a more comprehensive analysis of surface roughness and is very useful 

complement to the small scan-sizes (typically 100 μm2) that are possible with an AFM. 

Optical profiler analysis were performed in Chapters 4 and 5 by an Interferometric profiler 

Wyko-NT 1100 (Veeco) using Vertical Scanning Interferometry (VSI) mode. The images 

were processed and analyzed with the analytical software package WycoVision®32.  

 

Atomic Force Microscopy (AFM) 
 
Atomic Force Microscopy (AFM) set up consists of a sharp tip fixed at the end of a flexible 

cantilever which moves across a sample surface. When the tip approaches the surface a 

deflection of the cantilever is registered. This deflection depends on the interaction 

between the tip and the sample surface and involves mechanical contact forces, van der 

Waals forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces etc. 

The deflection of a cantilever is usually measured by reflecting a laser beam on the back 

of the cantilever into a split photodiode detector. The two  commonly used modes of 

operation are contact mode AFM and tapping mode AFM, which are conducted in air or 

liquid environments 37, 45. AFM has a very high spatial resolution and is more suitable than 

optical profiler for microstructures determination. AFM measurements were carried out in 

Chapter 4 in air atmosphere using a Multimode Nanoscope V (Veeco). Tapping mode was 

employed with non coated Phosphorous (n) dopped Silicon probe with cantilever length of 

115 to 135 μm and resonant frequency from 257 to 342 kHz. Images were processed and 

analyzed by multimode software version V7.20 and analytical software package 

WycoVision®32. 

 

The last three techniques described above are widely used in studying the surface nano- 

and micromorphology. Each method has its own limitations and the proper choice of 

analytical technique depends on features of analyzed surface and primary goals of 

research. Table 2.3 summarizes the resolution and sample/environment requirements for 

VSI optical profiler, AFM and SEM. 
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Table 2.3 Comparison of the resolution and sample/environment requirements for VSI 

optical profiler, AFM and SEM39, 40, 44 

 Optical Profile (VSI) AFM SEM 

Lateral resolution 0.5-1.2 μm 0.5 nm 0.5-1 nm 

Vertical resolution 2 nm 0.5 Å Only 2D images 

Field of view 845 x 630 μm (10x) 100 x100 μm 1-2 mm 

Vertical range of scan 1 mm 10 μm - 

Preparation of a sample - - 
Required coating of 

conducted material 

Required environment Air Air, liquid Vacuum 

 

2.1.4 In vitro biological evaluation 

 

The effect of the surface modification on cell morphology, viability and proliferation was 

evaluated in chapters 3, 4 and 5. To complement these studies, protein adsorption 

experiments were performed in chapter 5. 

 

Cell culture and seeding 
 
The materials studied in this thesis are to be used for mineralised tissue regeneration; 

therefore the effect of the surface modifications was assessed by cells with the 

osteoblastic phenotype, the principal cell type facing these devices in vivo. A human 

osteosarcoma cell line (SaOs-2), was obtained from European Collection of Cell Cultures 

(ECACC, UK) and was used in cell culture studies reported in this thesis (Chapters 3-5). 

The cells were cultured at 37 ºC and 5% CO2 in Dulbecoo’s modified Eagle’s medium 

(DMEM; Sigma-Aldrich, Inc, USA) supplemented with 10000 U/ml penicillin-G sodium, 

10000 µg/ml streptomycin sulfate and 25 µg/ml amphotericin B in a 0.85% saline (Gibco, 

Invitrogen Corporation, UK) and 10% of heat-inactivated foetal bovine serum (FBS; 

Biochrom AG, Germany). 

After sterilization with ethylene oxide under standard consitions, the samples were placed 

into well culture plates, seeded with a cell suspension for different time periods at 37 ºC, 

5% CO2 in a humidified atmosphere in order to follow their behaviour in contact with the 

studied surfaces. In Chapters 3 and 4 chitosan membranes with a circular shape and 14 

mm diameter were used. 
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Cell morphology 
 
Cell morphology represents the global manifestation of the cell's structural organization of 

the cytoskeleton and thus reflects the migratory behavior of different cell types. Therefore, 

the morphology of cells cultured on materials can be a sign of the cell response. 
The morphology of SaOs-2 cells growing on untreated and modified materials was 

observed by Scanning Electron Microscopy (S360, Leica Cambridge, UK). After each 

predetermined incubation time cells were fixed using a 2.5% glutaraldehyde (Sigma, USA) 

solution in Phosphate Buffered Saline (PBS; Sigma-Aldrich, Inc, USA). Prior the analysis, 

the samples were dehydrated, dried at air, mounted onto brass stubs and sputtered 

coated with gold. 

 
Cell viability 
 
The MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H 

tetrazolium)) is a biochemical test based in the reduction of a tetrazolium product into a 

aqueous soluble formazan product by the cell mitochondrial enzyme succinate 

dehydrogenase. At death, cells rapidly lose the ability to reduce tetrazolium products and, 

therefore, the production of colored formazan is proportional to the number of viable cells 

in the culture. Cell viability on the materials at different time points was determined in 

chapters 3, 4 and 5 by using Cell Titer 96® Aqueous One Solution Cell Proliferation Assay 

kit (Promega, USA) and following manufactures’ instructions. Samples were washed with 

sterile PBS. Fresh medium without phenol red and MTS reagent were added to each well 

in 5/1 proportion. The materials were incubated for 3 h at 37 ºC in a humidified 

atmosphere containing 5% CO2. After reaction, 100 μl of incubated medium was 

transferred to 96-well plate and Optical Density (OD) was read in a microplate reader (Bio-

Tek, USA) at 490 nm. 

 

Additionally to SEM and MTS assay in chapter 4 the cell morphology and viability were 

evaluated by Calcein-acetoxymethylester staining (Calcein AM). Calcein-AM is a non-

fluorescent, cell permeant compound, which is converted by intracellular esterases into 

calcein, an anionic fluorescent form. It is used in microscopy and fluorometry and provides 

both morphological and functional information of viable cells. For Calcein AM staining, the 

samples were treated with 0.002% Calcein-AM (MolecularProbes) solution in DMEM 

culture medium and incubated in dark for 15 min at 37 ºC in a humidified atmosphere of 

5% CO2. Cells fluorescence was examined by an Axioplan Imager Z1 from Zeiss, 

Germany. 
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Cell proliferation 
 
Cell proliferation was evaluated in Chapters 4 and 5 by double-stranded DNA (dsDNA) 

quantification using the PicoGreen dsDNA kit (MolecularProbes). This reagent is an ultra-

sensitive fluorescent nucleic acid stain for quantifying dsDNA in molecular biology 

procedures. Traditionally DNA concentration has been determined by measuring 

absorbance of the sample at 260 nm. Disadvantages of this method include its poor 

sensitivity and the impossibility to distinguish between single-stranded and double-

stranded DNA. PicoGreen undergoes a dramatic fluorescence enhancement upon binding 

to dsDNA that can be measured using a microplate fluorometer. For the assay cells 

cultured on the materials were washed with sterile PBS and lysed by osmotic and thermal 

shock (-80 ºC). The obtained supernatant was used for DNA analyse according the 

manufacture instructions. The fluorescence was read (485 nm/528 nm of 

excitation/emission) in a microplate reader (Bio-Tek, USA) and the DNA amounts 

calculated from a standard curve. 

 
Protein adsorption 
 
In Chapter 5 the effect of the surface treatments on protein adsorption was analyzed by 

fluorescent immunolabelling. Two adhesion proteins were studied: fibronectin (Fn) 

because it is commonly used in a standard procedure applied to improve adhesion of cells 
46-48 and Vitronectin (Vn) because of its influence on cell spreading and migration 47, 49, 50. 

Samples were incubated for 1 hour at 37 ºC with a complex protein solution composed of 

10 v/v% heat-inactivated fetal bovine serum (FBS; Biochrom AG, Germany) in Dulbecoo’s 

modified Eagle’s medium (DMEM; Sigma-Aldrich, Inc, USA). Samples immersed in PBS 

were used as blanks. After the incubation time was over, the samples were washed with 

PBS and incubated at room temperature for 1 hour with primary antibody mouse anti-cow 

Vn (Santa Cruz, USA) or mouse anti-cow Fn (Santa Cruz, USA). Both primary antibodies 

were diluted at ratio 1:50 (v/v) in 1% (w/v) Bovine Serum Albumin (BSA, Sigma-Aldich, 

USA) solution in PBS. All samples were again washed and incubated for 1 hour at room 

temperature with goat anti-mouse Alexa Fluor 488 IgG (H+L) secondary antibody 

(Invitrogen, USA). Labelled samples were analyzed by an Olimpus IX81 Confocal Laser 

Scanning Microscope (CLSM) 
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2.2 Part II: Thermoresponsive alkylacrylamide based ionic terpolymers 

 

In this part series of random terpolymers composed of N-isopropylacrylamide (NIPAAm), 

2-Acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and N-tert-butylacrylamide 

(NTBAAm) monomers (Figure 2.3) were synthesized by free radical polymerization. In 

Chapter 6 turbidity measurements were used to evaluate the influence of the relative 

amount of NIPAAm and NTBAAm, polymer concentration, as well as solution ionic 

strength on the cloud point and redissolution temperatures (macroscopic phase 

separation). Dynamic light scattering (DLS) was employed to elucidate some aspects 

regarding the molecular scale mechanism of the temperature-induced phase separation 

and to determine the low critical solution temperature (LCST). The interesting 

aggregation/redissolution profile observed for more hydrophobic polymers was used in 

Chapter 7 to produce thermoresponsive nanoparticles with a tight control over particle 

size (between 20- 200 nm). 
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Figure 2.3 Chemical structure of monomers used in ionic terpolymer synthesis. 

 

2.2.1 Terpolymers synthesis 

 

Random linear terpolymers p(NIPAAm-co-NTBAAm-co-AMPS) were synthesized by free-

radical copolymerization using AIBN as initiator (see chart 6.1). In both Chapters (6 and 7) 

the copolymers are designed as XX/YY/ZZ being XX, YY and ZZ the molar percentages of 

NIPAAm, NTBAAm, and AMPS in the reaction mixture, respectively. Monomers with a 

total concentration of 0.5 M were dissolved in an 50:50 isopropanol:water mixture and 

AIBN (1 mol% with respect to the total monomer) was added to the solution. After 

degasification of the reactants solution with nitrogen for about 15 min, the reaction vessel 

was sealed and placed in an oven at 60 ºC for 16 h. The solution containing the obtained 
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polymers was neutralized with NaOH, dialyzed against distilled water using dialysis tubes 

with a cut-off molecular weight of 3500 Da and freeze-dried. 

 

2.2.2 Copolymers compositions 

 

Terpolymers composition was analyzed by combining Elemental analyses and 1H-NMR. 

The chemical structure of all monomers is quite similar and it was not possible to 

determine the ratio of each monomer in the polymer using one technique alone. The 

AMPS content was determined using the sulfur content on the sample (%S) determined 

by Elemental analysis (Leco CHNS-932). The 1H-NMR was performed in a Varian Inova 

300 using CDCl3 as solvent. After peak assignation (Table 2.4) the NIPAAm/NTBAAm 

ratio on the copolymer was calculated by the integrated areas of methyl groups from 

NIPAAm δ(1.142) and NTBAAm δ(1.314) and considering that the AMP in the copolymer 

content in the copolymer is 5%. 

 

Table 2.4 Chemical Shifts (δ) and assignments for p(NIPAAm-co-NTBAAm-co-AMPS) 

δ/ppm Assignment

1.142 -CH3 (NIPAAm)

1.314 -CH3 (NTBAAm) 

1.578 -CH3 (AMPS) 

1.802 -CH2 (NIPAAm, AMPS; NTBAAm -CH2-CH) overlapping 

2.015 -CH (NIPAAm, AMPS; NTBAAm CH2-CH) overlapping 

3.311—3.365 * -CH2 (AMPS; -CH2-SO3H) 

4.001 -CH (NIPAAm, CH-(CH3)2) 
*Observed for NIPAAm/AMPS copolymers51; not detected for the studied terpolymers due to the low AMPS 

content 

 

2.2.3 Molecular weight distribution 

 

Gel permeation chromatography (GPC) (also called size exclusion chromatography SEC) 

is a separation method based on the size or hydrodynamic volume of the analytes. GPC is 

a powerful technique to determine the relative molecular weight and the molecular weights 

distribution of polymer samples. In GPC a dilute polymer solution is injected in a solvent 
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stream which flows through a column packed with beads of a porous gel. The smaller 

polymer molecules can penetrate the pores and therefore retained in a greater extent than 

larger molecules, increasing their retention time into the column 52. 

Molecular weight and polydispersity of the synthesized polymers were determined by 

GPC using 0.1% (w/v) LiBr solution in DMF as an eluent at a flow rate of 0.3 mL min-1 at 

70 ºC and narrow disperse poly (ethylene glycol) (PEG) as a calibration standards. 

 

2.2.4 Turbidity measurements 

 

Turbidimetry is a common technique used to estimate the cloud point temperature (CPT) 

of thermoresponsive polymers in aqueous solutions, motivated by the tendency of 

polymer molecules to aggregate at the poor solvent region above the Θ-temperature, 

which causes a marked change in the solution optical properties. CPT of the polymer 

solutions was measured in a Varian-Cary 3 UV/Visible spectrophotometer, equipped with 

a Peltier cell holder for temperature control. The turbidity of the solutions was monitored 

as a function of temperature at 400 nm and under magnetic stirring. The solutions were 

prepared using distilled water with varying NaCl concentrations. They were frozen at -20 

ºC to ensure complete dissolution. Immediately after melting, the solutions were placed in 

a cuvette and heating scans were performed between 15-80 ºC at a scanning rate of 1 

ºC/min. The first measured point at 15 ºC was used as blank (it corresponds to the clear 

polymer solution). The transmittance of the polymer solution at different concentration and 

ionic strength (adjusted with NaCl) was monitored as a function of temperature. The 

redissolution temperature of the formed aggregates was evaluated by cooling scans in the 

range 80-5ºC immediately after heating at the same rate. 

In Chapter 6 the aggregation kinetic isotherms were also evaluated by turbidity. Solutions 

were frozen before each temperature measurement and blank was record at 15 ºC, as for 

the temperature scanning experiments. Afterwards, the solutions were rapidly heated to 

set of temperature values near and above the CPT and transmittance was recorded as a 

function of time. 

 

2.2.5 Dynamic light scattering measurements 

 

Dynamic Light Scattering (DLS), also known as Photon Correlation Spectroscopy, (PCS) 

measures Brownian motion and relates this to the size of the particles. Particles, 

emulsions and molecules in suspension undergo Brownian motion. This is the motion 
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induced by the collision with the solvent molecules that are moving due to their thermal 

energy. An important feature of Brownian motion for DLS is that small particles move 

quickly and large particles move slowly and therefore a correlation function can be defined 

and related to the diffusion coefficient (D). The relationship between the size of a particle, 

this is hydrodynamic radius (Rh), and its speed due to Brownian motion is defined in the 

Stokes-Einstein equation 53: 

( )D

T

h ηΠ
=

6
BK

R           (2.10) 

with KB, T and η being the Boltzman constant, the absolute temperature and the solvent 

viscosity and respectively  

DLS measurements were performed using a Zetasizer NanoZS Instrument (ZEN3600, 

Malvern Instruments, Worcestershire, UK) equipped with a 4 mW He-Ne laser (λ0=633 

nm) and with non-invasive backscattering (NIBS) detection at a scattering angle of 173º. 

Owing to this configuration, the equipment can decrease the scattered light path length 

through the sample by adjusting automatically the measuring position, hence reducing 

multiple scattering for larger particle size, i.e. opaque samples. This is especially useful in 

colloidal aggregation experiments, where scattered light intensity can rapidly increase 

several orders of magnitude, because it reduces the need of sample dilution. Both 

measuring position and attenuator were adjusted automatically before each 

measurement. The autocorrelation function was converted in a volume weighted particle 

size distribution with Dispersion Technology Software 5.06 from Malvern Instruments. 

Terpolymer solutions with varying salt concentration were prepared in ultrapure water and 

filtered using a 0.20 μm disposable PES membrane filter (TPP, Trasadingen, 

Switzerland).The apparent hydrodynamic diameters with the temperature (Dh) were taken 

in Chapters 6 and 7 as the mean position of the peak in volume-Dh distributions. The 

measurements were performed in the temperature range 5-85 ºC with a temperature 

interval of 2 ºC and an equilibration time of 2 min. Regarding the stability measurements 

reported in chapter 6, samples were initially frozen, melted and equilibrated at 5 ºC inside 

the measurement cell to assure complete dissolution. Thereafter, samples were submitted 

to a temperature jump and measured at constant temperature for 12 h. 

In Chapter 7 nanoparticles were preparing by submitting the copolymer solution to a 

temperature jump to a certain temperature at which the growing of aggregates occurs (30 

ºC and 40 ºC) and z-average Dh (<Dh>z) was recorded for some time. When the particles 

achieve the desire size, the temperature was drop down at 21 ºC; where the particles size 

remained constant. 
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2.2.6 Nanoparticles Electrophoretic Mobility determination 

 

When an electric field is applied across an electrolyte, charged particles dispersed in the 

electrolyte are attracted towards the electrode of opposite charge. Viscous forces acting 

on the particles tend to oppose this movement. When equilibrium is reached between 

these two opposing forces, the particles move with constant velocity. The velocity of a 

particle in an electric field is commonly referred to as its electrophoretic mobility (μe) 54. In 

Chapter 7 the nanoparticles’ electrophoretic mobility (μe) was obtained by Laser Doppler 

Velocimetry (LDV) using a Zetasizer NanoZS Instrument (ZEN3600, Malvern Instruments, 

Worcestershire, UK) at a scattering angle of 17º and a Folded Capillary cell (DTS1060, 

Malvern) electrophoretic cell. The measurements were performed with an applied voltage 

of ± 20 V in the temperature range 8-64 ºC after an equilibration time of 4 min. For both 

DLS and electrophoretic mobility measurements, the terpolymer solutions were prepared 

in ultrapure water and filtered using a 0.20 μm disposable polyethersulfone (PES) 

membrane filter (TPP, Trasadingen, Switzerland). 
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Chapter 3 

Effect of chitosan membranes’ surface modification via plasma 
induced polymerization on the adhesion of Osteoblast-like cells 

 

3.1 Abstract  

 

The surface of solvent cast chitosan membranes was modified using a two-step 

procedure. Oxygen plasma treatment was used at the first, activation step, followed by 

vinyl monomers graft polymerization. Two monomers were used in order to compare the 

influence of different functional groups on cell adhesion and proliferation; acrylic acid (AA) 

was used to introduce carboxyl groups and vinyl sulfonic acid (VSA) was used as a 

source of sulfonic groups.  

The surface chemistry/energy changes were characterized by means of X-Ray 

photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR-ATR), 

and contact angle measurements. Additionally, alterations in the surface morphology were 

investigated by scanning electron microscopy (SEM). 

XPS analyses confirmed the polymer grafting on the surface; S2s peak appears in the VSA 

survey spectrum and O–C=O peak emerge in C1s high resolution spectrum after AA 

grafting. Moreover, contact angle measurements showed an increment in the values of 

the surface energy polar and Lewis base components for all treated samples, confirming 

the introduction of additional polar groups by the modification processes. FTIR-ATR 

spectra showed no significant difference between treated and original materials. These 

results confirmed that only very top (few angstroms) surface layer, but not the bulk of the 

material was modified. 

The effect of the modification on the adhesion and proliferation of osteoblast-like cells was 

studied in a preliminary basis. Direct contact tests were performed using a human 

osteosarcoma cell line (SaOs-2). Cell morphology (optical microscopy and SEM) and cell 

viability (MTS test) were evaluated for untreated and surface modified membranes. 

The results revealed that both, plasma treatment and the presence of sulfonic groups on 

the surface of chitosan membranes, improve SaOs-2 adhesion and proliferation when 

compared to untreated or AA-grafted membranes. This effect was strongly related with the 

polar and Lewis basic components of the total surface energy. 
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3.2 Introduction  

 

Chitin, derived from exoskeleton of crustaceans and insects, is the second most abundant 

polysaccharide in nature next to cellulose. Chitosan is a copolymer composed of N-acetyl-

D-glucosamine (GlcNAc) and D-glucosamine (GlcN) units linked by β-D (1→4) bonds, and 

it is obtained by partial N-deacetylation of chitin. In fact, the term chitosan refers to a 

series of deacetylated chitins with different molecular weigh (50 kD to 2000 kD), viscosity, 

and degree of N-deacetylation (40 to 98%) 1. 

Due to its special properties, namely biocompatibility, biodegradability and non-toxicity 2, 

this natural polymer has been proposed for a number of applications in the biomedical 

field such as wound dressings, drug delivery or skin regeneration 2, 3. 

The pH-dependent solubility of chitosan offers a suitable membrane-processing route 

under mild conditions 4. However, it was found that native chitosan membranes do not 

support cell adhesion and proliferation 5, 6. 

The surface is the first contact between the living body and the biomaterial when a certain 

device is implanted into the body. It is well known 7 that the surface properties of 

biomaterials, namely chemistry, topography and/or surface energy, are essential factors 

for cell adhesion and proliferation and consequently for the performance (rejection or 

acceptance) of a potential device. Therefore, adequate surface modifications of chitosan 

membranes can improve its biocompatibility in terms of better cell adhesion and 

proliferation without changing the key physical properties of chitosan itself. The alternation 

of presence and density of polar groups on the material’s surface can be used to tailor its 

wettability and surface free energy 8-10 and hence to adjust surface biocompatibility in 

accordance with the application. Furthermore, the introduced polar groups can be used for 

the immobilization of bioactive molecules or to control protein adsorption on the surface 11. 

In the medical field, surface modifications resulting in very thin layers with a thickness of 

some ten to hundred nanometres are considered to be suitable 12. Several methods have 

been used to render biomaterials with appropriate surface properties. Among them, 

plasma-surface modification is an effective and economical technique, applicable for 

many materials and of growing interest in the biomaterials field. The main advantage of 

plasma modification techniques is that the surface properties can be enhanced 

selectively, while the bulk attributes of the materials remain unchanged. Plasma based 

treatments have been largely used for medical applications with different aims, such as 

introduction of new functionalities, enhancement of surface wettability, increase of the 

surface oxygen concentration and improvement on the interfacial adhesion 13. 
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This work reports a graft polymerization of acrylic and vinylsulfonic polar monomers on the 

surface of chitosan membranes preactivated by oxygen plasma treatment. The effects of 

the plasma treatment itself, as well as of the different functional groups introduced by the 

subsequent surface grafting polymerization, on the osteoblast like cell behavior (adhesion 

and proliferation) are also reported. 

 

3.3 Materials and methods 

 

Chitosan (CHT), purchased from Sigma-Aldrich, was purified as follow. Chitosan was 

dissolved at a concentration of 1% (w/v) in 1% acetic acid (AcOH) aqueous solution. The 

solution was filtrated and re-precipitated with a slight excess of a sodium hydroxide 

(NaOH) solution, until a sudden decrease in the viscosity of the solution was observed, 

corresponding to the equivalent point. The product was thoroughly washed with water until 

a stable pH. The obtained precipitate was washed with ethanol and freeze-dried. Acrylic 

acid (AA, Merck) and Vinyl sulfonic acid, sodium salt (VSA, Aldrich) were used without 

further purification. 

The chitosan degree of deacetylation (DD) was determined by 1H-NMR using the method 

proposed by Hirai A, et al. 14. The molecular weight (Mv) was determined by viscometry 

using a 0.5M AcOH/0.2M NaOAc aqueous solution as a solvent. The measurements were 

performed at 25 ºC. The Mark-Houwink parameters determined by Terbojevich M, et al.15 

were used for the calculations. The obtained values for the DD and Mv were 93% and 790 

kDa, respectively. 

 

3.3.1 Membranes preparation 

 

Chitosan films (thickness approx. 50 μm) were prepared by solvent casting. Purified 

chitosan powder was dissolved in aqueous AcOH 1% (v/v) solution at a concentration of 

1% wt. The solution was carefully stirred to avoid air bubbles formation, cast into Petri 

dishes (0.5g/cm2) and dried at room temperature. The obtained membranes were 

neutralized by immersion in a 0.1 M NaOH solution, washed with water and dried at room 

temperature. 
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3.3.2 Surface modification 

 

Plasma treatment was applied to activate the surface of the chitosan films by free radicals 

formation. These radicals were expected to initiate further graft copolymerization of vinyl 

monomers. The plasma treatment was performed using radio frequency (13.56 MHz) 

Plasma Prep5 equipment from Gala Instrument. Samples were exposed to O2 plasma at 

30 W of power during 15 minutes. The pressure in the reactor was maintained around 20 

Pa by regulating the gas flow. Subsequently, the activated samples were immersed in a 

degassed 10%wt monomer solution (solvents: 2-propanol for AA and acetone for VSA 

grafting) and kept at room temperature during 2h. The pH of the AA solution was adjusted 

(pH=5) by triethylamine. In order to remove the nongrafted monomer, samples were 

washed thoroughly with a suitable solvent (2-propanol for AA and water for VSA grafted 

membranes). 

 

3.3.3 X-ray Photoelectron spectroscopy (XPS) 

 
XPS was used to characterise the surface chemistry of treated and untreated samples. 
The XPS analyses were performed using a VG Escalab 250 iXL ESCA instrument form 

VG Scientific. A monochromatic Al-Kα radiation (hv=1486.92 eV) and take off angle of 90º 

relative to the sample surface were used. The measurements were carried out in a 

Constant Analyzer Energy mode (CAE) with 100 eV pass energy for survey spectra and 

20 eV pass energy for high resolution spectra. Charge referencing was adjusted by setting 

the lower binding energy hydrocarbon C1s peak at 285.0 eV. Overlapping peaks were 

resolved into their individual components by XPSPEAK 4.1 software. 

 

3.3.4 Fourier-transform infrared spectroscopy (FTIR) 

 

The surface chemical analysis was also performed by FTIR spectroscopy using an 

IRPrestige 21 FTIR spectrophotometer with an attenuated total reflectance (ATR) device 

from Shimadzu. Spectra were taken with a resolution of 4 cm-1 and averaged over 36 

scans. 
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3.3.5 Scanning electron microscopy (SEM) 

 

The surface morphology changes were observed by S360 SEM Equipment from Leica 

Cambridge, UK. Prior to SEM examination, a conductive thin gold film was deposited on 

the samples surface by a Sputter Jeol JFC 1000. 

 

3.3.6 Contact angle measurements 

 

Changes of the surface wettability and the surface free energy for the modified surfaces 

were evaluated by contact angle measurements. Static contact angle measurements were 

carried out by the sessile drop method using a contact angle meter OCA 15+ with high-

performance image processing system from DataPhysics Instruments. A drop (1μL) of the 

used liquids (methylene iodide, glycerol or formamide) was added by a motor driving 

syringe at room temperature. Two different samples of each material were used and at 

least three measurements were carried out for each sample. The presented data 

correspond to the final average value. The surface energy and its components (polar and 

dispersive) were calculated by means of the Owens, Wendt, Rabel and Kaelble (OWRK) 

method 16, using the contact angle values obtained both for glycerol and methylene iodide. 

Additionally, the Lewis acid and basic contributions to the surface energy were calculated 

using the acid-base method (AB method). This method based on the Van Oss-Chaudury-

Good theory allowed determining the ion pair acceptor and ion pair donor behavior of the 

studied surfaces. The AB method requires at least a three liquids system from which two 

should be polar and one non-polar. Glycerol and formamide were used as polar liquids 

and methylene iodide was employed as the non-polar one. Contact angle measurements 

were also performed using water, but the values were not included in the calculations of 

the surface free energy, because such values lack of physical meaning, as discussed 

below. 

 

3.3.7 Cell culture 

 

Direct contact assays were performed in order to evaluate the effect of the applied 

surfaces treatments on cell adhesion and proliferation. A human osteosarcoma cell line 

(SaOs-2), an immortalized cell line with an osteoblastic phenotype, was obtained from 

European Collection of Cell Cultures (ECACC, UK) and was used in the cell culture 

studies. The cells were cultured in Dulbecoo’s modified Eagle’s medium (DMEM; Sigma-
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Aldrich, Inc, USA) supplemented with 10000U/ml penicillin-G sodium, 10000 μg/ml 

streptomycin sulfate and 25 μg/ml amphotericin B in a 0.85 % saline (Gibco, Invitrogen 

Corporation, UK) and 10% of heat-inactivated fetal bovine serum (FBS; Biochrom AG, 

Germany) in a humidified atmosphere with 5 % of CO2. Cells were seeded onto the 

materials at a concentration of 3x104 cells/ml, 1ml per well and incubated for 1, 3 and 7 

days. 

Prior culturing, all samples were sterilized with ethylene oxide (EtO) under the conditions 

previously described 17. 

 

3.3.8 Cell morphology 

 

Cell morphology was observed by SEM and optical microscopy at each time point. The 

cultured materials were washed with 0.1 M phosphate buffered saline solution (PBS, 

Sigma Chemical Co., USA) and then fixed with 2.5 % glutaraldehyde (BDH, UK) solution 

in PBS for 30 min at room temperature. Once again, the membranes were washed and 

kept in PBS at 4 ºC until being stained or prepared for SEM observation. When optical 

microscopy was used for observation, the surface of the materials was stained with 0.4% 

methylene blue solution in water and examined in an Axioplan Imager Z1 from Zeiss, 

Germany. The samples, subjected to SEM observation, were first dehydrated by gradient 

ethanol concentrations. Complete drying was achieved by using Hexamethyldisilazane 

(HMDS; Electron Microscopy Sciences, USA) to substitute critical point drying equipment. 

After overnight drying, samples were coated by sputtering of gold and observed by SEM. 

 

3.3.9 MTS assay 

 

Cell viability was quantified by MTS assays. The assays were performed after 1, 3 and 7 

days. The cultured materials were washed with 0.1M phosphate buffered saline solution 

(PBS, Sigma Chemical Co., USA) and then treated with 500 μl of MTS solution in DMEM 

culture medium without phenol red (Sigma-Aldrich, Inc, USA). The cell culture plates were 

incubated during 3 hours at 37 ºC in a humidified atmosphere of 5% CO2. Optical Density 

(OD) was read in a microplate reader (Bio-Tek, USA) at 490 nm. The reported data are 

averaged over two sets of assays. Four replicates of each material per set were used. 
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3.4 Results and discussion 

 

Tailoring material surface properties is of great importance especially for biomedical 

materials in direct contact with the body environment. Changes in surface 

chemistry/topography may enhance the cell adhesion and proliferation leading to an 

improvement of the material biocompatibility. The hypothesis, checked out in this study, is 

that alterations in surface polarity of chitosan membranes by simple O2 plasma treatment 

or by plasma activation and subsequent grafting of monomers with ionisable, hydrophilic 

groups will lead to significant changes in cell behavior. The ultimate aim of this study is to 

get some insights of general trends leading to better materials biocompatibility in what 

concerns their interactions with biological systems (proteins, cells, etc). 

 

3.4.1 XPS analysis 

 

The XPS analysis was carried out to determine the surface chemical composition of 

modified and non-modified materials. As it was expected, three main elements: carbon, 

oxygen and nitrogen were present in the survey spectrum of chitosan membranes. Silicon 

was also detected for all samples at a concentration around 3 at%. The chitosan used in 

this study is produced from crab shells and it seems that the manufacturing and 

purification methods can not remove the entire silicon. Other elements (Cl, Ca, Al, Mo and 

Sn) appear in the composition of some samples, normally in very small concentration 

(less than 0.5 at%), and were excluded for the element analysis (at%) showed in Table 

3.1. 

 

Table 3.1 Chemical composition of untreated and modified materials determined by XPS 

Material C1s (%) O1s (%) N1s (%) S2s (%) Si1s (%) O:C ratio 

Chitosan 71.5 21.8 3.4 - 3.4 0.30:1 

Plasma O2 65.0 24.4 8.2 - 2.3 0.38:1 

AA grafting 74.1 19.6 2.9 - 3.3 0.26:1 

VSA grafting 70.2 22.6 3.5 0.3 3.3 0.32:1 

 
The modification only by oxygen plasma resulted in higher oxygen content for the treated 

samples compared to the untreated ones. When vinyl sulfonic acid was grafted onto the 

activated surfaces, a characteristic signal corresponding to Sulfur (S2s) was present in the 
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survey spectrum of the modified samples. The S2s transition was used to quantify this 

element, because the most intense and quantitative signal for Sulfur (S2p) was overlapped 

with the Si2s (loss) peak. 

Figure 3.1 shows the C1s high-resolution spectra of the studied materials. The respective 

data are summarized in Table 3.2. The C1s core level spectrum of chitosan membranes 

reveals four peaks. The 285.0 eV peak was assigned to C-H and C-C bonds in chitosan 

backbone. The peak at 285.57 eV corresponds to C-NH2 from glucosamine rings. The 

peak present at 286.7 1eV was assigned to C-O, C-OH and C-N-C=O and the peak at 

288.18 eV to O-C-O and N-C=O chemical bindings. A lost in the relative intensity of the 

hydrocarbon peak was measured after plasma treatment. This is accompanied by an 

increase on the intensity of oxygen containing bands. After AA grafting a new band 

appeared in the C1s high resolution spectra (289.2 eV). This band was assigned to the 

O=C-O lateral group in the grafted polymer. The absence of the C-SO3 band from the 

spectra of VSA modified membranes was somewhat unexpected, since the presence of 

the S2s peak in the survey spectrum confirmed that VSA was successfully grafted. The 

difficulty to resolve the C-SO3 band arises from the small chemical shift 18 of the C-S band, 

which is superimposed on the band of the hydrocarbons chemical bonds in chitosan 

observed at 285eV. Additionally, the relatively small amount of Sulfur (see Table 3.1) and 

the high intensity of the hydrocarbons band is hindering the correct resolution of the 

bands. 

 
Figure 3.1 C1s core level spectra of non treated chitosan (a), plasma treated (b), AA 

grafted (c) and VSA grafted (d) materials. 
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Table 3.2 C1s core level spectra of untreated and modified samples; composition (%) and 

Binding Energy (eV, in parenthesis) 

Sample C-H C-NH2 C-O C=O O=C-O 

Chitosan 
48.7 

(285.00) 

19.8 

(285.57) 

20.1 

(286.71)

11.9 

(288.18)
- 

Plasma O2 
43.4 

(284.96) 

8.8 

(285.54) 

23.9 

(286.49)

23.9 

(288.07)
- 

Grafted AA 
70.4 

(284.97) 

3.9 

(285..71)

17.7 

(286.50)

4.9 

(288.19)

3.1 

(289.20) 

Grafted VSA 
54.69 

(284.94) 

12.65 

(285.41) 

20.32 

(286.63)

12.348 

(288.34)
- 

 

3.4.2 SEM analysis 

 

Etching processes are unavoidable when polymers are exposed to plasma. Usually, these 

processes are very dependent on the used time and power and they are limited to the 

topmost material surface layer. SEM was used to observe eventual morphology changes 

of the materials surface. SEM micrographs of the untreated chitosan film revealed a 

smooth surface without pores, nodes or defects (data not showed). The analysis of the 

treated materials indicated that none of the modification process, either oxygen plasma 

treatment or grafting polymerization, affected the surface morphology of the modified 

membranes. 

 

3.4.3 FTIR analysis 

 

Figure 3.2 shows the FTIR spectra of untreated and modified membranes. In the chitosan 

spectrum (Figure 3.2(a)), the NH2 characteristic absorption band is observed at 1600cm-1. 

The bands assigned to the stretching vibration of C-O-C linkages in the saccharide 

structure (glucosamine rings) appear at 1155, 1067, 1030 and 894 cm-1. The absorptions 

at 1324 and 1380 cm-1 reflect the stretching vibration of C-N bond (amide III) and the C-H 

binding modes of the methylene, respectively. Very weak bands at 1420 and 1645 cm-1 

corresponding to the C-H bond in the methyl and stretching vibration. of carbonyl group 

(amide I) reveal the high deacetylation degree of the used chitosan 19. 

FTIR spectra of the treated materials (Figures 3.2(b), (c), and (d)) show no significant 

difference compared with the untreated material. This is not surprising since it is well 
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known that at each internal reflection, the penetration depth of the IR radiation beam is 

around 1-5 μm into the polymer membrane 20. Moreover, the thickness of the modified 

layer by plasma treatments is usually confined to few nanometres of the top surface layer 

and has no effect on the bulk of treated polymers 13. On the other hand, the changes 

indicated by the XPS analysis (more sensitive) reveals that the performed surface 

modifications have no effect on the bulk properties of the material but only on the very top 

surface layer. 

 

 

Figure 3.2 FTIR-ATR spectra of: untreated chitosan (a) and modified by O2 plasma (b); 

AA grafted (c) and VSA grafted (d) materials. 

 

3.4.4 Contact angle measurements 

 

The energy of the surface, which is directly related to its wettability, is a useful parameter 

that has often been strongly correlated with the cell-biomaterial interfacial interactions. 

Unfortunately, there are not direct methods to measure surface energy or surface tension 

of solids. However, a number of indirect empirical and semiempirical methods have been 

developed based on contact angle measurements. Table 3.3 shows the equilibrium 

contact angle values of the used solvents for both untreated and modified materials. 
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Table 3.3 Equilibrium contact angle values for untreated and modified samples (air, room 

temperature) 

Material 
Glycerol 
C. Angle(º) 

Diiodomethane 

C. Angle(º) 

Formamide 

C. Angle(º) 

Chitosan 83.0 ± 2.0 52.35 ± 2.3 68.4 ± 1.3 

Plasma treated 73.0 ± 3.7 48.95 ± 4.0 50.8 ± 5.7 

VSA grafted 78.1 ± 1.1 55.4 ± 0.7 51.8 ± 4.6 

AA grafted 70.6 ± 2.7 52.0 ± 3.2 34.6 ± 4.7 

 

Owens, Wendt, Rabel and Kaelble method has been widely used for the calculation of the 

total surface energy and its corresponding polar and dispersive components. Generally, 

the polar component value is used as an estimation of the concentration of the polar 

groups on the polymer surface. The surface energy values obtained for untreated, plasma 

treated and grafted samples are shown in Table 3.4. No apparent significant changes in 

the total surface energy were observed for any of the studied samples. However, the 

introduction of additional polar groups by the modification processes was confirmed by an 

increase in the values of the polar components for all treated samples. Plasma activation 

itself resulted in a higher value of the polar component (3.5mN/m) compared to the one 

calculated for untreated chitosan (1.1mN/m). The same effect was observed after VSA 

grafting (3.0mN/m). The most noteworthy difference was observed for AA grafted samples 

for which a value of 5.9mN/m was calculated. 

Usually, the term “polar” is used to designate three classes of compounds 21, namely: i) 

dipolar compounds; ii) hydrogen bonding compounds and iii) compounds that interact as 

Lewis acids and bases. The Van Oss-Chaudhury-Good theory distinguishes the acid-base 

(AB) interactions as a component of the surface free energy: 
AB
S

LW
SS γγγ +=          (3.1) 

where 
LW
Sγ  is the surface energy corresponding to Lifshitz-Van der Waals forces and 

AB
Sγ  

describes the contribution of the AB interaction to the surface tension: 

( ) 2
1

2 +− ⋅⋅= SS
AB
S γγγ          (3.2) 

where 
−
Sγ  and

+
Sγ  represent the ion pair donor (Lewis base) and the ion pair acceptor 

(Lewis acid) contributions, respectively. 
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Table 3.4 Surface Energy (± standard deviation) and its components calculated by OWRK 

(glycerol and diiodomethane) and AB (glycerol, formamide and diiodomethane) methods 

OWRK method AB method 
 

Material sγ  

(mN/m) 

d
sγ  

(mN/m) 

p
sγ  

(mN/m) 

sγ  

(mN/m) 

LW
sγ  

(mN/m) 

+
sγ  

(mN/m) 

−
sγ  

(mN/m) 

Chitosan 32.9±0.3 31.8±0.3 1.1±0.2 32.7±0.3 32.7±0.0 0.0±0.0 3.0±0.3 

Plasma 
treated 

35.8±0.6 32.2±0.3 3.5±0.5 35.4±0.9 35.0±0.0 0.0±0.0 9.1±1.0 

AA 
grafted 

35.4±1.0 29.5±0.4 5.9±0.9 34.6±1.5 32.6±0.0 0.1±0.1 14.6±1.6 

VSA 
grafted 

31.9±0.5 28.9±0.3 3.03±0.5 31.0±0.1 31.0±0.1 0.0±0.0 12.1±1.0 

sγ =surface energy; d
sγ  and p

sγ = dispersive and polar components of surface energy calculated by OWRK 

method; Lifshitz-Van der Walls ( LW
sγ ), acid ( +

sγ ) and basic ( −
sγ ) components of the surface energy 

calculated by AB method 

 

The total surface energy ( Sγ ) values obtained by the AB method correlate very well with 

the values achieved using the OWRK method (see Table 3.4). Over again, little 

differences were found between the total surface energy values throughout the several 

studied surfaces. Moreover, the acid component was found to be zero or negligible if 

compared with the basic component. This means that the modified surfaces present a 

monopolar character. It is interesting to notice that the tendency observed for the polar 

component of the surface energy calculated according to the theory of OWRK is similar to 

that observed for the basic component calculated using the acid-base theory. The non-

modified chitosan membranes present the lower values (3.0mN/m), followed by the O2 

plasma modified and the VSA grafted films (9.1 and 12.1mN/m respectively). Samples 

grafted with AA present the highest value of the basic component (14.6mN/m). We found 

that this tendency is strongly correlated with the cell behavior, as detailed in the following 

section. 

The water contact angle values were not used in the computation of surface energy, 

because these values lack of physical meaning. If fact, the chitosan membranes uptake 

water up to 130% of its own weight 4. In this way, the measured contact angle is 

associated with non-equilibrium events resulting from the swelling of the membranes. This 

swelling also creates a surface deformation in the samples beneath the liquid water drop. 

This effect is more pronounced in the modified surfaces in which the sorption events were 
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notably faster, likely due to its increased hydrophilicity. Moreover, when the water contact 

angle values were tentatively included in the computation of the surface energy using both 

methods, the resultant correlation coefficients were found to be close to zero (good 

correlation should give a correlation coefficient close to 1). These initial calculations also 

presented high chi-square values, revealing that the theories would not describe such a 

set of experimental data. In this sense, the water contact angle was skipped from the 

calculations. 

 

3.4.5 Cell morphology 

 

Anchorage-dependent cells (fibroblast, osteoblast or endothelial cells) need to adhere in 

order to proliferate. Since the materials studied in this work are to be used for bone-

guided regeneration, the effect of the surface modifications was assessed by cells with the 

osteoblastic phenotype, the principal cell type facing these devices in vivo. 

Figure 3.3 shows the optical photographs of cells adhered to untreated and modified 

materials after 3 and 7 days of culture. It can be observed that cells adherent to chitosan 

surfaces did not show the characteristic morphology of osteoblast-like cell at any of the 

tested times of culture, which may indicate a deficient long-tem cell response. Poor cell 

attachment on chitosan has been reported 5 before. The AA surface grafting did not 

induce any improvement in the cell behavior; cells presented a round shape and the 

surface showed reduced cell adhesion. On the other hand, SaOs-2 in contact with plasma 

treated and VSA grafted materials demonstrate very good adherence to these surfaces. 

These treatments appear to render chitosan membranes with appropriate physico-

chemical properties for adherence and proliferation of SaOs-2. This hypothesis was 

confirmed by the observation after 7 day of culture when a significant surface area was 

covered by a monolayer of cells (Figure 3.3). Moreover, cell morphology was positively 

affected by both treatments. SEM micrographs for 3 days of culture (Figure 3.4) showed 

that cells present the typical morphology for osteoblastic cells with cytoplasm extensions. 
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Figure 3.3 Optical micrographs of osteoblast-like cells stained with methylene blue 

cultured for 3 and 7 days. 

 

In their normal mechanism, cells in contact with the surface will initially attach, adhere and 

spread. Protein adsorption is a determining step for this first phase and will further control 

cell morphology, as well as their proliferation capacity. It is proved 22 that the type of 

adsorbed proteins and their orientation are related to the surface properties, especially to 

the surface energy. Moreover, it has been reported 23 that the dispersive and polar 

components of the surface energy are of key importance for the interfacial interactions. 

Therefore, an optimal distribution of the two components is required. As can be seen from 

the contact angle results (Table 3.4), neither very low polar component (untreated 

chitosan) nor very high (AA grafted material) were favorable for the correct cell 

attachment/morphology. On the contrary, intermediate polar components achieved for 
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plasma treated and VSA grafted samples, influenced positively the cell behavior on these 

surfaces. 

It has been also reported that Lewis basicity is a key factor in surface biocompatibility24. In 

the herein studied systems, the surfaces holding moderate basic component values 

(Table 3.4) presented improved SaOs-2 behavior, if compared to the samples showing 

both lower and higher values for the Lewis basicity. The similarity between this result and 

the one already described for the correlation between the surface energy polar component 

and the cell behavior is noteworthy. 

Figure 3.4 SEM micrographs showing SaOs-2 cultured for 3 days on the surface of 

plasma treated (a) and VSA grafted (b) membranes. 

 

3.4.6 MTS assay 

 

The MTS tests were carried out in order to further evaluate cell viability on treated and 

untreated membranes (Figure 3.5). Metabolically active cells are capable of reducing a 

tetrazolium compound (MTS) in an aqueous soluble formazan product. Non-viable cells 

rapidly lost their ability to reduce the MTS. Therefore, the production of the colored 

formazan products is proportional to the number of viable cells. 
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Figure 3.5 Viability of SaOs-2 adhered to untreated and modified surfaces after 1, 3 and 

7days of culture at 5% CO2 at 37ºC. 
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Considering the results reported above on the cell morphology, plasma treated and VSA 

grafted materials were expected to present better cell viability and proliferation than the 

untreated and AA grafted samples. The MTS results confirm those differences; the optical 

density measurements indicate that plasma and VSA treatments lead to a higher number 

of viable cells adhered to the surface of the materials after 1 day of culture compared to 

untreated or AA grafted chitosan membranes. The observed effect increases with the time 

of culture. Once again, these results supported the hypothesis that plasma and VSA 

treatment induce a positive effect on osteoblast-like cells. 

 

3.5 Conclusions 

 

A successful surface modification by plasma induced radical polymerization of acrylic and 

sulfonic polar monomers onto solvent cast chitosan membranes was performed. XPS 

results confirmed the polymer grafting on the membranes surface. FTIR-ATR spectra 

indicated that this modification took place only on a very thin layer of the surface and the 

materials bulk properties were not affected. Contact angle measurements showed that the 

total surface energy does not change significantly after the applied treatments. However, 

an increased polar component was found for all treated materials. Moreover, the AB 

method showed that this increase is generally due to Lewis base’s contribution. Cell direct 

contact test with SaOs-2 showed that oxygen plasma treatments and VSA grafting 

substantially improved cell adhesion and proliferation compared with untreated chitosan. 

These results were correlated with both polar and basic components of the Surface 

Energy, showing that materials with intermediate polar and basic components positively 

affect cell adhesion and proliferation. 
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Chapter 4 

Surface phosphorylation of chitosan significantly improves 
Osteoblast cells viability, attachment and proliferation 
 

4.1 Abstract  

 

Chitosan biocompatibility is often associated with the structural similarities with 

glycosaminoglycans (GAGs). Although all of the GAGs are build from repeating 

disaccharide units and some of them contain N-glucosamine (the main hexosamine in the 

chitosan backbone), all of them do also contain negatively charged functional groups. 

These charged units are believed to have a crucial role for the formation of proteoglycans 

and hence for key biochemical processes/signaling related with cell functionality and 

survival. Lack of these groups in chitosan structure could be the reason for the previously 

observed poor cell adhesion to this material. Herein, we are reporting that plasma induced 

grafting of negatively charged phosphonic groups can induce remarkably distinguishable 

cell response and to significantly improve the adhesion, proliferation and viability of 

osteoblast cells. The proposed plasma induced polymerization is very simple and versatile 

method and can be easily adapted to other materials and different negatively charged 

units. 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the following publication: 

Paula M. López-Pérez; Ricardo M.P. da Silva; Carmen Serra; Iva Pashkuleva; Rui L. 

Reis. Journal of Materials Chemistry, 2010, 20 (3): 483-491. 
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4.2 Introduction 

 

The presence of complex polysaccharides in different tissues has been recognized for 

more than 100 years. In connective tissues, for example cartilage, they comprise about 30 

wt%1. Some polysaccharides represent the main constituent part of extracellular matrix 

(ECM). Hence, they are involved in a plethora of biological processes and thus they are 

crucial in the control of their normal metabolic course. Structural investigation revealed 

similarities in between these polysaccharides 1: they are composed from disaccharide 

repeating units; all contain hexosamine (glucosamine or galactosamine) and finally they 

do contain negative functionalities (mostly carboxyl and sulfate) as well. Their common 

name, glycosaminoglycans (GAGs), comprises these similarities. 

Chitosan, a linear polysaccharide composed of N-glucosamine and N-acetylglucosamine 

units, has been accepted in the biomaterials field as a structural analogue of GAGs. Its 

structure together with its relatively low price has imposed an intensive investigation on 

this polysaccharide as a material for a wide range of biomedical applications such as 

wound healing, gene/drug delivery, bone tissue repair and remodeling 2, 3. Furthermore, its 

biodegradation leads to the release of aminosugars that can easily be excreted or 

incorporated into glycoproteins and GAGs metabolic pathways 4. 

Besides these similarities, chitosan pKa value is about 6.1-7 5 and recently, it was 

reported 6 that chitosan membranes isoelectric point (zeta potential equal to zero) occur at 

physiological conditions (pH 7.4). Hence, the positive surface charge arising from 

protonated amino groups, often claimed to predict cell adhesion to chitosan, should be 

excluded. Because the negative charge of the GAGs is associated with their bioactivity 

(via interactions with the positively charged amino groups of proteins), the lack of these 

groups in chitosan could be the reason for the poor cell adhesion on chitosan membranes 

reported previously by us 7, 8 and other authors 9-11. Several studies have been 

investigating the possibility to overcome this major drawback by incorporation of carboxyl 

or sulfate groups into the chitosan backbone mimicking GAGs structure 6, 7, 12, 13. However, 

when regeneration of mineralized tissues such as bone is the target, additionally to the 

protein-polysaccharide interactions, osseointegration and osteoconduction is also a must. 

These processes are triggered by the presence of other negatively charged groups, the 

phosphate groups. The importance of these groups has been recognized by the 

biomaterials scientific community for a long time and nowadays, phosphate coated (e.g. 

calcium phosphate) materials are commonly used for the purposes of bone regenerative 

medicine. Alternatively, polymers with grafted phosphate groups have been also designed 

to mimic the interactions occurring in vivo. In contrast to physically coated polymers, 
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grafting process results in formation of covalent bonds between the graft chains/groups 

and the polymer surface and therefore avoids their delamination assuring long term 

stability of the introduced chains. The fundamental step in grafting is the formation of 

reactive groups on the substrate surface. So far, only chemical activation/functionalization 

has been reported for obtaining phosphorylated derivatives of chitosan 14-20. These 

reactions usually involve the use of organic solvents and high temperatures and therefore 

can easily affect the bulk properties (e.g. mechanical properties, degradation behavior) of 

the material. Hence, we are proposing an alternative approach for surface 

phosphorylation of chitosan membranes by plasma induced polymerization. Previously, 

we have demonstrated 7 that this method is an effective way for grafting of vinyl 

monomers. Its main advantage is that the surface properties can be enhanced selectively, 

while the bulk attributes of the materials remain unchanged. In this particular study, we 

are reporting the use of vinyl phosphonic acid (VPA) as a monomer. Polymers of VPA are 

known to be non-cytotoxic and had been successfully included onto polymers structures 

for cell behavior enhancement 21, 22. It must be also noticed that the herein proposed 

method for surface phosphorylation does not remove the amino groups from the chitosan 

surface. The preservation of these distinct functionalities in chitosan is very important 

because they are associated with the specific biological properties of chitosan 6. 

 

4.3 Materials and methods 

 

4.3.1 Materials 

 

Chitosan (CTS) from crabs’ shells was purchased from Sigma Aldrich and purified prior 

use. Briefly, a 1% (w/v) chitosan solution in 1% aqueous acetic acid (AcOH) solution was 

prepared and filtered in order to remove the insoluble impurities. Subsequently, chitosan 

was coagulated adding NaOH (0.1 M) solution (final pH > 8) and the formed gel was 

washed with distilled water until a stable pH was reached. The obtained product was 

dehydrated by immersion in absolute ethanol, freeze-dried, ground to powder and dried 

overnight at 60ºC. 

The degree of N-deacetylation (DD) of chitosan (93%) was determined by first derivative 

UV spectrophotometry, using both glucosamine (GluN) and N-acetylglucosamine 

(GluNAc) as standards for calibration 23. A molecular weight of 790kDa was determined by 

viscometry using a 0.5 M AcOH/0.2 M AcONa aqueous solution. The measurements were 

performed at 25ºC and the Mark-Houwink parameters (k = 3.5x10-4; a = 0.76) 24 were 
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used for the calculations. Vinyl phosphonic acid (VPA) was purchased from Sigma-Aldrich 

and was used without further purification. 

 

4.3.2 Preparation and modification of chitosan membranes 

 

Chitosan 1% (w/v) was dissolved in 1% aqueous AcOH at slow stirring speed to avoid air 

bubble entrapment. The chitosan solution was poured into plastic Petri dishes at a ratio of 

0.5 mg/cm2. After drying at air, the membranes were neutralized by immersion in 0.1 M 

NaOH for 10 minutes and washed thoroughly with distilled water. The obtained 

membranes presented a smooth surface and thickness of around 50 μm. 

Poly-(phosphonic acid) PVPA was grafted on the membranes surface by plasma induced 

polymerization. Chitosan membranes were placed into a radio frequency (13.56 MHz) 

plasma reactor (Plasma Prep5 equipment from Gala Instrument, Germany) and exposed 

to Oxygen plasma at 30 W of power for 15 minutes. During the treatment the pressure 

inside the reactor was maintained below 20 Pa by adjusting the gas flow. The so-activated 

membranes with free radicals formed on the surface were immersed in 100mM degassed 

solution of VPA in isopropanol and shaken at 37ºC for 2 hours. Subsequently, the 

membranes were thoroughly washed with isopropanol to remove the unreacted monomer 

and dried at room temperature. 

 

4.3.3 Surface characterization 

 
Surface chemical composition 
 
Surface elemental analyses of non treated and modified samples was performed by X-

Ray Photoelectron Spectroscopy (XPS) using an ESCALAB 200A instrument (VG 

Scientific, UK) with an aluminium anode (Al-Kα monochromatic radiation hν=1486.6 eV) 

operating at 15 kV (300 W). The measurements were performed at take off angle of 90º 

relative to the samples surface and a constant Analyser Energy mode (CAE). PISCES 

software was used for data acquisition and analysis. Survey spectra were acquired using 

pass energy of 50 eV over a binding energy range of 0 to 1100 eV and were used to 

calculate the elemental composition of the surfaces. High-resolution spectra for different 

elements (C1s, O1s and P2p) were obtained using a pass energy of 20 eV. Deconvoltion 

into subpeaks was performed by least-squares peak analysis software, XPSPEAK version 

4.1, using the Gaussian/Lorenzian sum function. Background counts were subtracted 
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using a linear baseline and the sample charging was corrected assigning a binding energy 

of 285.0 eV to the saturated hydrocarbons C1s peak.  

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) studies were performed 

using a ToF-SIMS IV instrument from ION-TOF GmbH, Germany. ToF-SIMS produces 

positive and negative mass spectra from the outer 10–20 Å of materials, and thus is 

capable of providing detailed information about the molecular structure of surfaces. The 

sputtering process is central to the SIMS technique and it can be described as a collision 

cascade of particles in the sample being analyzed. In this study, the samples were 

bombarded with a pulsed bismuth ion beam (25 keV) at 45° incidence over an area with 

size 500 μm2. The energy of these primary ions is enough for bond breaking near to the 

collision site and therefore, the process results in extensive fragmentation and emission of 

secondary particles (neutral atoms and molecules, electrons, and ions). Particles 

produced in the top 2–3 monolayers of the sample have sufficient energy to overcome the 

surface binding energy and leave the sample. Only a small fraction of them are charged 

(10-6–10-1), and their positive or negative state depends on their electron configuration. 

The generated secondary ions were extracted with a voltage of 10 kV and their mass was 

determined by measuring their time of flight from the sample to the detector. Electron 

flood gun for charge compensation was necessary during the measurements. The 

experimental conditions (ion type, beam voltage and primary ion dose) were maintained 

constant for comparative studies. The mass spectra in both positive and negative mode 

and some specific informative secondary ion images for treated and modified samples are 

reported in the following section. Additionally, high mass resolution spectra were obtained 

by bunching the raw pulse. These spectra can be attained without concurrent loss of 

counts, however, this is at cost of spatial resolution (in this mode no better than 2-5 μm). 

 

Surface topography 
 
The topography of the samples was characterized by two different techniques: Optical 

profiler analysis was performed by an Interferometric profiler Wyko-NT 1100 (Veeco) 

using Vertical Scanning Interferometry (VSI) mode. The images were processed and 

analyzed with the analytical software package WycoVision®32. The Atomic Force 

Microscopy (AFM) characterization was performed in air atmosphere using a Multimode 

Nanoscope V (Veeco).  Tapping mode was employed with non coated Phosphorous (n) 

dopped Silicon probe with cantilever length of 115 to 135 μm and resonant frequency from 

257 to 342 kHz. Images were processed and analyzed by multimode software version 

V7.20 and analytical software package WycoVision®32. 
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Surface energy and water wettability 
 
Static contact angle values were obtained by sessile drop method. Measurements were 

performed using a contact angle meter OCA 15+ (DataPhysics Instruments, Germany) 

with high performance image processing system. A 1 μl drop of the tested liquid was 

added at room temperature on the sample surface by a motor driving syringe. We used 

the three-solvent system: water ( sγ =72.8 mN/m) and glycerol ( sγ =64.0 mN/m) as polar 

liquids and methylene iodide ( sγ =50.8 mN/m) as non-polar one. At least six contact angle 

replicates per liquid-solid couple were measured and averaged. We calculated the surface 

tension from the contact angle data by two different methods: the Owens, Wendt, Rabel 

and Kaelble (OWRK) method 25 that discerns polar and dispersive components of the 

surface energy; and the acid-base method (AB method), which allows calculation of the 

Lewis acid and basic contributions using the van Oss-Chaudury-Good theory (vOCG) 26. 

The chosen three solvent system  can be used to compute the surface energy using the 

vOCG method, since it produces a set of well-conditioned equation system (low 

conditioning number) 27. The surface energy components were calculated using the 

values of the liquid surface tension components obtained by Della Volpe and Siboni, 

which consider a reference scale for water that takes into consideration the different 

“strength” of water as acid or base 28. 

Pure water adhesion tension was also calculated because it can be considered as a key 

measure of the water self-association structure. As a matter of fact, a straightforward 

correspondence has been claimed to occur between the physicochemical interfacial 

properties of water (scaled as water adhesion tension) and the biological response to 

biomaterials 29. 

 

4.3.4 Cell culture 

 

Since the materials studied in this work are to be used for mineralized tissue regeneration, 

the effect of the surface modifications was assessed by cells with the osteoblastic 

phenotype, the principal cell type facing these devices in vivo. A human osteosarcoma cell 

line (SaOs-2), an immortalized cell line with an osteoblastic phenotype, was purchased 

from European Collection of Cell Cultures (ECACC, UK) and cells were maintained at 37 

ºC and 5% CO2 in a humidified atmosphere. Dulbecoo’s modified Eagle’s medium 

(DMEM; Sigma-Aldrich, Inc, USA) supplemented with 10000 U/ml penicillin-G sodium, 

10000 µg/ml streptomycin sulfate and 25 µg/ml amphotericin B in a 0.85% saline (Gibco, 
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Invitrogen Corporation, UK) and 10% of heat-inactivated fetal bovine serum (FBS; 

Biochrom AG, Germany) was used as cell culture medium. 

Membranes were cut in a circular shape (φ=14 mm) and were sterilized by 70% ethanol 

aqueous solution. Subsequently, the substrates were washed with sterile phosphate 

buffered saline solution (PBS, Sigma Chemical Co., USA) to remove the remaining 

ethanol. The sterile samples were placed into 24 well culture plates and seeded with 

SaOs-2 (3.3x104cells/ml). Cells were cultured onto the materials for 1, 3, 7 and 14 days at 

37 ºC, 5% CO2 in a humidified atmosphere in order to follow their behavior in contact with 

the studied surfaces. 

The morphology of SaOs-2 cells growing on untreated and modified chitosan membranes 

was observed by Scanning Electron Microscopy (S360, Leica Cambridge, UK). After each 

predetermined incubation time, cells were fixed using a 2.5% glutaraldehyde (Sigma, 

USA) solution in PBS. Prior the analysis, the samples were dehydrated by graded ethanol 

solutions (25%, 50%, 70%, 90% and 100%). 

MTS assay and calcein-AM (MolecularProbes) staining were used to analyze cell viability. 

The cultured materials were incubated (3 hours, 37ºC, humidified atmosphere of 5% CO2) 

with 500 μl of MTS solution in DMEM culture medium without phenol red (Sigma-Aldrich, 

Inc, USA). Optical Density (OD) was read in a microplate reader (Bio-Tek, USA) at 490 

nm. For Calcein AM staining, the samples were treated with 0.002% calcein-AM solution 

in DMEM culture medium and incubated in dark for 15 minutes at 37ºC in a humidified 

atmosphere of 5% CO2. Cells fluorescence was examined by an Axioplan Imager Z1 from 

Zeiss, Germany. 

Cell proliferation was evaluated by DNA quantification. Cells were lysed by osmotic and 

thermal shock and the obtained supernatant was used for DNA analyse. DNA content 

along the time of culture using the PicoGreen dsDNA kit (MolecularProbes) and the 

fluorescence was read (485 nm/528 nm of excitation/emission) in a microplate reader and 

the DNA amounts calculated from a standard curve. 

The MTS and DNA quantification data were subjected to statistical analysis and are 

reported as mean ± standard deviation. ANOVA test for independent samples were 

performed and the differences were considered statistically significant if p < 0.05. 
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4.4 Results and discussion 

 

4.4.1 Surface Chemistry 

 
The XPS spectrum of untreated chitosan membranes confirms the presence of C (63.2%), 

O (27.3%) and N (5.1%). Although at lower percentage, Si (4.3%) was also detected in 

the atomic composition of chitosan surface. Silicon is a component of crustacean shells, 

from which chitin is extracted and then converted into chitosan and it seems to be not 

completely removed during that process. After the applied surface treatment, the survey 

spectrum of PVPA grafted membranes showed two additional peaks (see support 

information Figure 4.SI1), allocated at 128.3 and 185.2 eV. These peaks were assigned to 

P2p and P2s respectively and confirmed the successful grafting with PVPA, incorporating 

2 atomic% (at%) of phosphorous (see support information Table 4.SI1). Additional details 

about the surface chemical composition were obtained by high resolution spectra of C1s, 

O1s and P2p of unmodified and PVPA grafted chitosan membranes (Figure 4.1). The 

corresponding relative peaks are listed in Table 4.1. 

 

Table 4.1 Relative peaks composition (%) of C1s, O1s high resolution spectra 
C1s core level O1s core level 

Peak BE/eV CTS CTS-VPA Peak BE/eV CTS CTS-VPA 

285.0 40.5 36.6 531.8 0.0 20.2 

286.6 44.6 44.4 533.1 58.2 45.1 

288.2 14.9 19.0 533.7 41.8 34.6 

 

The C1s high resolution spectrum of chitosan is composed by three components. The 

peak at 285.0 eV was assigned to C-H/C-C chemical bonds of the chitosan backbone. 

Because amines presence induces a small chemical shift (around 0.6 eV) 30, the C-NH2 

signal does not appear as individual peak but it is overlapped by the C-H/C-C. The second 

peak is centered at 286.7 eV and was assigned to C-OH, C-O and C-N- bonds. Finally, 

the C=O and O-C-O/N-C=O groups from the acetylated rings appeared at 288.2 eV. The 

C1s high-resolution spectrum of PVPA grafted samples was very similar to the spectrum 

of untreated chitosan. The characteristic C-PO3 signal (around 287.5 eV) 31 is overlapped 

by the peak centered at 288.1 eV and the increased relative area measured for this peak 

compared with untreated chitosan (Table 4.1) is consistent with this overlapping.  
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Figure 4.1 C1s, O1s, P2p core level spectra of native and PVPA grafted chitosan 

membranes. 

 

O1s high resolution spectrum of chitosan showed two peaks centered at 533.0 and 533.5 

eV, which correspond to C-OH and O-C-O bonds respectively 16. After PVPA grafting a 

new signal at 531.8 eV was observed in the O1s spectrum, assigned to O atoms involved 

in -PO3 bonds 32. Considering the presence of elemental P on the surface (2at %) and the 

fact that three O atoms are bound to each P atom (–PO3), the expected phosphorous-bind 

oxygen should be 6% of the total elemental composition on the surface. The 

deconvolution of the O1s high resolution spectrum gave a relative oxygen abundance in 
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the –PO3 of 20.2% (Table 4.1). Because the total surface content of oxygen was found to 

be 32.1 at% (support information Table 4. SI1), the final experimental value for elemental 

phosphorous-bind oxygen is calculated to be 6.4% of the total elemental composition on 

the surface, which is in good agreement with the theoretical value. Finally, the P2p high 

resolution spectrum for PVPA grafted samples showed a single peak centered at 133.3 

eV and assigned to phosphonic species 33-35. The observed full width at half-maximum 

(FWHM) for this signal is wide (1.86 eV), as can be expected for P2p, since this signal 

correspond to P2p1/2 and P2p3/2 core-line doublets.  

Additionally to XPS, ToF-SIMS analysis is used to identify the chemical and molecular 

composition of a surface. Small variations in the samples can be detected by differences 

in the fragmentation pattern in the mass spectra. Figure 4.2 displays both positive and 

negative ion survey spectra of the chitosan surface prior and after the applied 

modification. 
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Figure 4.2 Positive (up) and negative (down) ToF-SIMS spectra of chitosan before and 

after (displayed in reverse) modification with poly (vinyl phosphonic acid). 
 

Chitosan is composed of randomly distributed D-glucosamine (molecular mass 179) and 

N-acetyl-D-glucosamine (molecular mass 221) units. Hence, fragmentation patterns 

observed in the mass spectra of these glucosamines were also expected in the chitosan 

spectrum. Indeed, the ions M18 (NH4), M30 (CH4N), M59 (C2H5NO), M73 (C3H7NO), and 

the characteristic M207 (C7H13NO6) and M221 (C8H15NO6) 36 were detected in the positive 

ToF-SIMS spectra of chitosan (modified and non-modified). After PVPA grafting, we were 
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not able to detect the expected M31 (P) and M15 (NH) in positive polarity. However, it 

must be stated that P signal at this polarity present a very low intensity and therefore it is 

rather difficult to detect. On the other hand, the negative spectrum of PVPA-grafted 

chitosan showed clearly the presence of the specific fragments at M63 (PO2) and M79 

(PO3). Additionally, the high resolution ToF-SIMS (Figure 4.3) also confirmed the 

presence of phosphorus with the characteristic peak at 30.975 present only in the 

spectrum of the modified material. Moreover, much higher concentration of M15 (NH) was 

detected after plasma modification demonstrating the simultaneous occurring of both 

processes grafting on one hand and etching/cleaning of the surface during the plasma 

activation on the other hand. 
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Figure 4.3 High resolution ToF-SIMS, showing both higher concentration of NH (left) and 

presence of P(right) as a result of the applied treatment (the spectra displayed in the 

reverse). 

 

Further investigation of the spatial distribution of the new functionalities introduced by the 

applied modification was performed by ToF-SIMS mapping (Figure 4.4). The mapping 

confirmed that the grafting was successful and phosphorous containing groups at high 

concentration (brightest regions) were clearly observed on the overall surface. Although, it 

must be noticed that the modified surface was not chemically homogeneous and some 

regions with lower concentration of PO2 and PO3 fragments were observed. 
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Figure 4.4 Images of a 500 μm2 area of VPA-grafted chitosan surface as reconstructed 

from the negative ion mass spectrum measured by static ToF-SIMS. From left to right: all 

ions; M59 (C2H3O2); M63 (PO2); M79 (PO3). 

 

4.4.2 Surface Topography 

 

In theory, surface modifications can be envisaged to vary independently the surface 

topography and chemistry. However, in practice this is very difficult to achieve and in fact 

is impossible to prove that both properties are independent 37. Hence, surfaces subjected 

to chemical modifications should be also evaluated for topographical changes. This is 

especially relevant for biomaterials surfaces where topography is known to have a striking 

effect on biological response 38, 39. 
Optical profiler analyses were performed in order to analyze the presence of 

microfeatures on the surfaces. We have detected ring-like structures on the unmodified 

chitosan membranes air-face side. These features, with characteristic radius between 2 

and 15 μm, disappeared after the treatment probably because of the etching process 

occurring during the plasma activation (Figure 4.5). 

 

Figure 4.5 90x120μm2 Optical Profiler images of chitosan (left) and PVPA grafted (right) 

membranes. Both images were taken in the membranes face dried in contact with the air. 
 

Although optical profilometry offers quick analysis of surface topography without surface 

contact, it is limited in lateral resolution. Scanning probe microscopy is also non-damaging 
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method for surface observation because of the very light forces used and extends the 

lateral resolution to atomic dimensions. Therefore, high resolution (1x1 μm2) AFM images 

were used to evaluate Ra (average absolute distance from average flat surface) and Rq 

(root mean square from average flat surface) values before and after the modification. 

Both surfaces showed nanopit-like textures of similar diameter and with random 

distribution. It could be also observed that modification process results in a small increase 

of the surface roughness with changes in Ra from 1.52 to 9.13 nm and in Rq from 1.91 to 

11.57 nm for chitosan and CTS-PVPA, respectively (see Figure 4. SI2 in the support 

information).These differences at the nanoscale are in agreement with previously reported 
8, 40 results for chitosan membranes modified by plasma and are also related with the 

etching process occurring during the activation step. Although the found differences in the 

roughness after PVPA grafting are small, these differences might be enough to affect cell 

behavior. 

In their natural environment cells are in permanent contact with Nan topographic surfaces. 

For instance, basement membranes of various tissues are composed by pits, pores, 

protrusions and fibers in the range of 5-200 nm. Recent studies have shown that  cells 

display differential performance depending on the topography at the nanoscale 41-43. Lim 

et al. have showed that human fetal osteoblastic cells (hFOB) attachment and spreading 

as well as specific integrin expression were enhanced for cells cultured on 14-29 nm deep 

pits relative to flat surfaces or 45nm deep pits 42. 

 

4.4.3 Surface energy and water wettability 

 
Surface energy and water wettability of biomaterials significantly affect the biological 

process at the sub-cellular (protein adsorption) and cellular level (cell attachment, 

spreading, proliferation, etc) 37, 44-47. The surface wettability can be directly determined by 

contact angle measurements, whereas it does not exist technique for direct determination 

of the surface energy of solids. Instead, measurements of contact angle, and several 

indirect empirical and semiempirical methods can provide the information required to 

compute the surface energy. The calculation methods are mostly based on the 

assumption that the free energy of a solid surface can be split into different components 

representing different independent interactions. There is still an intense debate 27, 28 on the 

applicability and correctness of using each method, as well as on the true physical 

meaning of some surface energy components. In this work   we have calculated the 

surface energy both using the classical “paradigm” of Owens, Wendt, Rabel and Kaelble 

(OWRK) 25 and the perhaps more controversial van Oss-Chaudury-Good (vOCG) theory 
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26-28, which provides additional information (Lewis acid-basic contributions), if taken and 

evaluated within the method assumptions and constrains. 

Table 4.2 shows the water contact angle and the water adhesion tension for modified and 

untreated chitosan membranes. Water adhesion tension (τ) often used to predict or 

explain biomaterial-cell interactions as an alternative to surface energy, is defined as: 

θγτ cos⋅= w           (4.1) 

where wγ  is the water surface tension (72.8 mN/m) and θ is the water contact angle. 

 

Table 4.2 Equilibrium water contact angle and adhesion tension for PVPA grafted and 

non-treated chitosan membranes 

Sample Water contact angle (º) Adhesion tension(τ ) (mN/m) 

CTS 98.5 ± 2.5 -10.8 ± 3.1 

CTS-VPA 69.0 ± 10.2 25.7 ± 12.2 

 

Relatively high water contact angle (98.5º) was measured for the untreated chitosan 

membranes. After PVPA grafting, the contact angle value decreases significantly (69.0º). 

Consequently, water tension adhesion values increased from -10.8mN/m to 25.7mN/m. 

According to the literature, values of water tension adhesion of 30mN/m (contact angle 

65º) distinguish the hydrophobic and hydrophilic regimes 29, 48. This value limits the region 

where long-range attractive (hydrophobic) forces become repulsive (hydration) forces. 

Being so, the water adhesion tension (Table 4.2) of untreated chitosan membranes 

discloses a hydrophobic surface. As expected, PVPA grafting increased the water 

adhesion tension as a consequence of the introduction of phosphonic groups. 

Nevertheless, the water adhesion tension value for PVPA grafted membranes is still in the 

hydrophobic regime, although within the limit where hydrophobic attraction is substituted 

by hydration driven repulsive forces 29. 

Surface energy computed using the OWRK method split the surface energy sγ  into a 

dispersive 
d
sγ  and a polar component 

p
sγ , according to the equation: 

p
s

d
ss γγγ +=           (4.2) 

High dispersive component is usually observed for polymers while the polar contribution is 

associated with the presence of polar groups on the surface. As shown in Table 4.3, the 

total surface energy (35.6 mN/m) determined by the OWRK method was higher for 

modified membranes than for untreated material (29.0 mN/m). The value of the polar 

component for unmodified chitosan was particularly low (0.22 mN/m), thus confirming 
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reported results for chitosan 7, 49. As it was expected, the introduction of the polar 

phosphonic groups resulted in drastic increase in 
p
sγ  (8.3 mN/m). 

 

Table 4.3 Surface Energy and its components calculated by OWRK and AB methods 

OWRK method AB method  

Sample 
sγ  

(mN/m) 

d
sγ  

(mN/m)

p
sγ  

(mN/m)

sγ  
(mN/m)

LW
sγ  

(mN/m)

+
sγ  

(mN/m) 

−
sγ  

(mN/m) 

CTS 29.0±0.0 28.8±0.0 0.22±0.0 28.0±0.0 28.8±0.0 0.0±0.0 0.91±0.3

CTS-VPA 35.6±0.1 27.3±0.0 8.3±0.1 33.5±0.1 33.5±0.0 0.0±0.0 32.7±2.0

 

In turn, according to vOCG theory, the surface energy can be calculated as a combination 

of dispersive and Lewis acid-base contributions: 
AB
S

LW
SS γγγ +=          (4.3) 

where 
LW
Sγ  is the surface energy corresponding to Lifshitz-van der Waals forces and 

AB
Sγ  

describes the contribution of the acid-base interaction to the surface energy:  

( ) 2
1

2 +− ⋅⋅= SS
AB
S γγγ          (4.4) 

where 
−
Sγ  and

+
Sγ  represent respectively the electron donor (Lewis base) and the electron 

acceptor (Lewis acid) contributions or, more specifically, the particular sub-set of Lewis 

acid-base interactions known as hydrogen bonding. 

The results obtained from the vOCG method are in accordance with the results obtained 

in our previous study where chitosan was functionalized with sulfonic and carboxyl groups 
7. Both, untreated and modified samples presented a monopolar character with acid 

component being zero (Table 4.3). The basic component was strongly affected by the 

incorporation of phosphonic groups at the surfaces, increasing from 0.91 mN/m for 

chitosan to 32.7 mN/m for PVPA grafted sample. We used the scale proposed by Della 

Volpe and Sibone (DVB) 28, who assumed a ratio for the reference water acid-base 

components that better describes the different “strength” of water as Lewis acid and base. 

By using this scale, Della Volpe and Sibone calculated the acid-base coefficients for a 

wide set of materials, obtaining coefficients that described correctly the chemical 

properties commonly expected for all tested materials. Thus, the DVB scale corrects the 

artifact introduced by the former vOCG scale that uses equal acid-base components for 

water and generates values in which all surfaces seemed to be strongly basic. This 

tendency has been observed even for polymer surfaces that should present pronounced 
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Lewis acid character according to the general chemical sense 28. For this reason, we were 

surprised to found that, according to the calculated acid-base components, unmodified 

chitosan membranes presented only hydrogen bond acceptor character. This is an odd 

result, since hydroxyl groups can act as both hydrogen bond donor (electron acceptor) 

and acceptor (electron donor). 

 

4.4.4 Cell behavior 

 

The influence of the surface modification on the biocompatibility of the studied materials 

was evaluated in vitro by osteoblast cell line (SaOs-2). We have observed by SEM a 

significant change of SaOs-2 morphology after the performed PVPA grafting (Figure 4.6).  

 

 
Figure 4.6 SEM micrographs of SaOs-2 cultured on chitosan (left) and PVPA (right) 

membranes during 1, 7 and 14 days (from up to down). 

 
While SaOs-2 cultured on untreated membranes presented a rather round shape and low 

adhesion during all studied period, cells seeded on grafted membranes showed spread 
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morphology and higher number of cells attached to the surface. After one day of culture, a 

considerable number of adhered spread cells were observed on modified materials. In the 

following days the cells formed a homogeneous layer covering the entire surface. In 

agreement with our results, for instance Lim et al. 47 reported that cytoskeletal features 

between osteoblastic cells cultured on hydrophilic and hydrophobic materials are notable 

different. Cells on hydrophilic materials presented distinct, large plaques of integrins (αv 

and β3 subunits) co-localized with actin stress fibers whereas there was much less 

development of such adhesion structures on hydrophobic surfaces. 

SaOs-2 cultured on chitosan membranes (τ=-10.8 mN/m) formed clump-like structures 

which grown in size and number with the culture time. Similar behavior has been recently 

reported for human foetal osteoblastic cells and three different osteoblast-like cell lines on 

hydrophobic substrates 46. Although the number of viable cells as indicated by Calcein AM 

stained increased with the culture time for both materials, the few viable cells (Figure 4.7) 

adhered on chitosan membranes did not present the typical osteoblast-like morphology, 

being round sparsely distributed and forming clump-like structures. On the contrary, the 

modified samples were covered by a homogeneous layer of viable cells. 

 

100μm100μm100μm100μm

200μm200μm200μm200μm
 

Figure 4.7 Calcein AM staining of SaOs-2 cultured for 7 days on chitosan ( up) and PVPA 

(down) substrates. 

 

MTS assay (Figure 4.8) showed a higher number of viable cells on PVPA grafted 

substrates. This difference became more evident with the increase of the culture time, 

indicating that the modification process have a positive effect on the long-term material 

response. 
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Figure 4.8 Cell viability (by MTS assay) of SaOs-2 cultured on unmodified and PVPA 

grafted membranes.* Significantly different (ANOVA test, p<0.05). 

 

The same tendency was observed for cell proliferation (Figure 4.9). In fact, after 1 day of 

culture, the number of cells for PVPA grafted substrates was significantly higher than in 

chitosan membranes and this tendency was kept along all studied time periods. 

Therefore, it can be concluded that grafting process of PVPA on chitosan membranes’ 

surface improved the osteoblast-like cells attachment, spreading, viability and 

proliferation. 
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Figure 4.9 DNA concentration corresponding to SaOs-2 cultures in direct contact with 

CTS and PVPA substrates. * Significantly different (ANOVA test, p<0.05). 

 

Whitesides and co-workers examined a group of around 60 mixed self-assembled 

monolayers (SAMs) suggesting that functional groups that made the surfaces inert had 

four common features: they were (i) hydrophilic, (ii) hydrogen bond acceptors, (iii) not 

hydrogen bond donors, and (iv) overall electrically neutral 50. However, a few exceptions 

were found to this general rule; oligo(ethylene glycol) (OEG), mannitol (sugar alcohol) and 

maltose (disaccharide) surfaces have many hydrogen bond donors and also resisted 
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protein adsorption and cell adhesion 50-52. Interestingly, mannitol-presenting surface was 

able to resist much longer than OEG to cell adhesion on patterned surfaces 51. Although 

cell adhesion and proliferation is very limited on chitosan membranes, they are not fully 

inert because they do not inhibit those processes completely. Nevertheless, the lack of 

cell adhesion on monosaccharide-based model SAM surfaces can give us some cues for 

the limited ability of neutral polysaccharides such as chitosan to sustain mammalian cells 

growth. Moreover, the isoelectric point of chitosan membranes is around the physiological 

and culture pH (7.4) (overall electrically neutral). Therefore, these membranes should 

present physicochemical properties similar to other inert surfaces. Chitosan has many 

hydroxyl groups that should be able to perform both as hydrogen bond donor and 

acceptor, which would include chitosan within the few exceptions to the general rule 

stated before 50. Nevertheless, the unexpected null value for the surface energy acid 

component (hydrogen bond donor) of unmodified chitosan membranes should mean that 

chitosan membranes’ surface mainly performs as a hydrogen bond acceptor. Perhaps, 

this is more than a coincidence, but extending the discussion beyond would be premature 

and too speculative at the moment. Finally, the cell adhesion on the treated membranes 

can be explained by the negatively charged nature of the grafted polymer 50 which is 

expected to be ionized at the physiological pH. 

 

4.5 Conclusions 

 

Surface chemistry characterization by XPS and ToF-SIMS indicated that chitosan 

membranes could be successfully grafted with poly-(phosphonic acid) by plasma induce 

polymerization. The modification induces changes in the surface topography at the 

nanoscale associated to the etching process during the plasma activation step. We found 

that grafting of negatively charged groups such as phosphonic groups induced remarkably 

different osteoblast-like cells (SaOs-2) response in terms of attachment, spreading, 

viability and proliferation. Unmodified chitosan membranes presented very limited cell 

adhesion and the formation of sparsely located clump-like structures occurred for longer 

culture time periods. The physicochemical features of chitosan that grant its partial 

resistance to cell adhesion might be related with the inertness reported for other neutral 

saccharide-based surfaces. The plasma induced polymerization is very simple and 

versatile method and it was shown to be an effective grafting methodology to render a 

relatively inert polysaccharide the suitable surface properties for cell adhesion of 

proliferation. 
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Figure 4.SI1 XPS Survey spectra of non-treated and PVPA grafted materials. 

 

Table 4.SI1 Chemical composition in atomic percentage of native and PVPA grafted 

chitosan membranes determined by XPS 

Material C1s (at%) O1s (at%) N1s (at%) Si1s (at%) P2p (at%) 

CTS 63.2 27.3 5.1 4.3 0.0 

CTS-VPA 56.5 32.1 6.8 2.6 2.0 

 

 

 
Figure 4.SI2 AFM images of chitosan (left) and PVPA grafted (right) membranes. 
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Chapter 5 

Plasma-induced polymerization as a tool for surface 
functionalization of polymer scaffolds for bone tissue 
engineering: an in vitro study  
 

5.1 Abstract  

 

A commonly applied strategy in tissue engineering (TE) field is the use of temporary three 

dimensional scaffolds for supporting and guiding tissue formation in various in vitro 

strategies and in vivo regeneration approaches. The interactions of these scaffolds with 

the highly sensitive bioentities such as living cells and tissues primary occur through the 

material surface. Hence, surface chemistry and topological features have the principal role 

in coordinating biological events at molecular, cellular and tissue levels on time scales 

ranging from seconds to weeks. However, tailoring the surface properties of scaffolds with 

complex shape and architecture remains a challenge in the materials science. Commonly 

applied wet chemical treatments often involve the use of toxic solvents whose oddments 

in the construct could be fatal in the subsequent application. Aiming to shorten the culture 

time in vitro (i.e. prior the implantation of the construct), in this work we propose a 

modification of previously described bone TE scaffolds made from a blend of starch with 

polycaprolactone (SPCL). The modification method involves surface grafting of sulfonic or 

phosphonic groups via plasma-induced polymerization of vinyl sulfonic and vinyl 

phosphonic acid, respectively. We demonstrate herein that the presence of these anionic 

functional groups can modulate cell adhesion mediated through the adsorbed proteins 

(from the culture medium). At the studied conditions, both vitronectin adsorption and 

osteoblasts proliferation and viability increase in the following order SPCL<< sulfonic 

grafted SPCL< phosphonic grafted SPCL. The results revealed that plasma induced 

polymerization is an excellent alternative route, when compared to the commonly used 

wet chemical treatments, for the surface functionalization of biodevices with complex 

shape and porosity. 

 

 

This chapter is based on the following publication: 
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5.2 Introduction 

 

Tissue engineering (TE) emerged as an interdisciplinary field confronting the 

transplantation crisis caused by the shortage of donor tissues and organs. Since its 

inception, scaffolds composed of synthetic and natural polymers have been key elements 

of different TE approaches 1. The use of an appropriate template to provide physical 

support and a local environment for cells and hence to enable and facilitate tissue 

development is an essential issue for a successful regeneration strategy. Nowadays, it is 

well accepted 2-4 that the ideal scaffold for bone TE must possess adequate porosity, 

resulting in interconnected and permeable structure which allows the ingress of nutrients 

and cells. It is also believed that proper mechanical and physical properties, controlled 

biodegradability, biocompatibility, and ability to promote cellular interactions and tissue 

development are other main requirements for TE scaffolds 2, 5-8. Last but not least, cells 

and surrounding tissues interact with any external devise primarily through the surface 

and therefore, properties as surface chemistry and topography are also key determinants 

for the material-bioentities crosstalk. 

Starch based polymers have been studied as valuable materials for several biomedical 

applications 4, 9. Their biocompatibility and non-cytotoxicity has been confirmed by both in 

vitro 4, 10-12 and in vivo 13 assays. In this work, we have chosen fiber mesh scaffolds made 

from a blend of starch and ε-polycaprolactone (SPCL) which have been already proposed 

for bone tissue engineering 4, 8, 10, 11. Previous works have been targeting their optimisation 

in terms of degradability 7-9, porosity 4 and mechanical properties 9, 14 but so far there are 

just few studies focused on their surface properties 15 and the possibility to improve them 
12, 16. Herein, we propose plasma-induced polymerization as a way to render an 

appropriate surface for enhancing cell adhesion and speed up cell proliferation which will 

shorten the culture time in vitro, i.e. prior the implantation. Previously, we have 

demonstrated 17, 18 that this method is a very effective way for grafting of vinyl polymers on 

2D, regular structures without modifying the bulk properties of the material. In this study, 

we are further reporting the effectiveness of this method for functionalization of 3D 

structures with complex shape with the negatively charged sulfonic and phosphonic 

groups and the influence of these groups on osteoblast cells behavior in vitro. 

Anionic scaffolds have  been investigated because of their capability to facilitate 

morphogenetic processes for tissue engineering substitutes 19, 20. For example, the 

negative charge of glucosaminoglycans (GAGs) is associated with their bioactivity. GAGs 

interact with the positively charged amino groups of extracellular proteins and these 

interactions determine cell-matrix adhesion. Recent studies with sulfated derived materials 
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indicate enhanced  adhesion and proliferation of osteoblast-like cells as a result of sulfate 

groups presence 18, 21. On the other hand, the introduction of phosphate groups have been 

also proposed as an attractive modification strategy when bone tissue engineering 

applications are being targeted 17, 22-24. The rationale for the use of this functionality stems 

from mimicry of bone promoting-proteins and mineral bone matrix. Phosphate rich 

proteins are known to initiate nucleation of bone and tooth mineralized matrix. It is also 

reported that many bone promoting proteins naturally interact with acidic polymers 25. 

 

5.3 Materials and methods 

 

5.3.1 Materials 

 

In this work, we used a commercially available blend (Mater-Bi ZI01U, Novamont, Italy) 

composed of thermoplastic starch and poly(ε-polycaprolactone) (SPCL, 30/70 wt%) 26, 27. 

The material was supplied in a granular form and processed by melt spun into fibers. Vinyl 

phosphonic acid (VPA) and vinyl sulfonic acid (VSA) were purchased from Sigma-Aldrich 

and used without further purification. 

 

5.3.2 SPCL meshes production and modification 

 

Fibers of SPCL were produced by melt spinning using a modular co-rotating twin screw 

extruder (Leistritz AG-LSM 36/25D, Germany), at a screw speed of 3 rpm and a 

temperature profile in the barrel (from feed to die zones) between 60 and 130 °C. The 

average output rate was 0.3 kg/h. Upon extrusion through the die, the filament was spun 

in two consecutive steps to a final draw ratio of approximately 1:100. The cooling of the 

filament was performed in air (average temperature of 17 °C). Melt spun fibers presented 

a diameter in the 105-345 µm range and a mean fiber diameter of 213 ± 50 µm. The fibers 

were cut into 0.5 mm length segments and used in the production of fiber mesh scaffolds 

by a custom-designed mould. Fiber bundles were randomly displaced into the mould 

cavities and subjected to thermal treatment at 60 °C for 30 minutes before predefined 

compression levels along the Z-axis were applied for assuring the bonding between 

neighboring fibers using a final compression ratio of 22 %. Upon demoulding, scaffolds 

with dimensions 2.2 ± 0.2 mm thickness and 6mm diameter were obtained. Their porosity 
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was measured by micro computed tomography (μCT) and the obtained averaged value 

was 64.4 ± 4.4 % (Figure 5.1). 

 

 
 

Figure 5.1 Micro computed tomography image from SPCL fiber mesh scaffold. 

 

SPCL meshes were further modified by plasma-induced polymerization. Scaffolds were 

placed in a radio frequency (13.56 MHz) plasma reactor (Plasma Prep5, Gala Instrument, 

Germany) and exposed to O2 plasma at 30 W of power for 15 minutes. During the 

treatment the pressure inside the reactor was maintained below 20 Pa by adjusting the 

gas flow. The activated meshes with free radicals formed on the surface were 

subsequently immersed in a degassed solution of vinyl phosphonic (VPA, 100 mM in 2-

propanol) or vinyl sulfonic acid (VSA, 10 v/v% aqueous solution) at ratio 2 ml/scaffold. The 

reaction was carried out at room temperature for 2 hours under stirring. The scaffolds 

were thoroughly washed with the solvent used for the reaction in order to remove the 

unreacted monomer and at the end, the modified samples were dried at room 

temperature. 

 

5.3.3 Surface chemical composition 

 

Surface elemental analysis of untreated and modified samples was performed by X-Ray 

Photoelectronspectroscopy (XPS). The spectra were obtained using an ESCALAB 200A 

instrument from VG Scientific (UK) with PISCES software for data acquisition and 

analysis. The spectrophotometer was calibrated with reference to Ag 3d5/2 (368.27 eV). 

Monochromatic Al-Kα radiation (hν = 1486.60 eV) operating at 15 kV (300 W) was used 

and the measurements were performed at take off angle of 90 ° relative to the samples 

surface and a constant Analyser Energy mode (CAE). Survey spectra were acquire using 
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a pass energy of 50 eV over a binding energy range of 0 to 1100 eV, and were used to 

calculate the elemental composition of the surfaces. High resolution spectra for different 

regions were obtained using a pass energy of 20 eV. The peaks were fitted using a least-

squares peak analysis software, XPSPEAK version 4.1 and the Gaussian/Lorenzian sum 

function. Background counts were subtracted using a linear baseline and the sample 

charging was corrected assigning a binding energy of 285.0 eV to the saturated 

hydrocarbons C1s peak. 

 

5.3.4 Surface topography 

 

The topography of the samples was characterized by Optical profiler analysis using an 

Interferometric profiler Wyko-NT 1100 (Veeco) operating in Vertical Scanning 

Interferometry (VSI) mode. The images were processed and analyzed with the analytical 

software package WycoVision®32. 

 

5.3.5 Protein adsorption 

 

The effect of the surface treatments on protein adsorption was analyzed by fluorescent 

immunolabeling. Two adhesion proteins were studied: fibronectin (Fn) because it is 

commonly used in a standard procedures applied to improve adhesion of cells and 

Vitronectin (Vn) because of its influence on cell spreading and migration. Unmodified and 

grafted SPCL scaffolds were incubated for 1 hour at the same conditions used for in vitro 

cell culture, i.e. complex protein solution composed of 10 v/v% heat-inactivated fetal 

bovine serum (FBS; Biochrom AG, Germany) in Dulbecoo’s modified Eagle’s medium 

(DMEM; Sigma-Aldrich, Inc, USA). Samples immersed in Phosphate Buffered Saline 

solution (PBS; Sigma-Aldrich, Inc, USA), were used as blanks. After the incubation time 

was over, the samples were washed with PBS and incubated at room temperature for 1 

hour with primary antibody mouse anti-cow Vn (Santa Cruz, USA) or mouse anti-cow Fn 

(Santa Cruz, USA). Both primary antibodies were diluted at ratio 1:50 (v/v) in 1% (w/v) 

Bovine Serum Albumin (BSA, Sigma-Aldich, USA) solution in PBS. All samples were 

again washed and incubated for 1 hour at room temperature with goat anti-mouse Alexa 

Fluor 488 IgG (H+L) secondary antibody (Invitrogen, USA). Labeled samples were 

analyzed by an Olimpus IX81 Confocal Laser Scanning Microscope (CLSM). 
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5.3.6 Cell culture conditions and seeding 

 

A human osteosarcoma cell line (SaOs-2), an immortalized cell line with an osteoblastic 

phenotype, was obtained from European Collection of Cell Cultures (ECACC, UK) and 

was used in the cell culture studies. The cells were cultured in DMEM supplemented with 

10000 U/ml penicillin-G sodium, 10000 µg/ml streptomycin sulfate and 25 µg/ml 

amphotericin B in a 0.85 % saline (Gibco, Invitrogen Corporation, UK) and 10 % of FBS in 

a humidified atmosphere with 5 % of CO2. A suspension of 2 × 105 cells was added to 

each scaffold. The scaffolds were incubated for 3, 7 and 14 days under standard culture 

conditions (37 °C, 5 % CO2, humidified atmosphere). 

The morphology of SaOs-2 cells was observed by Scanning Electron Microscopy (S360, 

Leica Cambridge, UK). Cells were fixed using 2.5 % (v/v) glutaraldehyde (Sigma, USA) 

solution in PBS. Prior the analysis, the samples were dehydrated by graded ethanol 

solutions. 

Cell viability was analyzed by MTS assay. The cultured materials were incubated (3hrs, 

37ºC, humidified atmosphere of 5 % CO2) with 500 μl of MTS solution in DMEM culture 

medium without phenol red (Sigma-Aldrich, Inc, USA). Optical Density (OD) was read in a 

microplate reader (Bio-Tek, USA) at 490 nm. 

DNA quantification was used to evaluate cell proliferation. Cells were lysed by osmotic 

and thermal shock and the obtained supernatant was used for DNA analysis. DNA content 

along the time of culture was determined using the PicoGreen dsDNA kit 

(MolecularProbes) and the fluorescence was read (485 nm/528 nm of excitation/emission) 

in a microplate reader. The DNA amounts were calculated from a standard curve. 

Triplicates were analyzed at each time point for both assays (MTS and DNA). Statistical 

analysis was performed and the data are reported as mean ± standard deviation. ANOVA 

test for independent samples were performed and the differences were considered 

statistically significant if p < 0.05. 

 

5.4 Results and discussion 

 

Surface design of biomedical devices applied in direct contact with the body is crucial for 

their acceptance or rejection from the surrounding tissues. The modification of the surface 

chemistry and/or topography is a way to improve the biological performance of a 

biomaterial without changing its bulk properties. One of the most versatile and effective 

tools to tailor surface chemistry and properties of solids is the polymer grafting. In contrast 

to physical coating, grafting has several advantages such as covalent attachment of graft 
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chains onto a polymer surface which avoids their delamination and assures long term 

stability of introduced functionalities. Several approaches have been proposed for surface 

grafting on 2D structures, but not all of those are viable for complex 3D architectures. The 

hypothesis checked out in this study is the application of plasma induced polymerization 

for grafting of phosphonic and sulfonic groups on SPCL fiber mesh scaffolds. 

 

5.4.1 Surface chemistry 

 

The success of the applied treatment was primary checked out by surface elemental 

analysis. XPS survey spectra were used to assess the surface elemental composition (at 

%) of untreated and modified SPCL scaffolds. Two main elements, C and O, were present 

on the surface of untreated samples. The found ratio between them was similar to the 

theoretically calculated one for PCL (Table 5.1). This result indicates that the synthetic 

component is predominant on the surface of the sample and it is in agreement with 

previously reported results for SPCL materials 12, 15. 

 

Table 5.1 Elemental composition of untreated and modified SPCL fiber meshes 

determined by XPS 

Material C1s (at%) O1s (at%) P2p (at%) S2p (at%) C:O ratio 

Starch (theoretical) 50.0 50.0 - - 1.0 

PCL (theoretical) 75.0 25.0 - - 3.0 

SPCL (theoretical) 67.4 32.6 - - 2.1 

SPCL meshes 75.1 24.9 - - 3.0 

VSA grafted SPCL  67.8 32.0 - 0.2 2.1 

VPA grafted SPCL 51.1 44.3 4.6 - 1.1 

 

Plasma-induced polymerization resulted in higher oxygen content. Additionally, new peaks 

appear in the spectrum of the vinyl phosphonic acid (VPA) grafted sample corresponding 

to P2p (128.5 eV) and P2s (185.5 eV), confirming the introduction of phosphonic groups. 

We have calculated the presence of phosphorous on the surface from P2p transition and 

a concentration of 4.6 %at was found (Table 5.1). The presence of sulfur peak (0.2 %at) in 

XPS spectrum of the sample treated with vinyl sulfonic acid (VSA), confirms the success 
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of the grafting process with this monomer although with a lower efficiency than the VPA 

grafting. Some impurities (Si, N, Na, Sn and Cu) appear in the surface spectra of some 

samples, usually at very low concentration, and were excluded from the calculations of the 

elemental analysis (at %) showed in Table 5.1. 

C1s, O1s, P2p and S2p core level spectra of untreated and grafted materials were 

analyzed in order to obtain additional details about the surface chemical composition. 

Figure 5.2a shows the binding energy region corresponding to C1s peak (279.8-291.9 eV) 

for SPCL sample. The peak-fitting was performed taking into consideration both PCL and 

starch chemical structures (Figure 5.3). 
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Figure 5.2 XPS core level spectra of untreated and grafted samples in the regions of C1s 

(left) and O1s (right). 
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Figure 5.3 Chemical structures of the components of the blend. 
 

The peak at 285.0 eV was assigned to C-H/C-C chemical bonds of the starch backbone 

and C-C chain from PCL. The signal centered at 286.3 eV corresponds to hydroxyl 

bonded carbons (C-OH) from starch and the ester bonded carbons (C-O) from PCL. The 

peak observed at 288.9 eV was assigned to O-C-O bonds from starch and the C=O bond 

from the synthetic component 28. C1s spectrum of VPA grafted samples (Figure 5.2b) did 

not reveal significant changes when compared with untreated SPCL scaffolds. The 

expected binding energy of C-P is around 286-286.4 eV 29, 30 and therefore the C1s peak 

correspondent to C-PO3 is probably overlapped by the C-OH/C-O peak. For VSA grafted 

samples, a new peak was detected at 287.9 eV and it assigned to C-S bonds from 

sulfonic acid (Figure 5.2c). To our knowledge there are only few work focused on the 

chemical shift of C-S and there is not agreement in the reported values 31-33. Two peaks 

were identified in the high resolution O1s spectrum of SPCL scaffolds (Figure 5.2d). The 

peak at 532.3 eV was assigned to C=O bonds from PCL 29, 33 and the peak at 533.6 eV to 

C-OH/O-C-O from starch and C-O-C from both synthetic and natural components of the 

blend 33. After VPA grafting (Figure 5.2e), additional peak at 531.0 eV appears in the O1s 

spectrum which was attributed to the P=O group. The second peak at 532.0 eV was 

assigned to the C=O and the last peak at 533.4 eV corresponds to C-O-/C-OH/C-O-C and 

the P-OH groups for which binding energies between 533.0 eV and 533.6 eV have been 

reported 29, 30, 34. The O1s core level spectra of VSA grafted samples (Figure 5.2f), showed 

a new additional peak compared to the untreated SPCL scaffolds. This peak is allocated 

at 531.1 eV and it was assigned to O=S bonds 31, 32. The P2p signal which appears in the 

spectrum of VPA grafted fiber meshes is a non-resolved doublet with 2p1/2 and 2p3/2 

core levels. The peak is allocated at 133.6 eV and present a full width at half-maximum 

(FWHM) of 2.1eV 29, 34 (graph not shown). 
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5.4.2 Surface topography 

 

When a polymer surface is treated by plasma, together with surface functionalization, 

surface degradation or etching may also occur 35. Hence, chemical surface modification is 

usually associated with changes of surface topography/morphology. Consequently, the 

protein and cell interactions with the material may be also modified. An optical profiler 

analyze was performed to evaluate the eventual topographical changes on the surface of 

the fibers as a result of the applied treatment. As it can be seen in Figure 5.4, no 

significant changes were detected on the fiber surfaces after the performed modification.  
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Figure 5.4 Optical profile images: From left to right untreated SPCL, VSA grafted and 

VPA grafted scaffolds. 

 

Although the roughness calculated from 107X magnification images seems to increase in 

absolute value after the plasma treatment (Table 5.2), it must be noticed that this 

tendency is not enough evident because of the difference in the roughness between the 

fibers in the same scaffold. 

 

Table 5.2 Values for the roughness, calculated from the optical profiler images (107X 

magnification) 

 SPCL VSA grafted SPCL VPA grafted SPCL 

Ra /nm 219.0 ± 22.7 245.1 ±  16.0 255.1 ± 14.0 

Rq /nm 283.7 ± 34.6 308.3 ± 11.7 335.6  ± 20.5 

 

5.4.3 In vitro biological evaluation 

 

When a biomaterial is brought in a contact with a physiological milieu, it is very unlikely 

that cells will make a direct contact with its surface. The very first event either in vivo or in 

vitro is the protein adsorption from blood or serum to the material surface. The surface 



Chartper 5 – Surface functionalization of SPCL scaffolds 

115 

properties set the characteristics of the adsorbed protein layer and the nature of the 

established protein-surface interactions will modulate cell adhesion and consequently cell 

biochemical mechanisms via interactions with cell-surface molecules, such as integrins. 

Figure 5.5 demonstrates that Vn adsorbed on all (untreated and modified) SPCL 

scaffolds, whereas Fn was not detected on any of the studied materials. This result is no 

surprising and it is in an agreement with previously reported data for SPCL materials 

showing predominant adsorption of Vn versus Fn from complex protein solutions 12, 36. In 

fact, Vn is present at higher concentration than Fn in FBS. FBS for cell culture is prepared 

by clotting at 4 °C which can lead to a considerable depletion of Fn but not of Vn 37. 

Another process which is associated with the lower protein adsorption of Fn vs. Vn is the 

so-called Vroman effect 38 which involves inhibition of Fn adsorption from serum by the 

ability of other proteins to displace it from the surface. This effect has been observed for 

Fn when serum with concentration above 3 % is used 39. Because we have been working 

with 10 % FBS, the lack of Fn adsorption is an expectable result. On the other hand at this 

conditions, Vn can be adsorbed from the medium (Figure 5.5) and therefore to participate 

in the mediation of the following events such as cell adhesion, spreading and growth 40. 

Vn adsorption profile on untreated and modified materials showed that the fluorescence 

intensity for SPCL scaffolds increase after the modification with VSA and even more after 

VPA grafting. 

 
Figure 5.5 Confocal Laser Scanning Microscopy photographs of non-modified and grafted 

scaffolds stained for Fn and Vn. 
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These results indicate that the surface chemical composition significantly influences both 

the content of the adsorbed protein layer and the interactions between the material 

surface and the adsorbed proteins 41. Vn plays an essential role on bone-derive cells 

attachment and spatial distribution 42, 43. Hence, it is expected that the observed difference 

in Vn adsorption on untreated and modified scaffolds will change the behavior of those 

cells. Therefore, we tested osteoblast-like cells cultured in direct contact with the studied 

materials. Osteoblast cells in vitro have been shown to depend primarily on the adsorbed 

Vn or Fn for initial adhesion and spreading on materials 44. Therefore, the ability of 

materials to support cell adhesion and spreading is mainly determined by their capability 

to adsorb these proteins from serum in an active state.  

Figure 5.6 shows the SEM micrographs of SaOs-2 seeded on the surfaces of modified 

and untreated samples after 3, 7 and 14 days of culture. After 3 days of culture cells were 

able to attach and spread on all the surfaces, showing the typical morphology of 

osteoblast cells with polygonal shape. However, some differences were observed 

between the untreated SPCL and the grafted samples. While on modified scaffolds the 

cells were able to extend and to bridge between fibers, on untreated samples these 

bridges were not observed. Prolongation of the cultured periods to 1 and 2 weeks resulted 

in higher cell density, indicating the ability of SaOs-2 to proliferate in all the materials. At 

14 days of culture, SaOs-2 formed a complete monolayer covering all the fibers, as well 

as some of the contact junction between fibers. 

 

 

Figure 5.6 SEM microphotographs of SaOs-2 cultures on SPCL, VSA grafted and VPA 

grafted scaffolds (from left to right) after 3, 7 and 14 days of culture (from up to down). 
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Surface properties can induce not only morphological changes but they can also influence 

the metabolic activity of the cells. MTS was used to evaluate the effect of the grafted 

functional groups on the cell viability at different time points. MTS is an indirect test that 

determines cell mitochondrial activity which in turn can be related with the number of 

viable cells. For all studied materials, an increasing number of viable cells was detected 

with prolonged culture times. These results show the capability of both unmodified and 

treated scaffolds to support cell proliferation. However, Figure 5.7 demonstrates that the 

VPA grafting significantly increases the number of viable cells, when compared with 

untreated SPCL scaffolds, and this tendency was kept during the all studied period. The 

presence of phosphate functional groups also increases the cell viability compared with 

sulfonic groups grafted at the same conditions. 

 
Figure 5.7 Viability of SaOs-2, evaluated by MTS assay, cultured on untreated and 

grafted SPCL fiber meshes. * Significantly different (ANOVA test, p<0.05). 

 

DNA quantification was used to obtain more accurate quantitative results and to 

determine the cell proliferation profiles (Figure 5.8). DNA quantification confirmed the 

positive effect of the VSA and VPA grafting on the proliferation of SaOs-2. Once again the 

same order was kept: SPCL<VSA grafted SPCL< VPA grafted SPCL. 

 
Figure 5.8 DNA concentration corresponding to SaOs-2 cultured on non-modified and 

functionalized scaffolds. * Significantly different (ANOVA test, p<0.05). 
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5.5 Conclusions 

 

Plasma-induced polymerization is herein proposed as an effective method for 3D porous 

scaffolds functionalization. The results from the surface analyses confirmed that using this 

method we were successful in grafting sulfonic or phosphonic groups on the materials 

with complex shape without to change the surface morphology and topography. Although 

this method can be extended to different materials and monomers, it must be noticed that 

its efficiency is dependent on the used monomer: we have found that the reaction was 

more efficient for VPA with 4.6 %at of P measured on the surface, whereas only 0.2 %at 

of S was registered in the surface composition of VSA grafted surfaces. The introduced 

functional groups modulate the protein adsorption from serum as indicated by the confocal 

microscopy analysis. In this study, we have observed that Vn adsorption is favored on 

both modified samples compared with untreated SPCL scaffolds. Moreover, comparing 

treated samples between them, VPA grafted samples presented a higher quantities of 

adsorbed Vn compared with VSA grafted ones. Vn adsorption profiles were correlated 

with cell adhesion and proliferation studies; materials with higher Vn adsorption presented 

higher cell adhesion and proliferation. We further found that grafting of negatively charged 

units such as sulfonic and phosphonic groups induced remarkably different osteoblast-like 

cells (SaOs-2) response in terms of adhesion and proliferation: VPA grafted samples 

showed the highest cell adhesion and proliferation. 

Overall, the results from this study further testify the potential of surface grafting of 

functional groups by plasma-induced polymerization in the context of bone tissue 

engineering. 
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Chapter 6 

Hydrophobic-electrostatic balance driving the LCST offset 
aggregation-redissolution behavior of N-alkylacrylamide based 
ionic terpolymers 
 

6.1 Abstract  

CPTLCST
 Lower polymer hydrophobicity

(higher NIPAAm content)

Increasing polymer hydrophobicity
(higher NTBAAm content)

 
A series of random terpolymers composed of N-isopropylacrylamide (NIPAAm), 2-

acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N-tert-butylacrylamide 

(NTBAAm) monomers were synthesized by free radical polymerization. The molar fraction 

of the negatively charged monomer (AMPS) was maintained constant (0.05) for all studied 

terpolymer compositions. Turbidity measurements were used to evaluate the influence of 

the relative amount of NIPAAm and NTBAAm, polymer concentration, and solution ionic 

strength on the cloud point and redissolution temperatures (macroscopic phase 

separation). Dynamic light scattering (DLS) was employed to elucidate some aspects 

regarding the molecular scale mechanism of the temperature-induced phase separation 

and to determine the low critical solution temperature (LCST). The aqueous solutions of 

terpolymers remained clear at all studied temperatures; turbidity was only observed in the 

presence of NaCl. The cloud point temperature (CPT) determined by turbidimetry was 

found to be systematically much higher than the LCST determined by DLS; nanosized 

aggregates were observed at temperatures between the LCST and the CPT. Both CPT 

and LCST decreased when increasing the molar ratio of NTBAAm (increased 

hydrophobicity). It was found that above a critical molar fraction of NTBAAm (0.25-0.30) 

the aggregation rate suddenly decreased. Polymers with NTBAAm content lower than 

0.25 showed a fast macroscopic phase separation, but the formed large aggregates are 

disaggregating during the cooling ramp at temperatures still higher than the LCST. On the 

contrary, polymers with NTBAAm contents above 0.30 showed a slow macroscopic phase 
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separation and the formed large aggregates only redissolved when LCST was reached. 

These differences were explained on the basis of a delicate balance between the 

electrostatic repulsion and the hydrophobic attractive forces, which contribute 

cooperatively to the formation of metastable nanosized aggregates. 
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6.2 Introduction 

 

Several polymers that are soluble in a certain solvent at low temperature undergo phase 

separation above a critical temperature value known as lower critical solution temperature 

(LCST). At the macroscopic level the phenomenon is similar for all polymer solutions that 

present LCST; a clear solution becomes “milky” upon heating (cloud point). Polymers 

showing this behavior in aqueous solution, such as poly(N-isopropylacrylamide) 

(pNIPAAm) and other N-substituted acrylamide polymers, had been extensively studied 1-7 

because of their theoretical significance and technological potential. It has been shown 

that isolated pNIPAAm polymer chains undergo an abrupt conformational transition from 

expanded and flexible coil to an insoluble compact globule, as the temperature is raised 

above the Flory Θ-temperature 2-7, which is the theoretical limit between good and poor 

solvent regions. The coil-to-globule transition of these synthetic macromolecules provides 

a simple phenomenological model for many biological systems, such as protein folding, 

native DNA packing, and network collapse 8. For example, (i) the molten globule state of 

proteins has been also observed for single pNIPAAm chains 3; (ii) when copolymerized 

with small amounts of acrylic acid, collapsed polymer chains form thermodynamically 

stable interchain aggregates stabilized by surface charge 9, resembling protein quaternary 

structure; (iii) the ability of salts to influence pNIPAAm LCST follows the same trend 

recurrently found for the precipitation of proteins (salting out), known as the Hofmeister 

series 10. From the technological point of view, these polymers have been proposed for 

applications such as pulsatile drug delivery systems 11, polymer supports in catalysis and 

synthesis 12, biomolecule affinity separation 13, nondestructive harvesting in mammalian 

cell culture 14, 15, just to enumerate a few.  

In terms of polymer-solvent interactions, the coil-to-globule transition involves combined 

hydrophobic hydration and hydrogen bonding effects. During phase separation, hydrogen 

bonds between water molecules and polymer amide groups are disrupted and replaced by 

intramolecular hydrogen bonds among the dehydrated amide groups 16, 17. If the polymer 

concentration is not exceptionally low, intrachain condensation is readily followed by 

aggregation and coalescence of the collapsing globules, prompted by hydrophobic 

interactions and interchain hydrogen bonding 4-7, 16. The intrachain coil-to-globule 

transition and the interchain aggregation are two independent, but competing, processes 
4-7, 9. Except on extremely diluted solutions, where interactions between different polymer 

chains are kept at insignificant levels 3-7, both processes occur concomitantly in most 

practical situations.  
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N-Alkyl-substituted polyacrylamides are a class of homopolymers that combine 

simultaneously in the same monomer hydrophilic amide groups able to form hydrogen 

bonds with the hydration water and hydrophobic N-alkyl groups, forcing hydration water to 

assume a more organized structure 18. Thus, it is not surprising that the behavior of a N-

substituted acrylamide homopolymer in solution depends markedly on the N-substituent 

nature. Whereas the N-isopropyl-substituted acrylamide phase separation appears at 

around 32 ºC 4-7, more hydrophobic substituents lower the LCST and more hydrophilic 

ones increase the LCST 1. Moreover, its copolymerization with more hydrophobic or 

hydrophilic monomers has the same effect on the LCST, providing a suitable route to fine-

tune the LCST, by just making polymers with subtle differences in the composition 1, 19-21. 

Interestingly, a LCST behavior was observed for nonionic copolymers of ”very 

hydrophobic” or “very hydrophilic” N-substituted polyacrylamides that produce either 

completely insoluble or completely soluble homopolymers, respectively 1. The LCST of 

these nonionic copolymers could be adjusted between the freezing and boiling points of 

the aqueous solutions by varying the composition 1. On the other hand, ionic copolymer 

gels of N-tert-butylacrylamide (NTBAAm) and 2-acrylamido-2-methyl-1-propanesulfonic 

acid (AMPS) presented a discontinuous phase separation only in a limited compositional 

range. When the amount of the negatively charged AMPS was increased over a certain 

limit, the repulsive electrostatic interactions avoided the sudden collapse of the polymer 

network, and consequently a continuous-type swelling was observed with the temperature 

increase 21.  

In this study, a series of ionic terpolymers of three different N-substituted acrylamide 

monomers (NIPAAm, NTBAAm, and AMPS) was synthesized, and the effect of NaCl and 

polymer concentrations in the solution behavior was evaluated. Our interest in ionic 

thermoresponsive polymers relies on their technological relevance because of their ability 

to form surfactant-free nanoparticles stabilized by surface charge above the LCST 9 or to 

interact with oppositely charged macromolecules, allowing for the construction of 

thermoresponsive polyelectrolyte complexes 22. AMPS was chosen to afford a negative 

charge to the terpolymers because it is a strong acid 23 (pKa=1.9) that dissociates 

completely in the pH range of most envisaged applications. An AMPS molar ratio of 0.05 

was chosen to ensure a sharp phase separation, since it is reasonably below the limit 

wherein p(AMPS-co-NTBAAm) gels lose their discontinuous phase separation behavior 21. 

Furthermore, the functional sulfonic group position in AMPS gives the terpolymers a 

continuous structural similarity along the polymer backbone, composed of isopropyl and 

tert-butyl side groups N-linked to inner amide groups. The sulfonic groups bound to some 

of the tert-butyl side groups are located on the periphery of the macromolecule (see 

Figure 6.1). This avoids the disruption of the continuity of the N-alkyl groups, which has 
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been referred in the literature to decrease hydrophobic aggregation force necessary for 

the cooperative chain collapse, thus decreasing phase separation sharpness 15, 24. All 

terpolymers were synthesized containing the same relative amount of AMPS, i.e., 

containing the same charge. In order to adjust the LCST, terpolymer hydrophobic content 

was varied by changing NTBAAm to NIPAAm monomer ratio.  

 

6.3 Materials and Methods 

 

N-Isopropylacrylamide (NIPAAm, Acros Organics) and 2,2’-azobis-isobutyronitrile (AIBN) 

(Fluka) were recrystallized from a n-hexane/diethyl ether (5:1) mixture and methanol, 

respectively. 2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N-tert-

butylacrylamide (NTBAAm) were both purchased from Sigma-Aldrich and used as 

received as all other materials. 

 

 

OHN OHN OHN

SO3
-Na+

a b c
 

Figure 6.1 poly(NIPAAm-co-NTBAAm-co-AMPS) chemical structure 

 

6.3.1 Copolymers synthesis and characterization 

 

Linear terpolymers p(NIPAAm-co-NTBAAm-co-AMPS) were synthesized by free-radical 

copolymerization using AIBN as initiator. The copolymers are designed as XX/YY/ZZ 

being XX, YY and ZZ the molar percentages of NIPAAm, NTBAAm, and AMPS in the 

reaction mixture, respectively. Monomers with a total concentration of 0.5 M were 

dissolved in an 50:50 isopropanol:water mixture and AIBN (1 mol % with respect to the 

total monomer) was added to the solution. After degasification of the reactants solution 

with nitrogen for about 15 min, the reaction vessel was sealed and placed in an oven at 60 

ºC for 16 h. The solution containing the obtained polymers was neutralized with NaOH, 

dialyzed against distilled water using dialysis tubes with a cutoff molecular weight of 3500 

Da, and freeze-dried. 

Terpolymers composition was analyzed by Elemental analyses (Leco CHNS-932) and 1H 

NMR using CDCl3 as solvent (Varian Inova 300). Molecular weight and polydispersity 

were determined by gel permeation chromatography (GPC) using 0.1% (w/v) LiBr solution 
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in DMF as eluent at a flow rate of 0.3 mL min-1 at 70 ºC and narrow disperse poly(ethylene 

glycol) (PEG) as calibration standards. 

 

6.3.2 Turbidity measurements 

 

The cloud point temperature (CPT) of the polymer solutions was measured in a Varian-

Cary 3 UV/vis spectrophotometer, equipped with a Peltier cell holder for temperature 

control. The turbidity of the solutions was monitored as a function of temperature at 400 

nm and under magnetic stirring. Solutions were prepared using distilled water with varying 

NaCl concentrations. These solutions were expected to be roughly neutral because AMPS 

is a fairly strong acid and the terpolymers had been previously converted in the salt form. 

Solutions were frozen at -20 ºC to ensure complete dissolution. Immediately after melting, 

solutions were placed in a cuvette, and heating scans were performed between 15 and 80 

ºC at a scanning rate of 1 ºC/min. The first measured point at 15 ºC was used as blank 

which corresponds to the clear polymer solution. The transmittance of the polymer 

solution at different concentration and ionic strength (adjusted with NaCl) was monitored 

as a function of temperature. Cooling scans were performed between 80 and 5 ºC 

immediately after heating at the same rate. The aggregation kinetic isotherms were 

evaluated for an aqueous solution of 60/35/5 (1 g/L) in NaCl (0.154 M). Solutions were 

frozen before each temperature measurement, and blank was record at 15 ºC, as for the 

temperature scanning experiments. Afterwards, the solutions were rapidly heated to set 

temperature values near and above the CPT, and transmittance was recorded as a 

function of time. 

 

6.3.3 Dynamic Light Scattering (DLS) 

 

Dynamic light scattering was performed using a Zetasizer NanoZS Instrument (ZEN3600, 

Malvern Instruments, Worcestershire, UK) equipped with a 4 mW He-Ne laser (λ0=633 

nm) and with noninvasive backscattering (NIBS) detection at a scattering angle of 173º. 

Owing to this configuration, the equipment can decrease the scattered light path length 

through the sample by adjusting automatically the measuring position, hence reducing 

multiple scattering for larger particle size, i.e., opaque samples. This is especially useful in 

colloidal aggregation experiments, where scattered light intensity can rapidly increase 

several orders of magnitude, because it reduces the need of sample dilution. Both 

measuring position and attenuator were adjusted automatically before each 
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measurement. The autocorrelation function was converted in a volume-weighted particle 

size distribution with Dispersion Technology Software 5.06 from Malvern Instruments. The 

apparent hydrodynamic diameters (Dh) were taken as the mean position of the peak in 

volume-Dh distributions. The measurements were performed in the temperature range 5-

85 ºC with a temperature interval of 2 ºC and an equilibration time of 2 min. Regarding the 

stability measurements, samples were initially frozen, melted, and equilibrated at 5 ºC 

inside the measurement cell to ensure complete dissolution. Thereafter, samples were 

submitted to a temperature jump and measured at constant temperature for 12 h. 

Terpolymer solutions with varying salt concentration were prepared in ultrapure water and 

filtered using a 0.20 μm disposable PES membrane filter (TPP, Trasadingen, 

Switzerland). 

 

6.4 Results and Discussion 

 

Several NIPAAm-co-NTBAAm-co-AMPS copolymers containing different 

NIPAAm/NTBAAm ratios and a constant 5 mol % of AMPS in the feed were prepared. 

Their composition and molecular weight are summarized in Table 6.1. The composition of 

the copolymers is quite close to the reaction feed composition, according to the expected 

from the chemical structure of the monomers and reactivity ratios reported in the literature 
25, 26.  

Table 6.1 Copolymers composition and molecular weight 

Molar fraction in polymer 
Sample 

NIPAAma NTBAAma AMPSb 

Mw/103 

(g/mol) 

Mn/103 

(g/mol) 
Mw/ Mn 

45/50/5 0.47 0.48 0.04 17.2 6.3 2.7 

50/45/5 0.49 0.46 0.04 17.2 6.0 2.6 

55/40/5 0.53 0.42 0.06 15.3 5.8 2.6 

60/35/5 0.58 0.37 0.04 18.2 6.3 2.9 

70/25/5 0.67 0.28 0.04 19.7 6.9 2.8 

75/20/5 0.69 0.27 0.05 18.9 7.0 2.7 

80/15/5 0.76 0.19 0.05 18.5 7.1 2.6 

90/5/5 0.83 0.12 0.05 18.8 7.1 2.7 

95/0/5 0.95 0.0 0.05 16.4 6.3 2.6 
a Calculated by 1H NMR considering AMPS 5.0%; b Calculated by elemental analysis 

 

The AMPS molar fraction was experimentally determined to be around 0.05 for all 

copolymers, and the small differences observed fall under the technique uncertainty. 
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Besides, the small error fluctuations in the AMPS molar fraction do not correlate with the 

other monomer ratio. Therefore, we can exclude biased effects caused by polymer charge 

trends when analyzing properties related with the other two monomer frequencies. 

Moreover the weight average molecular weight (Mw) and polydispersity (Mw/Mn), 

determined by GPC, are also similar for all polymer samples, showing that these 

parameters are not affected by the monomers feed ratio. 

Turbidimetry is a common technique used to estimate the LCST of thermoresponsive 

polymers in aqueous solutions, motivated by the tendency of polymer molecules to 

aggregate at the poor solvent region above the Θ− temperature, which causes a marked 

change in the solution optical properties 6, 7. However, complications might arise from 

variations in the size of precipitated aggregate and the settling of precipitates, which is 

especially critical in aged solutions. The cloud point, measured at the onset of the turbidity 

increases with the temperature, should be an overestimation of the LCST. However, cloud 

point can still provide an acceptable estimation of the LCST for a stipulated temperature 

scanning rate if aggregation kinetics is faster enough. This fact, allied with the 

experimental simplicity, makes turbidimetry a primary choice in the literature for a fast 

estimation of the LCST. The concentration of the polymer solution (diluted regimes), the 

presence of surfactants, or the polymer ionic charge are some of the several factors that 

might influence aggregation kinetics. Nonetheless, turbidimetry provides a fast way of 

obtaining valuable information about the macroscopic phase separation behavior, even if 

the CPT does not match exactly the coil-to-globule transition. We have characterized our 

terpolymers solution behavior by means of turbidimetry, and the results were analyzed 

taking into consideration the referred shortcomings. Some of the terpolymer solutions 

were not stable at temperatures immediately above to the cloud point, but aggregation 

occurred at an extremely low rate. Therefore, it was not feasible to perform the 

experiments at a scanning rate lower enough to not influence the turbidimetry curves 

because it would require very long measurement times. The curves slope can still be used 

to compare the aggregation rate, providing that the measurements were done at the same 

scanning rate. In this sense, we did all temperature scanning measurements at a constant 

rate of 1 ºC/min.  

In general, water solutions of the terpolymers remained clear at any temperature. The 

thermoresponsive behavior was only manifested in the presence of salts. Figure 6.2 

shows the typical temperature dependence of transmittance for solutions of copolymers 

with a rational composition variation, on both heating (Figure 6.2a) and cooling (Figure 

6.2b). Figure 6.3a shows the cloud point temperature extracted from Figure 6.2a and 

defined as the temperature at 98% light transmittance on heating. The phase separation 

sharpness was evaluated considering the temperature interval at which light transmittance 
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changes from 98% down to 2% (∆CPT) during the heating scan, and it is represented in 

Figure 6.3a as a function of the NTBAAm content.  
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(a)       (b) 

Figure 6.2 Turbidity curves showing the effect of copolymer composition on the 

macroscopic phase separation for heating (a) and cooling (b) scans (1 g/L, 0.154M NaCl, 

1 ºC/min). 
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(a)       (b) 

Figure 6.3 Cloud point temperature (CPT) (filled squares) and macroscopic phase 

separation sharpness (∆CPT) (filled triangles) in function of NTBAAm molar fraction 

(xNTBAAm) (a). Comparision between CPT (filled squares) and redissolution temperature 

(empty squares) as a function of NTBAAm molar ratio (b). 

 

It has been reported that linear NIPAAm homopolymer present a LCST around 31-33 ºC 

in water 3-7 and that LCST is slightly depressed when NaCl is added at the concentration 

range used in this work 10. When NIPAAm was copolymerized with a small amount of 

AMPS (95/0/5), i.e., a more hydrophilic (ionic) monomer, the CPT (~42 ºC) was raised as 

expected. The macroscopic phase separation is sharp and occurs in a narrow 
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temperature range (Figures 6.2a and 6.3a). On the other hand, the CPT was reduced as 

expected by increasing the NTBAAm content, which results from an increased overall 

hydrophobic character of the copolymers (Figures 6.2a and 6.3a). Furthermore, it could be 

observed that as greater is the NTBAAm content on the copolymers, as slower is the 

aggregation process, leading to a decreased slope in the turbidity curves (Figure 6.2a) 

and consequently an increased ∆CPT (Figure 6.3a). It is interesting to notice that there is 

a composition interval (around 0.25-0.30 molar fraction of NTBAAm) at which the 

macroscopic phase separation changes from sharp to wide. Such alteration in the 

aggregation behavior is accompanied by an equally steep variation in the CPT. We have 

denominated these two composition ranges with very distinct aggregation behaviors as 

NTBAAm-richer and NIPAAm-rich polymers (shadowed areas of Figure 6.3). Considering 

that all copolymers possess identical charge (similar content of AMPS), the repulsive 

electrostatic forces are expected to be equivalent at the same ionic strength. Therefore, it 

is reasonable to conclude that the lower aggregation rate is only correlated with a higher 

NTBAAm (lower NIPAAm) content. This result is apparently contradictory with the colloidal 

aggregation principles. At the first glance, one could expect that the resultant of repulsive 

electrostatic and attractive hydrophobic forces would favor a faster aggregation process 

for the more hydrophobic NTBAAm-richer polymers.  

Aggregation isotherms were determined for 60/35/5 (sample with broad aggregation 

profile), keeping the same polymer and NaCl concentrations (Figure 6.4). The 

temperature of the sample was rapidly increased to certain temperatures near and above 

the CPT, and transmittance values were measured with time. These measurements 

allowed us to elucidate that the studied system was not thermodynamically stable (or 

metastable) above the CPT, and that broadening of turbidity variation was caused by 

temperature-dependent aggregation kinetics. Figure 6.4 shows that the turbidity increases 

continually with the time at all studied temperatures, but the process is much faster at 

higher temperatures, whereas aggregation is “virtually prevented” for temperatures close 

to the CPT. According to these results, we could hypothesize that the observed decrease 

of the slope with increasing NTBAAm content does not mean that the volume transition 

became continuous. In fact, as we will discuss afterward, there is an observable 

discontinuous phase separation process at the microscopic level.  

Immediately after the heating scan, the copolymer solutions were subjected to a cooling 

step in order to study the redissolution temperature. The onset of the turbidity decrease in 

the redissolution curves might not be well-defined because settling of aggregates also 

contributes to decrease the turbidity. Hence, redissolution temperature was considered to 

be at 50% light transmittance to avoid the effect of settling. Besides, this option is further 
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justified by the fast redissolution process observed for all the samples presented in Figure 

6.2b.  
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Figure 6.4 Isothermal aggregation kinetics of 60/35/5 (1g/L) dissolved in 0.154M NaCl 

aqueous solution at temperatures above the cloud point temperature. 

 

As expected, the redissolution temperature decreases with increasing NTBAAm content in 

the terpolymer composition (Figure 6.2b), and it is always lower that the CPT (Figure 

6.3b). The measured hysteresis is enhanced for NTBAAm-richer polymers. Moreover, as 

can be seen in Figure 6.2b, the curves of transmittance vs temperature in the cooling 

cycle are sharp for any ratio of NTBAAm, indicating that the redissolution occurs 

immediately below a certain temperature. The difference in the macroscopic phase 

separation sharpness between heating and cooling scans can be understood in terms of 

electrostatic repulsion and hydrophobic attraction. During polymer aggregation the 

molecules charge density counteracts the hydrophobic forces, eventually delaying or 

hindering aggregation. When the system is cooled below the LCST, the copolymer 

rehydration cancels the attractive hydrophobic forces responsible for aggregates 

cohesion, and the electrostatic repulsion provides the driving force for the fast 

redissolution.  

When plotting the redissolution temperature against the molar ratio of NTBAAm (Figure 

6.3b), it was possible to observe an abrupt variation at the same composition range (0.25-

0.30) in which a similar steep variation is observed for CPT and aggregation rate (Figure 

6.3a). These observations motivated us to study the effect of the ionic strength and 

polymer concentration on the macroscopic phase separation for two different copolymers: 

one representative of the NTBAAm-richer polymer behavior (60/35/5) and the other 

typifying the NIPAAm-rich polymers (80/15/5).  

Salt concentration might act both on the LCST and on the aggregation profile. Since both 

copolymers are polyelectrolytes, it was not surprising to observe that the ionic strength 
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influences both polymers CPT in the same manner; when the NaCl concentration is 

increased, the CPT decreases (Figure 6.5). It was reported that, at the concentration 

range used in this study, the influence of NaCl in the pNIPAAm LCST is rather small (<1 

ºC) 10, 20 if compared with the reduction extent that we observed in the CPT for both 

terpolymers (>30 ºC). This divergence might indicate that the CPT is detected above the 

θ−temperature. If this is correct, the unexpectedly stronger dependence of the CPT on the 

NaCl concentration is related to the effect of salt concentration over the colloidal 

aggregation kinetics, rather than the θ−temperature. The addition of salt to the solution 

shields the repulsive Coulombic interactions between charged sulfonic groups (screening 

effect), facilitating colloidal aggregation if the system is above the θ−temperature. 

Although the CPT is similarly affected for both NTBAAm-richer and NIPAAm-rich 

copolymers, the transition rate is not equally affected. The turbidity rising rate strongly 

depends on the ionic strength for the more hydrophobic copolymer (60/35/5), being slower 

at lower salt content and more abrupt at higher concentrations. On the contrary, the ∆CPT 

is not affected by changes in the salt concentration for 80/15/5; in all cases a fast 

aggregation was observed. The strong dependence of the aggregation rate on the salt 

concentration for NTBAAm-richer polymers reveals that the colloidal stabilization effect is 

electrostatic in nature. Thus, why is this effect not observed for NIPAAm-rich polymers? A 

possible explanation is that, for NTBAAm-richer polymers, the stronger hydrophobic 

forces in action above the LCST are able to override the electrostatic potential energy 

increment caused by a higher charge density of the colloidal particles. In this situation, the 

increased charge density would provide an additional energy barrier for further colloidal 

aggregation, especially if charged segments were oriented toward the surface.  

The effect of the ionic strength on the redissolution temperature was also evaluated 

(Figure 6.5). The NTBAAm-richer copolymer showed a fast redissolution profile for all 

tested salt concentrations. Moreover, the transmittance vs temperature curves are almost 

superimposed showing coincident redissolution temperature around 15 ºC regardless of 

the ionic strength. On the other hand, a sharp redissolution profile was also observed for 

NIPAAm-rich polymers, but in this case the temperature at which the aggregates are 

redissolved depends on the salt concentration. Although a certain hysteresis was 

observed between heating and cooling, both aggregation and redissolution processes of 

the NIPAAm-rich polymer are influenced in a very similar extent by the solution ionic 

strength. 

The dependence of the CPT on the polymer concentration is shown in Figure 6.6. In this 

case, the aggregation and redissolution behavior is very similar for NTBAAm-richer and 

NIPAAm-rich polymers. The aggregation rate increased and CPT decreased at higher 

polymer concentration, whereas the redissolution profile was fast and not dependent on 
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the polymer concentration. The results are in agreement with the general principles of 

colloidal aggregation, where the aggregation is dependent on the particle concentration. In 

turn, disaggregation should be mainly ruled by particle intrinsic structural features. 
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Figure 6.5 Effect of the NaCl concentration on the turbidity vs temperature curves on 

heating and cooling scans for 60/35/5 (a) and 80/15/5 (b). In both curves the polymers 

concentrations and scan rates were 1g/L and 1 ºC/min respectively. 
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Figure 6.6 Effect of the polymer concentration on the transmittance vs temperature 

curves on heating and cooling scans for 60/35/5 (a) and 80/15/5 (b). In both curves the 

salt concentrations and scan rates were 0.154M and 1 ºC/min respectively 

 

Since some of the studied polymer solutions do not present sharply defined cloud points, 

we used dynamic light scattering (DLS) in order to elucidate the apparently contradictory 

behavior observed with the copolymer composition (more hydrophobic polymers showed 

lower aggregation rates). DLS permits the analysis of size variations at the molecular 

scale, and therefore, it is possible to analyze early stages of aggregation. Figure 6.7 

shows the temperature dependence of apparent hydrodynamic diameter (Dh) on the NaCl 
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concentration for 60/35/5, at a fixed polymer concentration of 1 g/L. It could be observed 

that in the absence of salt a sharp increase of Dh is observed at 23 ºC indicating the 

aggregation of individual ionomer chains in solution. Above this temperature value, the Dh 

increases slightly with the temperature. The formed colloidal particles remained stable at 

27 ºC for at least 11h (result not shown). Qiu et al. reported a similar behavior for low 

molecular mass poly(N-isopropylacrylamide-co-acrylate) in water at a comparable 

concentration 27. They suggested that when short chains are analyzed by DLS, the 

intrachain collapse is not observed since its effect on the overall chain dimension is 

negligible and is faster than the interchain aggregation. Because of this reason, the 

decrease on Dh due to the coil-to-globule transition typically observed for larger polymers 

in very diluted solution 4, 6, 7 was not observed for the studied terpolymers with shorter 

chains. Even though the coil-to-globule transition is not observed, this first aggregation 

step should be very close to the θ-temperature 9, providing our best estimation of the 

LCST. Being so, we will use the term LCST to denominate this early aggregation 

observed by DLS and the CPT to denote only the value obtained by turbidimetry, for the 

sake of clarity.  
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Figure 6.7 Temperature dependence of the apparent hydrodynamic diameter (Dh) at 

several NaCl concentrations for 60/35/5 (polymer concentration 1g/L). The inset figure 

shows the hydrodynamic diameter distribution at temperatures before and after the 

aggregation (0.120M NaCl). 

 

When NaCl was added to the solution, a similar early aggregation behavior was observed, 

but the aggregates were not stable in the entire temperature range, ultimately leading to a 

further increase of the Dh above a certain temperature. Comparing the CPT (Figure 6.5a) 

with the LCST (Figure 6.7) of 60/35/5 at several NaCl concentrations, it is possible to see 

that there is no correspondence between both values. This observation raises great 
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concerns on the use of turbidimetry to evaluate the LCST of charged polymers. In fact, 

CPT is related with the massive aggregation observed in Figure 6.7 at higher 

temperatures, being the first formed metastable aggregates (LCST) undetected by 

turbidimetry. If in our results the CPT does not match precisely the temperature at which a 

more pronounced Dh increment is observed, it is because scanning rate is lower in the 

DLS measurements due to the relatively longer times required for data acquisition and 

temperature stabilization. The gap between the metastable nanosized aggregates (LCST) 

and the faster aggregation (CPT) is more pronounced at lower salt concentrations. When 

salt concentration increases, the stability range of the colloidal particles decreases. Thus, 

it is reasonable to conclude that the effect of NaCl concentration on the CPT is solely 

related with the screening effect over the charge, reducing colloidal stability and 

accelerating aggregation. Hypothetically, the LCST dependence on the NaCl 

concentration can only determine the temperature at which the first metastable 

aggregates are formed.  

The inset in Figure 6.7 shows the hydrodynamic diameter distribution at temperatures 

immediately before and after the aggregation when 0.120M NaCl was added to the 

solution. At 12.9 ºC, slightly below the LCST, only one peak centered at ~8 nm was 

observed. This peak corresponds to individual copolymer chains, as it was confirmed by 

measuring the size distribution of the polymer in a good solvent (tetrahydrofuran). The 

obtained volume-Dh distribution was equivalent to that obtained in water below the LCST 

(graph not shown). The size distribution above the LCST at 16.9 ºC is narrower and 

corresponds to an average Dh of ~25 nm, reflecting the interchain aggregation. 

The stability of the aggregates before the massive aggregation was tested isothermally by 

measuring the Dh and the scattered light intensity with the time at set temperatures close 

to the LCST (Figure 6.8). The light intensity is very sensitive to small changes in the 

scatters size and should be constant, at fixed scattering angle and temperature, if there is 

no aggregation. 60/35/5 in 0.120M NaCl showed the first aggregation at ~15 ºC (Figure 

6.7) and it could be observed that at 19 ºC both Dh and light intensity are stable for at least 

11 h (Figure 6.8. However, when the solution was left at 25 ºC, the light intensity and Dh 

increased with the time, indicating that aggregation occurs at this temperature. It seems 

that the aggregation rate increases continuously with the temperature, so that a limit 

between two aggregation regimes is not well-defined. In this sense, the separation of the 

aggregation behavior in two stages, early metastable aggregation and later massive 

coagulation, is merely descriptive.  

It is interesting to notice that the temperature observed for the first aggregation in DLS 

(LCST) corresponds to the redissolution temperature observed by turbidimetry. Hence, for 

this specific case, we can state that the redissolution temperature is more representative 
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of the LCST than the CPT. On the other hand, after the massive coagulation the produced 

aggregates are stable in the cooling scan; i.e., there is no redissolution as long as the 

temperature is kept above the LCST. 
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Figure 6.8 Isothermal aggregation kinetics of 60/35/5 determined by DLS (1g/L polymer 

concentration and 0.120M NaCl) at 19 ºC (triangles) and 25 ºC (square). Filled symbols 

represent the hydrodynamic diameter and empty symbols represent scattered light 

intensity (173º). 

 

The LCST of the NIPAAm-rich polymer (80/15/5) (Figure 6.9) was higher than the LCST of 

60/35/5 for all tested NaCl concentration, as expected. A quite different behavior was 

observed for 80/15/5 water solution (inset graph). Substantially bigger scatters are 

detected at the first aggregation, which increases continuously with the temperature, but 

never reaching a massive coagulation stage.  
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Figure 6.9 Temperature dependence of the apparent hydrodynamic diameter (Dh) at 

several NaCl concentrations for 80/15/5 (polymer concentration 1g/L). Inset shows the 

temperature dependence of Dh in water. 
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The lower percentage of NTBAAm monomer in this copolymer composition should imply 

that weaker hydrophobic aggregation forces are active above the LCST. Therefore, 

hydrophobic interactions may not be able to bring the charges close enough to provide an 

effective surface charge density, hindering electrostatic stabilization of the aggregates. 

Interestingly, when small quantities of salt are added to the solutions, it could be observed 

that the formed aggregates were smaller and showed an early metastable aggregation 

stage, recalling the aggregation behavior observed for NTBAAm-richer polymer. This 

supports the explanation given before, since the screening effect produced by the added 

salt are expected to reduce electrostatic repulsion inside the aggregates. In this sense, 

there should be a salt concentration in which the cohesive hydrophobic forces are 

sufficient to overcome the reduced internal repulsion and provide an effective surface 

charge density for colloidal stabilization.  

Comparing Figure 6.7 and Figure 6.9 we can conclude that both polymers showed similar 

behavior with the formation of small aggregates that remain stable at lower temperature, 

after which a massive coagulation occurs. However, the coagulation rate showed a 

sharper acceleration for NIPAAm-rich than for NTBAAm-richer samples. Another common 

feature of both samples is that the CPT determined by turbidimetry is not representative of 

the LCST for any tested condition; nanosized aggregates are always observed by DLS at 

lower temperatures than the CPT determined by turbidimetry. In some cases, as for low 

salt concentrations, the observed differences could be as great as 30 ºC. Nevertheless, 

the comparison of DLS and turbidity results for NIPAAm-rich polymer showed that the 

redissolution of the bigger aggregates occurs at temperatures higher than the LCST. On 

the other hand, when the same comparison is performed for NTBAAm-richer polymer, we 

could observe that the aggregates formed at higher temperatures only disaggregate in the 

cooling ramp when the LCST is reached. This observation confirms that the internal 

cohesion of 60/35/5 formed aggregates is enough to compensate the electrostatic 

repulsion at any temperature above the LCST. In NIPAAm-rich polymer the hydrophobic 

interactions are weaker and the aggregates are redissolved at temperatures higher than 

the LCST. Moreover, it is interesting to notice that for this polymer (80/15/5) the 

redissolution temperature changed with the salt concentration. Increasing salt 

concentration results in the enhancement of charge screening, and subsequently the 

electrostatic repulsion is progressively reduced. Therefore, the hydrophobic interactions 

are enough to support the aggregates stability at lower temperatures. 
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6.5 Conclusions 

 

p(NIPAAm-co-NTBAAm-co-AMPS) aqueous solution did not show turbidity changes 

(macroscopic phase separation) with the temperature. The CPT was only observed when 

NaCl was added to the solutions. However, the formation of metastables nanosized 

aggregates (LCST) was observed by DLS in both water and aqueous saline solutions. 

The macroscopic phase separation is always observed at higher temperatures than the 

formation of the nanoaggregates. Therefore, there is no correlation between CPT and 

LCST. These results raise serious concerns about the validity of using turbidimetry 

measurements to obtain a reliable estimation of the LCST for charged thermoresponsive 

polymers.  

Both the CPT and the LCST decreased with the increase of hydrophobicity (increased 

NTBAAm content). However, the aggregation profile observed by turbidimetry dramatically 

change above a critical amount of NTBAAm (0.25-0.30). Terpolymers with NTBAAm 

content below the critical value showed a fast macroscopic phase separation for all 

studied conditions. Moreover, the formed large aggregates redissolve in the cooling ramp 

at different temperature depending on the salt concentration and always at temperatures 

higher than the LCST. On the other hand, NTBAAm-richer terpolymers showed a slower 

aggregation process whose rate was found to depend on salt concentration. In this case, 

the formed large aggregates during the heating scan disentangled always at the same 

temperature which is coincident with the LCST. The differences observed on copolymers 

solutions can be explained as the result of a fine balance between hydrophobic attractive 

forces and electrostatic repulsion, which leads to formation of intermediate metastable 

nanosized aggregates. The hydrophobic cohesion forces for polymers with higher 

NTBAAm content are stronger, thus able to withstand a higher surface charge density. 

Therefore, the aggregation is slower due to the electrostatic repulsion that acts as 

stabilizer of the aggregates. Furthermore, the redissolution only occurs at the LCST 

because the stronger internal cohesion is enough to compensate the electrostatic 

repulsion. On the other hand, the hydrophobic forces in polymers with lower content of 

NTBAAm are weaker and not able to bring charges close enough to provide an effective 

surface charge density, hindering electrostatic stabilization of the aggregates with a 

consequent fast coagulation. Moreover, the larger aggregates formed meanwhile are 

redissolved before reaching the LCST in the cooling ramp because the hydrophobic 

interactions are not strong enough to counteract the electrostatic repulsion. 
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Chapter 7 

Temperature as a single on-off parameter controlling 
nanoparticles growing, stabilization and fast disentanglement 
 

7.1 Abstract  

Thermoresponsive nanoparticles are synthesized from ionic random terpolymer 

precursors. A distinct temperature dependent aggregation-redissolution behavior is 

observed within a subtle balance between polymer ionic charge and hydrophobic content, 

which is used for colloidal synthesis of nanoparticles in aqueous medium and without 

surfactants. The solution thermal history provides a robust mean to customize the size of 

nanoparticles that can be disentangled on command. 
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7.2 Introduction 

 

The small size of nanoparticles, together with increased surface area and reactivity, 

allows them to translocate cell membranes, target specific tissues or organs (by 

adsorption or surface binding of signaling molecules), and catalyze chemical reactions. 1, 2 

Owing to its unique properties, organic nanoparticles (polymer or lipid) hold a great 

potential to be used in various biomedical applications, especially as intracellular drug and 

gene delivery systems. 3-5 Small size is a key attribute enabling nanoparticles to overcome 

various biological barriers such as the blood-brain barrier, the reticuloendothelial system 

(RES), tumor blood vessels with enhanced permeability, extracellular matrix components, 

cell membrane and other intracellular barriers. 1, 2 Herein we describe a method for the 

synthesis of thermoresponsive nanoparticles that provides a good control over particle 

size (between 35 - 200 nm). We have designed random thermoresponsive terpolymers 

that possess a fine balance between hydrophobic attractive forces and electrostatic 

repulsion above the lower critical solution temperature (LCST). In the literature, block 

copolymers have been a primary choice to trigger macromolecular assembly in aqueous 

environment, based on a lipid-like amphiphilic nature. 6-13 In this work, the choice of 

random copolymers instead was inspired by their resemblance with the intercalated 

nature of hydrophobic and charged residues found in the primary structure of proteins. 

The method reported herein allows nanoparticles to be processed in aqueous medium 

without surfactants, using temperature as a single on-off parameter controlling particle 

growing, stabilization and fast disentanglement. 

The most widespread methods for nanoparticles production include the previous 

preparation of an emulsified system. 14 Thereafter, particles are formed in the discontinous 

phase either by polymer precipitation/gelation or by monomer polymerization. Two 

immiscible phases are required and the oil phase is not always easy to remove. 

Surfactants are often required to stabilize the emulsion and to avoid nanoparticle 

aggregation. Furthermore, emulsion-based methods often require use of crosslinkers. 14 

Alternative methods to prepare nanoparticles in aqueous medium are based on polymer 

precipitation or macromolecular self-assembly in conditions of spontaneous dispersion 

formation. These methods avoid the use of organic solvents, crosslinkers and/or 

surfactants. 14 Thermoresponsive polymers offer unique properties that have been 

elegantly adapted to trigger the spontaneous formation of nanoparticles, which can be 

used for burst drug release on demand. 3, 9-13 

Thermoresponsive polymers such as poly(N-isopropylacrylamide) (PNIPAAm) are 

hydrophilic at low temperature and became hydrophobic above the LCST. Graft or linear 
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block copolymers using PNIPAAm can form core-shell micellar assemblies, with the 

thermoresponsive building block working as either the solvated shell 6-8 or the hydrophobic 

core, 9-13 depending on the nature of the other block and on the temperature. If PNIPAAm 

is coupled to more hydrophobic blocks, stable polymeric micelles are formed below the 

LCST. 6-8 Hydrophobic drugs can be loaded into the inner corona, while the hydrophilic 

PNIPAAm shell permits the aqueous solubilization and temperature-responsiveness. This 

architecture does not differ from other non-thermoresponsive micelles assembled from 

block copolymer amphiphiles, except in that the hydrophilic shell can turn hydrophobic 

upon temperature increase, 6-8 eventually destabilizing the inner core of the micelle and 

triggering drug release. 6 The core-shell structure is formed when the polymer, previously 

dissolved in a water miscible organic solvent, is mixed with water. 6-8 

In the case of block copolymers of PNIPAAm with a hydrophilic block such as 

poly(ethylene glycol) (PEG) 9-12 or single-stranded DNA, 13 the macromolecule can be 

dissolved in water below the LCST. Stable core-shell nanoparticles are produced above 

the LCST, when the PNIPAAm block became hydrophobic. The hydrophilic block forms a 

hydrated shell that prevents further aggregation of collapsed PNIPAAm chains. 9-13 

Inducing macromolecular assembly above the LCST in water circumvents the need of 

using organic solvents. Furthermore, these methods allow nanoparticles to be reversibly 

disassembled lowering the temperature, which might be useful to release drugs locally 

applying simple ice packs or clinical instruments such as deeply penetrating cryoprobes.15 

Similarly, polymeric nanogels can also be obtained with thermoresponsive random 

copolymers, being macromolecular assembly in water induced above the LCST. In this 

case, the electrostatic repulsion between charged surfaces stabilizes the colloidal 

nanoparticles above the LCST. 16-18 In a recent work, 18 we have found that charged 

terpolymers composed of NIPAAm, N-tert-butylacrylamide (NTBAAm)  and 2-Acrylamido-

2-methyl-1-propanesulphonic acid (AMPS) form metastable colloidal nanoparticles upon 

heating above the LCST. The original method described herein is based on the distinct 

aggregation-redissolution behavior observed for some of these thermoresponsive 

terpolymers. 

 

7.3 Results and discussion 

 

Linear random terpolymers were synthesized by radical polymerization containing a 

constant ratio of 5% of AMPS in feed. The small ratio of charged monomer ensures 

enough electrostatic repulsion intended for nanoparticles stabilization, but is not enough to 

disrupt the discontinuous type coil-to-globule transition. 19 Terpolymer hydrophobicity was 
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varied by changing the ratio between NIPAAm and a more hydrophobic monomer 

(NTBAAm) in order to adjust the LCST. Terpolymers with NIPAAm/NTBAAm/AMPS ratios 

of 80/15/5 and 60/35/5 were studied, representing two different aggregation-redissolution 

behaviors, which changed above a critical amount of NTBAAm (0.25-0.30). 18 

Turbidimetry measurements were performed to picture the macroscopic observation of the 

phase separation (Figures 7.1a and 7.1b, right y-axis). The cloud point temperature (CPT) 

was extracted from heating scans at the transmittance decrease onset, whereas a 

redissolution temperature can be observed on cooling. Dynamic light scattering (DLS) 

provides an insight of the early macromolecular aggregation (Figures 7.1a and 7.1b, left y-

axis). Above the LCST a sharp increase of the hydrodynamic diameter (Dh) is observed 

indicating the aggregation of individual ionomer chains in solution. Although the size of the 

polymers synthesized by us did not allow direct observation of the molecular contraction 

during coil-to-globule transition (single molecules are not observed above the LCST), this 

first aggregation step provides a good estimation of the LCST. 20 For the sake of clarity, 

we will use the term LCST to denominate this early aggregation observed by DLS and the 

CPT to denote the value obtained by turbidimetry. 

The more hydrophobic polymer (60/35/5) presented lower LCST, CPT and redissolution 

temperature. The redissolution temperature was lower than the CPT for both copolymers 

(Figures 7.1a and 7.1b). The general aggregation profile observed by DLS was also 

similar for both copolymers (Figures 7.1a and 7.1b). An early aggregation (LCST) occurs 

with formation of small aggregates that remain stable at temperatures near and above the 

LCST. Further increasing the temperature, a “massive” coagulation happens with the 

formation of bigger aggregates. This “massive” coagulation corresponds to the CPT 

observed by turbidimetry. 

The copolymer containing lower NTBAAm ratio (80/15/5) (Figure 7.1a) showed a sharp 

macroscopic phase separation on heating and a fast increase of the Dh in the second 

aggregation step. Moreover, it was observed that redissolution on cooling occurs at higher 

temperatures than the early aggregation observed by DLS. It seems that the colloidal 

particles formed on heating are disrupted on cooling before reaching the LCST. 

On the other hand, the more hydrophobic copolymer (60/35/5) showed slower 

macroscopic phase separation (Figure 7.1b). This is in agreement with the slower second 

aggregation observed by DLS at higher temperature (Figure 7.1b). In this case, the large 

aggregates formed during the heating scan seem to dissolve only after cooling below the 

LCST (Figure 7.1b), at temperature lower than the early small metastable nanoaggregates 

formed on heating. 
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Figure 7.1 Hydrodynamic diameter (Dh) and solution turbidity (Transmittance) changes 

observed as a function of temperature for (a) 80/15/5 and (b) 60/35/5. (c) Aggregation 

isotherms for 60/35/5 above the LCST. (d) Nanoparticles size control using a temperature 

programme. All measurements were done at polymer concentration of 1 g/l in NaCl 

aqueous solution (0.120M). 
 

Aggregation isotherms were determined for 60/35/5 (Figure 7.1c). Samples were initially 

equilibrated at 5 ºC in order to assure complete dissolution. Thereafter, solutions were 

submitted to a temperature jump and z-average Dh (<Dh>z) was recorded at constant 

temperature. It was observed that metastable colloidal particles of around 35 nm were 

formed at 21 ºC; size remained stable for at least 12 h. When the solution was kept at 30 

ºC the <Dh>z increased with the time indicating that aggregation occurs slowly at this 

temperature. The aggregation rate increases with the temperature as could be verified by 

measuring the aggregation isotherm at 40 ºC (Figure 7.1c). Taking into consideration the 

smooth growth of colloidal particles observed at 30 and 40 ºC (Figure 7.1c), together with 

the fact that larger colloidal aggregates only completely redissolve when cooled below the 

LCST (Figure 7.1b), we hypothesized that the aggregates, meanwhile formed at higher 

temperatures, would not disentangle and could be stabilized at temperatures near and 

above the LCST (21 ºC). In fact, it can be observed in Figure 7.1d particles that have 

been grown at 30 ºC for some time. When temperature is decreased to 21 ºC the <Dh>z 
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remains constant. In a separate experiment, we observed that nanoparticle size was 

constant for at least one week (not shown). This behavior can be used to deliver 

customized particle size, just maintaining the polymer solution at high temperature for 

some time and decreasing the temperature to 21 ºC when particles achieve the desired 

size. Figures 7.2a and 7.2b show nanoparticles obtained at 30 and 40 ºC, respectively. A 

schematic representation of the manipulation of nanoparticles size is depicted in Figure 

7.2c. Nanoparticles with sizes between 40 and 100 nm can be obtained by growing them 

at 30 ºC for different time periods (Figure 7.2a). When colloidal nanoparticles were formed 

at 40 ºC, sizes in the range 100-200 nm were obtained (Figure 7.2b). Nanoparticles can 

also be reversibly disentangled at temperature below the LCST, with recovery of soluble 

terpolymer chains. This type of systems might be very useful for instance in intracellular 

drug delivery and actuators for burst release applications. 
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Figure 7.2 Nanoparticles z-average hydrodynamic diameter (<Dh>z) observed as a 

function of temperature for 60/35/5. Aggregation is triggered at (a) 30 ºC or at (b) 40 ºC for 

well defined time periods and subsequently inhibited at 21 ºC. All measurements were 

done at polymer concentration of 1 g/l in NaCl aqueous solution (0.120M). (c) Schematic 

representation of the nanoparticles size manipulation using the thermoresponsive 

aggregation behavior. 
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Electrostatic stabilization through the anionic groups of AMPS was initially though to be 

the most important stability mechanism for this system. Therefore, electrophoretic mobility 

(μe) measurements were performed to evaluate particles surface charge. It was observed 

(Figure 7.3a) that below the LCST μe value remains sensibly constant. Above the LCST 

the absolute value of μe increases in a pseudo-linear manner with the temperature. In 

general, a higher |μe| would imply an improved stability because of the electrostatic 

repulsion. However we observed exactly the opposite. Interestingly, μe was independent 

on both temperature scanning rate and particle size. As seen in Figure 7.3b the 

electrophoretic mobility at a fixed temperature remained constant during at least 9 h, 

regardless occurrence or not of colloidal aggregation. It was also observed that 

decreasing the temperature to 21 ºC after this time period at 30 or 40 ºC the μe recovers 

the value initially obtained at 21 ºC. The straightforward correlation between μe and 

temperature seems to indicate that the on-off aggregation above the LCST is ruled by 

surface phenomenon.  
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Figure 7.3 (a) Electrophoretic mobility (µe) observed as a function of temperature for 

60/35/5. Linear regression trendlines are shown independently for the datasets above and 

below 21 ºC. (b) µe measured isothermally for the studied aggregation kinetic states, 

followed by isothermal determination at 21 ºC. All measurements were done at polymer 

concentration of 1 g/l in NaCl aqueous solution (0.120M). 

 

It is well known that the driving force of the aggregation in thermoresponsive polymers is 

an increased hydrophobicity above the LCST. 21 Similarly, the driving force for increasing 

|μe| with temperature should also be an increasing hydrophobicity. Thus, if aggregation 

happens at higher surface charge, it is also because hydrophobic forces have been 

enhanced, being at a certain point able to counteract the electrostatic repulsion. In order 

to explain why aggregation is much faster for µe values where typically colloidal stability is 

attained, we might speculate that the non-crosslinked nature of the polymer aggregates 
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permits molecular rearrangements that minimize surface charge electrostatic repulsion 

when different colloidal particles approach each other. On the other hand, the low µe 

values also did not completely justify the colloidal stability found for temperatures closer to 

the LCST (21 ºC). Consequently, a different mechanism should be actuating, providing an 

additional (or main) energy barrier. A possible explanation can be an increased steric 

repulsion provided by an increased mobility of polymeric chains (lower polymer surface 

density) at lower temperature. In fact, the lower µe values are consistent with the 

hypothesis of lower polymer surface density. 

 

7.4 Conclusions 

 

In summary, we propose herein an original method to produce thermoresponsive 

nanoparticles by means of a temperature cycle. This method has several advantages; the 

nanoassemblies are formed in aqueous medium and surfactants are not needed for 

particles stabilization. The slow aggregation observed above the LCST was used to obtain 

a fine control over the particle size. Nanoparticles, grown at a higher temperature (30 and 

40 ºC), are stabilized at the desired size by decreasing the temperature to 21 ºC. Finally, 

complete disentanglement of the nanoparticles can be triggered by further decreasing of 

the temperature (below 16 ºC). The thermoresponsive system reported here may be 

potentially useful for a range of applications, including drug and gene delivery, biosensing, 

or separation and purification of biological molecules and cells. Moreover, we believe that 

it would be possible to extend the method to other thermoresponsive polymers, both 

cationic and anionic, by fine tuning the balance between electrostatic repulsion and 

polymer hydrophobicity. 

 

7.5 Experimental 

 

N-isopropylacrylamide (NIPAAm, Acros Organics) and 2,2’-Azobis-isobutyronitrile (AIBN) 

(Fluka) were recrystallized from n-hexane/diethyl ether (5:1) and methanol, respectively. 

2-Acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and N-tert-butylacrylamide 

(NTBAAm) (Sigma-Aldrich) were used as received. 

Linear random terpolymers P(NIPAAm-co-NTBAAm-co-AMPS) were synthesized as 

previously described. 18 Briefly, monomers (total concentration 0.5 M) were dissolved in 

isopropanol/water (50:50) and AIBN (1 mol % of total monomers) was added. Two 

different copolymers were synthesized using feed molar percentages of 
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NIPAAm/NTBAAm/AMPS in the reaction mixture of 60/35/5 and 80/15/5, respectively. 

After deoxygenation with N2 (15 min), the reaction vessel was sealed and kept at 60 ºC for 

16 h. Then, polymer solutions were neutralized with NaOH, dialyzed against distilled water 

(cut-off 3500 Da) and freeze-dried. Terpolymers composition was very similar to the 

reaction feed composition, as determined by Elemental analysis (Leco CHNS-932) and 1H 

NMR using CDCl3 as solvent (Varian Inova 300). 18 Molecular weight (~ 18 KDa) and 

polydispersity (~ 2.7) 18 were determined by gel permeation chromatography (GPC) using 

LiBr (0.1 %w/v) in DMF as eluent at a flow rate of 0.3 mL.min-1 at 70 ºC and narrow 

disperse poly(ethylene glycol) (PEG) as calibration standards. 

The cloud point temperature (CPT) of the polymer solutions was measured in a Varian-

Cary 3 UV/Visible spectrophotometer, equipped with a Peltier temperature controller. The 

transmittance (400 nm) was monitored as a function of temperature under magnetic 

stirring. Solutions were frozen at -20 ºC to ensure complete dissolution. Immediately after 

melting, solutions were placed in a cuvette and heating scans were performed between 

15-80 ºC at a scanning rate of 1 ºC/min. The initially clear polymer solution was used as 

blank. Cooling scans were performed between 80-5 ºC immediately after heating at the 

same rate. 

The hydrodynamic diameter was determined by Dynamic Light Scattering (DLS) using a 

Zetasizer NanoZS Instrument (ZEN3600, Malvern Instruments, Worcestershire, UK) 

equipped with a 4 mW He-Ne laser (λ0=633 nm) and with non-invasive backscattering 

(NIBS) detection at a scattering angle of 173º. Both measuring position and attenuator 

were adjusted automatically before each measurement. Measurements at variable 

temperature were performed after an equilibration time of at least 2 min. 

The electrophoretic mobility was obtained by Laser Doppler Velocimetry (LDV) using a 

Zetasizer NanoZS Instrument (ZEN3600, Malvern Instruments, Worcestershire, UK) at a 

scattering angle of 17º and capillary folded cells (DTS1060, Malvern, Worcestershire, UK). 

The measurements were performed with an applied voltage of ± 20 V in the temperature 

range 8-64 ºC after an equilibration time of 4 min. For both DLS and electrophoretic 

mobility measurements, the terpolymer solutions were prepared in ultrapure water and 

filtered using a 0.20 µm disposable PES membrane filter (TPP, Trasadingen, 

Switzerland). 
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Chapter 8 

General conclusions and final remarks 

 

In this thesis surface phenomena addressing two very different applications within the 

biomaterials field were studied. If fact, physical protein adsorption, a critical step in cell 

adhesion and subsequent fate, is mainly explained by the same surface phenomenon that 

rules colloidal aggregation processes. 

In the first part of the present thesis (Chapters 3, 4 and 5), the surface of 2D and 3D 

biomaterial structures was functionalized with acidic anionic groups by plasma induced 

polymerization and the influence of the modification process on the surface properties and 

the material in vitro performance was evaluated. In the second part, (chapters 6 and 7) 

thermoresponsive ionic polymers were synthesized and characterized. The peculiar 

aggregation-redissolution behavior of some of the synthesized polymers was used for the 

production of nanoparticles with a well controlled size. 

 

Surface functionalization by plasma induced polymerization 

 

This part of the thesis dealt with the influence of anionic, acidic groups on the surface of 

biomedical devices and with the crosstalk of these devises with different bioentities 

present in the in vitro environment such as cells and proteins. Our attention to those 

groups was a consequence of the presence of negatively charged functional groups in all 

natural glycosaminoglycans and because of the proven crucial role of these charged units 

in the formation proteoglycans, and therefore in key biochemical process related to cell 

survival and functionality. In Chapters 3 to 5, we have tested the three most common for 

natural biomacromolecules negative moieties: -COOH, -SO3H and –PO3H. While the first 

two groups are common for the GAGs, the third one is closely related to biomineralization 

process triggering bone formation. In these studies (Chapters 3, 4 and 5) we have found 

that small changes in surface morphology and chemistry can induce remarkably 

distinguishable cell response. A negative effect of –COOH grafted chitosan on osteoblasts 

like cells (SaOs-2) attachment and proliferation was observed whereas tremendous 

improvement in cell behaviour on surfaces with –SO3H and –PO3H grafted groups was 

registered. The response of SaOs-2 cells to the modified surfaces was related to protein 

adsorption. We have investigated adsorption from complex protein solution such as serum 

where a competition between different proteins occurs. The detected improvement in cell 
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behaviour on both -SO3H and –PO3H containing surfaces was attributed to the adhesive 

vitronectin (Vn), the protein which adsorbed mostly at the studied conditions (the same as 

for the in vitro cell tests). Further comparison between the negative functionalities 

demonstrated increased adsorption of Vn on –PO3H grafted samples. The same tendency 

was observed for the adhesion and proliferation of SaOs-2; higher DNA quantities were 

registered for SaOs-2 cultured on –PO3H modified samples. 

Chapter 5 of the thesis proved that the methodology for surface modification proposed in 

Chapters 3 and 4 is applicable to devices made from different polymers and with complex 

shapes. The translation of 2D to 3D surface modification is very important since the 

supports required in different tissue engineering strategies and biomedical applications 

are usually 3D, complex shaped scaffolds. The nowadays available strategies for 

functionalization of 3D structures usually involve wet chemical treatments which in many 

cases affect the bulk properties of the material.  

Overall, the results from this part of the thesis further testify the potential of surface 

grafting of functional groups by plasma-induced polymerization in the context of bone 

tissue engineering. 

 

Thermoresponsive alkylacrylamide based ionic terpolymers. 

 

Ionic thermo-responsive polymers has the ability to form surfactant-free nanoparticles 

stabilized by surface charge above the LCST or to interact with oppositely charged 

macromolecules, allowing for the construction of thermo-responsive polyelectrolyte 

complexes. In the second part of this thesis (Chapter 6 and 7), a series of ionic 

terpolymers composed of N-isopropylacrylamide (NIPAAm), 2-Acrylamido-2-methyl-1-

propanesulphonic acid (AMPS) and N-tert-butylacrylamide (NTBAAm) monomers were 

synthesized by free radical polymerization. In Chapter 6 the effect of polymer composition, 

salt and polymer concentration in the aggregation-redissolution behavior in solution was 

evaluated. Turbidity was used to assess the macroscopic phase separation and dynamic 

light scattering (DLS) was employed to elucidate some aspects regarding the molecular 

scale mechanism of the temperature-induced phase separation. In Chapter 7 the ionic 

polymers aggregation-redissolution profile observed for more hydrophobic polymers was 

used to propose a methodology for the production of nanoparticles with a well controlled 

size. 

In the polymer design, AMPS was chosen to afford a negative charge to the terpolymers 

because it is a strong acid (pKa=1.9) that dissociates completely in the pH range of most 

envisaged applications. An AMPS molar ratio of 0.05 was chosen to assure a sharp 
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phase-separation. Furthermore, the functional sulfonic group position in AMPS gives the 

terpolymers a continuous structural similarity along the polymer backbone. This avoids the 

disruption of the continuity of the N-alkyl groups, which has been referred in the literature 

to decrease hydrophobic aggregation force necessary for the cooperative chain collapse, 

thus decreasing phase-separation sharpness. All terpolymers were synthesized 

containing the same relative amount of AMPS, i.e., containing the same charge. In order 

to adjust the LCST, terpolymer hydrophobic content was varied by changing NTBAAm to 

NIPAAm monomer ratio. Poly(NIPAAm-co-NTBAAm-co-AMPS) aqueous solution did not 

show  turbidity changes (macroscopic phase separation) with the temperature. 

The CPT was only observed when NaCl was added to the solutions. However, the 

formation of metastables nanosized aggregates (LCST) was observed by DLS in both 

water and aqueous saline solutions. The macroscopic phase separation was always 

observed at higher temperatures than the formation of the nano-aggregates. Therefore, 

there was no correlation between CPT and LCST. These results raised serious concerns 

about the validity of using turbidimetry measurements to obtain a reliable estimation of the 

LCST for charged thermoresponsive polymers. Both the CPT and the LCST decreased 

with the increase of hydrophobicity (increased NTBAAm content). However, the 

aggregation profile observed by turbidimetry dramatically changed above a critical amount 

of NTBAAm (0.25-0.30). Terpolymers with NTBAAm content below the critical value 

showed a fast macroscopic phase separation for all studied conditions. Moreover, the 

formed large aggregates redissolve in the cooling ramp at different temperature 

depending on the salt concentration and always at temperatures higher than the LCST. 

On the other hand, NTBAAm-richer terpolymers showed a slower aggregation process 

whose rate was found to depend on salt concentration. In this case, the large aggregates 

formed during the heating scan disentangled always at the same temperature which is 

coincident with the LCST. The differences observed on copolymers solutions were 

explained as the result of a fine balance between hydrophobic attractive forces and 

electrostatic repulsion, which leads to formation of intermediate metastable nanosized 

aggregates. The hydrophobic cohesion forces for polymers with higher NTBAAm content 

are stronger, thus able to withstand a higher surface charge density. Therefore, the 

aggregation is slower due to the electrostatic repulsion that acts as stabilizer of the 

aggregates. Furthermore, the redissolution only occurs at the LCST because the stronger 

internal cohesion is enough to compensate the electrostatic repulsion. On the other hand, 

the hydrophobic forces in polymers with lower content of NTBAAm are weaker and not 

able to bring charges close enough to provide an effective surface charge density, 

hindering electrostatic stabilization of the aggregates with a consequent fast coagulation. 
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Moreover, the larger aggregates formed meanwhile were redissolved before reaching the 

LCST in the cooling ramp because the hydrophobic interactions are not strong enough to 

counteract the electrostatic repulsion. 

Using the aggregation-redissolution profile of more hydrophobic copolymers we have 

proposed in this thesis a method to produce thermoresponsive nanoparticles by means of 

a temperature cycle (Chapter 7). The nanoassemblies were formed in aqueous medium 

and surfactants were not needed for particles stabilization. The slow aggregation 

observed above the LCST was used to obtain a fine control over the particle size. 

Nanoparticles, grown at a higher temperature (30/ 40ºC), were stabilized at the desired 

size by decreasing the temperature to 21ºC. Finally, complete disentanglement of the 

nanoparticles could be triggered by further decreasing the temperature (below 16ºC). 

We believe that it would be possible to extend the method to other thermoresponsive 

polymers, both cationic and anionic, by fine tuning the balance between electrostatic 

repulsion and polymer hydrophobicity. This nanoparticle synthesis methodology may be 

potentially useful to obtain nanoparticles of customized size for a range of applications, 

including drug and gene delivery, biosensing, separation and purification of biological 

molecules and cells. The method avoids using surfactants or crosslinkers, avoiding their 

inherent drawbacks. The reversible disentanglement of the nanoparticles at temperature 

below the LCST, with recovery of soluble terpolymer chains, might be very useful for 

instance in intracellular drug delivery and burst release of drugs locally applying simple ice 

packs or clinical instruments such as deeply penetrating cryoprobes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What does not kill me, makes me stronger 

Friedrich Nietzsche (Twilight of the Idols, 1888) 
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