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1 Background

Our aim is to investigate the existence of the Drazin inverse (p + q)d of the sum p + q, where p and q

are either ring elements or matrices. The Drazin-inverse is the unique solution to the equations

ak+1x = ak, xax = x, ax = xa,

for some k ≥ 0, if any. The minimal such k is called the index in(a) of a. If the Drazin inverse exists

we shall call the element D-invertible.

An element a is called regular if axa = a for some x, and we denote the set of all such solutions by

a{1}.
A ring with 1 is von Neumann (Dedekind) finite if ab = 1 ⇒ ba = 1. Two elements x and y are

left(right) orthogonal (LO/RO), if xy = 0 (resp. yx = 0).

If a is D-invertible, then a = (a2ad) + a(1− aad) = ca + na is referred to as the core-nilpotent (C-N)

decomposition of a.

A knowledge of the D-inverses of p and q may not give any information about the existence of

the D-inverse of the sum p + q, as seen from the case where p and q are both nilpotent. Indeed, if

p = q =

[
0 0

1 0

]
then p + q is still nilpotent, while if q =

[
0 1

0 0

]
then p + q is invertible.

There are two main methods at our disposal, namely we can try to compute (p + q)n in a compact

form, or we can use splittings.

The former case is based on the fact that the existence of non-negative intergers r and s such that

ar+1x = ar and as = yas+1 is equivalent to a is D-invertible. The smallest values of r and s are called

the left and right index of a, respectively (see [7]). As shown by Drazin [2], if r and s are finite then

r = s = in(a). Furthermore, ad = amxm+1 following the proof of the Lemma in [11, page 109], where

m = in(a). Indeed, setting ad = amxm+1, one can show (i) aad = ada, (ii) am+1ad = am and (iii)

adaad = ad. We will make use of equalities ym+1a2m+1 = am = a2m+1xm+1.

(i) aad = aamxm+1 = am+1xm+1 = ym+1am+1 = ym+1a2m+1xm+1a = amxm+1a = ada.

(ii) am+1ad = am+1amxm+1 = amam+1xm+1 = a2m+1xm+1 = am.

(iii) Recall that aad = ada means am+1xm+1 = amxm+1a, which in turn implies am+1xm+1am =

aamxm+1aam−1 = am+2xm+1am−1 = · · · = a2m+1xm+1. Hence, adaad = aadad = am+1xm+1amxm+1 =

a2m+1xm+1xm+1 = amxm+1 = ad.

On the other hand, the key results in the latter direction is given in [8], and states that if p and q

have D-inverses, and pq = 0, then (qp)d and (p + q)d exist and the latter is given by

(p + q)d = (1− qqd)[
k−1∑
r=0

qr(pd)r]pd + (qd)[
k−1∑
r=0

(qd)rpr](1− ppd), (1)

where max{in(p), in(q)} ≤ k ≤ {in(p) + in(q)}. Moreover

(p + q)(p + q)d = (1− qqd)[
k−1∑
r=0

qr(pd)r]ppd + (qqd)[
k−1∑
r=0

(qd)rpr](1− ppd) + qqdppd (2)
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This former result is equivalent to the block triangular D-inversion [7][
A 0

B D

]d

=

[
Ad 0

X Dd

]
, (3)

where, for k ≥ {in(A), in(D)},

X = −DdBAd + (I −DDd)Yk(Ad)k+1 + (Dd)k+1Yk(I − AAd)

= −DdBAd + (I −DDd)Rk(Ad)2 + (Dd)2Sk(I − AAd),

in which Yk = Dk−1B + Dk−2BA + · · ·+ BAk−1, Rk =
∑
t=0

DtB(Ad)t and Sk =
∑
t=0

Ddt
BAt.

A special application of this gives the interesting result:

Corollary 1.1. If e2 = e, f 2 = f and efe = 0 = fef , then ef , fe and e + f are D-invertible,

(e + f)n = e + f + (n− 1)(ef + fe)

and

(e + f)d = e + f − 2(e + fe).

Needless to say, this case can be done using either powering or by splitting.

Let us end this introductory section by emphasizing a well known result, known as Cline’s formula

[1] (cf. [7, page 16]), that relates (ab)d and (ba)d, namely by (ab)D = a
(

(ba)D
)2

b.

2 D-inverses via powering

As a first example where powering can be used, we present the case where a2 = 0 = b2. We have

Proposition 2.1. Suppose a, b and ab are D-invertible and that a2 = 0 = b2. Then

1. a + b is D-invertible.

2. (a + b)d = a(ba)d + b(ab)d and [(a + b)2]d = (ab)d + (ba)d.

Proof. Using induction it is easily seen that

(a + b)2k = (ab)k + (ba)k

and

(a + b)2k+1 = (ab)ka + (ba)kb.

It is now straight forward to check that x = a(ba)d+b(ab)d satisfies the necessary equations (a+b)2k+1x =

(a + b)2k, x(a + b)x = x and (a + b)x = x(a + b).
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We note in passing that this result takes care of the example of two nilpotent matrices of p =

[
0 0

1 0

]

and q =

[
0 1

0 0

]
of index two. This result is not covered by the assumptions that adb = 0 = abd =

(1− bbd)ab(1− aad) or that abd = 0 = (1− bbd)ab = 0 of [4] or [3].

When a3 = 0 = b2, neither the powering method nor the splitting approach seems to yield a tractable

path for computing (a + b)d. The example where a =

 0 1 0

0 0 1

0 0 0

 and b =

 0 0 0

0 0 0

1 0 0

 shows that

a + b may again be invertible. Note that ab 6= 0 6= ba, so that the basic splitting does not apply. The

trouble with the conditions a3 = 0 = b2 is that the cubic power gives the chain too much freedom, i.e.

the expressions for (a + b)k fail to become periodic. The above example suggests that we must add an

extra condition to be able to control the number of terms in the powers of the sum. Indeed, we may

state

Proposition 2.2. Suppose a, ba2b are D-invertible and that a3 = 0 = b2 = bab. Then

1. a + b is D-invertible.

2. (a + b)d = (a + b)m
[
(a2b)da2 + b(a2b)d + ab[(a2b)d]

]m
for sufficiently large m.

Proof. If we set x = a + b then it follows by induction for k = 1, 2, . . . that

(i) x3k = (a2b)k + ab(a2b)k−1a + (ba2)k;

(ii) x3k+1 = (a2b)ka + ab(a2b)k−1a2 + b(a2b)k;

(iii) x3k+2 = a2(ba2)k + ab(a2b)k + b(a2b)ka.

This shows a 3 term periodicity.

We now may verify directly that

(a + b)3k+1u = (a + b)3k

and

v(a + b)3k+1 = (a + b)3k−2

where

u = (a2b)da2 + b(a2b)da + ab(a2b)d

and

v = (a2b)d + ab[(a2b)d]2.a + (ba2)d

These ensure that a+ b is D-invertible and is given by (a+ b)d = (a+ b)3ku3k for sufficiently large k.

In the next section we shall use a suitable splitting to improve on this result.
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3 Splittings

As always our starting point for the splitting approach is the factorization a+b =
[

1 b
] [ a

1

]
. Using

Cline’s formula [1], we may write

(a + b)d =
[

1 b
]

(Md)2

[
a

1

]
, (4)

where

M =

[
a

1

] [
1 b

]
=

[
a ab

1 b

]
, M2 =

[
a2 + ab a2b + ab2

a + b ab + b2

]
(5)

and

M3 =

[
a3 + a2b + aba + ab2 a3b + a2b2 + abab + ab3

a2 + ab + ba + b2 a2b + ab2 + bab + b3

]
. (6)

There are two approaches that we can take, namely we can compute Md and then square the result,

or we can directly compute (M2)d or (M3)d. We shall start by using the second approach.

Our first result is

Theorem 3.1. Supose that a2 + ab and ab + b2 are D-invertible, and that a2b + ab2 = 0. Then a + b is

D-invertible with

(a + b)d =
(
a2 + ab

)d
a + b

(
ab + b2

)d
+ bXa (7)

where

X = −
(
ab + b2

)d
(a + b)

(
a2 + ab

)d
+
[
1−

(
ab + b2

) (
ab + b2

)d]
Yk

[(
a2 + ab

)d]k+1

+

+
[(

ab + b2
)d]k+1

Yk

[
1−

(
a2 + ab

) (
a2 + ab

)d]
,

Yk =
k−1∑
r=0

(
ab + b2

)k−r−1
(a + b)

(
ab + a2

)r
and in{a2 + ab}, in{b2 + ab} ≤ k ≤ in{a2 + ab}+ in{a2 + ab}.

Proof. The matrix M2 collapses to M2 =

[
A 0

B D

]
where A = a2 + ab, B = a + b and D =

ab + b2. We may now use equations (3) and (4) to compute the desired D-inverse as (a + b)d =[
1 b

] [ Ad 0

X Dd

][
a

1

]
= Ada + bDd + bXa .

Let us now turn to some of the simplifications.

Corollary 3.1. Suppose that a, b, ab, a2 + ab and ab + b2 are D-invertible, and that a2b = 0 = ab2.

Then a + b has a D-inverse as given in (7) which can be expressed in terms of ad, bd and (ab)d.
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Proof. Since a2(ab) = 0 and ab(b2) = 0, we may use equation (3) to compute the D-inverses, in terms

of ad, bd, (ab)d and (ba)d.

First we have, (
a2 + ab

)k
=

k∑
r=0

(ab)r (a2
)k−r

,

(
ab + b2

)k
=

k∑
r=0

(
b2
)k−r

(ab)r ,

(
a2 + ab

)k
b = 0 = a

(
ab + b2

)k
, for k = 1, 2, ...,

and thus a (a2 + ab)
d

= 0.

Using left orthogonality we have in addition, for A = a2 + ab,

Ad =
(
a2 + ab

)d
=
[
1− (ab) (ab)d

]
U1

(
a2
)d

+ (ab)d U2

(
1− aad

)
and

AAd =
[
1− (ab) (ab)d

]
U1

(
aad
)

+ (ab) (ab)d U2

(
1− aad

)
+ (ab) (ab)d aad,

where

U1 =
N∑

r=0

(ab)r
([

a2
]d)r

and

U2 =
N∑

r=0

[
(ab)d

]r (
a2
)r

,

for some large enough N .

Likewise,

Dd =
(
ab + b2

)d
=
(
1− bbd

)
V1 (ab)d +

(
b2
)d

V2

[
1− (ab) (ab)d

]
,

DDd =
(
1− bbd

)
V1 (ab) (ab)d + bbdV2

[
1− (ab) (ab)d

]
+ bbd (ab) (ab)d ,

where

V1 =
K∑

r=0

(
b2
)r [

(ab)d
]r

and

V2 =
K∑

r=0

[(
b2
)d]r

(ab)r ,

for some large K.

These can now be used to obtain

bDd (a + b) a =

b
[(

1− bbd
)
V1 (ab)d +

(
b2
)d

V2

[
1− (ab) (ab)d

]]
(a + b)

[[
1− (ab) (ab)d

]
U1

(
a2
)d

+ (ab)d U2

(
1− aad

)]
a
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as well as

b
(
1−DDd

)
Rk

(
Ad
)2

a = b
[
1−

(
1− bbd

)
V1 (ab) (ab)d − bbdV2

[
1− (ab) (ab)d

]
− bbdab (ab)d

]
Rk

(
Ad
)2

a

and the expression

b
(
Dd
)2

Sk

(
1− AAd

)
a = b

[(
1− bbd

)
V1 (ab)d +

(
bd
)2

V2

[
1− (ab) (ab)d

]]2
Sk ×

×
[
1−

(
1− ab (ab)d

)
U1

(
aad
)
− ab (ab)d U2

(
1− aad

)
− ab (ab)d aad

]
a.

These expressions, including Rk and Sk, only use ad, bd and (ab)d via (a2 + ab)
d

and (ab + b2)
d
.

We next present a useful Lemma.

Lemma 3.1. If e2 = e, eb = 0 and bd exists, then

1. ebd = 0;

2. (be)d = 0;

3. [b(1− e)]d = bd(1− e);

4. b(1− e)[b(1− e)]d = bbd.

Proof. This is left as an exercise.

It should be noted that a parallel result follows when af = 0 with f 2 = f .

We now recall the core-nilpotent and Pierce decompositions:

a = ca + na and b = ebe + eb(1− e) + (1− e)be + (1− e)b(1− e) (8)

where ca = a2ad and na = a(1− aad), if any, and e2 = e.

We may now state

Theorem 3.2. Let a and b be D-invertible with adb = 0 = abd. If in addition either (1−bbd)ab(1−aad) =

0 or b(1− bbd)a(1− aad) = nanb = 0, then a + b is D-invertible.

Proof. Let e = aad and f = bbd. Then eb = 0 = af . We may now split a and b as a = fa + (1 − f)a

and b = be + b(1 − e) = b1 + b2. By Lemma 3.1, bd
2 = bd(1 − e), b2b

d
2 = bbd, b2

2b
d
2 = b2bd and

b2(1− b2b
d
2) = b(1− e)(1− f) = b(1− e− f).

We now write a + b = (ca + b1) + (na + b2) = x + y, in which xy = 0, on account of eb = 0 = af and

Lemma 1.

The D-invertibilty of a + b now follows from equation (1), once we have shown that x = (ca + b1)

and y = (na + b2) are D-invertible. Since cab1 = a2ad.be = 0, cd
a = ad and (be)d = 0, it is clear from

equation (1) that x is D-invertible. On the other hand, to obtain a left orthogonal splitting for y we

follow [4] by using a Pierce decomposition for na and a CN decomposition for b2, i.e. let

y = (na + b2) =
[
(1− f)na + b2(1− b2b

d
2)
]

+
[
fna + b2

2b
d
2

]
= u + v.
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This is a LO splitting because af = 0 = f(1−f). Lastly, to show that u and v are D-invertible, it again

suffices to check that we have two LO splittings, and that the summands are D-invertible. In fact, in u

we can use

(1− f)a(1− e)b(1− e)(1− f) = (1− f)ab(1− e) = 0,

or use

(1− e)(1− f).(1− e)a = b(1− f)(1− e)a = 0.

On the other hand in v we have fa(1− e)b2bd = 0.

Finally, the four summands fna, (1− f)na, b(1− e)(1− f) and cb are all D-invertible. In fact the

first three summands are nilpotent, while cd
b = bd. A three fold application of equation (1) gives the

actual expression for (a + b)d.

Remarks

Needless to say, a parallel result holds when nbna = 0.

Let us now show that a LO splitting can also be used for our nilpotent example.

Proposition 3.1. Suppose a3 = 0 = b2 = a2bab = (ab)3 and that (a2b)d exists. Then (a + b)d exists

and is given by

(a + b)d = ayda + bxda + byda + abxd + b(ab)2xd + (ab)2[(xd)2 + (yd)2]a, (9)

where x = a2b and y = aba.

Proof. The matrix M3 of equation (6) reduces to

M3 =

[
a2b + aba abab

a2 + ab + ba a2b + bab

]
, (10)

which can be split as

M3 =

[
A 0

B D

]
+

[
0 abab

0 0

]
= P + Q, (11)

in which A = a2b + aba = x + y and D = a2b + bab = x + n.

We now note that the assumptions ensure that

xn = xab = xb = ax = a2y = a2n = abn = bax = xy = 0. (12)

We now see that PQ = 0, xy = yx = 0 and xn = 0, so that we have a bi-orthogonal splitting of A and

a LO splitting of D. As such both A and D are D-invertible. Consequently,

Ak = xk + yk, Ad = xd + yd,

and

AAd = xxd + yyd.
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It is now convenient here to mention that if x is D-invertible and n is nilpotent of index t with

xn = 0, then

Dd =
[
1 + nxd + · · ·+ nt−1(xd)t−1

]
xd and DDd =

[
1 + nxd + · · ·+ nt−1(xd)t−1

]
xxd. (13)

We shall mainly use the special case where t = 2.

Lemma 3.2. Suppose D = x + n, where x is D-invertible, n2 = 0 and xn = 0. Then

1. Dk = (x + n)xk−1, for k = 1, 2, ...

2. Dd = [1 + nxd]xd

3. DDd = (x + n)xd

4. (Dd)k = (1 + nxd)(xd)k−1 = Dd, for k = 2, 3, ...

The latter shows that Dd is idempotent.

Now, since PQ = 0 = Q2 and P d exists, we may use equation (1) to obtain

(M3)d = [I + QP d]P d

We now can compute the desired D-inverse from

(a + b)d =
[

1 b
] [ a ab

1 b

]
(M3)d

[
a

1

]
=
[

a + b ab
] (

M3
)d [ a

1

]
(14)

Consider P =

[
A 0

B D

]
and Q =

[
0 abab

0 0

]
. From equation (1) we know that

PD =

[
Ad 0

X Dd

]
and

Q(P d)2 =

[
(ab)2[XAd + DdX] (ab)2(Dd)2

0 0

]
,

where X = −DdBAd + R + S, and

R = (1−DDd)

[
k−1∑
r=0

DrB(Ad)r

]
(Ad)2

and

S = (Dd)2

[
k−1∑
r=0

(Dd)rBAr

]
(1− AAd).

Substituting we arrive at

(a + b)d = (a + b)Ada + (abX)a + (abDd) + (a + b)(ab)2
[
XAda + DdXa

]
+ (a + b)(ab)2(Dd)2. (15)

Let us now evaluate the six term in this sum using the relations of (12):
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1. DdBAd = (1 + nxd)xd(a2 + ab + ba)(xd + yd) = 0 since xab = 0 = xb = a2x = a2y

2. (a + b)Ada = (a + b)(xd + yd)a = ayda + bxda + byda

3. (ab)Dd = ab(1 + nxd)xd = abxd, as bn = 0.

4. (a + b)(ab)2(Dd)2 = (a + b)(ab)2(1 + nxd)xd = b(ab)2xd, as a(ab)2 = 0.

Next we simplify R and S. First we need

Lemma 3.3. If r ≥ 2, then DrB(Ad)r = 0 = (Dd)rBAr.

Proof. For r ≥ 2, DrB(Ad)r = (x + n)xr−1(a2 + ab + ba)[(xd)r + (yd)r) = 0, because a2x = 0 = a2y and

xab = xba = 0. Similarly, (Dd)rBAr = (1 + nxd)(xd)(a2 + ab + ba)(xr + yr) = 0.

We may now simplify R and S.

R = (1−DDd)(B + DBAd)(Ad)2

= [1− (x + n)xd](x + n)(a2 + ab + ba)[(xd)3 + (yd)3]

= (ab)[(xd)2 + (yd)2] + (ba)(yd)2 + nab[(xd)3 + (yd)3].

Likewise,

S = (Dd)2(B + DdBA)(I − AAd)

= (1 + nxd)xd(a2 + ab + ba)[1− xxd − yyd] + (1 + nxd)(xd)2(a2 + ab + ba)A[1− xxd − yyd]

= (1 + nxd)xda2

We are now ready for the equalities:

1. Sa = 0 = abSa = Sx = Sy = Sxd = Syd

2. (ab)Ra = ab[(ab)[(xd)2 + (yd)2] + (ba)(yd)2 + nab[(xd)3 + (yd)3] = (ab)2[(xd)2 + (yd)r)

3. (a + b)(ab)2 = b(ab)2

4. (a + b)(ab)2XAda = b(ab)2(R + S)(xd + yd)a = b(ab)2R(xd + yd)a = b(ab)3[(xd)2 + (yd)2]a = 0

5. (a + b)(ab)2DdXa = b(ab)2DdRa = b(ab)2(1 + nxd)xd
[
(ab)[(xd)2 + (yd)2] + (ba)(yd)2 + nab[(xd)3 +

(yd)3]
]
a = 0

Adding the six terms yields the desired result.

Remarks

1. When abab = 0, the last three terms drop out.
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2. xd and yd are related via yd = ab(xd)2a.

3. For the converse see the next section.

Corollary 3.2. If a3 = 0 = b2 = abab = (ab)3 then

(a + b)d = a(aba)da + b(a2b)da + b(aba)da + ab(a2b)d + b(ab)2(a2b)d (16)

Let us now return to our previous example, where a + b = Ω.

Example 3.1. Let a =

 0 1 0

0 0 1

0 0 0

 and b =

 0 0 0

0 0 0

1 0 0

. Then ab =

 0 0 0

1 0 0

0 0 0

 and ba =

 0 0 0

0 0 0

0 1 0

. This shows that (ab)2 = 0 = (ba)2. Moreover y = aba =

 0 0 0

0 1 0

0 0 0

 = (aba)d and

x = a2b =

 1 0 0

0 0 0

0 0 0

 = xd. Thus ayda =

 0 0 1

0 0 0

0 0 0

, bxda =

 0 0 0

0 0 0

0 1 0

, abxd =

 0 0 0

1 0 0

0 0 0

 and

byda = 0. Adding these shows that (a + b)d =

 0 0 1

1 0 0

0 1 0

 = ΩT .

4 Converse Results

We shall now assume that a + b is D-invertible, and examine the D-invertibility of the related elements,

a, b, ab and ba. We shall present one local result in addition to one global result.

Proposition 4.1. Let a3 = 0 = b2 = a2bab = baba2 = 0 = (ab)3. If a + b has a Drazin inverse then so

do a2b and aba.

Proof. Using the notation of Proposition 3.1, we see that nx = 0. Now if a + b is D-invertible, then the

matrices M and M3 in (5) and (6) are D-invertible, so that P +Q is D-invertible. Now P = (P +Q)−Q

is a LO splitting because PQ = 0 = Q2. Consequently, P d =

[
u w

v z

]
exists. This means that for

some k, [
Ak+1 0

Yk+1 Dk+1

][
u w

v z

]
=

[
Ak 0

Yk Dk

]
=

[
u w

v z

][
Ak+1 0

Yk+1 Dk+1

]
.

This shows that

[xk+1 + yk+1]u = xk + yk
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and

z(x + n)k+1 = (x + n)k (k ≥ 1).

Pre-multiplying the former equation by x then gives xk+2u = xk+1, and because nx = 0, we also see

that the latter reduces to zxk+1 = xk. This ensures that x and y are D-invertible.

We next turn to a global consideration in which we shall assume that our ring is regular and finite.

Proposition 4.2. Given a finite regular ring R and A = [ai,j] a lower triangular matrix over R. If A

is group invertible then all ai,i are group invertible.

Proof. Denoting the diagonal element ai,i by ai, we may write A = [ai,j] =

[
a1 0

∗ Ã

]
. On account of

[9] we know that there exists an inner inverse A− ∈ A {1} such that

AA− =

[
a1a

−
1 0

∗ ∗

]
.

Since A# exists,

A2A− + I − AA− =

[
a2

1a
−
1 + 1− a1a

−
1 0

∗ ∗

]
is invertible ([12]), from which a2

1a
−
1 + 1− a1a

−
1 is invertible by the finiteness of R. Therefore, a#

1 exists.

Now from [7], we know that the existence of the group inverses for A and a1, guarantee that Ã# also

exists. Repeating this we see that the group invertibility of Ã# implies the group invertibility of a2.

Likewise we obtain the group invertibility of a3, . . . , an.

Corollary 4.1. Given a finite regular ring R and A = [ai,j] a lower triangular matrix over R. If A is

D-invertible then all ai,i are D-invertible.

Proof. If k = in (A) then Ak has a group inverse. From Proposition 4.2, the diagonal elements ak
i of Ak

are group invertible as desired.

Proposition 4.3. If pq = 0 and R is finite regular then pd, qd exist if and only if (p + q)d exists.

Proof. If p+q has a D-inverse in ring R, then

[
p + q 0

0 0

]
has a D-inverse in R2×2. By Cline’s formula,

if

[
p + q 0

0 0

]
=

[
1 q

0 0

][
p 0

1 0

]
has a Drazin inverse, so does

[
p 0

1 0

][
1 q

0 0

]
=

[
p pq

1 q

]
= M .

Since pq = 0, M reduces to the lower triangular matrix

[
p 0

1 q

]
. From Corollary 4.1, and bearing in

mind R is finite, the diagonal elements of M must have Drazin inverses.

We are now ready for our converse result.

Theorem 4.1. If R is finite regular, a2b = 0 = ab2 and (a + b)d exists then ad, bd and (ab)d exist.
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Proof. Again, the existence of (a + b)d implies the Drazin invertibility of M =

[
a ab

1 b

]
. Writing

P =

[
a 0

0 0

]
and Q =

[
0 ab

1 b

]
, it is clear from a2b = 0 that M = P +Q with PQ = 0. This implies,

using Cline’s formula [1], that M =

[
P 0

I Q

]
is D-invertible. In other words,

M =


a 0 0 0

0 0 0 0

1 0 0 ab

0 1 1 b


is D-invertible with index, say, k. Hence, M2k has a group inverse, and because ab2 = 0,

M2k =


a2k 0 0 0

0 0 0 0

∗ ∗ (ab)2k 0

∗ ∗ ∗ (b2 + ab)k


which is a lower triangular matrix. Using Proposition 4.2, it follows that (a2k)#, ((ab)2k)#, ((b2 +ab)k)#

exist, which imply the D-invertibility of a, ab and of b2 + ab, respectively. Therefore, P 2k is group

invertible and Q2k is D-invertible, which ensure the D-invertibility of P and Q. In order to complete

the proof, we shall show that the existence of Qd is sufficient for b to be D-invertible. To this effect

let us write Q =

[
0 ab

1 0

]
+

[
0 0

0 b

]
= K + W , where KW = 0 since ab2 = 0. We claim that the

existence of Qd ensures that Kd and W d both exist. Indeed, if (K + W )d exists and KW = 0 then,

again by Cline’s formula, Z =

[
K KW

I W

]
is D-invertible. Since K is a counter-diagonal matrix, its

even powers are diagonal matrices. In fact, K2n =

[
(ab)n 0

0 1

]
. Since (ab)d exists with Drazin index,

say, r, then (ab)l are all group invertible for l ≥ r. In particular (ab)2r has a group inverse, which means

K2r =

[
(ab)r 0

0 1

]
has a group inverse. Therefore, K has a Drazin inverse. Lastly, since K and Z are

D-invertible, it again follows from [7], that W d exists, ensuring that b is D-invertible.

We conclude with the observation that if a (and hence all powers of a) has a right (left) inverse and

is D-invertible, then a must be a unit.
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[3] Dragan S. Djordjević, Yimin Wei, Additive results for the generalized Drazin inverse, J. Aust.

Math. Soc., 73 (2002), no. 1, 115–125.
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[5] N. Castro González, J.J. Koliha, New additive results for the g-Drazin inverse, Proc. Roy. Soc.

Edinburgh Sect. A, 134 (2004), no. 6, 1085–1097.

[6] R.E. Hartwig, J. Luh, On finite regular rings, Pacific J. Math., 69 (1977), no. 1, 73–95.

[7] R.E. Hartwig, J. Shoaf, Group Inverses and Drazin inverse of bidiagonal and triangular Toeplitz

matrices, J. Austral. Math. Soc. Ser. A, 24 (1977), no. 1, 10–34.

[8] R.E. Hartwig, G. Wang and Y. Wei, Some additive results on Drazin inverses, Linear Algebra

Appl., 322 (2001), no. 1-3, 207–217.

[9] P. Patŕıcio, R. Puystjens, About the von Neumann regularity of triangular block matrices. Linear

Algebra Appl., 332/334 (2001), 485–502.
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