
      Chapter 18

 Transgenic Hypericum perforatum       

     G.   Franklin   ,    Margarida M.   Oliveira, and       Alberto C.P.   Dias  

          Summary 

 Plant transformation is an important tool with many applications in modern plant biology. Although this 
technique is primarily used to produce superior crop varieties, it is also being utilized to answer basic 
questions concerning gene function and regulation in contemporary functional genomics research. 
In our laboratory, we have established a transformation system for  Hypericum perforatum . This protocol 
involves the transfer of foreign DNA into  H. perforatum  organogenic nodule explants  via  particle-
bombardment and the regeneration of shoots from the explants under selection pressure. We have 
successfully used this method to express ß-glucuronidase and hygromycin phosphotransferase genes 
in  H. perforatum . Molecular analyses of putative phenotypically normal transgenic plants show stable 
integration of the transgenes into the plant nuclear genome. Here we describe the procedure for the 
transformation of  H. perforatum .  

 Key words:        Hypericum perforatum  ,  Organogenic nodular suspension culture ,  GUS gene ,  HPT gene , 
 Particle-bombardment ,  Transgenic plant ,  Polymerase chain reaction analysis ,  Southern blot analysis    

  Hypericum perforatum  L. (St. John’s Wort) is an important medici-
nal plant that has been used since ancient times for the treatment of 
numerous ailments. Recent clinical studies demonstrate that  H. per-
foratum  extracts are efficient in the treatment of mild to moderate 
depression  (  1,   2  ) . The extract is also reported to possess antiviral  (  3  ) , 
anticancer  (  4  ) , neuroprotective  (  5  )  and antioxidant  (  6  ) properties . 
The pharmaceutical importance of  H. perforatum  extract (second-
ary metabolites) is the main driving force behind the research that is 
focused on HP cell cultures  (  7–  11  ) . However, the cell and tissue cul-
tures for large-scale production of secondary metabolites has so far 
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achieved only limited success because of the low and  unreliable 
yield of the products. Although significant improvements in prod-
uct yields have been achieved through conventional biochemical 
approaches and manipulation of culture and process factors, the 
reproducibility of results is still a matter of concern  (  12  ) . 

 Biosynthesis of therapeutically useful compounds can be 
effectively improved in medicinal plants by altering the expres-
sion of transcription factors or structural genes through metabolic 
engineering  (  13–  15  ) . As the pharmacologic activities of  H. per-
foratum  extract are largely attributed to compounds like hyper-
icin and hyperforin that are exclusively produced in this species, 
improving their production is an important target for genetic 
manipulation. In spite of the availability of excellent regeneration 
protocols  (  16–  19  ) , this goal is not realized satisfactorily so far 
because of the poor knowledge about the biosynthetic pathways 
involved and also because of the absence of a suitable genetic 
transformation system for the species. 

 Particle-bombardment (biolistics) is a versatile technique, 
by which very different cell types can be transformed  (  20,   21  ) . 
Because this technique makes use of physical processes to accel-
erate DNA directly into intact tissues, it has the advantage of 
avoiding plant cell defense responses, frequently observed in 
recalcitrant plants against  A. tumefaciens  (  22,   23  ) . Hence, this 
technique has been successfully used in the genetic transfor-
mation of a wide variety of plant species that remain otherwise 
recalcitrant to  Agrobacterium -mediated transformation  (  24–  26  ) . 
Moreover, this technology can deliver large number of genes into 
the target cells in a single step  (  27  ) , which is often necessary for 
the manipulation of metabolic pathways of plants  (  28  ) . 

 Because  H. perforatum  remains highly recalcitrant to  A. 
tumefaciens  mediated transformation  (  22  ) , particle-bombard-
ment would be an extremely useful alternative technology in 
efforts to improve this medicinal plant. Hence, we have devel-
oped a particle-bombardment protocol for genetic transfor-
mation of  H. perforatum , which can be applied in the genetic 
improvement programs of this important medicinal plant. So 
far, we have used this procedure to introduce the ß-glucuro-
nidase (GUS) gene  (  29  )  and stilbene synthase gene (G. Frank-
lin and A.C.P. Dias, unpublished data) into the  H. perforatum  
nuclear genome. 

  H. perforatum  seeds are available from many commercial 
sources including Richters Seeds (Goodwood; ON, Canada). 
The target tissues  (Fig.    1   )  for particle-bombardment mediated 

2. Materials

2.1. Plant Material



 Transgenic Hypericum perforatum 219

transformation of  H. perforatum  can be obtained as described 
in  Subheading    3.4  .  

 The binary vector used in the present study (pCAMBIA1301, 
Cambia, Australia) harbors the hygromycin phosphotransferase 
(HPT) gene as the selectable marker and the GUS gene disrupted 
by a catalase intron as reporter gene. Both genes are driven by 
the CaMV 35S promoter and are cloned in opposite orientation 
 (Fig.    2   ) . Plant expression vectors with many other combinations 
of marker and reporter genes are also available from Cambia and 
from other sources. We use  E. coli  strain DH5 alpha (Invitro-
gen, USA) for plasmid multiplication and Wizard® plus midipreps 
DNA purification system (Promega, USA) for plasmid isolation. 
Plasmid DNA should be stored at –20°C  .

 Plant culture media used in the present study are based on 
Murashige and Skoog (MS)  (  30  )  formulation.
   1.    10X Murashige and Skoog (MS) basal salt mixture with and 

without vitamins (Duchefa Biochemie, The Netherlands).  

   2.    1000X MS vitamin cocktail: Dissolve 200 mg glycine, 50 mg 
nicotinic acid, 50 mg pyridoxine–HCl and 1 g thiamine–HCl 
in 100 mL of deionized water.  

   3.    Other additives: myo-inositol, D-Mannitol (Sigma, St. 
Louis, MO), D-Sorbitol (Sigma), Sucrose (Panreac, Spain) 
and agar (VWR, Belgium)     

    1.    Plant growth regulators (PGRs) including 6-benzylaminopu-
rine/N6-benzyladenine (BA), Indole-3-butyric acid (IBA), 
 a -napthaleneacetic acid (NAA), and Kinetin (furfurylaminopu-
rine) (Sigma).  

2.2. Plasmid Vector

2.3. Plant Culture 

Media and 

Components

2.3.1. Plant Growth 

Regulator Stock Solutions

  Fig. 1 .   Organogenic cell suspension of  H. perforatum  variety ‘Helos’ showing ONS 

explants       .
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   2.    Stock solutions of the above PGRs can be made by dissolving 
the required amount in a minimal volume of 1 N NaOH and 
diluting with distilled water to obtain 1 mg/mL concentra-
tion and stored at 4°C.     

 Antibiotics are available from several commercial sources. We 
have used hygromycin B and ticarcillin clavulanate (timentin) 
(Duchefa) and kanamycin sulphate (Calbiochem, USA).
   1.    Prepare stock solutions of desired antibiotic concentrations by 

dissolving them in distilled water. We generally prepare 10- , 
50 and 250-mg/mL stock solutions respectively for hygromy-
cin, kanamycin, and timentin.  

   2.    Filter sterilize kanamycin and timentin using 0.2–0.45  m m pore 
size syringe filters (Sarstedt, Numbrecht, Germany).   Because 
of its high toxicity, hygromycin B does not need sterilization.

   3.    Store all antibiotic stocks at −20°C as frozen 1-mL aliquots.     

 Particle Delivery System PDS-1000/He, various sizes of microcar-
rier gold particles, macrocarriers, macrocarrier holders, stopping 
screens and rupture discs including 1100 psi (Bio-Rad, USA).
   1.    Maintain and multiply plasmid of interest (pCAMBIA1301) 

as described in  Subheading 2.2.  
2. Prepare 0.1 M stock solution of spermidine-free base (Sigma) 

immediately after opening the bottle and store as 100  m L aliq-
uots at –20°C.  

   3.    Prepare fresh CaCl
2
 solution (2.5 M).     

    1.    Dissolve 100 mg 5-bromo-4-chloro-3-indolyl  b - D -glucuronide 
(X-GlcA) (Sigma) in 1 mL  N, N- dimethylformamide or dimethy-
lsulfoxide (Sigma).  

   2.    Add 15 mL 100 mM NaH 
2
 PO 

4
  buffer, pH 7.0; 2.0 mL 0.5 

M ethylenediamine tetraacetic acid (EDTA); and 10 mL 1% 
 (v/v)  Triton-X 100.  

   3.    Make up the final volume to 100 mL with sterile distilled water.  

   4.    Store the solution as desired aliquots at –20°C.     

    1.    Isolate genomic DNA from putative transgenic plants. We use 
DNeasy plant mini kit (Qiagen, Germany).  

   2.   Components for polymerase chain reaction (PCR): gene-
specific primers: 5X Taq DNA polymerase, 10 mM dNTP 
mix, and 25 mM MgCl

2
 solution. 

   3.    Dissolve primers in distilled water to a final concentration 
of 5 pmol/ m L. We use the following primer sequences to 
amplify GUS and HPT genes.

    GUS gene forward – 5 ¢ GATCGCGAAAACTGTGGAAT3 ¢   

   GUS gene reverse – 5 ¢ TGAGCGTCGCAGAACATTAC3 ¢   

2.3.2. Antibiotic Stocks

2.4. Particle 

Bombardment

2.5. Analysis of 

Transgenic Plants

2.5.1. GUS Solution

2.5.2. Polymerase Chain 

Reaction
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   HPT gene forward – 5 ¢ ATTTGTGTACGCCCGACAGT3 ¢   

   HPT gene reverse – 5 ¢ GGATATGTCCTGCGGGTAAA3 ¢      

   4.    Store all the components at –20°C until use.  

   5.    Perform PCR analysis of genomic DNA in a thermocycler 
(Mastercycler gradient ® , Eppendorf, Germany).     

    1.    Restriction endonuclease  Eco RI (Fermentas, USA).  

   2.    Hybond nylon membrane (Amersham Biosciences, UK).  

   3.    Ultraviolet (UV) cross-linker (Stratagene, USA).  

   4.    Church buffer: 250-mM sodium phosphate buffer, pH 7.2; 
1%  (w/v)  bovine serum albumin (BSA); 7%  (w/v)  sodium 
dodecyl sulfater (SDS); and 1 mM EDTA.  

   5.     a -[ 32 P] dCTP (Amersham), Prime-a-Gene ®  labeling kit 
(Promega).  

   6.    Hybridization oven/shaker (Amersham) and phosphorimager 
(Bio-Rad).     

 Refer to  Table    1   for the media components.
   1.    For all media, adjust the pH to 5.8 before autoclaving at 

121°C for 15 min.  

   2.    Add antibiotics, if needed, after cooling the media to 
50–60°C.  

   3.    Pour 25 mL solid medium in each sterile plastic Petri dish and 

solidify in a flow hood.      

    1.    Sterilize instruments for explant preparation (forceps, scalpel 
etc.) by dipping them in 90%  (v/v)  ethanol and flaming. It is 
important to cool them before use.   

   2.    Alternative methods of sterilization are also possible.     

    1.    Take approximately 50–100  H. perforatum  seeds in an Eppen-
dorf tube containing 1 mL sterile water and add one drop of 
Tween-20. Keep in dark at 4°C.  

   2.    After 12 h, discard the solution. Decontaminate the seeds with 
70%  (v/v)  ethyl alcohol for 60 s and with commercial bleach 
containing 1.5%  (v/v)  active chlorine for 3 min ( see   Note    1  ).  

   3.    Wash the seeds three times in sterilized distilled water and 
blot-dry on a sterile filter paper.  

2.5.3. Southern Blot 

Analysis

3. Methods

3.1. Media Preparation

3.2. Sterilization 

of Instruments

3.3. Seed Germination
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   4.    Transfer the disinfected seeds onto WA (water–agar) medium 
for germination.  

   5.    After 10–15 d, transplant the seedlings into Baby Food Jars 
containing 50 mL ½MS (half strength MS basal) medium for 
further growth ( see   Note    2  ).     

    1.    Transfer the  H. perforatum  seedlings aseptically to a sterile 
Petri dish containing sterile distilled water ( see   Note    2  ).  

   2.    Excise the leaves and transfer them to CIM (callus induction 
medium). Green compact callus induction can be seen in 15 d 
( see   Note    3  ).  

   3.    Cut the green compact calluses into pieces and transfer to org-
anogenic nodule induction (ONI) medium. Keep the flasks 
on a rotary shaker at 120 rpm   .  

   4.    Organogenic nodules  (Fig.    1   )  generally appear in the culture 
after 4–5 subcultures ( see   Note    4  ).  

3.4. Establishment of 

Organogenic Nodular 

Cell Suspension Culture

 Component  WA  ½ MS  MSB  CIM  ONI  REG  OSM  SEL  RT 

 MS basal salts  (g/L)   2.15  4.3  4.3  4.3  4.3  4.3  4.3  2.15 

 Sucrose   (g/L)  15.00  30.0  30.0  30.0  30.0  30.0  30.0  15.00 

 Vitamins 

 Myo-inositol   (mg/L)  50  100  100  100  100  100  100  50 

 MS vitamins   (mL/L)  0.5  1  1  1  1  1  1  0.5 

 Agar (g/1 L)  8  8  8  8  8  8  8 

 PGRs 

 Kinetin   (mg/L)  0.5 

 NAA   (mg/L)  1  0.5  0.1  0.1  0.1 

 BAP   (mg/L)  0.1  0.1  0.1 

 IBA   (mg/L)  0.5 

 Antibiotics 

 Timentin   (mg/L)  500  500 

 Hygromycin   (mg/L)  20  20 

 Osmoticum 

  D -Mannitol   (g/L)  34 

  D -Sorbitol   (g/L)  34 

  Table 1  

  Media Composition    
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   5.    Collect these nodules using steel mesh screen (# 40, Sigma) 
and culture separately ( see   Note    5  ).  

   6.    This organogenic nodular suspension (ONS) culture can be 
maintained for many years by subculturing a 10-mL aliquot 
to 70-mL ONI medium every month ( see   Note    6  ).     

    1.    Harvest ONS from the cultures using a sterile steel mesh 
screen (# 40, Sigma) and transfer them to OSM (osmotic 
medium) for osmotic treatment. This treatment should not 
exceed 4 h ( see   Note    7  ).  

   2.    Transfer 1-mL ONS along with OSM to the centre of a sterile 
round Whatman No1 filter paper disk ( see   Note    8  ).  

   3.    Following the absorption of the excess OSM, carefully place 
the paper disc along with the ONS tissues in plastic Petri 
dishes containing 25-mL solidified OSM.  

   4.    Plates are now ready for bombardment.     

    1.    Transform chemically competent  E. coli  with pCAMBIA1301 
following the manufacturer’s protocol.  

   2.    Transformed  E. coli  can be maintained as glycerol stocks. 
When necessary, initiate 100 mL broth culture in Luria ber-
tani (LB) medium augmented with 50 mg/L kanamycin.  

   3.    Isolate plasmid DNA from bacterial culture grown overnight 
( see   Note    9  ). There are several protocols available for plasmid 
isolation from  E. coli . We use Wizard ® plus midipreps DNA 
purification system following manufacturer’s instructions.  

   4.    Quantify the plasmid DNA in a spectrophotometer and adjust 
to 1  m g/ m L using TE ( see   Note    10  ) and store at −20°C.     

    1.    Weigh out 20 mg gold particles, 1  m m size, in a sterile 1.5-
mL Eppendorf tube, add 1 mL 70%  (v/v)  ethanol and vortex 
vigorously for 5 min.  

   2.    Allow the gold particles to settle down by resting the tube for 
15 min.  

   3.    Pellet the settled gold particles by spinning for 5 s in a micro-
fuge and discard the supernatant.  

   4.    Add 1 mL sterile distilled water to the pellet and vortex for 
1 min.  

   5.    Allow the particles to settle down by resting the tube for 
5 min.  

   6.    Pellet the particles by spinning for 5 s in a microfuge and dis-
card the supernatant.  

   7.    Repeat  steps 4–6  two more times.  

   8.    Suspend the gold particles in 350  m L 50%  (v/v)  glycerol and 
store at 4°C ( see   Note    11  ) until use.     

3.5. Pretreatment of 

Organogenic Nodules 

for Bombardment

3.6. Plasmid DNA 

Multiplication and 

Isolation

3.7. Preparation 

of Gold Particles
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     1.    Pipet out 87.5  m L that is equivalent to 5 mg gold particles 
from the glycerol stock to a sterile 1.5-mL Eppendorf tube 
and vortex vigorously.  

    2.    While vortexing, add 5  m L 1  m g/ m L plasmid DNA, 87.5  m L 
2.5 M CaCl 

2
  and 35  m L 100 mM spermidine sequentially 

into the tube ( see   Note    12  ).  

    3.    Rest the mixture on ice for 10 min.  

    4.    Centrifuge for 10 s in a microfuge to pellet the DNA coated 
gold particles and discard the supernatant.  

    5.    Gently resuspend the pellet in 100  m L 100% ethanol and 
keep on ice ( see   Note    13  ).     

     1.    Set up the PDS-1000/He Particle Delivery System in a flow 
hood and arrange the helium gas cylinder and the vacuum 
pump conveniently to connect with it ( see   Note    14  ). For an 
interactive guide, refer the manufacturer’s website   http://
www.bio-rad.com      

    2.    Wipe the target shelf, macrocarrier launch assembly and the 
particle delivery chamber of the apparatus with absolute 
ethanol.  

    3.    Immerse the macrocarrier holders, macrocarriers, and stop-
ping screens in absolute ethanol and keep rupture discs 
immersed in isopropanol ( see   Note    15  ).  

    4.    Unscrew the rupture disk retaining cap from the gas accel-
eration tube and place rupture disk (1100 psi) in the recess 
of the cap.  

    5.    Take the macrocarriers out of ethanol and place on a sterile 
Whatman no. 1 filter paper to allow ethanol to evaporate and 
position them into the macrocarrier holders.  

    6.    Briefly vortex the DNA precipitated gold particles for 5 s to 
disperse any clumps and pipet out 10  m L onto the centre 
of the each macrocarrier, spread evenly and air-dry ( see  
 Note    16  ).  

    7.    Arrange a macrocarrier holder containing dry macrocarrier 
coated with microcarrier particles in the launch assembly in 
such a way that the microcarriers face the target desk.  

    8.    Place the osmotic plates containing tissues 9 cm below the 
stopping screen on the target desk ( see   Note    17  ).  

    9.    Close and evacuate the bombardment chamber to 28” of 
mercury ( see   Note    18  ).  

   10.    Fire the microcarriers onto the target tissue.  

   11.    Perform  steps 4–11  for each plate.  

   12.    Seal the plates containing bombarded tissues with parafilm 
and incubate in darkness.     

3.8. Coating Gold 

Particles with Plasmid 

DNA

3.9. Particle 

Bombardment
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     1.    Transfer ONS tissues aseptically to REG (regeneration) 
medium 4 h after bombardment and incubate in dark ( see  
 Note    19  ).  

    2.    After 2 d, transfer the tissues to selection medium ( see   
Note    20  ).  

    3.    Maintain all the cultures in dark until the formation of callus 
 (Fig.    3a   )  or shoot initials ( see   Note    21  ).   

    4.    Transfer ONS with calluses and/or shoot initials  (Fig.    3b   )  
to MSB medium containing 20 mg/L hygromycin for shoot 
elongation ( see   Note    22  ).  

    5.    Once the shoots are reached 3- to 5-cm height  (Fig.    3c   )  
excise them from the explant and transfer to Baby Food Jars 
containing 50 mL of rooting medium.  

    6.    Rooting can be observed from hygromycin-resistant shoots 
within 25 d  (Fig.    3d   ) , while nontransformed (hygromy-
cin-susceptible) shoots will be completely killed  (Fig.    3d  , 
 arrows  ) .  

    7.    Fill the jars containing rooted plants with sterile distilled 
water and leave at room temperature for 2 d ( see   Note    23  ).  

    8.    Remove the plants from the medium without damaging the 
root system and wash thoroughly in running tap water to 
remove the traces of rooting medium ( see   Note    24  ).  

    9.    Transfer the plants to plant propagation system  (Fig.    4a   )  
and cover with polyethylene bags to maintain humidity.   

   10.    Acclimatize the plants by gradually reducing the humidity 
by making holes in the polyethylene bags and by gradually 
exposing the plants to sunlight for a period of 1 wk.  

   11.    Transfer the hardened plants to garden pots  (Fig.    4b   )  con-
taining soil:compost (1:1), irrigate regularly with tap water 
and grow under controlled environment. We use growth 
chamber with 25  m mol/m 2  s 16 h/d incident radiation, 70% 
humidity and 26°C temperature ( see   Note    25  ).     

    1.    Thaw the frozen aliquots of GUS solution to room 
temperature.  

   2.    Thoroughly wash the tissue samples in distilled water and put 
them into tubes containing GUS solution ( see   Note    26  ).  

   3.    Cover the tubes with aluminium foil and incubate at 37°C for 
12–24 h.  

   4.    Remove chlorophyll from the tissues with 70%  (v/v)  
methanol/ethanol to visualize the result more clearly.  

   5.    Characteristic deep blue coloration is the indication of GUS 
gene expression in the tissues  (Fig.    5   ) .      

3.10. Regeneration 

of Transgenic Plants

3.11. Analyses of 

Transgenic Plants

3.11.1. Enzymatic Histo-

chemical GUS Assay
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    1.    Take 50 ng DNA from each sample including the putative 
transgenic plants, pCAMBIA1301 (positive control) and non-
transformed plant (negative control) into sterile PCR tubes. 
Make up the volume to 10  m L with PCR grade water.  

   2.    Prepare a master mix cocktail sufficient for the desired number 
of reactions, each with 2  m L forward primer, 2  m L reverse 
primer, 0.5  m L dNTP mix, 5  m L PCR buffer, 2  m L MgCl 

2
 , 

0.25  m L Taq DNA polymerase and enough water to bring the 
volume to 15  m L. Distribute 15  m L to each PCR tubes con-
taining DNA. Mix well by pipetting up and down gently.  

3.11.2. Polymerase Chain 

Reaction Analysis

  Fig. 3 .   Regeneration of shoots from ONS explants bombarded with pCAMBIA1301. ( a ) Callus development from bom-

barded explants after 10 wk on selection medium. ( b ) Shoot regeneration from hygromycin-resistant callus. ( c ) Cultures 

with uniform green shoots on selection medium. ( d ) Regenerated shoots on rooting medium containing hygromycin 

showing the death susceptible shoots ( arrows ) and root initiation from resistant shoots       .
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   3.    Amplify the specific fragments of transgenes with a hot start at 
94°C for 4 min, followed by 30 cycles of denaturation (94°C, 
1 min), annealing (55°C, 2 min) and extension (72°C, 2 min), 
with a final extension of 10 min at 72°C in the thermocycler.  

   4.    Resolve the PCR products in 0.8%  (w/v)  agarose gel elec-
trophoresis. The expected fragment sizes are 1.3 kb for GUS 
gene and 0.8 kb for HPT gene  (Fig.    6   ) .      

    1.    Digest 20  m g genomic DNA from control and PCR positive 
plants with  Eco RI following the manufacturer instructions.  

   2.    Load the restriction-digested DNA and proper molecular 
weight marker in 1%  (w/v)  agarose gel and run at 30 V over-
night ( see   Note    27  ).  

3.11.3. Southern Blot 

Hybridization Analysis

  Fig. 4 .   Hardening of transgenic plants. ( a ) Establishment of rooted plants in JIFFY 7 

plant propagation system (Lisbon, Portugal). ( b ) A transgenic plant growing in garden 

pot after hardening       .
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   3.    Transfer the electrophoresed DNA onto a nylon membrane 
by alkaline capillary blotting.  

   4.    Crosslink the DNA to the membrane using UV Stratalinker 
1800, Stratagene under autocrosslink mode ( see   Note    28  ).  

   5.    Prehybridize the membrane for 3 h in church buffer at 55°C.  

   6.    Label a GUS gene specific fragment with  a -[ 32 P] dCTP and 
transfer to the hybridization solution.  

   7.    After 16 h hybridization at 55°C, remove the solution. Wash 
the membrane at 55°C twice with 2X SSC + 0.1%  (w/v)  SDS 
(each for 15 min) and with 0.1X SSC + 0.1%  (w/v)  SDS for 
5 min.  

  Fig. 5 .   Expression of GUS gene during the development of transgenic  H. perforatum.  ( a ) ONS explants bombarded with 

pCAMBIA1301 DNA using 1100 psi rupture disk with 9.0 cm flying distance showing many explants with transient GUS 

expression and others with no expression. ( b ) Close up view of an explant 10 d after bombardment showing several GUS 

foci indicating stable transgene expression. ( c ) ONS explant showing GUS activity in the newly formed calluses. ( d ) Leaf 

of a transgenic  H. perforatum  plant showing GUS activity (control leaf in the right)       .



230 Franklin, Oliveira, and Dias

   8.    Wrap the membrane with Kim wipe and expose the membrane 
to an imaging screen for 12 h and scan in Phosphorimager ( see  
 Note    29  ).  

   9.    Lanes with radioactive signals indicates the presence of GUS 
gene in the corresponding plants  (Fig.    7   ) .      

M      C      Pl    H2O  R4    R5    R7

0.8 kb

1.3 kb

1.03 kb

0.9 kb

1.03 kb

1.5 kb

  Fig. 6 .   PCR analyses of transgenic plants. ( a ) Agarose gel electrophorogram of GUS gene 

PCR amplification products.  Lanes :  M  Molecular size marker (MassRuler, Fermentas),  C  

control plant,  Pl  plasmid pCAMBIA1301 positive control,  H2O  water control,  R4, R5  and 

 R7  are plants positive in the GUS assay showing the amplification of expected 1.3-kb 

fragment of GUS gene. ( b ) Agarose gel electrophorogram of HPT gene PCR amplification 

products.  Lanes :  M  Molecular size marker (MassRuler, Fermentas),  C  control plant,  Pl  

plasmid pCAMBIA1301 positive control,  H2O  water control,  R4, R5  and  R7  are hygro-

mycin resistant plants showing the amplification of the expected 0.8 kb fragment of 

HPT gene       .

11.85 kb

Pl C R1 R2 R3 R4 R5 R6 R7

9.41 kb

6.55 kb

23.1 kb

4.4 kb

2.3 kb

  Fig. 7.    Southern blot analysis of transgenic plants. Southern blot analysis of DNA iso-

lated from the leaves of seven hygromycin resistant plants.  Lanes :  Pl  pCAMBIA1301 

DNA showing hybridization signal at 11.8 kb,  C  Non-transformed control plant had no 

hybridization signal,  R1–R7  Seven putative transgenic plants that were rooted on hygro-

mycin, out of them R4, R5, and R7 with hybridization signal are true transgenic plants       .
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     1.    Avoid contact of skin to the bleach. Commercial bleach can 
vary in active chlorine content. Make sure to check the prod-
uct label and adjust dilution to obtain a 1.5%  (w/v)  final 
concentration of active chlorine.  

    2.    Work as quick as possible to avoid desiccation of the 
plantlets.  

    3.    Callus can be obtained using many other combinations of 
auxins and cytokinins.  

    4.    We have successfully produced organogenic nodules from 
the callus that were induced in CIM, but there is no reason 
to believe that organogenic nodules can not be produced 
from callus obtained on other media.  

    5.    If the culture flasks left unshaken for few minutes, organo-
genic nodules settles down and the medium can be simply 
removed without the need of steel mesh.  

    6.    We use sterile 10.0 mL serological pipes (Sarstedt) in order 
to manipulate organogenic nodules along with the medium.  

    7.    Because the organogenic nodules are delicate tissues, the 
period of osmotic treatment can be reduced and should not 
exceed 4 h. Longer osmotic treatments generally results in 
drastic reduction of plant regeneration.  

    8.    To transfer 1.0 mL ONS onto filter paper discs, P-1000 
micropipet with 1-mL tip with cut at the end can be used.  

    9.    Since bacterial culture is initiated directly from the glycerol 
stocks, broth may grow slowly. By increasing the inoculum, 
optimal growth can be achieved overnight.  

   10.    Alternatively, plasmid can be dissolved in sterile water. How-
ever TE preserves the plasmid for longer storage.  

   11.    We generally sterilize the gold particles on the day before 
bombardment, although gold particles can be stored in glyc-
erol for 1 wk.  

   12.    DNA precipitation onto the macrocarrier is a critical step. 
After the addition of CaCl 

2
 , spermidine should be added 

quickly to the mixture.  

   13.    It is advisable to spread the microcarriers onto the macrocar-
riers immediately, as ethanol evaporates quickly. Ice incuba-
tion only prevents evaporation to a certain extent.  

   14.    We prepare the whole setup a day before bombardment leav-
ing the UV lights on overnight.    

   15.    We keep rupture disks, macrocarriers, macrocarrier holders 
and stopping screens separately in sterile Petri dishes filled 

4. Notes
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with the sterilent either isopropanol or ethanol and dry out 
in the hood on a blotting paper before use.  

   16.    Pipetting of the DNA-microcarrier mix onto the macro-
carrier should be performed very rapidly in order to avoid 
agglomeration of the gold particles.  

   17.    Although transformation of ONS cells can also be achieved 
with other flying distances, 9-cm flying distance show the 
best results in our experience.   Do not forget to remove the 
Petri dish lid.

   18.    The vacuum pump should be powerful enough to reach the 
28 mmHg value in 15 s. Regeneration is drastically affected 
if ONS are left under vacuum for longer period.  

   19.    Post bombardment osmotic treatments exceeding 4 h will 
lead to the drastic reduction of explant survival.  

   20.    The effect of medium containing hygromycin (SEL) on non-
transformed tissues is quite obvious and leads to their death 
within 20 d.  

   21.    Callus formation from the bombarded explants normally 
takes about 10 wk of culture on SEL.  

   22.    This step can be avoided for cultures with elongated shoots.  

   23.    Direct exposure of micropropagated  H. perforatum  plants 
to ambient conditions will lead to quick desiccation. Hence, 
maintaining the plants in water avoid desiccation and make 
them hard enough to withstand further acclimatization 
processes.  

   24.    During this process, the delicate root system should not 
be damaged. We pass tap water with pressure through the 
medium which will allow the separation of plants from the 
medium without damaging the roots.  

   25.    Growth chamber is not required if a greenhouse with appro-
priate lighting, temperature and humidity is available.  

   26.    Use tissues from non transformed plants as negative 
control.  

   27.    If not using radioactive labelled molecular weight marker, 
photographing the gel after electrophoresis will be useful to 
estimate the molecular weights of the hybridization signals.  

   28.    Membranes can be stored at room temperature for several 
months before radioactive hybridization.  

   29.    Exposure time should be adjusted based on the signal inten-
sity of the hybridized membrane. As the positive control 
plasmid exhibits high signal, we cut the corresponding area 
and expose it separately.         
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