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from a vision system. This is possible because the image acquired has a 
low amount of noise and the vision feasibility is high, since the image is 
updated all the time (a frame is grabbed every 20 milliseconds) describing 
always a real representation of the game field.

ii. bacKgRound
Most vision systems used today in RoboCup are similar because the solution 
found is very smart and less complicated than a stereoscopic vision system. 
The vision system is composed by a normal camera oriented towards an 
hyperbolic mirror that is placed over the camera, so the image obtained is 
omni directional [2], permitting to see the entire game field at the same 
time.

Figure 1 . Example of an omni-directional image.

After the image being grabbed by a robot’s computer mounted frame 
grabber, and ready to be processed by the vision system, this module tries 
to gather information from the image just by analyzing it. One example of 
information to acquire is the robot position within the field. 

i. intRoduction
ROBOCUP is an international joint project to promote AI,robotic and related 
fields. The challenge is quite amazing, and the people involved in this project 
have thrown another amazing challenge which consists of developing a fully 
autonomous humanoid robots team able to challenge for a win against the 
human world champion in soccer by the year 2050 [1].
This aim is very difficult because today there are a lot of open problems in 
the field of autonomous robotic and the humanoid league is still far away 
to reach the level needed to challenge a human team.
One of the major open problems today is the robot field localization using 
only the data available from the robot mounted sensor, for example vision 
system or odometry. Localization is the process by which a mobile robot 
determines its own position and orientation with respect to a reference 
system within a certain environment. This is an essential capability for 
autonomous physical agents in several application domains, which are often 
characterized by structured or semi-structured surroundings. A localization 
algorithm which relies on an initial estimate and required to be quite an 
accurate estimate of the real pose is known as performing a local localization; 
on the other hand, operating without an initial estimate is known as global 
localization. Local localization is an easier task, but it is not sufficient for 
the applications of our interest, because the robot position in an absolute 
coordinate system is needed in order to integrate high level routines like 
a team strategy.
Another problem that involves the robot localization is named “kidnapped 
problem”, when the robot after committing a foul is moved by the referee 
into another position, or in other words the robot is replaced in an unknown 
position within a known environment. Therefore all the localization 
algorithms used today, need a small amount of time to estimate the new 
robot position in order to obtain the same samples from the sensors.
This work proposes a very different solution from the method that other 
teams are currently using. Today’s trend consists of using a localization 
system that uses data gathered by different types of sensors, and using 
them to achieve reduced data noise due to the use of different data type. 
For example, it is impossible to obtain good results using odometry alone 
because the precision of this method decreases very quickly with time and 
besides should a robot hit a wall (or another robot) counts will be lost and 
the odometry is not able to recover from this situation.
The method described in this paper is based only on the data acquired 

abstRact
This paper introduces an innovative method to solve the problem of self localization of a mobile autonomous robot, and in particular a 
case study is carried out for robot localization in a RoboCup field environment.
The approach here described is completely different from other methods currently used in RoboCup, since it is only based on the use of 
images and does not involve the use of techniques like Monte Carlo or other probabilistic approaches.
This method is simple, acceptably efficient for the purpose it was created, and uses a relatively low computational time to calculate. 
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Most RoboCup teams use as localization systems the image acquired to 
determine or help finding the position of the robot on the field. A case study 
was carried out based on three RoboCup localization systems.

Brainstorm TriBots: This team localization method uses a particle filter system 
that relies on features found on the image [3]. The features are points on 
field lines, which can be easily and reliably recognized under natural light 
conditions. The features are detected along rays radially arranged around 
the omni-directional image centre. Using particle filter methods permit to 
estimate the position of the robot very precisely on a 16x10 meters large 
outdoor field. For example driving and turning the robot (using omni-
directional drive) for 30 seconds across the field with a speed of 1.5 m/s, 
the self-localization deviates only approximately 20 cm on average from 
the reference path (with maximal deviation of 50 cm).
Milan RoboCup Team: This team use a localization system named MUREA 
(MUlti-Resolution Evidence Accumulation) and it consists of a mobile robot 
localization method for known 2D environments [4]. The localization space is 
divided into sub regions (cells) and then it applies an evidence accumulation 
method, where each perception votes those cells that are compatible with 
the map of the environment. In order to reduce the complexity of working 
with a fine grid, they have adopted a multi-resolution scheme. They start 
applying evidence accumulation on a coarse grid, with few large cells, 
then they select and refine (i.e., divide into smaller cells) those cells that 
have collected highest votes. The main characteristics of MUREA are the 
system capacity to integrate sensor data coming from different sensors and 
the system capacity to be both a global and a local localization system, 
depending on the availability of a global estimate. The results of this method 
are very good, the average localization errors is less than 10 cm for position 
and about 1° for orientation [5][6].
Philips Team: Actually the localization system of this team is very simple, 
because it is based only on odometry. It is a very fast method but also very 
noisy, due to the odometry sensors that are inaccurate when a wheel slips 
or bounces against an obstacle. This method is based on sensors mounted 
on the wheels that measure the space covered by the robot and by another 
sensor that records the robot pose. By joining this information it is possible 
to estimate the robot position, however the robots do not have a global 
position but just a local one.

All methods here described are different but with some degree of success. 
The Brainstorm TriBots team uses vision as the main sensory source to acquire 
data which is processed by a particle filter system. Even though they obtain 
good performance results, the time needed to calculate the robot position 
can be high due to the system complexity and this disadvantage can limit 
its acceptance in some teams [7].
The system used by the Milan RoboCup team is innovative and it seems to 
be very efficient. The idea of joining much data acquired by different sensors 
together with the use of a multi resolution method is good, because should 
there be not enough time to calculate the exact robot position, it is possible 
to find a non optimal location. 
The method used by the Philips RoboCup Team is the simplest one, it is easy 
to implement since it is based on odometry but it is a very noisy method.
Also, techniques known as “Monte Carlo” are very popular in RoboCup 
because it is a well know technique, reliable and not so time consuming 
like other kinds of approaches. To really understand why the approach of 
this work is different from the “Monte Carlo” method, it is important to 
illustrate the “Monte Carlo” technique.

A. Monte Carlo Localization
Monte Carlo localization, from here onwards MCL, is a probabilistic method 
based on Bayesian Filtering and it calculates the probability density of the 
robot position, or belief, and iteratively propagates this probability density 

using motion and sensor information. Usually the motion data is obtained 
from the robot odometry but the sensor information depends on which 
type of sensor is used. 
It is usual in RoboCup to use odometry to supply motion data and the 
camera to supply sensor information. The belief about the robot position 
is represented with a set of discrete points in the C-space of the robot, 
and these points are called samples. These samples are updated over 
time so the belief about the robot position is updated. To each sample 
corresponds also a weight that is the probability of the robot is occupying 
that sample. A Sample with a low weight corresponds to a low probability 
of the robot occupying that position, while a sample with a high weight 
corresponds to most probable robot position. To update the belief the 
knowledge of two conditional densities, called motion model and sensor 
model, is needed. The motion model is a probabilistic representation of 
the robot’s kinematics which describes a posterior density over possible 
following robot’s poses.
Updating the robot’s position according to the kinematics only does not take 
into account errors given by odometric inaccuracy and possible collisions of 
the robot with obstacles. Therefore, usually a random noise term is added 
to the values given by the odometry. Usually the noise term is modelled 
with Gaussian zero centred random variables, dependent on both amount 
of translation and rotation.
The sensor model describes the probability for taking certain sensor 
measurements at certain poses: and as introduced before it strongly depends 
on the particular sensor used. The localization algorithm basically consists 
of three steps:

1) All particles are moved according to the motion model of the last 
kinematics measurement.

2) The weights of the particles are determined according to the 
observation model for the current sensor reading.

3) A re-sampling step is performed: high probability particles are 
multiplied, low probability ones are discarded.

Finally, the process repeats from the beginning.

The samples generated at the beginning of the algorithm are randomly 
generated over all possible positions, but this can be a disadvantage because 
at the beginning all samples have the same weight and therefore an accurate 
localization is difficult to achieve. Besides, in a “kidnapped situation” the robot 
needs some time to gather some data in order to supply a position.
Regarding the sensor model, many approaches have been studied and 
applied, and the simplest one with the hypothesis of using a camera like 
sensor is now explained.
The image grabbed from the vision system is analyzed and all the colour 
transitions are memorized, usually only the kind of transition (for example 
lines, corners or score posts) and the angle of the transition detection are 
used and when the whole image has been analyzed the information obtained 
is applied to all samples. Should the sample match with the information 
obtained from the sensor, the weight of that sample is increased, otherwise 
the weight is decreased.
When all the samples have been analyzed it is necessary a normalization 
of all weights, in order to get the sum equal to one, because the weight 
represents probability of one event, after this the algorithm proceeds like 
explained before.
As illustrated in this section the MCL is a reliable, easy and well know method 
to solve the problem of autonomous agent localization. This approach is not 
used by Minho Team for two main reasons: the first is due to unavailable 
odometric system and so the motion model is quite difficult to obtain.  
Using only the command sent to the motion system, for example “turn  
right 90° and proceed for 10 meters” without a feedback is possibly  
imprecise due to the noise and robot motion inaccuracy (wheels slipping). 
The second reason is due to the processing time needed by the MCL  
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iii. LocaLization aLgoRitHM
This section illustrates a new proposal for the self localization robot challenge, 
based on the analysis of an omnidirectional image acquired from the robot 
vision system.
The algorithm can be divided into five consecutive sequential steps:

1) The image is analyzed to find the colour transitions that represent lines 
or goals.

2) The detected points are processed to find the position and direction 
of the goals.

3) The robot absolute direction is calculated.
4) The detected points are post-processed in order to apply the 

consecutive steps.
5) The absolute robot position is calculated.

A. First Step – Image Analysis
To start, a grabbed image is analyzed along radial virtual lines from the 
image centre outwards. The angle between two consecutive lines and the 
space between two different analyzed points lying in the same line are 
parametrically input beforehand. For this example, a value of three degrees 
between the lines and analyzing one pixel every two is the right trade-off 
between processing time and accuracy.

Figure 2 . Virtual lines drawn over the omni-directional image.

The image is analyzed using the intersection points between the virtual lines 
and the entities on the field, starting from the lines at zero degrees and 
proceeding until all the lines have been analyzed. The scan of each line starts 
from the point closer to the image centre and proceeds outwards.
For every analyzed pixel a function to filter the pixel colour is used. This 
function must be set-up before every test or game in order to have a very 
precise colour classification. This function can differentiate between the 
two goals colour, the lines and the field, and must be set-up properly for 
accurate results.
If during the same scan line a series of consecutive points is found, yellow, 
blue or white, this series of points is recorded until the next analyzed position 
is of different colour. Should the number of consecutive points be greater 
than a threshold, the closest point to the image centre is taken if it is a 
score post, or the medium position if it is a line. A structure is created in 

memory for every interesting point containing the coordinate and the line 
angle to which the point belongs.

B. Second Step – Score Posts Detection
After a complete scan of all lines on the image, some post processing 
procedures are necessary to obtain the goals representative points. This 
procedure marks the yellow and blue points belonging to the same line, 
because they probably indicate a corner and not a goal. Afterwards, if on 
the same line two or more interesting points are detected, only the closest 
to the image centre is taken.
After the whole image scan and the post processing phase is completed, 
a structure in memory is built where for every relevant point detected it 
contains the image point coordinate and its angle.

Figure 3 . Relevant detected points for the goals.

The next step is identifying the goals position by calculating the average 
of all coordinates detected of the same colour, to obtain just one point for 
each goal.
If one or two points are available, the algorithm calculates the distance and 
the angle of the points according to the image centre (robot’s centre); to 
obtain the distance of the point a distance function is used, which supplies 
the Cartesian distance in pixels distant on the image. This function uses only 
the Cartesian distance in pixels and not the angle because the mirror used 
is circular and therefore the distance is not a function of the angle but only 
a distance in pixels. By now, the algorithm supplies for every goal detected 
the distance and the angle according to the robot’s position.

C. Third step – Absolute robot’s direction
The absolute robot direction calculation is the next step and this is usually 
sorted out by the localization algorithm. A simple method is used to find 
the robot direction and this is based only on the captured image. The omni-
directional image obtained by the camera can be transformed in a planar 
one, like the following picture illustrates.

Figure 4 . Planar view of robot camera. 

It is possible to see on this image vertical dotted lines that divide the image 
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in 45° degrees sectors and the actual robot direction is represented by the 
centre line.
To obtain the robot direction it is necessary that both goals are visible, and 
this happens over 90% of the time. If both goals are visible, the Cartesian 
distance between each goal centre is calculated as well as the distance 
between the vertical centre line and the nearest goal (in this example the 
blue goal is the nearest one).
Let’s call the total_dist the distance between the two goals and the post_dist 
the distance between the nearest goal and the vertical centre line. The 
robot direction is given by:

180: total_dist = direction: goal_dist    (1)

direction =  
180 . goal_dist           

(2)
       total_dist 

D. Fourth step – Post processing of detected line points
During the image scan the points belonging to the field lines were also 
recorded.

Figure 5 . Relevant detected points for field lines.

The lines perception is complex due to mirror geometry. The lines appear like 
curves and traditional algorithms to find lines in an image are not suitable 
here. To avoid this problem, to each point detected is applied the distance 
function used for the goals, obtaining an image where the detected points 
appear to be in an almost straight line.

Figure 6 . Points of the lines after using the distance function.

The last algorithm step calculates the absolute robot direction, allowing 
image rotation independence, in order to obtain a representation of those 
points. Applying the two formulas:

     xrot = xorig . cos(a) - yorig . sin(a)

     yrot = xorig . sin(a) - yorig . cos(a)

The following image is obtained.

Figure 7 . The rotated image with the points detected.

The green diamond represents the robot’s position and the blue star 
represents the blue goal. Next, it is carried out the absolute robot position 
detection, addressed in the next step.

E. Fifth step – Robot Absolute Position
The solution is based on a pattern-matching problem between the data 
obtained from the image analysis and a field model stored in memory. 
This can be a time consuming approach but usually the relevant number 
of points found on the image are only between 40 and 60 and so the time 
needed is quite short.
Both representations have to be in the same scale. It was decided to use a 
matrix to describe the model field, where each cell corresponds to a 5 by 
5 cm field area. Each unit has three different values; one to describe the 
presence of line and two for the different goals. A different value is used 
for cells that do not represent lines or goals.
The data gathered from the camera has to be converted in this representation 
but that is simple because the values are already in memory. For each 
detected point, the structure contains the point coordinate expressed as 
distance from the unknown robot position and its translation in a grid 
representation.
The idea beyond pattern-matching is simple and it consists of comparing 
a model representation and a partial representation of data belonging 
to this model to find the position of the pattern (data) inside the model 
representation.
Artificial vision pattern-matching is normally carried out using convolution or 
correlation but these approaches are very time-consuming. Using a matrix 
representation of both the model and the data permits to exponentially 
decrease the algorithm processing time needed.
In this work it is not necessary to use convolution to find the best match 
between the field model and the relevant points found. At this stage, the only 
secure information the algorithm has is the goals position, so the algorithm 
takes the closest goal and the corresponding points in the model. 

(3)
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Figure 8 . Model of the game field 

As an example, if the yellow goal is closer, the algorithm takes all points 
corresponding to the yellow rectangle on the model. Then, for each point 
of the rectangle (yellow or blue) the coordinates of the points detected are 
converted to fit on the grid. It is also checked in the model if the point is a 
line and in this case a counter is incremented.
When all the points detected have been checked, if the counter is greater 
than the previous value, the old value is replaced by the new one and the 

robot position is calculated according to the model. When all the points of the 
rectangle have been processed the optimal robot position has been found
and it corresponds to the location where most points fit on the model.

iV. tests and concLusions
This algorithm is still at prototype level, it has been implemented in Matlab, 
running on a Pentium-M 1400 with 512 Mb of RAM. Using an image of  
640 x 480 pixels, the time needed by the algorithm is around 0.2 seconds. 
Running the algorithm on the RoboCup robot dedicated computer and 
written in C language, the time needed will be shorter, probably about 0.1  
seconds, and this shows that the algorithm is acceptably fast to run in 
real time.
In the tests carried out the error was less than 1 meter, Even though the 
robot vision system was not properly calibrated and the distance function 
used was not the correct one for the new mirror used on the tests. For all 
these reasons, the team believes that, if these features are improved the 
algorithm will be much more precise. This is a new method to solve the 
particular problem of robot localization, the method is fast, robust, and need 
only data from the vision system.
In this paper the method is applied to a RoboCup robot. This is an optimal 
situation because a game field model is easy to obtain. This work can be 
applied to other indoor environment, but it will not be easy to implement 
in an outside environment where a complete model of the environment is 
almost impossible to obtain.
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