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Abstract. Aiming to reduce cycle time and improving the accuracy on tracking, a 
modified adaptive control was developed, which adapts autonomously to changing 
dynamic parameters. The platform used is based on a robot with a vision based 
sensory system. Goal and obstacles angles are calculated relatively to robot 
orientation from image processing software. Autonomous robots are programmed to 
navigate in unknown and unstructured environments where there are multiple 
obstacles which can readily change their position. This approach underlies in dynamic 
attractor and repulsive forces. This theory uses differential equations that produce 
vector fields to control speed and direction of the robot. This new strategy was 
compared with existing PID method experimentally and it proved to be more effective 
in terms of behaviour and time-response. Calibration parameters used in PID control 
are in this case unnecessary.  The experiments were carried out in robot Middle Size 
League football players built for RoboCup. Target pursuit, namely, ball, goal or any 
absolute position, was tested. Results showed high tracking accuracy and rapid 
response to moving targets. This dynamic control system enables a good balance 
between fast movements and smooth behaviour. 

1. Introduction 

A dynamic approach was employed to control the movement of an autonomous robot 
which is meant to navigate towards a moving target or goal, avoiding obstacles and 
collisions. Navigation direction, φ, is a behaviour variable which varies from 0º to 
360º relatively to an external reference. 
In Fig. 1 is represented the robots’ navigation direction φrobot, as well as target 
direction ψtarget and obstacle direction ψobs. The target direction is the desired value to 
navigation direction. The direction of the obstacle is the erroneous direction, which 
must be avoided by the robot [1]. 
The robot movement is generated by continuously calculating values for the 
navigation direction. The time series φ(t) is generated by a dynamic system based on 
a differential equation in which the state variable is the robots’ navigation direction:  
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Fig. 1. Navigation direction of the robot depending on target and obstacle directions 

The vector field of this dynamic system is build from a certain number of addictive 
forces, each one specifying a particular value (attractive or repulsive) for the 
navigation direction. Each of these forces is characterized by a singular direction 
value, ψtarget or ψobs, intensity of attraction or repulsion and also by the range of 
direction values affected by them. A force by itself establishes an attractor, state 
asymptotically stable, or a repulsor, state asymptotically instable in the dynamics of 
navigation direction. 
An attractive force, ftarget, is used to pull the system to the desired value, namely to the 
target direction. On the other hand, a repulsive force, fobs, ensures that the system 
avoids moving towards the obstacle direction. Summing all these forces, results in a 
non-linear dynamic system [2]. 
Since all angles are measured related to an external reference axis, the contributions 
of obstacles and target to the dynamic system do not depend on the actual orientation 
of the robot. This navigation control system was implemented and experimental 
essays were carried out on an autonomous robot. 

2. Navigation Direction Control 

2.1 Reaching a target 

The differential equation that describes the behaviour of the system to pursuit a target 
is: 



( )( )γψϕϕ
⋅−⋅−= ettrobot

robot k
dt

d
argtanh  (2) 

 
where: 

φrobot – Navigation direction of the robot 
ψtarget – Target direction. 
k – Maximum value of the attractive force 
γ – Target attraction intensity 

 
The choice of this equation is not arbitrary, because the function of hyperbolic tangent 
has only one zero, the attractor (fixed point), and stabilizes at maximum and 
minimum values for the direction variation of the robot in time. 
As the robot moves, the target direction varies, pulling the attractor over the possible 
values for the navigation direction, as represented in Fig. 2. 
 

 
Fig. 2. Fixed point localization variation (attractor), as a function of the robot movement and 
target displacement 

The rate of the direction variation in time corresponds to the angular velocity or robot 
rotational movement. The behaviour variable used for calculations was obtained from 
the difference between the robot direction angle and the target angle. 
 

ettrobot argψϕα −=Δ  (3) 

 
Thus, the differential equation assumes the form: 
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where: 
ω – Angular velocity of the robot 
Δα – Target angle relative to the robot 
ωmax. – Maximum rotation velocity 
γ – Target Attraction Intensity 

 
In this way, there isn’t any shift of the attractor fixed point, since what really matters 
is the difference between the robot navigation direction and the target direction. This 
difference should always take the value zero. 
No matter the navigation direction or the target direction, every time the difference 
assumes a non-zero value, the system acquires a positive or negative angular velocity 
which decreases as the difference becomes null. At that time the system stabilizes and 
the robot stops. This fixed point is stable and is denominated attractor since the 
direction variation rate is negative at that point and the system tends to the desired 
value. The angular velocity shown in the picture above (omega), is an entry parameter 
to the robot command functions that control the motors and varies from 0 to 40. 
A very important parameter is γ, since it allows the specification of the intensity of 
the target attraction. In other words, it defines the speed variation of the angular 
velocity, or system time-response. A special attention must be given to the parameter 
γ since high values could make the system unstable. 

2.2 Obstacle avoidance 

The differential equation which describes the system behaviour for obstacle 
avoidance is given by: 
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where: 
φrobot – Robot navigation direction 
ψtarget – Target direction 
λ – Intensity of repulsive force 
δ – Range of repulsion 

 
The obstacle repulsive force magnitude depends on the distance to the robot. It can be 
modelled by the following equation: 
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where: 
β1 – Maximum intensity of the repulsive force 
β2 – Decline rate of the repulsion intensity with the distance to the obstacle 
d – Distance to the obstacle 

 



The repulsion range depends on the size of the object, the bigger the obstacle the 
greater the range (Fig. 3). 

 
Fig. 3. Repulsive force as function of obstacle presence 

Following the same technique as the target pursuing, as the robot moves also a 
repulsor fixed point shift occurs in the navigation direction. This brings up a repulsive 
force that compels the system to move away from this value due to the slope’s 
negative value of the tangent to the curve at this point. 
As shown in Fig. 4, the intensity of the repulsive force varies according to the 
obstacle distance. 

 
Fig. 4. Intensity of the repulsive force varying according to the obstacle distance 

In this case, the behaviour variable is the angle difference between the robot direction 
and the target angle. The functions corresponding to obstacles will be continuously 
shifting along the same axis depending on their relative angles to the robot.  



In the same way, the direction variation rate in time corresponds to the angular 
velocity or rotational movement of the robot. 
The differential equation assumes the form: 
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where: 
ω – Robot’s Angular velocity 
Δα – Target angle relative to the robot 
∆β – Difference between obstacle and target angles 

 
As it is possible to get an unlimited number of obstacles in an unknown environment, 
the global corresponding function is given by the sum of each of the individual forces, 
which results in the following equation: 
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where: 
n – Number of obstacles 

 
The repulsive intensity to the obstacle, i, is given by the equation: 
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The robot behaviour is based on the sum of all forces, including obstacles repulsive 
forces and the target attractive force. The resulting curve can assume many forms, as 
the one in Fig. 5. In this particular example, besides the target there are two obstacles 
placed in different directions. The resulting sum is a dynamic non-linear function 
(Fig. 6). 

 
Fig. 5. Target and 2 obstacles vector fields’ representation 



 
Fig. 6. Resultant vector field to the navigation direction 

Depending on the robot navigation direction, the system may adopt any of the 
attractor fixed points, stepping away from the repulsors. As robot moves, all vector 
fields vary, and attractor and repulsive points appear and disappear in a dynamic way. 
This is an adaptive control to an unknown environment. The self decision is dynamic, 
so the behaviour is very smooth, similar to human decisions. 

3. Linear Velocity Control 

The robot linear velocity formula is continuously generating values so that the robot 
moves in a straight line to the target. This series of values, xrobot(t), are generated by a 
dynamic system formulated by the following differential equation: 

( )robotett
robot xf
dt

dx
arg=  (10) 

The linear velocity control dynamic system differential equation, is as follows: 

( )( )( )λσ ⋅−−⋅−== ettrobot
robot xxv
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where: 

v –Robot linear velocity 
xrobot – Robot position in a straight line to the target 
vmax. – Robot maximum linear velocity 
xtarget – Target position in a straight line to the robot 
σ – Security distance to the target 
λ – Attraction intensity to the target 

 



Note: ettrobot xxd arg−=Δ , (distance to target) 
 
As it can be seen in Fig. 7, when the difference between the robot and target position 
is equal to the safety distance the robot must stop. 
 

 
Fig. 7. Robot linear velocity graphical representation 

The linear velocity indicated on the chart (v), is an input parameter to the function of 
robot motors and ranges from 0 to 100 (there is no specific unit). The distance to the 
target also ranges between 0 and 100. 
As in the rotational movement, one important parameter is λ, because it allows 
specifying the target attraction intensity, also known as robot response time. But this 
value must not be very high otherwise the system becomes unstable. 
The equation implemented on the robot and represented in figure 8 is: 

( )( )015.010tanh100)( ⋅−Δ⋅−= dtω  (12) 

4. Experimental Results 

The robot’s behaviour, using dynamic control, was first tested by creating a moving 
target (ball) in an environment without obstacles. It should be noticed that robot 
orientation, obstacles and target angles as well as respective distances were obtained 
through vision software. Fig. 8 shows results of rotational velocity variation in terms 
of target angle. The reference angle 180º means the robot is facing the target. 



Evolution of Rotation Speed and Δα with time
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Fig. 8. Rotational velocity and corresponding angle between ball and robot 

Linear Speed and Target Distance with time
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Fig. 9. Robot linear velocity versus target distance 

The variation of linear velocity is represented in Fig. 9 as function of time and 
distance to the target. The value “95” is a reference position indicating that the robot 
reached the target. When the target moves away from the robot this value decreases 
and vice-versa. One unit of time corresponds to one frame. The processing cycle time 
is about 66ms. 



5. Conclusions 

From the experimental results shown above it can be concluded that the robot 
responds very fast to changes, and hence maintaining a smooth behaviour through 
time. This type of control doesn’t need calibration parameters as opposite to PID 
control approach previously used [3]. Besides, the battery charge does not have any 
influence on the robot movement performance as happened with PID control 
algorithms. 
This fast and stable dynamic control provides a very good precision and suits very 
well applications where low time-consuming algorithms are required for navigation in 
unknown environments. 
Soon the complete control algorithm will be tested with moving obstacles included. 
Theoretically it is a very good adaptive control model. 
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