
 

  

Abstract— This paper introduces an innovative method to 
solve the problem of self localization of a mobile autonomous 
robot, and in particular a case study is carried out for robot 
localization in a RoboCup field environment. 

The approach here described is completely different from 
other methods currently used in RoboCup, since it is only based 
on the use of images and does not involve the use of techniques 
like Monte Carlo or other probabilistic approaches. 

This method is simple, acceptably efficient for the purpose it 
was created, and uses a relatively low computational time to 
calculate. 

I. INTRODUCTION 

OBOCUP is an international joint project to promote AI, 
robotic and related fields. The challenge is quite 

amazing, and the people involved in this project have thrown 
another amazing challenge which consists of developing a 
fully autonomous humanoid robots team able to challenge for 
a win against the human world champion in soccer by the 
year 2050 [1]. 

This aim is very difficult because today there are a lot of 
open problems in the field of autonomous robotic and the 
humanoid league is still far away to reach the level needed to 
challenge a human team. 

One of the major open problems today is the robot field 
localization using only the data available from the robot 
mounted sensor, for example vision system or odometry. 
Localization is the process by which a mobile robot 
determines its own position and orientation with respect to a 
reference system within a certain environment. This is an 
essential capability for autonomous physical agents in several 
application domains, which are often characterized by 
structured or semi-structured surroundings. A localization 
algorithm which relies on an initial estimate and required to 
be quite an accurate estimate of the real pose is known as 
performing a local localization; on the other hand, operating 
without an initial estimate is known as global localization. 
Local localization is an easier task, but it is not sufficient for 
the applications of our interest, because the robot position in 
an absolute coordinate system is needed in order to integrate 
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high level routines like a team strategy. 
Another problem that involves the robot localization is 

named “kidnapped problem”, when the robot after committing 
a foul is moved by the referee into another position, or in 
other words the robot is replaced in an unknown position 
within a known environment. Therefore all the localization 
algorithms used today, need a small amount of time to 
estimate the new robot position in order to obtain the same 
samples from the sensors. 

This work proposes a very different solution from the 
method that other teams are currently using. Today’s trend 
consists of using a localization system that uses data gathered 
by different types of sensors, and using them to achieve 
reduced data noise due to the use of different data type. For 
example, it is impossible to obtain good results using 
odometry alone because the precision of this method decreases 
very quickly with time and besides should a robot hit a wall 
(or another robot) counts will be lost and the odometry is not 
able to recover from this situation. 

The method described in this paper is based only on the 
data acquired from a vision system. This is possible because 
the image acquired has a low amount of noise and the vision 
feasibility is high, since the image is updated all the time (a 
frame is grabbed every 20 milliseconds) describing always a 
real representation of the game field. 

II. BACKGROUND 

Most vision systems used today in RoboCup are similar 
because the solution found is very smart and less complicated 
than a stereoscopic vision system. The vision system is 
composed by a normal camera oriented towards an hyperbolic 
mirror that is placed over the camera, so the image obtained is 
omni directional [2], permitting to see the entire game field at 
the same time. 
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Fig. 1.  Example of an omni-directional image 

 
After the image being grabbed by a robot’s computer 

mounted frame grabber, and ready to be processed by the 
vision system, this module tries to gather information from 
the image just by analyzing it. One example of information to 
acquire is the robot position within the field. 

Most RoboCup teams use as localization systems the image 
acquired to determine or help finding the position of the robot 
on the field. A case study was carried out based on three 
RoboCup localization systems. 

Brainstorm TriBots: This team localization method uses a 
particle filter system that relies on features found on the 
image [3]. The features are points on field lines, which can be 
easily and reliably recognized under natural light conditions. 
The features are detected along rays radially arranged around 
the omni-directional image centre. Using particle filter 
methods permit to estimate the position of the robot very 
precisely on a 16x10 meters large outdoor field. For example 
driving and turning the robot (using omni-directional drive) 
for 30 seconds across the field with a speed of 1.5 m/s, the 
self-localization deviates only approximately 20 cm on 
average from the reference path (with maximal deviation of 
50 cm). 

Milan RoboCup Team: This team use a localization system 
named MUREA (MUlti-Resolution Evidence Accumulation) 
and it consists of a mobile robot localization method for 
known 2D environments [4]. The localization space is divided 
into sub regions (cells) and then it applies an evidence 
accumulation method, where each perception votes those cells 
that are compatible with the map of the environment. In order 
to reduce the complexity of working with a fine grid, they 
have adopted a multi-resolution scheme. They start applying 
evidence accumulation on a coarse grid, with few large cells, 
then they select and refine (i.e., divide into smaller cells) 
those cells that have collected highest votes. The main 
characteristics of MUREA are the system capacity to integrate 
sensor data coming from different sensors and the system 
capacity to be both a global and a local localization system, 
depending on the availability of a global estimate. The results 

of this method are very good, the average localization errors is 
less than 10 cm for position and about 1° for orientation 
[5][6]. 

Philips Team: Actually the localization system of this team 
is very simple, because it is based only on odometry. It is a 
very fast method but also very noisy, due to the odometry 
sensors that are inaccurate when a wheel slips or bounces 
against an obstacle. This method is based on sensors mounted 
on the wheels that measure the space covered by the robot and 
by another sensor that records the robot pose. By joining this 
information it is possible to estimate the robot position, 
however the robots do not have a global position but just a 
local one. 

All methods here described are different but with some 
degree of success. The Brainstorm TriBots team uses vision as 
the main sensory source to acquire data which is processed by 
a particle filter system. Even though they obtain good 
performance results, the time needed to calculate the robot 
position can be high due to the system complexity and this 
disadvantage can limit its acceptance in some teams [7]. 

The system used by the Milan RoboCup team is innovative 
and it seems to be very efficient. The idea of joining much 
data acquired by different sensors together with the use of a 
multi resolution method is good, because should there be not 
enough time to calculate the exact robot position, it is possible 
to find a non optimal location. 

The method used by the Philips RoboCup Team is the 
simplest one, it is easy to implement since it is based on 
odometry but it is a very noisy method. 

Also, techniques known as “Monte Carlo” are very popular 
in RoboCup because it is a well know technique, reliable and 
not so time consuming like other kinds of approaches. To 
really understand why the approach of this work is different 
from the “Monte Carlo” method, it is important to illustrate 
the “Monte Carlo” technique. 

A. Monte Carlo Localization 
Monte Carlo localization, from here onwards MCL, is a 

probabilistic method based on Bayesian Filtering and it 
calculates the probability density of the robot position, or 
belief, and iteratively propagates this probability density using 
motion and sensor information. Usually the motion data is 
obtained from the robot odometry but the sensor information 
depends on which type of sensor is used. 

It is usual in RoboCup to use odometry to supply motion 
data and the camera to supply sensor information. The belief 
about the robot position is represented with a set of discrete 
points in the C-space of the robot, and these points are called 
samples. These samples are updated over time so the belief 
about the robot position is updated. To each sample 
corresponds also a weight that is the probability of the robot is 
occupying that sample. A Sample with a low weight 
corresponds to a low probability of the robot occupying that 



 

position, while a sample with a high weight corresponds to 
most probable robot position. To update the belief the 
knowledge of two conditional densities, called motion model 
and sensor model, is needed. The motion model is a 
probabilistic representation of the robot’s kinematics which 
describes a posterior density over possible following robot’s 
poses. 

Updating the robot’s position according to the kinematics 
only does not take into account errors given by odometric 
inaccuracy and possible collisions of the robot with obstacles. 
Therefore, usually a random noise term is added to the values 
given by the odometry. Usually the noise term is modelled 
with Gaussian zero centred random variables, dependent on 
both amount of translation and rotation. 

The sensor model describes the probability for taking 
certain sensor measurements at certain poses: and as 
introduced before it strongly depends on the particular sensor 
used. The localization algorithm basically consists of three 
steps: 
1) All particles are moved according to the motion model of 

the last kinematics measurement. 
2) The weights of the particles are determined according to 

the observation model for the current sensor reading. 
3) A re-sampling step is performed: high probability 

particles are multiplied, low probability ones are 
discarded. 

Finally, the process repeats from the beginning. 
The samples generated at the beginning of the algorithm 

are randomly generated over all possible positions, but this 
can be a disadvantage because at the beginning all samples 
have the same weight and therefore an accurate localization is 
difficult to achieve. Besides, in a “kidnapped situation” the 
robot needs some time to gather some data in order to supply 
a position. 

Regarding the sensor model, many approaches have been 
studied and applied, and the simplest one with the hypothesis 
of using a camera like sensor is now explained. 

The image grabbed from the vision system is analyzed and 
all the colour transitions are memorized, usually only the kind 
of transition (for example lines, corners or score posts) and 
the angle of the transition detection are used and when the 
whole image has been analyzed the information obtained is 
applied to all samples. Should the sample match with the 
information obtained from the sensor, the weight of that 
sample is increased, otherwise the weight is decreased. 

When all the samples have been analyzed it is necessary a 
normalization of all weights, in order to get the sum equal to 
one, because the weight represents probability of one event, 
after this the algorithm proceeds like explained before. 

As illustrated in this section the MCL is a reliable, easy and 
well know method to solve the problem of autonomous agent 
localization. This approach is not used by Minho Team for 

two main reasons: the first is due to unavailable odometric 
system and so the motion model is quite difficult to obtain. 
Using only the command sent to the motion system, for 
example “turn right 90° and proceed for 10 meters” without a 
feedback is possibly imprecise due to the noise and robot 
motion inaccuracy (wheels slipping). The second reason is 
due to the processing time needed by the MCL approach in a 
“kidnapped” situation. 

III. LOCALIZATION ALGORITHM 

This section illustrates a new proposal for the self 
localization robot challenge, based on the analysis of an omni-
directional image acquired from the robot vision system. 

The algorithm can be divided into five consecutive 
sequential steps: 
1) The image is analyzed to find the colour transitions that 

represent lines or goals. 
2) The detected points are processed to find the position and 

direction of the goals. 
3) The robot absolute direction is calculated. 
4) The detected points are post-processed in order to apply 

the consecutive steps. 
5) The absolute robot position is calculated. 
 

A. First Step – Image Analysis 
To start, a grabbed image is analyzed along radial virtual 

lines from the image centre outwards. The angle between two 
consecutive lines and the space between two different 
analyzed points lying in the same line are parametrically 
input beforehand. For this example, a value of three degrees 
between the lines and analyzing one pixel every two is the 
right trade-off between processing time and accuracy. 

 

 
 
Fig. 2.  Virtual lines drawn over the omni-directional image 

 
The image is analyzed using the intersection points between 

the virtual lines and the entities on the field, starting from the 
lines at zero degrees and proceeding until all the lines have 



 

been analyzed. The scan of each line starts from the point 
closer to the image centre and proceeds outwards. 

For every analyzed pixel a function to filter the pixel 
colour is used. This function must be set-up before every test 
or game in order to have a very precise colour classification. 
This function can differentiate between the two goals colour, 
the lines and the field, and must be set-up properly for 
accurate results. 

If during the same scan line a series of consecutive points is 
found, yellow, blue or white, this series of points is recorded 
until the next analyzed position is of different colour. Should 
the number of consecutive points be greater than a threshold, 
the closest point to the image centre is taken if it is a score 
post, or the medium position if it is a line. A structure is 
created in memory for every interesting point containing the 
coordinate and the line angle to which the point belongs. 

 

B. Second Step – Score Posts Detection 
After a complete scan of all lines on the image, some post 
processing procedures are necessary to obtain the goals 
representative points. This procedure marks the yellow and 
blue points belonging to the same line, because they probably 
indicate a corner and not a goal. Afterwards, if on the same 
line two or more interesting points are detected, only the 
closest to the image centre is taken. 

After the whole image scan and the post processing phase 
is completed, a structure in memory is built where for every 
relevant point detected it contains the image point coordinate 
and its angle. 
 

 
 
Fig. 3.  Relevant detected points for the goals 

 
The next step is identifying the goals position by 

calculating the average of all coordinates detected of the same 
colour, to obtain just one point for each goal. 

If one or two points are available, the algorithm calculates 
the distance and the angle of the points according to the 
image centre (robot’s centre); to obtain the distance of the 
point a distance function is used, which supplies the Cartesian 
distance in pixels distant on the image. This function uses 
only the Cartesian distance in pixels and not the angle 

because the mirror used is circular and therefore the distance 
is not a function of the angle but only a distance in pixels. By 
now, the algorithm supplies for every goal detected the 
distance and the angle according to the robot’s position. 

 

C. Third step – Absolute robot’s direction 
The absolute robot direction calculation is the next step and 

this is usually sorted out by the localization algorithm. A 
simple method is used to find the robot direction and this is 
based only on the captured image. The omni-directional 
image obtained by the camera can be transformed in a planar 
one, like the following picture illustrates. 

 

 
 
Fig. 4.  Planar view of robot camera 

 
It is possible to see on this image vertical dotted lines that 
divide the image in 45° degrees sectors and the actual robot 
direction is represented by the centre line. 
To obtain the robot direction it is necessary that both goals are 
visible, and this happens over 90% of the time. If both goals 
are visible, the Cartesian distance between each goal centre is 
calculated as well as the distance between the vertical centre 
line and the nearest goal (in this example the blue goal is the 
nearest one). 

Let’s call the total_dist the distance between the two goals 
and the post_dist the distance between the nearest goal and 
the vertical centre line. The robot direction is given by: 

 
distgoaldirectiondisttotal _:_:180 =   (1) 

 

disttotal
distgoal

direction
_

_180 ⋅
=  (2) 

 

D. Fourth step – Post processing of detected line points 
During the image scan the points belonging to the field 

lines were also recorded. 
 

 



 

 
 
Fig. 5.  Relevant detected points for field lines 

 
The lines perception is complex due to mirror geometry. 

The lines appear like curves and traditional algorithms to find 
lines in an image are not suitable here. To avoid this problem, 
to each point detected is applied the distance function used for 
the goals, obtaining an image where the detected points 
appear to be in an almost straight line. 

 
 

 
 
Fig. 6.  Points of the lines after using the distance function 

 
The last algorithm step calculates the absolute robot 

direction, allowing image rotation independence, in order to 
obtain a representation of those points. Applying the two 
formulas: 
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The following image is obtained. 
 

 

 
 
Fig. 7.  The rotated image with the points detected 

 
The green diamond represents the robot’s position and the 

blue star represents the blue goal. Next, it is carried out the 
absolute robot position detection, addressed in the next step. 

E. Fifth step – Robot Absolute Position 
The solution is based on a pattern-matching problem between 
the data obtained from the image analysis and a field model 
stored in memory. This can be a time consuming approach but 
usually the relevant number of points found on the image are 
only between 40 and 60 and so the time needed is quite short. 

Both representations have to be in the same scale. It was 
decided to use a matrix to describe the model field, where 
each cell corresponds to a 5 by 5 cm field area. Each unit has 
three different values; one to describe the presence of line and 
two for the different goals. A different value is used for cells 
that do not represent lines or goals. 

 

 
 
Fig. 8.  Model of the game field 

 
The data gathered from the camera has to be converted in this 
representation but that is simple because the values are 



 

already in memory. For each detected point, the structure 
contains the point coordinate expressed as distance from the 
unknown robot position and its translation in a grid 
representation. 
The idea beyond pattern-matching is simple and it consists of 
comparing a model representation and a partial representation 
of data belonging to this model to find the position of the 
pattern (data) inside the model representation. 
Artificial vision pattern-matching is normally carried out 
using convolution or correlation but these approaches are very 
time-consuming. Using a matrix representation of both the 
model and the data permits to exponentially decrease the 
algorithm processing time needed. 

In this work it is not necessary to use convolution to find 
the best match between the field model and the relevant points 
found. At this stage, the only secure information the 
algorithm has is the goals position, so the algorithm takes the 
closest goal and the corresponding points in the model. As an 
example, if the yellow goal is closer, the algorithm takes all 
points corresponding to the yellow rectangle on the model. 
Then, for each point of the rectangle (yellow or blue) the 
coordinates of the points detected are converted to fit on the 
grid. It is also checked in the model if the point is a line and 
in this case a counter is incremented. 

When all the points detected have been checked, if the 
counter is greater than the previous value, the old value is 
replaced by the new one and the robot position is calculated 
according to the model. When all the points of the rectangle 
have been processed the optimal robot position has been found 
and it corresponds to the location where most points fit on the 
model. 

IV. TESTS AND CONCLUSIONS 

This algorithm is still at prototype level, it has been 
implemented in Matlab, running on a Pentium-M 1400 with 
512 Mb of RAM. Using an image of 640 x 480 pixels, the 
time needed by the algorithm is around 0.2 seconds. Running 
the algorithm on the RoboCup robot dedicated computer and 
written in C language, the time needed will be shorter, 
probably about 0.1 seconds, and this shows that the algorithm 
is acceptably fast to run in real time. 
In the tests carried out the error was less than 1 meter, Even 
though the robot vision system was not properly calibrated 
and the distance function used was not the correct one for the 
new mirror used on the tests. For all these reasons, the team 
believes that, if these features are improved the algorithm will 
be much more precise. This is a new method to solve the 
particular problem of robot localization, the method is fast, 
robust, and need only data from the vision system. 

In this paper the method is applied to a RoboCup robot. 
This is an optimal situation because a game field model is 
easy to obtain. This work can be applied to other indoor 
environment, but it will not be easy to implement in an 
outside environment where a complete model of the 

environment is almost impossible to obtain. 
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