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Abstract. Certification and quality assessment are crucial issues within
the wine industry. Currently, wine quality is mostly assessed by physico-
chemical (e.g alcohol levels) and sensory (e.g. human expert evaluation)
tests. In this paper, we propose a data mining approach to predict wine
preferences that is based on easily available analytical tests at the certifi-
cation step. A large dataset is considered with white vinho verde samples
from the Minho region of Portugal. Wine quality is modeled under a re-
gression approach, which preserves the order of the grades. Explanatory
knowledge is given in terms of a sensitivity analysis, which measures the
response changes when a given input variable is varied through its do-
main. Three regression techniques were applied, under a computationally
efficient procedure that performs simultaneous variable and model selec-
tion and that is guided by the sensitivity analysis. The support vector
machine achieved promising results, outperforming the multiple regres-
sion and neural network methods. Such model is useful for understand-
ing how physicochemical tests affect the sensory preferences. Moreover,
it can support the wine expert evaluations and ultimately improve the
production.

Keywords: Ordinal Regression, Sensitivity Analysis, Sensory Prefer-
ences, Support Vector Machines, Variable and Model Selection, Wine
Science.

1 Introduction

Nowadays wine is increasingly enjoyed by a wider range of consumers. In partic-
ular, Portugal is a top ten wine exporting country and exports of its vinho verde
wine (from the northwest region) have increased by 36% from 1997 to 2007 [7].
To support this growth, the industry is investing in new technologies for both
wine making and selling processes. Wine certification and quality assessment are
key elements within this context. Certification prevents the illegal adulteration
of wines (to safeguard human health) and assures quality for the wine market.
Quality evaluation is often part of the certification process and can be used to
improve wine making (by identifying the most influential factors) and to stratify
wines such as premium brands (useful for setting prices).
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Wine certification is often assessed by physicochemical and sensory tests [9].
Physicochemical laboratory tests routinely used to characterize wine include
determination of density, alcohol or pH values, while sensory tests rely mainly
on human experts. It should be stressed that taste is the least understood of
the human senses [20], thus wine classification is a difficult task. Moreover, the
relationships between the physicochemical and sensory analysis are complex and
still not fully understood [16].

On the other hand, advances in information technologies have made it possi-
ble to collect, store and process massive, often highly complex datasets. All this
data hold valuable information such as trends and patterns, which can be used to
improve decision making and optimize chances of success [23]. Data mining (DM)
techniques [26] aim at extracting high-level knowledge from raw data. There
are several DM algorithms, each one with its own advantages. When modeling
continuous data, the linear/multiple regression (MR) is the classic approach.
Neural networks (NNs) have become increasingly used since the introduction
of the backpropagation algorithm [19]. More recently, support vector machines
(SVMs) have also been proposed [3]. Due to their higher flexibility and nonlin-
ear learning capabilities, both NNs and SVMs are gaining an attention within
the DM field, often attaining high predictive performances [13]. SVMs present
theoretical advantages over NNs, such as the absence of local minima in the
learning phase. When applying these methods, performance highly depends on
a correct variable and model selection, since simple models may fail in mapping
the underlying concept and too complex ones tend to overfit the data [13][12].

The use of decision support systems by the wine industry is mainly focused
on the wine production phase [10]. Despite the potential of DM techniques to
predict wine quality based on physicochemical data, their use is rather scarce
and mostly considers small datasets. For example, in 1991 the famous “Wine”
dataset was donated into the UCI repository [2]. The data contain 178 examples
with measurements of 13 chemical constituents (e.g. alcohol, Mg) and the goal
is to classify three cultivars from Italy. This dataset is very easy to discriminate
and has been mainly used as a benchmark for new DM classifiers. In 1997 [22],
a NN fed with 15 input variables (e.g. Zn and Mg levels) was used to predict six
geographic wine origins. The data included 170 samples from Germany and a
100% predictive rate was reported. In 2001 [24], NNs were used to classify three
sensory attributes (e.g. sweetness) of Californian wine, based on grape maturity
levels and chemical analysis (e.g. titrable acidity). Only 36 examples were used
and a 6% error was achieved. More recently, mineral characterization (e.g. Zn
and Mg) was used to discriminate 54 samples into two red wine classes [17]. A
probabilistic NN was adopted, attaining 95% accuracy. As a powerful learning
tool, SVM has outperformed NN in several applications, such as predicting meat
preferences [6]. Yet, in the field of wine quality only one application has been
reported, where spectral measurements from 147 bottles were successfully used
to predict 3 categories of rice wine age [27].

In this paper, we present a real-world application, where wine taste prefer-
ences are modeled by DM algorithms that use analytical data that are easily



available at the certification step. In contrast with previous studies, a large
dataset is considered with a total of 4898 samples. Wine quality is modeled un-
der a regression approach that preserves the order of the grades. Explanatory
knowledge is given by a sensitivity analysis, which measures how the responses
are affected when a given input is varied through its domain [14][6]. Variable
and model selection are performed simultaneously, in a process that is guided by
the sensitivity analysis. Also, we propose a parsimony search method to select
the best NN and SVM parameters with a low computational effort. Finally, we
show the impact of the obtained models in the wine domain.

2 Materials and methods

2.1 Wine data

This study will consider vinho verde, a unique product from the Minho (north-
west) region of Portugal. Medium in alcohol, is it particularly appreciated due
to its freshness (specially in the summer). This wine accounts for 15% of the to-
tal Portuguese production [7], and around 10% is exported, mostly white wine.
In this work, we will analyze this common variant from the demarcated region
of vinho verde. The data were collected from May/2004 to February/2007 us-
ing only protected designation of origin samples that were tested at the official
certification entity (CVRVV). The CVRVV is an inter-professional organization
with the goal of improving the quality and marketing of vinho verde. The data
were recorded by a computerized system (iLab), which automatically manages
the process of wine sample testing from producer requests to laboratory and
sensory analysis. Each entry denotes a given test (analytical or sensory) and the
final database was exported into a single sheet (.csv).

During the preprocessing stage, the database was transformed in order to
include a distinct wine sample (with all tests) per row. To avoid discarding
examples, only the most common physicochemical tests were selected. Table 1
presents the physicochemical statistics per dataset. Regarding the preferences,
each sample was evaluated by a minimum of three sensory assessors (using blind
tastes), which graded the wine in a scale that ranges from 0 (very bad) to 10
(excellent). The final sensory score is given by the median of these evaluations.
Fig. 1 plots the histograms of the target variable, denoting a typical normal
shape distribution (i.e. with more normal grades that extreme ones).



Table 1. The physicochemical data statistics

Attribute (units) Min Max Mean
fixed acidity (g(tartaric acid)/dm?) 3.8 142 69
volatile acidity (g(acetic acid)/dm®) 01 1.1 03
citric acid (g/dm?) 0.0 1.0 03
residual sugar (g/dm?) 0.6 65.8 64
chlorides (g(sodium chloride)/dm?) 0.01 0.35 0.05
free sulfur dioxide (mg/dm?) 2 260 35
total sulfur dioxide (mg/dm?) 9 260 138
density (g/cm?) 0.987 1.039  0.994
pH 2.7 38 31
sulphates (g(potassium sulphate)/dmg) 0.2 1.1 0.5
alcohol (% vol.) 8.0 14.2 104
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Fig. 1. The histogram for the white wine preferences

2.2 Data mining approach and evaluation

We will adopt a regression approach, which preserves the order of the preferences.
For instance, if the true grade is 3, then a model that predicts 4 is better than one
that predicts 7. A regression dataset D is made up of k € {1,..., N} examples,
each mapping an input vector with I input variables (ac’{, e x’}) to a given target
yk. The regression performance is commonly measured by an error metric, such



as the mean absolute deviation (MAD) [26]:
MAD =522, |yi = Gil/N (1)

where 7 is the predicted value for the k input pattern. The regression error
characteristic (REC) curve [1] is also used to compare regression models, with
the ideal model presenting an area of 1.0. The curve plots the absolute error
tolerance T (z-axis), versus the percentage of points correctly predicted (the
accuracy) within the tolerance (y-axis).

The confusion matrix is often used for classification analysis, where a C' X
C matrix (C' is the number of classes) is created by matching the predicted
values (in columns) with the desired classes (in rows). For an ordered output,
the predicted class is given by p; = y;, if |y, — 7| < T, else p; = y;, where
y; denotes the closest class to ¥;, given that y; # y;. From the matrix, several
metrics can be used to access the overall classification performance, such as the
accuracy and precision (i.e. the predicted column accuracies) [26].

The holdout validation is often used to estimate the generalization capability
of a model. This method randomly partitions the data into training and test
subsets. The former subset is used to fit the model (typically with 2/3 of the
data), while the latter (with the remaining 1/3) is used to compute the estimate.
A more robust estimation procedure is the k-fold cross-validation [8], where the
data is divided into k partitions of equal size. One subset is tested each time
and the remaining data are used for fitting the model. The process is repeated
sequentially until all subsets have been tested. Therefore, under this scheme, all
data are used for training and testing. However, this method requires around k
times more computation, since k models are fitted. The validation method will
be applied several runs and statistical confidence will be given by the t-student
test at the 95% confidence level [11].

2.3 Data mining methods

We will adopt the most common NN type, the multilayer perceptron, where
neurons are grouped into layers and connected by feedforward links (Fig. 2).
Supervised learning is achieved by an iterative adjustment of the network con-
nection weights, called the training procedure, in order to minimize an error
function. For regression tasks, this NN architecture is often based on one hidden
layer of H hidden nodes with a logistic activation and one output node with a
linear function [13]:

~ 1
Yy = wo,O + Z b : wo,i (2)
jor L exp(= 20 mawji — wjo)

where w; ; denotes the weight of the connection from node j to ¢ and o the output
node. The performance is sensitive to the topology choice (H). A NN with H =0
is equivalent to the MR model. By increasing H, more complex mappings can be
performed, yet an excess value of H will overfit the data, leading to generalization



loss. A computationally efficient method to set H is to search through the range
{0,1,2,3, ..., Hyas} (ie. from the simplest NN to more complex ones). For each
H value, a NN is trained and its generalization estimate is measured (e.g. over
a validation sample). The process is stopped when the generalization decreases
or when H reaches the maximum value (Hqz)-

In SVM regression [21], the input z € R! is transformed into a high m-
dimensional feature space, by using a nonlinear mapping (¢) that does not need
to be explicitly known but that depends of a kernel function (K). The aim of a
SVM is to find the best linear separating hyperplane in the feature space:

m
Y =wo+ Z w; i () 3)
i=1
To select the best hyperplane, the e-insensitive loss function is often used [21].
This function sets an insensitive tube around the residuals and the tiny errors
within the tube are discarded (Fig. 2).

input layer hidden layer output layer \ e e—_insensitive

R ¢
1L 1 322&?2 \ } loss function:
: A
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Fig. 2. Example of a multilayer perceptron with 3 inputs, 2 hidden nodes and one
output (left) and a linear SVM regression (right, adapted from [21])

We will adopt the popular gaussian kernel, which presents less parameters
than other kernels (e.g. polynomial) [25]: K(z,2") = exp(—~||z — 2'||?), v > 0.
Under this setup, the SVM performance is affected by three parameters: «, € and
C (a trade-off between fitting the errors and the flatness of the mapping). To
reduce the search space, the first two values will be set using the heuristics [4]:
C = 3 (for a standardized output) and € = 5/v/N, where & = 1.5/N x Zi]\il(yi -
7:)? and 7 is the value predicted by a 3-nearest neighbor algorithm. The kernel
parameter () produces the highest impact in the SVM performance, with values
that are too large or too small leading to poor predictions. A practical method
to set v is to start the search from one of the extremes and then search towards
the middle of the range while the predictive estimate increases [25].

2.4 Input Relevance and Variable/Model Selection

Sensitivity analysis [14] is a simple procedure that is applied after the training
phase and analyzes the model responses when the inputs are changed. Origi-



nally proposed for NNs, this sensitivity method can also be applied to other
algorithms, such as SVM [6]. Let 7, denote the output obtained by holding all
input variables at their average values except z,, which varies through its entire
range with j € {1,..., L} levels. If a given input variable (z, € {z1,...,21}) is
relevant then it should produce a high variance (V). Thus, its relative impor-
tance (R,) can be given by:

Vi = X521 (o, — Ja))?/(L = 1) @
Ry =Va/ 20, Vi x 100 (%)

The R, values will be used to measure the relevance of the inputs. For a more
detailed input influence analysis, in this work we propose the Variable Effect
Characteristic (VEC) curve. For a given a attribute, the VEC plots the z,,
values (z-axis) versus the 7, predictions (y-axis) (see Section 3.3).

The sensitivity analysis will be also used to discard irrelevant inputs, guiding
the variable selection algorithm. We will adopt a backward selection scheme,
which starts with all variables and iteratively deletes one input until a stopping
criterion is met [12]. The difference, when compared to the standard backward
selection, is that we guide the variable deletion (at each step) by the sensitivity
analysis, in a variant that allows a reduction of the computational effort by a
factor of I and that in [14] has outperformed other methods (e.g. backward
and genetic algorithms). Similarly to [28], the variable and model selection will
be performed simultaneously, i.e. in each backward iteration several models are
searched, with the one that presents the best generalization estimate selected.
For a given DM method, the overall procedure is:

1. Start with all ' = {x1,..., 2z} input variables.

2. If there is a hyperparameter P € {Py,..., P;} to tune (e.g. NN or SVM),
start with P; and go through the remaining range until the generalization
estimate decreases. Compute the generalization estimate of the model by
using an internal validation method. For instance, if the holdout method is
used, the available data are further split into training (to fit the model) and
validation sets (to get the predictive estimate).

3. After fitting the model, compute the relative importances (R;) of all z; € F
variables and delete from F the least relevant input. Go to step 4 if the
stopping criterion is met, otherwise return to step 2.

4. Select the best F' (and P in case of NN or SVM) values, i.e., the input vari-
ables and model that provide the best predictive estimates. Finally, retrain
this configuration with all available data.

3 Empirical results

3.1 Experimental setup

All experiments reported in this work were written in R [18] and conducted in
a Linux server, with an Intel dual core processor. R is an open source, multiple



platform (e.g. Windows, Linux) and high-level matrix programming language
for statistical and data analysis. In particular, we adopted the RMiner [5], a
library for the R tool that facilitates the use of DM techniques in classification
and regression tasks.

Before fitting the models, the data was first standardized to a zero mean
and one standard deviation [13]. RMiner uses the efficient BFGS algorithm to
train the NNs (nnet R package), while the SVM fit is based on the Sequential
Minimal Optimization implementation provided by LIBSVM (kernlab package).
The the hyperparameters (H and ) will be set using the procedure described
in the previous section and with the search ranges of H € {0,1,...,11} [28] and
v e {23,2t,...,2715} [25]. While the maximum number of searches is 12/10, in
practice the parsimony approach (step 2 of Section 2.4) will reduce this number
substantially.

Regarding the variable selection, we set the estimation metric to the M AD
value (Eq. 1), as advised in [25]. To reduce the computational effort, we adopted
the simpler 2/3 and 1/3 holdout split as the internal validation method. The
sensitivity analysis parameter was set to L = 6, i.e. z, € {—1.0,—-0.6,...,1.0}
for a standardized input. As a reasonable balance between the pressure towards
simpler models and the increase of computational search, the stopping criterion
was set to 2 iterations without any improvement or when only one input is
available.

3.2 Predictive Knowledge

To evaluate the selected models, we adopted 20 runs of the more robust 5-fold
cross-validation, in a total of 20x5=100 experiments for each tested configu-
ration. The results are summarized in Table 2. The test set errors are shown
in terms of the mean and 95% confidence intervals. Three metrics are present:
M AD, the classification accuracy for different tolerances (i.e. T = 0.25, 0.5 and
1.0) and Kappa (T = 0.5). The selected models are described in terms of the
average number of inputs (I) and hyperparameter value (H or 7). The last row
shows the total computational time required in seconds.



Table 2. The wine modeling results (test set errors and selected models; best values
are in bold; underline denotes a statistical significance when compared with MR, and
NN)

MR NN SVM

MAD 0.5940.00 0.58+0.00 0.45+0.00
Accuracyr—o.25 (%) 25.6+£0.1 26.5£0.3 50.2+1.1
Accuracyr—os0 (%) 51.740.1 52.640.3 64.3+0.4
Accuracyr=1.00 (%) 84.3+£0.1 84.7£0.1 86.84+0.2
Kappar—os (%)  20.9+0.1 23.530.6 43.4+0.4
Inputs (1) 96 93 10.0
Model - H=21 75=2°7
Time (s) 551 1339 34644
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Fig. 3. The average test set REC curves (SVM — solid line, NN - gray line and MR —
dashed line)

For all error metrics, the SVM is the best choice. The differences are higher for
small tolerances (e.g. for T' = 0.25, the SVM accuracy is almost two times better
when compared to other methods). This effect is clearly visible when plotting the
full REC curves (Fig. 3). The Kappa statistic [26] measures the accuracy when
compared with a random classifier (which presents a Kappa value of 0%). The
higher the statistic, the more accurate the result. The most practical tolerance
values are T' = 0.5 and T' = 1.0. The former tolerance rounds the regression
response into the nearest class, while the latter accepts a response that is correct
within one of the two closest classes (e.g. a 3.1 value can be interpreted as grade
3 or 4 but not 2 or 5). For T = 0.5, the SVM accuracy improvement is 11.7



pp (19.9 pp for Kappa). The NN model slightly outperforms the MR results.
Regarding the variable selection, the average number of deleted inputs ranges
from 1.0 to 1.7, showing that most of the physicochemical tests used are relevant.
In terms of computational effort, the SVM is the most expensive method.

A detailed analysis of the SVM classification results is presented by the aver-
age confusion matrix for T'= 0.5 (Table 3). To simplify the visualization, the 3
and 9 grade predictions were omitted, since these were always empty. Most of the
values are close to the diagonals (in bold), denoting a good fit by the model. The
true predictive accuracy for each class is given by the precision metric (e.g. for
the grade 4, precisionp—g5=18/(1846+4)=64.3%). This statistic is important
in practice, since in a real deployment setting the actual values are unknown and
all predictions within a given column would be treated the same. For a tolerance
of 0.5, the accuracies are 60.1/64.3% for classes 6 and 4, 67.1/72.3% for grades
7 and 5, and a surprising 86.6% for the class 8 (the exception are the 3 and
9 extremes with 0%, not shown in the table). When the tolerance is increased
(T = 1.0), high accuracies are obtained, ranging from 82.0 to 96.2%.

Table 3. The average confusion matrix (I' = 0.5) and precision values (7" = 0.5 and
1.0) for the SVM model (bold denotes accurate predictions)

Actual White wine predictions

Class 4 5 6 7 8
3 0 3 17 1 0
4 18 53 91 1 0
5 6 832 598 21 0
6 4 241 1806 144 3
7 0 20 418 436 6
8 0 2 71 45 58
9 0 0 2 2 0
Precisionr—o.5(64.3% 72.3% 60.1% 67.1% 86.6%
Precisionr=1.0(89.7% 93.4% 82.0% 90.1% 96.2%

3.3 Explanatory Knowledge

The relative importances of the SVM input variables, given in terms of the mean
and 95% confidence intervals of the R, values, are shown in Fig. 4. It should be
noted that the whole 11 inputs are shown, since in each simulation different sets
of variables can be selected. A more detailed analysis will be given to sixth most
relevant analytical tests (Fig. 5). For a given input, each plot shows the histogram
(frequency values are shown at the right of the y-axis) and the VEC curves (¥,
values, shown at the left of the y-axis) when the analytical test values (z-axis)
are changed through their domain. For a given test, we built a VEC curve with
L = 6 points (the sensitivity levels). Since 100 experiments we performed, we
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Fig. 4. The relative input importances for the SVM model (in %; bars denote the
average value while the whiskers show the 95% confidence intervals)

performed a vertical averaging (with the respective 95% confidence intervals) of
the 100 curves.

In several cases, the obtained results confirm the oenological theory. For in-
stance, an increase in the alcohol (the most relevant factor) tends to result in
a higher quality wine. Fig. 5 shows that this is true between the range from
9 to 13 % (which is related to most samples). In addition, the volatile acidity
has a negative impact within the range that corresponds to the majority of the
examples. This outcome was expected, since acetic acid is the key ingredient
in vinegar. Moreover, residual sugar levels are important in white wine, where
the equilibrium between the freshness and sweet taste is more appreciated. The
most intriguing result is the high importance of sulphates, ranked second. Oeno-
logically this result could be very interesting. An increase in sulphates might be
related to the fermenting nutrition, which is very important to improve the wine
aroma, in an effect that occurs within the range 0.4 to 0.7 that contains most of
the samples.



4 Conclusions

Due to the increase in the interest in wine, companies are investing in new tech-
nologies to improve their production and selling processes. Quality certification
is a crucial step for both processes and is currently dependent on wine tasting by
human experts. This work aims at the prediction of wine preferences from objec-
tive analytical tests that are available at the certification step. A large dataset
(with 4898 entries) was considered, including white vinho verde samples from
the northwest region of Portugal. This case study was addressed by a regression
tasks, where wine preference is modeled in a continuous scale, from 0 (very bad)
to 10 (excellent). This approach preserves the order of the classes, allowing the
evaluation of distinct accuracies, according to the degree of error tolerance (T')
that is accepted.

Due to advances in the data mining (DM) field, it is possible to extract knowl-
edge from raw data. Indeed, powerful techniques such as neural networks (NNs)
and more recently support vector machines (SVMs) are emerging. While being
more flexible models (i.e. no a priori restriction is imposed), the performance de-
pends on a correct setting of hyperparameters (e.g. SVM kernel parameter) and
the input variables used by the model. In this study, we present an integrated
and computationally efficient approach that simultaneously addresses both is-
sues. Sensitivity analysis is used to extract knowledge from the NN/SVM models,
given in terms of the effect on the responses when one input is varied, leading
to the proposed Variable Effect Characteristic (VEC) curves, and relative im-
portance of the inputs (measured by the variance of the response changes). The
the variable selection is guided by sensitivity analysis and the model selection is
based on parsimony search that starts from a reasonable value and is stopped
when the generalization estimate decreases.

Encouraging results were achieved, with the SVM model providing the best
performances, outperforming the NN and MR techniques. The overall accura-
cies are 64.3% (T = 0.5) and 86.8% (T = 1.0). It should be noted that the
datasets contain six/seven classes (from 3 to 8/9) and these accuracies are much
better than the ones expected by a random classifier. While requiring more com-
putation, the SVM fitting can still be achieved within a reasonable time with
current processors. For example, one run of the 5-fold cross-validation testing
takes around 26 minutes.

The result of this research is relevant to the wine science domain, helping
in the understanding of how physicochemical characterization affects the final
quality. In addition, this work can have an impact in the wine industry. At
the certification phase and by Portuguese law, the sensory analysis has to be
performed by human tasters. Yet, the evaluations are based in the experience and
knowledge of the experts, which are prone to subjective factors. The proposed
data-driven approach is based on objective tests and thus it can be integrated
into a decision support system, aiding the speed and quality of the oenologist
performance. For instance, the expert could repeat the tasting only if her/his
grade is far from the one predicted by the DM model. In effect, within this
domain the T' = 1.0 distance is accepted as a good quality control process and, as



shown in this study, high accuracies were achieved for this tolerance. The model
could also be used to improve the training of oenology students. Furthermore,
the relative importance of the inputs brought interesting insights regarding the
impact of the analytical tests. Since some variables can be controlled in the
production process this information can be used to improve the wine quality. For
instance, alcohol concentration can be increased or decreased by monitoring the
grape sugar concentration prior to the harvest. Also, the residual sugar in wine
could be raised by suspending the sugar fermentation carried out by yeasts. In
future work, we intend to model preferences from niche and/or profitable markets
(e.g. for a particular country by providing free wine tastings at supermarkets),
aiming at the design of brands that match these market needs. We will also test
other DM algorithms that specifically build rankers, such as regression trees [15].
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Fig. 5. The vertical averaging of the VEC curves (points and whiskers) and histogram
(in bars) for the SVM model and the sixth most relevant physicochemical tests



