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ABSTRACT 

 

Advances in prenatal diagnosis of genetic and congenital disorders with progressively more sensitive 

techniques may increase opportunities for consideration of prenatal gene therapy. There are a 

number of genetic and acquired disorders with peri or postnatal pulmonary manifestations. These 

include monogenetic diseases like cystic fibrosis or surfactant protein B deficiency that would 

presumably require long-term expression of the deficient or defective gene. However, there are also 

abnormalities of lung growth, such as congenital diaphragmatic hernia, or lung maturation, such as 

respiratory distress syndrome of prematurity, that could potentially benefit from strategies that 

achieve transient gene expression in specific pulmonary distributions. Considered an attractive target 

organ for fetal gene transfer, the developing lung, poses also some obstacles that would only be 

overcomed with the development of a variety of gene transfer methodologies: different types of 

vector, optimal site, route and timing of gene delivery. The fundament of this dissertation was to 

modulate lung growth/maturation by in utero gene transfer, aiming to unveil underlying mechanisms 

of normal and abnormal lung development.  

The first objective of this dissertation was to develop a new approach of gene transfer targeting the 

fetal lung in early stages of lung development. We developed a new method for direct injection of 

viral vectors into the rat fetal lung as early as the pseudoglandular phase of lung development using 

ultrasound guided microinjections. The pseudoglandular stage, characterized by intense branching 

morphogenesis, is the period of greatest overall growth of the airways and vasculature of the fetal 

lung and corresponds to a stage of immunologic immaturity. Therefore, gene transfer during this 

period has the potential to have major effects on key elements of lung growth with minimal potential 

for detrimental immune responses.  We aimed to compare two distinct types of vectors: an 

adenoviral vector and a lentiviral vector (equine infectious anemia virus-based), both expressing the 

enhanced green fluorescent protein reporter gene. This study confirmed that adenoviral vectors are 

more suitable when rapid, high-level and transient expression of the transgene is required; whereas 

lentiviral vectors are more appropriate to induce sustained and long-term expression.  One of the 

concerns in gene transfer protocols is to target a specific cellular compartment of a determined 

organ/system. Interestingly, interstitial compartment rather than epithelial cells were transduced in 

opposition to previous studies describing intrapulmonary, intraamniotic and intratracheal 

administrations of viral vectors. The observation of transduction of distinct cell populations within the 

lung with different routes of transduction raises the possibility of manipulating gene expression in 
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specific and separate cell populations within the developing lung. We then decided to use this model 

system to perform an in vivo study of dynamic lung morphogenesis, involving a major player in 

branching morphogenesis, fibroblast growth factor 10 (FGF10). We observed that FGF10 

mesenchymal overexpression, on the fetal rat lung, resulted in the induction of consistent patterns of 

malformation, the appearance of which were developmental stage and location dependent. These 

malformations, in total, appear to closely recapitulate the morphology and histology of the entire 

spectrum of human Congenital Cystic Adenomatoid Malformation (CCAM). 
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RESUMO 

 

Os avanços no diagnóstico pré-natal de patologias genéticas e congénitas devido a técnicas 

progressivamente mais sensíveis, aumenta as oportunidades de aplicação de terapias génicas pré-

natais. Existem várias patologias pulmonares genéticas e adquiridas que se manifestam no período 

peri e pós-natal. Estas incluem doenças monogenéticas como a Fibrose Cística ou a Deficiência em 

Proteína Surfactante B, que requerem expressão a longo-termo do gene em causa. No entanto, 

existem também patologias relacionadas com crescimento pulmonar, como a Hérnia Diafragmática 

Congénita, ou maturação pulmonar, como o Síndrome Prematuro de Distress Respiratório, que 

podem beneficiar de estratégias de indução de expressão genica de forma transiente. Considerado 

um aliciante órgão-alvo para a terapia génica fetal, o pulmão fetal, coloca alguns obstáculos que só 

poderão ser ultrapassados com o desenvolvimento de várias metodologias: tipos de vectores, 

optimização de local, via e período de transferência génica. O fundamento desta dissertação foi 

modular crescimento/maturação pulmonar através de transferência génica in utero, pretendendo 

esclarecer os mecanismos moleculares reguladores no desenvolvimento pulmonar normal e 

anormal. 

 

O primeiro objectivo desta dissertação foi desenvolver uma nova abordagem de transferência 

génica para o pulmão nas fases inicias do seu desenvolvimento. Desenvolveu-se um novo método 

de injecção directa de vectores víricos no pulmão fetal de rato, durante a fase pseudoglandular, 

utilizando microinjecções guiadas por ultrasonografia. A fase pseudoglandular, caracterizada por 

intensa ramificação e crescimento global das vias aéreas e vasculatura do pulmão fetal, 

corresponde a um estadio de imaturidade imunológica. Sendo assim, a transferência génica durante 

este período terá, um maior efeito em elementos fundamentais do crescimento pulmonar com menor 

hipótese de desencadear respostas imunes. Dois tipos distintos de vectores víricos foram utilizados: 

um vector adenovírico e um vector lentivírico (Equine Infectious Anemia Virus), ambos expressam 

Enhanced Green Fluorescent Protein como gene marcador. Este estudo confirmou que os vectores 

adenovíricos são mais adequados quando se pretende obter expressão rápida, elevada e transiente 

do transgene; enquanto que os vectores lentivíricos induzem uma expressão sustentada no tempo.  

Uma das preocupações nos protocolos de transferência génica é atingir especificamente um 

determinado compartimento celular de um determinado órgão ou sistema. É de salientar que, 

ambos os vectores, transfectaram células do compartimento interstitial em oposição ao epitelial, 

descrito em estudos anteriores em que as vias de administração foram a intrapulmonar, a intra-



x                                                                                    Resumo 

amniótica e a intra-traqueal. A transdução de populações celulares distintas em estreita relação com 

o tipo de via de administração, aumenta as possibilidades de manipulação genética do pulmão em 

desenvolvimento. A etapa seguinte consiste em utilizar este modelo para efectuar um estudo in vivo 

da morfogénese pulmonar, manipulando um dos factores fundamentais no processo de ramificação, 

o fibroblast growth factor 10 (FGF10). A sobreexpressão mesenquimatosa de FGF10, no pulmão 

fetal de rato, resultou na indução de malformações císticas, cujo fenótipo era dependente do local e 

período em que se induzia essa mesma sobreexpressão. O fenótipo de todos os tipos de 

malformações induzidas, parece recapitular todo o espectro da Malformação Cística Adenomatoide 

Congénita do humano.  
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Abbreviations 

 

-SMA -smooth muscle actin  

AAV adeno-associated virus 

ALK activin receptor-like kinase  

ASLV avian sarcoma leukosis viruses  

BMP bone morphogenic protein 

CAR coxsackie adenovirus receptor 

CC10 clara cell marker 10 

CCAM congenital cystic adenomatoid malformation 

CCSP clara cell-secretory protein 

CDH congenital diaphragmatic hernia 

CF cystic fibrosis  

CFTR cystic fibrosis transmembrane receptor 

CHO chordin  

COPD chronic obstructive pulmonary disease  

DKK dickkopf  

DNAI dynein axonemal intermediate chain  

dpc days post-conception 

EGF epidermal growth factor 

EGFR epidermal growth factor receptor 

EIAV equine infectious anemia virus  

FGAd first generation adenoviral vector 

FGF fibroblast growth factor) 

FGFR fibroblast growth factor receptor 

FIV feline immunodeficiency virus  

FLK fetal liver kinase 

FLT fetal liver tyrosinase 

FN fibronectin  

FOXA2 forkhead box A2 

GATA A/TGAT/G –binding transcription factor 

GFP green fluorescent protein  

GLI glioblastoma transcription factor 

GRE gremlin  

HDAd helper-dependent adenoviral vector 

HIF hypoxia inducible factor 

 

 

HIP hedgehog interacting protein 

HIV human immunodeficiency virus  

HNF hepatocyte nuclear factor  

IFN interferon 

IL interleukin  

ITR inverted terminal repeat 

LEF lymphoid enhancer factor  

LTR two long terminal repeat  

MAPK mitogen activated protein kinase  

MASH mammalian achaete-scute homologue 

MLV murine leukemia virus 

NF nuclear factor 

NKX2.1 homeobox protein NK-2 homologue A 

PDGF platelet-derived growth factor 

PDGFR platelet-derived growth factor receptor 

PITX paired-like homeodomain transcription factor 

PTC patched 

RA retinoic acid 

RAR retinoic acid receptor 

RAS resistance to audiogenic seizures  

RRE Rev-responsive element  

RTK receptor tyrosine kinases  

SCID severe combined immunodeficiency  

SHH sonic hedgehog 

SIN self-inactivating vector 

SIV simian immunodeficiency virus 

SMC smooth muscle cells 

SP surfactant protein 

SPRY sprouty  

TCF T cell factor 

TGF transforming growth factor 

TNF tumor necrosis factor  

TTF thyroid transcription factor   

UBM ultrasound biomicroscopy 
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Normal Lung Development 

 

The bronchial tree of the human lung has more than 105 conducting and 107 respiratory airways 

arrayed in an intricate pattern crucial for oxygen flow [Weibel ER 1984; West GB, et al. 1997; Bejan 

A 2000; Mauroy B, et al. 2004]. Classical studies of lung structure raise the question of how the 

information required to generate a tree of such complexity is biologically encoded [Weibel ER and 

Gomez DM 1962; Metzger RJ and Krasnow MA 1999]. Lung development is a highly orchestrated 

process directed by mesenchymal-epithelial interactions which control and coordinate the temporal 

and spatial expression of multiple regulatory factors required for proper lung formation. Many 

endogenous and exogenous factors may disturb this delicate process leading to disorders of lung 

growth, maturation and function.  

Mammalian lung development initiates with the emergence of a small diverticulum, the 

laryngotracheal groove, from the ventral foregut endoderm into the splanchnic mesoderm [Chuang 

PT and McMahon AP 2003]. In humans, lung development begins at 3-4 weeks of gestation, 

whereas in mice and rats at 10 and 11.5 days post-conception (dpc), respectively (term mice 

gestation ~19 dpc; term rat gestation ~22 dpc). Larynx and trachea originate from the proximal 

region of the laryngotracheal groove, whereas the distal portion gives rise to bronchial buds, which in 

turn originate left and right lobar branches of the bronchial tree [Warburton D, et al. 2005]. The 

primary buds grow ventrally and caudally producing secondary bronchi. Pathways that control left-

right asymmetry determine the number of buds on the right and left sides, which is a species-specific 

feature. In mice and rats four lobes constitute the right lung and one lobe forms the left lung, 

whereas in humans the right lung is trilobed and the left is bilobed. As lung morphogenesis 

continues, each secondary bronchus undergoes dichotomous branching, a process responsible for 

the remarkable expansion of lung epithelium, until a functional lung with a particularly enhanced gas 

exchange surface area (0.1 micron thick by 70 square meters) is obtained [Chuang PT and 

McMahon AP 2003]. Three-dimensional branching pattern was carefully studied by Metzger et al 

[Metzger RJ, et al 2008]. They infer that the tree is generated by three geometrically simple local 

modes of branching: domain branching, planar bifurcation and orthogonal bifurcation, used in three 

different orders throughout the lung. Once left–right laterality of the lung is established, airway 

branching is driven by a ‘master’ branch generator, with three ‘slaves’ in the form of subroutines 

(series of discrete patterning events). Of these, one subroutine seems to instruct a periodicity clock, 

which times the appearance of subsequent branches; another determines the rotational orientation 
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of the branches around the axis of the parent airway; and the third mediates bifurcation. The 

molecular mechanism subjacent to this process was also investigated. The balance between 

fibroblast growth factor (FGF) expression, fibroblast growth factor receptor (FGFR) activation and 

Sprouty (Spry) 2-mediated inhibition of FGF signaling is possibly a central component, not only of the 

master branch generator, but also, of the periodicity-clock subroutine.  

 

 

Figure 1. Overview of lung development: stages and structure. 

 

Lung development comprises six different stages: the embryonic stage in which the lung primordium 

appears as a ventral diverticulum of the foregut, elongates caudally and branches for the first time 

giving rise to the main bronchi of the two lungs; the pseudoglandular stage, in which most of the 

branching morphogenesis takes place; the canalicular stage where the distal lung development and 

differentiation occurs concurrently with the pulmonary vascular network and surfactant synthesis; the 

saccular stage, when terminal sacs are formed in the peripheral airways with concomitant 

development of the capillary network and differentiation of type I and type II pneumocytes occurs; the 

alveolarization stage, the establishment of secondary septa results in alveolar formation; and the 

microvascular maturation, when double capillary layer of the immature alveolar septa is reduced to a 

single capillary layer [Perl AKT and Whitsett JA 1999; Roth-Kleiner M and Post M 2003]. To direct 
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this highly predetermined program, a multitude of controlling factors have been identified, namely 

transcription factors, growth factors and their receptors, extracellular matrix proteins and intercellular 

adhesion molecules. The role and the interplay between major molecular mediators will be reviewed 

in subsequent sections. Even if lung development is a continuum, in the following sections, 

molecular mediators and its interactions, structure and cell characterization, will be reviewed in close 

relation with each developmental stage. 

 

Table 1 - Stages of lung development: characteristic events and major molecular mediators.  

Stage Duration Characteristic events Major molecular mediators 

Embryonic 

Human 4-7 weeks 
 
Mouse 9.5-14.2 dpc 
 
Rat 11-12.5 dpc 

Outgrowth of trachea, right 
and left main bronchi and 
major airways 

HNF3ß, TTF1, RA, RAR, 
Shh, Ptch, Gli2, Gli3, FGF8, 
FGF10, HNF4, N-cadherin, 
activin-ß, activin-ßR IIA, 
lefty1/2, nodal, Pitx2 

Pseudoglandular 

Human 5-17 weeks 
 
Mouse 14.2-16.6 dpc 
 
Rat 12.5-18.5 dpc 

Formation of bronchial tree 
up to a preacinar level 

GATA6, N-myc, PDGF, 
PDGFR, EGF, EGFR, FGF, 
TGF-ß, Shh, Ptc, VEGF, 
BMP4, RA, RAR, Ghrelin, 
IL-6 

Canalicular 

Human 16-26 weeks 
 
Mouse 17.5-18.5 dpc 
 
Rat 18.5-19.5 dpc 
 

Formation of the pulmonary 
acinus and of the future air-
blood barrier; increase of 
capillary bed;  
epithelial differentiation;  
first appearance of surfactant 

GATA6, TTF1, HNF3ß, 
Mash1, VEGF 

Saccular 

Human 24-38 weeks 
 
Mouse 17.5-19 dpc 
 to 5 days 
 
Rat 19.5-22 dpc 
 to 7 days 

Formation of transitory air 
spaces 

HNF-3ß, TTF1, NF1, VEGF, 
VEGFR 

Alveolar 

Human 36 weeks       
to 2 years 
 
Mouse 5-30 days 
 
Rat 7-35 days 

Alveolarization by formation 
of secondary septa 

PDGF, PDGFR, FGF, 
FGFR, VEGF, VEGFR, 
angiopoietins, ephrins, RA, 
RAR 

Microvascular 
maturation 

 
Human birth  
to 2-3 years 

Thinning of interalveolar 
walls; fusion of the capillary 
bilayer to a single layered 
network 

VEGF, VEGFR, PDGF, 
PDGFR, angiopoietins, 
ephrins 
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EMBRYONIC STAGE 

In the human, early lung formation lasts from day 26 to 7 weeks after conception. The trachea and 

lungs originate from the endoderm layer, like the thyroid, esophagus, stomach, liver, pancreas and 

the intestines. Lung formation starts with an outgrowth of the ventral foregut, which gives rise to two 

primordial lung buds on either side of the esophagus. These buds invade the surrounding 

mesenchyme by dividing dichotomously forming the left and the right primordial lung. 

Early Lung Organogenesis 

Primitive foregut endoderm is driven to differentiate into respiratory epithelium by interactions of 

hepatocyte nuclear factor 3ß (HNF-3ß or foxa2), thyroid transcription factor 1 (TTF1 or Nkx2.1) and 

GATA family transcription factors at the level of gene transcription regulation, thus mediating not only 

surfactant protein genes but also other transcription factors and including smooth muscle genes 

[Zhou L, et al. 1996b; Keijzer R, et al. 2001].  

HNF-3ß is expressed in cells believed to be progenitors of respiratory epithelial cells. The genetic 

ablation of HNF-3ß in mice leads to embryonic death with absence of foregut and, therefore, 

absence of the lungs [Ang SL and Rossant J 1994]. Later in lung development, HNF-3ß-binding sites 

have been found in the promoter-enhancer elements of different genes expressed in differentiated 

respiratory epithelial cells, e.g. surfactant protein (SP) B, Clara cell-secretory protein (CCSP) and 

Clara cell marker 10 (CC10) [Stahlman MT, et al. 1998; Bingle CD and Gitlin JD 1993; Bohinski RJ, 

et al. 1994].  

 It was generally believed that TTF1 was important in endoderm specification because of colocalized 

expression with HNF3ß in the developing respiratory tract, HNF3ß regulation of TTF1 gene 

transcription and concerted transcriptional regulation via HNF3ß and TTF1. Mice lacking TTF1 

exhibit tracheoesophageal fistula and have hypoplastic lungs resulting in neonatal lethal phenotype. 

Moreover, early epithelial cell lineage determination is abrogated in these mutants [Kimura S, et al. 

1996]. Despite TTF1 proven roles in tracheoesophageal septation and lung development, no 

functional data is available for TTF1 role in endoderm specification [Zhou L, et al. 1996b; Keijzer R, 

et al. 2001]. 

GATA6, a member of the GATA family of zinc finger transcriptional factors, has been implicated in 

pulmonary endoderm specification and in epithelial and smooth muscle cell lineage diversity. Gata6 

is expressed in arterial smooth muscle, the fetal bronchi, urogenital ridge and bladder. GATA6 is 
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essential for the differentiation of visceral endoderm via regulation of HNF4 [Morrisey EE, et al. 

1998].  

Another crucial player in this early stage is retinoic acid (RA). It binds to its receptor that 

translocates to the nucleus and influences gene transcription in target cells. Deletion of both RA 

receptor-� and RA receptor-ß results in pulmonary agenesis, tracheoesophageal fistula and lobar 

agenesis [Mendelsohn C, et al. 1994]. 

 

Left-Right Asymmetry 

Left-right asymmetries are an integral part of the body plan and necessary for normal formation and 

localization of intrathoracic and intra-abdominal organs. By the 5th week after conception, the human 

lung is divided into five lobes, two on the left and three on the right, whereas mice and rats possess 

four lobes in the right lung and one lobe in the left lung. Several distinct, though conserved, 

mechanisms have been proposed during the establishment of left-right axis in vertebrates: sonic 

hedgehog (Shh) [Meyers EN and Martin GR 1999], fibroblast growth factor-8 (FGF8) [Boettger T, et 

al. 1999], HNF4 [Chen J, et al. 1998], N-cadherin [García-Castro MI, et al. 2000], activin-ß and its 

receptor IIA [Oh SP and Li E 1997]. All the involved pathways seem to join into modulation of the 

expression of genes belonging to the transforming growth factor-ß (TGF- ß) family, named lefty1, 

lefty2 and nodal. These signalling molecules are expressed at the left side of the lung.  

 

Epithelial-Mesenchymal Interactions 

The importance of mesenchymal-epithelial tissue interactions for early lung development has been 

known for several decades [Wessels NK 1970]. Each tissue compartment produces unique sets of 

growth factors and other signaling molecules, which signal in a paracrine manner between the 

epithelium and the mesenchyme. Their expression must be well coordinated as at some sites they 

need to enhance cell proliferation (at the edge of the growing lung buds), while at other sites they 

have to inhibit cell division (at branching points). Some of these players have been identified, 

including fibroblast growth factors (especially FGF10 and FGF7), transforming growth factor-ßs 

(TGF-ß), Shh, vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), platelet-

derived growth factor (PDGF) and bone morphogenic protein 4 (BMP-4), with their respective  

receptors and intracellular signaling molecules.  
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PSEUDOGLANDULAR STAGE  

During this period from 5 to 17 weeks in the human, the hierarchical pattern of pre acinar airways 

and blood vessels develops. By dichotomous branching the whole bronchial tree is formed. Further 

steps in lung development are differentiation of epithelial cells in a centrifugal manner with 

appearance of ciliated cells, goblet and basal cells and production of cartilage, which can already be 

found around the main bronchi before 10 weeks after conception [Burri PH 1999]. 

Branching Morphogenesis 

A highly ordered sequence of patterning events collectively referred to as branching morphogenesis 

generates the bronchial tree and defines the proximal-distal axis of the lung by the end of the 

pseudoglandular stage. This process results from reiterated combination of bud outgrowth, 

elongation and subdivision of terminal units [Hogan BLM 1999]. The initial branches are formed 

essentially by budding; in subsequent dichotomous subdivisions, extracellular matrix seems to play a 

role by accumulating at clefts, specific points that do not branch. The current model is depicted in 

Figure 2 and establishes that dynamic changing in relative activity of SHH, FGF10, and mSPRY2 in 

the branching process. SHH is high and FGF10 is correspondingly low where branching is not 

supposed to take place. In contrast, SHH is suppressed locally by patched (PTC) and hedgehog 

interacting protein (HIP), so that FGF10 is therefore high where a branch is supposed to occur. 

FGF10 in turn dynamically induces its inhibitor mSpry2 as branches lengthen. Thus, the net relative 

activities between SHH, FGF10, and mSPRY2 may determine FGF signal strength in the epithelium 

and hence the relative rate of bud outgrowth rate at a given point and hence interbranch length. As a 

bud begins to elongate toward a mesenchymal source of FGF10, mSpry2 begins to be expressed in 

the distal tip. During subsequent elongation, Fgf10 continues to be expressed in the distal 

mesenchyme and the level of mSpry2 gradually increases as the bud lengthens. When the bud 

finally approaches the pleura, the Fgf10 expression domain adjacent to the distal tip appears to thin 

out and some of it appears to be pushed laterally to lie between adjacent branch tips. At the time, 

mSpry2 expression in the distal tip is at its highest level, perhaps mediating bud outgrowth arrest. A 

tip-splitting event then occurs in which wingless (WNT) signaling drives fibronectin (FN) deposition 

between the branch tips, leading to epithelial cleft formation. Meanwhile, dickkopf-1 (DKK1) inhibits 

Wnt signaling away from the cleft, leading to lower levels of FN deposition where clefting does not 

occur. Of note is that mSpry2 expression is extinguished between the daughter bud tips, but 

continues to be expressed within the tips of the daughter bud epithelia. This cycle of interaction is 
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then repeated during subsequent branching events. Despite some controversy (see below), BMP4 is 

also an important factor that appears to enhance lung branch tip outgrowth according together with 

FGF10. FGF10 is shown stimulating BMP4 expression, whereas the ligand binding proteins gremlin 

(GRE) and chordin (CHO) exert negative modulation on BMP4. VEGF signaling appears to play 

necessary but complementary roles to accelerate this overall process [Warburton D, et al. 2005]. 

 

 

 

Figure 2. Current model for lung bud outgrowth, arrest and branching [from Warburton D, et al. 

2005]. 
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Growth Factors and Signal interactions in Branching Morphogenesis 

In the following section transcription and growth factors with pivotal role in branching morphogenesis 

will be reviewed.   

FGF family  

There are 22 members of the fibroblast growth factor family in vertebrates, ranging in molecular 

mass from 17 to 34kDa and sharing 13-71% amino-acid identity [Ornitz DM and Itoh N 2001]. The 

defining features of the family are a high affinity for heparin and heparin-like glycosaminoglycans and 

a central core of 140 amino acids that is highly homologous between the family members.  

Many FGF have been implicated in multiple aspects of vertebrate development. FGF 1, 2, 7, 9, 10, 

and 18 play overlapping, yet distinct roles in the lung. In particular, FGF10 has been associated with 

instructive mesenchymal-epithelial interactions, such as those that occur during branching 

morphogenesis, whereas FGF9 and 18 appear to play a role in the mesenchyme and FGF1 and 7 

appear to play roles in mediating postnatal lung repair [Chailley-Heu B, et al. 2005].  

FGF10. In the developing lung, Fgf10 is expressed in the distal mesenchyme at sites where 

prospective epithelial buds will appear. Moreover, its dynamic pattern of expression and its ability to 

induce epithelial expansion and budding in organ cultures have led to the hypothesis that FGF10 

governs the directional outgrowth of lung buds during branching morphogenesis [Bellusci S, et al. 

1997]. Furthermore, FGF10 was shown to induce chemotaxis of the distal lung epithelium [Weaver 

M, et al. 2000; Park WY, et al. 1998]. The chemotaxis response of the lung endoderm to FGF10 

involves the coordinated movement of an entire epithelial tip, containing hundreds of cells, toward an 

FGF10 source. How this population of cells monitors the FGF gradient and which receptors trigger 

this effect remains unknown. Consistent with these observations, mice deficient for Fgf10 show 

multiple organ defects including lung agenesis [Min H, et al. 1998; Sekine K, et al. 1999; Ohuchi H, 

et al. 2000]. FGF10 also controls the differentiation of the epithelium by inducing SP-C expression 

and by up-regulating the expression of BMP4, a known regulator of lung epithelial differentiation 

[Weaver M, et al. 2000; Lebeche D, et al. 1999]. FGF10 is the main ligand for FGFR2b during the 

embryonic phase of development as evidenced by the remarkable similarity of phenotypes exhibited 

by embryos where these genes have been inactivated [Mailleux AA, et al. 2001; Sutherland D, et al. 

1996]. Thus, the paradigm proposed so far is that FGF10 expressed by the mesenchyme acts on the 

epithelium (which expresses FGFR1b and 2b). The biologic activities mediated through these two 

epithelial receptors are likely to be different, as FGF7 (acting mostly through FGFR2b) exhibits a 

different activity compared with FGF10 [Bellusci S, et al. 1997].  
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Fgf7, or keratinocyte growth factor, is expressed by mesenchymal pulmonary cells. FGF7 mediates 

epithelial-mesenchymal interactions by binding to FGFR2b. Fgf7 overexpression in pulmonary 

epithelium results in abnormal morphogenesis similar to cytadenomatoid malformation [Simonet WS, 

et al. 1995]. In mesenchyme-free cultures of murine fetal lungs, FGF7 induced cysts and patchy SpC 

expression [Cardoso WV, et al. 1997]. However, when administrated with competence factors, which 

alone did not influence pulmonary epithelium, FGF7 was able to induce reprogramming of tracheal 

epithelium to an alveolar type II pneumocyte phenotype [Deterding RR, et al. 1996]. Hence, FGF7 is 

necessary but not fundamental for the induction of distal lung epithelial differentiation. 

FGF9. During early pulmonary development, Fgf9 is expressed in endodermal epithelium and 

mesothelium, becoming later restricted to the mesothelium. Decreased branching and pulmonary 

hypoplasia result from targeting Fgf9, which originated diminished Fgf10 levels and consequently 

reduced mesenchymal proliferation [Colvin JS, et al. 1999; 2001]. It has been suggested that FGF9 

inhibits SHH-induced differentiation of peripheral pulmonary mesenchymal cells, thus maintaining a 

FGF10 progenitor population [Weaver M, et al. 2003]. 

FGFR. The cloning of the signal-transducing receptors for FGFs has revealed a tyrosine kinase gene 

family with at least four members. These four cell surface FGFRs bind members of the FGF family 

with varying affinity [Ornitz DM and Itoh N 2001]. FGFRs contain an extracellular ligand binding 

domain, a single transmembrane domain, and an intracellular tyrosine kinase domain. Following 

liagtion with FGFs, receptor tyrosine kinases (RTKs) activate the Ras/MAPK signalling pathway. 

Fgfr1, 2, and 3 encode two receptor isoforms (termed IIIb or IIIc) that are generated by alternative 

splicing, and each binds a specific repertoire of FGF ligands [Ornitz DM, et al. 1995]. FGFR2-IIIb 

(FGFR2b) is found mainly in epithelia and binds four known ligands (FGF1, FGF3, FGF7, and 

FGF10), which are primarily expressed in mesenchymal cells. Peters et al. [Peters K, et al. 1994] 

reported the first evidence of a key role for Fgfr2 during lung development. They showed that 

misexpression of a dominant negative form of Fgfr2 in the embryonic lung under the SP-C promoter 

led to a severe reduction in branching morphogenesis. Further evidence came from Fgfr2 

inactivation in the embryo. Whereas mice null for the Fgfr2 gene die early during embryogenesis, 

those that are null for the Fgfr2b isoform, but retain Fgfr2c, survive to birth [De Moerlooze L, et al. 

2000; Revest JM, et al. 2001]. Mice deficient for Fgfr2b show agenesis and dysgenesis of multiple 

organs, including the lungs, indicating that signaling through this receptor is critical for mesenchymal-

epithelial interactions during early organogenesis. This idea is supported by the finding that 

prenatally induced misexpression of a dominant negative FGFR, to abrogate FGF signaling, results 

in a hypoplastic, emphysematous lung phenotype [Hokuto I, et al. 2003]. In contrast, induced 

abrogation of FGF signaling postnatally did not produce any recognizable phenotype. 
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FGF signaling pathway. Upon reception of the extracellular signals (FGFs), RTK activate the 

Ras/MAPK signalling pathway. Stimulation of FGFR not only results in formation of the 

FRS2/Grb2/Sos complex, but the binding of a positive tyrosine phosphatase regulator, Shp2, to 

FRS2, which is required for full potentiation of MAP-kinase activation [Hadari YR, et al. 1998]. Many 

of the molecular components, such as Ras, GTPase, Raf kinase and MAPK are shared among 

different RTKs. Ras directly interacts with and activates Raf, which in turn phosphorylates and 

activates MEK, which then phosphorylates and activates the MAP kinases, including ERK1 and 

ERK2. ERK is an extracellular-signal-regulated kinase that can enter the nucleus and phosphorylate 

certain transcription factors (like ELK-1), leading to phosphorylation of cytoplasmic proteins followed 

by cell growth and differentiation [Schaeffer HJ and Weber MJ 1999] (Figure3). Members of the 

Sprouty, Sef, and mitogen-activated protein kinase phosphatase families are negative modulators of 

FGF signaling. These molecules affect the FGF signaling cascade at different levels to regulate the 

final output of the pathway. This multilayered regulation suggests that precise adjustment of FGF 

signaling is critical in development [Tsang M and Dawid IB 2004]. 

 

 

Sprouty family  

The first example of an FGF-inducible signaling antagonist arose from the discovery of the sprouty 

mutant during Drosophila trachea development, in which supernumerary tracheal sprouts arise. Spry 

is not only found downstream in the FGFR pathway, but also appears to be an inhibitor of other 

tyrosine kinase signaling pathways such as EGF and Torso [Tefft D, et al. 2002]. mSpry2 is localized 

to the distal tips of the embryonic lung epithelial branches and is down-regulated at sites of new bud 

formation [Sutherland D, et al. 1996]. On the other hand, mSpry4 is predominantly expressed 

throughout the distal mesenchyme of the embryonic lung. It has been suggested that both Spry2 and 

Spry4 share a common inhibitory mechanism. Both Sprouty translocate to membrane ruffles upon 

EGF stimulation. However, only SPRY2 was shown to associate with microtubules [Lim J, et al. 

2000]. Abrogation of mSpry2 expression stimulates murine lung branching morphogenesis and 

increased expression of specific lung epithelial maturation/differentiation markers [Tefft JD, et al. 

1999]. Conversely, overexpression of mSpry2 under the control of a SP-C promoter or by 

intratracheal microinjection of an adenovirus containing the mSpry2 cDNA, results in smaller lungs 

with a particular “moth-eaten” dysplastic appearance along the edges of the lobes, with decreased 

epithelial cell proliferation [Mailleux AA, et al. 2001]. Thus, not only is the function of Spry conserved 

during respiratory organogenesis, but also as seen by loss of function and gain of function studies, 

Spry plays a vital role in regulating lung branching morphogenesis. The investigation of mechanism 
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by which mSPRY2 negatively regulates FGF10 in mouse lung epithelial cells (MLE15), showed that 

mSPRY2 differentially binds to FGF downstream effector complexes [Tefft D, et al. 2002]. 

 

 

 

Figure 3. Schematic diagram of FGF signaling through Ras-MAPK pathway. The binding of the FGF to FGFR 

causes the autophosphorylation and activation of the receptor tyrosine kinases (RTK). The RTK binds to an 

adaptor protein Grb2 or Grb2-Sos complex via its docking protein Shp or FRS2. The Sos then activates the 

Ras, which in turn phosphorylates a series of MAP kinases (Raf, MEK, ERK). ERK enters nucleus 

phosphorylates and activates transcription factor like ELK-1, which regulates its targets. Sprouty, Sef, and 

mitogen-activated protein kinase phosphatase families are negative modulators of FGF signaling. 

 

 

Regulation of FGF signaling by Sprouty  

Early studies in chick limb bud demonstrated that overexpression of Spry resulted in a reduction in 

limb bud outgrowth, consistent with a decrease in FGF signaling [Minowada G, et al 1999]. This 

suggested a possible co-regulatory relationship between FGF signaling and Spry during 

development. In developing lung the native state mSPRY2 associates with Shp2 and Gap, which is a 
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GTPase-activating protein that hydrolyzes GTP to GDP. It is possible that in this state the binding of 

Shp2 to mSPRY2 regulates mSPRY2 activity. Upon FGFR activation, mSPRY2 disassociates from 

Shp2 and Gap and translocates to the plasma membrane, where it binds to both FRS2 and Grb2, 

thus blocking the formation of the FRS2/Grb2/Sos complex, resulting in a net reduction of MAP-

kinase activation. Thus, Sprouty would inhibit the formation of specific signaling complexes 

downstream tyrosine-kinase receptors resulting in modulation and co-ordination of cell growth and 

development during organogenesis. It is also known that Spry4 inhibits branching of endothelial cells 

as well as sprouting of small vessels in cultured mouse embryos. Endothelial cell proliferation and 

differentiation in response to FGF and VEGF are also inhibited by mSpry4, which acts by repressing 

ERK activation. Thus, Spry4 may negatively regulate angiogenesis [Lee MK, et al. 1998]. 

 

Shh, Patched and Hip 

Hedgehog signaling is essential for lung morphogenesis because Shh null produces profound 

hypoplasia of the lungs and failure of tracheoesophageal septation [Pepicelli CV, et al. 1998]. 

However, proximodistal differentiation of the endoderm is preserved in the Shh null mutant, at least 

in so far as expression of SP-C and CC10 genes are concerned. The expression of the SHH 

receptor, PTC, is also decreased in the absence of Shh as are glioblastoma transcription factors (Gli) 

1 and 3. On the other hand, lung-specific misexpression of Shh results in severe alveolar hypoplasia 

and a significant increase in interstitial tissue [Bellusci S, et al. 1997]. Fgf10 expression, which is 

highly spatially restricted in wild type, is not spatially restricted and is widespread in the mesenchyme 

in contact with the epithelium of the Shh null mutant mouse lung. Conversely, local suppression of 

SHH signaling by the induction of Ptc and Hip at branch tips may serve to facilitate FGF signaling 

locally, where branch outgrowth is stereotypically programmed to take place [Chuang PT and 

McMahon AP 1999]. Thus, temporospatial restriction of Fgf10 expression by SHH appears to be 

essential to initiate and maintain branching of lung. 

 

TGF-  family  

The TGF- superfamily can be divided into three subfamilies: TGF��, BMP and activin [Massague J 

1998].  
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TGF-. There are three TGF- isoforms in mammals: TGF-1, 2, and 3. All of them have been 

detected in murine embryonic lungs [Millan FA, et al. 1991; McLennan IS, et al. 2000]. In early 

mouse embryonic lungs (E11.5), TGF-1 is expressed in the distal mesenchyme underlying 

branching points, whereas TGF-2 is localized in distal epithelium, and TGF-3 is expressed in 

proximal mesenchyme and mesothelium [Bragg AD, et al. 2001]. Mice lacking Tgfb1 develop 

normally but die within the first month or two of life of aggressive pulmonary inflammation. On the 

other hand, Tgfb2 null mutants die in utero of severe cardiac malformations, whereas Tgfb3 mutants 

die neonatally of lung dysplasia and cleft palate [Kaartinen V, et al. 1995; Buckley S, et al. 1996]. 

Embryonic lung organ and cell cultures reveal that TGF-2 plays a key role in branching 

morphogenesis, whereas TGF-3 plays a key role in regulating alveolar epithelial cell proliferation 

during the injury repair response [Zhou L, et al. 1996a; Zhao J, et al. 1999]. Thus, finely regulated 

and correct physiologic concentrations and temporospatial distribution of TGF-1, 2, and 3 are 

essential for normal lung morphogenesis and defense against lung inflammation.  

BMP. Several BMPs, including BMP3, 4, 5 and 7, are expressed during embryonic lung 

development. The expression of Bmp5 and Bmp7 has been detected in the mesenchyme and the 

endoderm of the developing embryonic lung respectively, while Bmp4 expression is restricted to the 

distal epithelial cells and the adjacent mesenchyme [King JA, et al. 1994; Bellusci S, et al. 1996; 

Takahashi H and Ikeda T 1996]. Most of the BMP signaling pathway components, such as BMP 

receptors: activin receptor-like kinase (ALK) 2, 3, and 6 and BMP specific receptor-regulated Smads 

(R-Smads), including Smad1, 5, and 8, are expressed in early mouse embryonic lung [Dewulf N, et 

al. 1995; Verschueren K, et al. 1995]. Overexpression of Bmp4, driven by the SP-C promoter in the 

distal endoderm of transgenic mice, causes abnormal lung morphogenesis, with cystic terminal sacs 

and inhibition of epithelial proliferation [Bellusci S, et al. 1996]. In contrast, SP-C promoter-driven 

overexpression of either the BMP antagonist Xnoggin or a dominant negative Alk6 BMP receptor to 

block BMP signaling, results in severely reduced distal epithelial cell phenotypes and increased 

proximal cell phenotypes in the lungs of transgenic mice [Weaver M, et al. 1999]. However, the exact 

roles of BMP4 in early mouse lung development remain controversial. In isolated E11.5 mouse lung 

endoderm cultured in Matrigel™ addition of exogenous BMP4 inhibited epithelial growth induced by 

the morphogen FGF10 [Weaver M, et al. 2000]. However, addition of BMP4 to intact embryonic lung 

explant culture stimulates lung branching morphogenesis [Shi W, et al. 2001]. Since conventional 

murine knockouts for BMP4 and BMP-specific Smads cause early embryonic lethality, their functions 

in lung development in vivo still need to be further defined. Interestingly, germ line mutations in BMP 



30                                                              Normal Lung Development                                                    
 
                                     
type II receptors were found in familial primary pulmonary hypertension [Lane KB, et al. 2000]. 

Therefore, BMPs may play multiple roles in lung development.  

 

Wnt growth factor family  

Modulation of Wnt expression in embryonic and adult mouse lung suggests that Wnt pathways are 

important for cell fate decisions and differentiation of lung cell types. The Wnt growth factor family in 

the mouse is comprised of 19 different secreted ligands that interact with 10 known seven-span 

transmembrane receptors of the frizzled gene family and either one of two single-span 

transmembrane proteins, low-density-lipoprotein-receptor-related proteins 5 and 6 [Pinson KI, et al. 

2000; Tamai K, et al. 2000; Wehrli M, et al. 2000]. Historically, Wnt proteins have been grouped into 

two classes, canonical and noncanonical. Canonical Wnt bind to frizzled receptors, inhibiting 

glycogensynthase kinase-3b mediated phosphorylation of �-catenin. Hypophosphorylated b-catenin 

accumulates in the cytoplasm, after which it translocates to the nucleus, where it heterodimerizes 

with members of the T cell factor (TCF) / Lymphoid enhancer factor (LEF) transcription factor family 

to activate the transcription of TCF/LEF target genes. Non-canonical Wnt activate other Wnt 

signaling pathways, such as the planar-cell-polarity -like pathway that guides cell movements during 

gastrulation [Heisenberg CP, et al. 2000]. Between E10.5 and 17.5, �-catenin is localized in the 

cytoplasm and often also in the nucleus of the pulmonary epithelium and adjacent mesenchyme 

[DasGupta R and Fuchs E 1999]. Wnt ligands, frizzled receptors, and the Tcf/Lef1 transcription 

factors are expressed during early lung development. Studies of the expression pattern of several 

Wnt proteins (Wnt7b, Wnt2a, Wnt5a, Tcf1, Lef1, sFrp1, sFrp2) suggest that Wnt signaling can 

originate from the epithelium and mesenchyme and can target both tissues in an autocrine and/or 

paracrine fashion. Recent studies have related particular Wnt production to specific lung cell types: 

Wnt2 has been mapped predominantly to the mesenchyme, while Wnt7b was exclusively expressed 

in the lung epithelium [Pongracz JE and Stockley RA 2006]. Wnt signalling has also been reported to 

be important in the regulation of spatial and distal branching of the lung. While the importance of 

canonical Wnt signalling in lung development is well established, the role of non-canonical Wnt 

signalling is less clear. Wnt5a knock-out studies have shown, however, that non-canonical Wnt 

signalling is also important. In Wnt5a-/- animals the lung is morphologically smaller than in the wild 

type and has thickened mesenchyme. Furthermore, alveolar development is delayed, although not 

prevented. Lungs of Wnt5a knock-out animals also have increased expression of FGF10, Shh and 

BMP4 [Li C, et al. 2002; 2005] suggesting that the morphological changes might be related to 

dysregulation of other signalling pathways modulated by Wnt signalling.  
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DKK. Dickkopf (DKK) reveals FN as an important matrix target of Wnt signaling in lung 

morphogenesis. Recent experiments show that early embryonic mouse lung organ cultures treated 

with DKK1, a potent and specific diffusible inhibitor of Wnt action that is also endogenously secreted 

by the distal lung epithelium, display impaired branching, characterized by failed cleft formation and 

enlarged terminal buds. The DKK1-treated lung explants show reduced -smooth muscle actin (-

SMA) expression and defects in the formation of the pulmonary vascular network. These defects 

coincide with a pattern of decreased FN deposition and Pdgf-A expression. All of the DKK1-induced 

morphogenetic defects can be recapitulated by inhibition of FN with an antifibronectin antibody and 

conversely can be rescued by addition of exogenous FN [De Langhe S, et al. 2005]. This point out 

the importance of correct orientation of the extracellular matrix in response to growth factor signaling. 

It also suggests that fibronectin is a downstream target of Wnt signaling.  

 

EGF 

EGF is expressed in the distal epithelium and mesenchyme. Null mutation of Egfr results in a 50% 

reduction in branching and a neonatal lethal failure of lung maturation [Miettinen PJ, et al 1995; 

1997]. EGF was the first growth factor to be shown to exert an inductive role on chick trachea to 

induce ectopic branching [Goldin GV and Opperman LA 1980], as well as to accelerate branching 

through activation of its cognate EGFR tyrosine kinase in mouse embryonic lung in culture 

[Warburton D, et al. 1992; Seth R, et al. 1993]. In addition, null mutation of tumor necrosis factor 

(TNF)- converting enzyme, a cell surface protein sheddase that regulates release of active from 

latent forms of TNF-, amphiregulin, neuregulin-1, HB-EGF, and HerbB4, also causes a hypoplastic 

phenotype of lung in the perinatal stage and lethality in new born mice [Zhao J, et al. 2001].  

 

Proteoglycans 

Proteoglycans are deposited within the extracellular matrix during early embryonic lung branching 

morphogenesis and inhibition of proteoglycan synthesis or treatment with heparitinase severely 

affects branching [Smith CI, et al. 1990; Toriyama K, et al. 1997]. Both heparan sulfate and 

chondroitin sulfate proteoglycans are required for lung branching and in fact mediate the inductive 

effects of FGF10 binding to the epithelium [Izvolsky KI, et al. 2003; Shannon JM, et al. 2003].  
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VEGF 

Vascularization must perfectly match epithelial morphogenesis to ensure optimal gas exchange. 

Several VEGF isoforms are expressed in the developing epithelium, whereas their cognate receptors 

are expressed in and direct the emergence of developing vascular and lymphatic capillary networks 

within the mesenchyme. It is possible that VEGF signaling may lie downstream of FGF signaling, in 

as much as in vivo abrogation of FGF signaling severely affects both epithelial and endothelial 

morphogenesis. Vasculogenesis is initiated as soon as the lung evaginates from the foregut. The 

loss of even a single allele of Vegf leads to embryonic lethality between days E9.5 and E10.5 in the 

mouse [Miquerol L, et al. 1999]. VEGF is diffusely distributed in pulmonary epithelial and 

mesenchymal cells and is involved in controlling endothelial proliferation and the maintenance of 

vascular structure. VEGF is localized in the basement membrane of epithelial cells [Acarregui MJ, et 

al. 1999]. VEGF signals through the cognate receptors FLK-1 (fetal liver kinase- 1, or VEGFR2) and 

FLT-1 (fetal liver tyrosinase-1, or VEGFR1). VEGF signaling is responsible for the differentiation of 

embryonic mesenchymal cells into endothelial cells. In fact, epithelial cells of the airways are positive 

for VEGF, particularly at the budding regions of the distal airway [Brown KR, et al. 2001]. VEGF 

treated human lung explants show an increase of cellular proliferation in the distal airway epithelial 

cells with an upregulation of the mRNA expression of Sp-A  and Sp-C but not Sp-B [Brown KR, et al. 

2001]. 

 

 

Mechanical Forces 

 

In situ several physical forces are exerted on the developing lung including (a) fetal breathing 

movements, (b) peristaltic airway contractions and (c) lung fluid. Fetal breathing movements 

resulting from episodic diaphragmatic contractions have been observed in the human fetus as early 

as the first trimester and their incidence increases throughout the fetal period [Harding R 1997]. If 

they are inhibited either mechanically by bilateral thoracoplasty [Liggins GC, et al. 1981], 

neurosurgically by transecting the cervical cord above the phrenic motoneurons [Wigglesworth JS 

and Desai R 1979] or genetically in the myogenin null mouse lacking normal skeletal muscle fibers 

[Tseng BS, et al. 2000], lung hypoplasia results. Spontaneous peristaltic airway contractions are 

rhythmic narrowings of the airways by phasic contractions of the surrounding smooth muscle cells, 

producing a pulsatile distal-driven movement of lung liquid which might cause an expansion of the 

end lung buds, thereby stretching the epithelial layer lining the buds [Schittny JC, et al. 2000]. If the 

physiological circulation of lung fluid filling the air spaces is disturbed, lung development is disturbed. 
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Chronic deflation of one lung by drainage of lung liquid in the fetal sheep results in significant 

hypoplasia, while chronic overexpansion of the other lung by retention of fetal lung fluid results in 

hyperplasia [Moessinger AC, et al. 1990]. Taken together, these observations demonstrate the 

importance of mechanical forces for proper lung development. Mechanotransduction, i.e. the 

conversion of mechanical forces into biochemical signals, appears to be related with stimulation of 

gene expression of growth factors and their receptors via stress-induced activation of protein 

tyrosine kinases [Liu M and Post M 2000].  

 

Canalicular Stage 

The period between 16 and 26 weeks is manifested by ‘canalization’ of the primitive interstitium by 

capillaries leaning against the epithelium, marking the beginning of the future blood-air interface. The 

second landmark of this stage is the differentiation of the pulmonary epithelium into type II cells, the 

producers of surfactant, and subsequently type I cells, which contribute to the formation of a thinned 

prospective air-blood barrier.  

Epithelial Differentiation 

 

With proceeding of branching, numerous cell phenotypes with different morphology and gene 

expressions are established. Several transcription factors play a specific part in these differentiation 

processes. Mash-1 (mammalian achaete-scute homologue 1) is important for the pulmonary 

neuroendocrine cells, and Foxa2 (forkhead box A2), GATA-6 and TTF1 for the epithelial cells 

(ciliated cell, Clara cell, goblet cell, type II and type I cells). The absence of the respective 

transcription factors, shown in genetically altered mice, goes along with absence of the 

corresponding cell types [Borges M, et al. 1997; Tichelaar JW, et al. 1999].  

 

Saccular Stage 

Entering this stage at about 24 weeks in human pregnancy is crucial for extrauterine survival. The 

widening of the peripheral air spaces distal to the terminal bronchioles at the expense of intervening 

mesenchyme will allow for sufficient gas exchange. The prospective lung parenchyma is gaining in 

size by dichotomously branching of the terminal generations of the airway tree. Furthermore, during 
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this period, preparation for the real alveolarization starts by deposition of elastic fibers at the 

localizations where future secondary septa will form [Wasowicz M, et al. 1996].  

Surfactant    

 

Surfactant is comprised of about 90% lipids, 10% proteins and a lesser amount of carbohydrates 

[Weaver TE and Whitsett JA 1991], which are synthesized, stored, secreted and recycled or 

catabolised by alveolar type II cells. Epithelial cells differentiate into their descendants, including type 

II cells, during the canalicular stage under the influence of HNF-3ß and TTF1. TTF1 is normally 

expressed in postnatal type II cells but not in type I cells. In its absence as a result of gene targeting, 

the phenotype exhibits tracheoesophageal fistula, severe lung hypoplasia and no expression of 

surfactant proteins in its epithelium [Kimura S, et al. 1996]. Other transcription factors such as 

members of the nuclear factor I family (NF) also seem to influence SP-C gene expression [Bachurski 

CJ, et al. 1997]. In addition, the alveolar microenvironment has an influence on surfactant protein 

gene expression via signals provided by cell-cell or cell-extracellular matrix interactions and growth 

factors. In culture, isolated type II cells rapidly decrease their expression of SP-A, SP-B and SP-C, 

whereas surrounded by fetal lung fibroblasts and collagen they sustain the mRNA expression of 

these proteins [Shannon JM, et al. 1992]. When primary type II cell cultures are supplemented with 

keratinocyte growth factor (KGF or FGF7), the mRNA levels of SP-A, SP-B, SP-D are increased 

[Sugahara K, et al. 1995; Xu X, et al. 1998].  

 

Alveolar Stage 

At around 36 weeks of human gestation the stage of alveolarization starts with appearance of low 

ridges along both sides of the saccular walls. By further growth perpendicularly into the air space, 

they subdivide the saccules incompletely into smaller units, the alveoli. The trans-section of these 

newly formed interalveolar walls, named secondary septa, demonstrates a doubled capillary layer 

separated by a sheet of connective tissue. This immature structure does not yet correspond to the 

adult morphology with its thin interalveolar septa, in which a capillary monolayer occupies almost the 

whole space of the septum. Therefore, these structures will undergo more restructuring, called 

microvascular maturation [Burri PH 1999]. Among the variety of factors that participate in the control 

of budding of secondary septa, elastin appears as playing an essentitial role. Elastin deposition in 

the thickness of primary septa appears to have a spatially instructive role inasmuch as the specific 
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sites of elastic fiber formation correspond precisely to the location of future buds. New septa then 

extend that are composed of a double capillary layer, and elastin localizes at their tip. Other factors 

involved are FGFs (FGF2, FGF3, FGF4 and FGF7), PDGF (see below), collagenases, FN, 

proteoglycans [Bourbon J, et al. 2005].  

PDGF 

One of the leading factors controlling alveolarization is PDGF-A and its receptor PDGFR-. Mice 

lacking PDGF-A die either at early gestation or within the first weeks of life [Boström H, et al. 1996]. 

Animals, dying postnatally, have an emphysematous lung with areas of atelectasis without any signs 

of alveolarization [Boström H, et al. 2002]. They also lack alveolar smooth muscle cells, and as a 

consequence no elastin fibers can be demonstrated. Elastic fibers, however, are a prerequisite for 

secondary septa as mentioned above. Taken together, PDGF-A seems to prevent alveolarization by 

inhibition of alveolar smooth muscle cell formation. A double null mutant mouse has unveiled a 

couple of additional players influencing alveolarization, the FGFRs 3 and 4. If both receptors are 

unfunctional (FGFR-3–/– and FGFR-4–/–), the lungs show large dilated saccules, but no secondary 

septa and, therefore, no alveoli [Weinstein M, et al. 1998]. In contrast to the PDGF-A null mouse, 

alveolar smooth muscle cells are normally developed, suggesting another mechanism of action.  

 

VEGF 

VEGF has also been demonstrated to play a role in maintaining alveolar structure [Kasahara Y, et al. 

2000]. Lungs from newborn mice treated with antibodies to FLT-1 are reduced in size and display 

significant immaturity with a less complex alveolar pattern [Gerber HP, et al. 1999]. In contrast, the 

accumulation of VEGF in the alveoli appears to make transgenic VEGF mice more resistant to injury 

by hyperoxia [Corne J, et al. 2002; Compernolle V, et al. 2002]. VEGF is a target of hypoxia inducible 

transcription factor-2a (HIF-2a). Hif-2a–deficient newborn mice die from respiratory distress 

syndrome [Compernolle V, et al. 2002]. In Hif-2a null mice the expression of VEGF is dramatically 

reduced in alveolar epithelial type 2 cells. Moreover, addition of VEGF to early mouse embryonic 

lung explants markedly stimulates epithelial as well as vascular morphogenesis, playing an important 

role in matching the epithelial-capillary interface during lung morphogenesis. 
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Stage of Microvascular Maturation 

This final step in lung development takes place during the first 2–3 years after birth. The goal during 

this period is the restructuring of thick bilayered secondary septa to the mature interalveolar wall 

consisting of minimal interstitial tissue and a capillary monolayer. At the end of this developmental 

process, most of the alveolar capillary endothelium and flattened type I epithelium are in direct 

contact, which favors optimal gas exchange.  

Vascularization 

 

During the fetal period of lung development, important alterations of the three-dimensional structure 

of the capillary network lay the foundation for alveolarization. During the canalicular stage, there is a 

marked growth in capillary network which gets closer to the pulmonary epithelium. In the saccular 

stage, capillaries surround the future air spaces like sleeves. The intersaccular walls or primary 

septa contain a capillary bilayer. At the deposition site of elastic fibers within the primary septa crests 

of up-folded tissue of the intersaccular walls are developed. These crests increase in height and 

become the so-called secondary septa, which subdivide the saccules into smaller units, the alveoli. 

However, all these walls still contain a double capillary layer, which is suboptimal for gas exchange. 

It has been shown in rats that during the end of the third postnatal week (after the peak of 

alveolarization), the number of cells in the interstitium, especially of fibroblasts, are reduced 

predominantly by apoptosis [Schittny JC, et al. 1998]. This thinning of interstitial tissue may trigger 

the process by which the two capillary layers merge into one [Kimura S, et al. 1996]. Most of the 

molecular mechanisms are still unknown. Genetic analyses have demonstrated that cell-extracellular 

matrix and cell-cell interactions as well as growth factors and transcription factors are involved in 

vascular development. Members of the VEGF [Healy AM, et al. 2000], angiopoietin [Colen KL, et al. 

1999] and ephrin [Hall SM, et al. 2002] families appear to be key players in the control of pulmonary 

vascularization. 

 

 

 



 Cell and Gene Therapy                                                     37 
 

 

Cell and Gene Therapy 

 

Gene therapy can be defined as the use of genetic material to modify a patient's cells, by correcting 

an existing abnormality or providing cells with a new function, for the treatment of an inherited or 

acquired disease.  

Already in 1966, Tatum hypothesized that viruses could be used as effective tools for introducing 

genes [Kay MA, et al. 2001]. Also, shortly after, Kornberg suggested that it might be feasible to 

attach a gene to a harmless viral DNA and to treat monogenic deficiency diseases by putting the 

virus/gene complex into the patient’s cells [Kornberg A 1971]. However, the concept of gene therapy 

was introduced only in the late 1970s after the development of recombinant DNA technology.  In 

1987, Cline [Cline MJ 1987] still pointed out two major obstacles for the application of this technology 

to human marrow cells: extremely inefficient expression of a new gene in the host cell, and the lack 

of a convenient and clinically acceptable method of returning the genetically altered cells to the 

patient. Nevertheless, only in 1990 the first gene therapy protocol would be approved, and the era of 

clinical gene therapy officially launched [Wivel NA 2001]. Since then, gene therapy has been applied 

in clinical trials to treat a variety of diseases, including diseases that are caused by a small number 

of inherited genetic changes, such as cystic fibrosis or muscular dystrophy.  By administration of 

DNA rather than a drug, many different acquired diseases are currently being investigated as 

candidates for gene therapy, including cardiovascular disease, neurodegenerative disorders such as 

Parkinson's and infectious diseases such as viral hepatitis and HIV infection in addition to cancer 

(Table 1).  

 

 

Current applications and clinical trials 

The vast majority (83.9%) of gene therapy clinical trials to date have addressed cancer, 

cardiovascular disease and inherited monogenic diseases; the first two because of their enormous 

prevalence, impact and potentially fatal outcomes, the latter because the concept of replacing a well-

defined defective gene with its correctly functioning counterpart has an obvious appeal and rationale. 

Interestingly, trials targeting cardiovascular disease have outnumbered trials for monogenic disease 

since 2004, although the greatest successes of gene therapy to date have been achieved in the 

latter group. Is interesting to notice that the range of indications for which gene therapy trials have 

been approved so far has widened [Edelstein ML, et al. 2007].  
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Table 2 - Conditions for which human gene transfer trials have been approved [Edelstein ML, et al. 
2007]. 
 

Monogenic disorders Cancer 
  Cystic fibrosis GGyynnaaeeccoollooggiiccaall  
  Severe combined immunodeficiency   breast, ovary, cervix 
  Alpha-1 antitrypsin deficiency   NNeerrvvoouuss  ssyysstteemm  
  Haemophilia A and B   glioblastoma, leptomeningeal carcinomatosis, glioma, 

astrocytoma, neuroblastoma   Hunter syndrome 
  Huntington’s chorea GGaassttrrooiinntteessttiinnaall  
  Duchenne muscular dystrophy   colon, colorectal, liver metastases, post-hepatitis liver 

cancer, pancreas   Becker muscular dystrophy 
  Canavan disease GGeenniittoouurriinnaarryy  
  Chronic granulomatous disease    prostate, renal 
  Familial hypercholesterolaemia MMeellaannoommaa  
  Gaucher disease HHeeaadd  aanndd  nneecckk  
  Fanconi’s anaemia   nasopharyngeal carcinoma 
  Purine nucleoside phosphorylase deficiency LLuunngg  
  Ornithine transcarbamylase deficiency   adenocarcinoma, small cell, non small cell 
  Leukocyte adherence deficiency MMeessootthheelliioommaa  
  Gyrate atrophy HHaaeemmaattoollooggiiccaall  
  Fabry disease   leukaemia, lymphoma, multiple myeloma 
  Familial amyotrophic lateral sclerosis SSaarrccoommaa  
  Junctional epidermolysis bullosa GGeerrmm  cceellll  
  Wiskott-Aldrich syndrome  
  Lipoprotein lipase deficiency Neurological diseases 
  Late infantile neuronal ceroid lipofuscinosis Alzheimer’s disease 
  RPE65 mutation (retinal disease) Carpal tunnel syndrome 
  Mucopolysaccharidosis Cubital tunnel syndrome 
 Diabetic neuropathy 
 Epilepsy 
Cardiovascular disease Multiple sclerosis 
  Peripheral vascular disease Myasthenia gravis 
  Intermittent claudication Parkinson’s disease 
  Critical limb ischaemia Peripheral neuropathy 
  Myocardial ischaemia  
  Coronary artery stenosis Ocular diseases 
  Stable and unstable angina Age-related macular degeneration 
  Venous ulcers Diabetic macular edema 
  Vascular complications of diabetes Glaucoma 
  Pulmonary hypertension Retinitis pigmentosa 
  Heart failure Superficial corneal opacity 
  
 Other diseases 
Infectious disease Inflammatory bowel disease 
HIV/AIDS Rheumatoid arthritis 
Tetanus Chronic renal disease 
Epstein-Barr virus Fractures 
Cytomegalovirus infection Erectile disfunction 
Adenovirus infection Anaemia of end stage renal disease 
Japanese encephalitis Parotid salivary hypofunction 
Hepatitis C Type I diabetes 
Hepatitis B Detrusor overactivity 
Influenza Graft versus host disease 
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Cancer 

Thus far, most of the clinical trials in gene therapy have been aimed at the treatment of cancer 

(66.5% of all gene therapy trials). Many different cancers have been targeted throughout the years, 

including lung, gynaecological, skin, urological, neurological and gastrointestinal tumors, as well as 

haematological malignancies and paediatric tumors. A range of different strategies has been applied 

to cancer gene therapy, from inserting tumor-suppressor genes (e.g. expression of the wild-type p53 

tumor-suppressor gene and Ref), to immunotherapy (e.g. intra-tumoral injection of vectors encoding 

cytokines or major histocompatibility molecules), to gene-directed enzyme pro-drug therapy 

[Edelstein ML, et al. 2007].  

 

Cardiovascular diseases 

Gene transfer for the therapeutic modulation of cardiovascular diseases is an expanding area of 

gene therapy. During the last decade several approaches have been designed for the treatment of 

hyperlipidemias, post-angioplasty restenosis, hypertension, and heart failure, and for protection of 

vascular by-pass grafts and promotion of therapeutic angiogenesis. Adenoviruses and adeno-

associated viruses (AAV) are currently the most efficient vectors for delivering therapeutic genes into 

the cardiovascular system. Gene transfer using local gene delivery techniques have been shown to 

be superior to less-targeted intra-arterial or intra-venous applications. To date, no gene therapy 

drugs have been approved for clinical use in cardiovascular applications. In preclinical studies of 

therapeutic angiogenesis, various growth factors such as VEGFs snd FGFs, have shown positive 

results; but also factors such as PDGF and HIF have been studied [Edelstein ML, et al. 2007]. Gene 

therapy also appears to have potential clinical applications in improving the patency of vascular 

grafts and in treating heart failure. The development of technologies that can ensure long-term, 

targeted, and regulated gene transfer, and a careful selection of target patient populations, will be 

very important for the progress of cardiovascular gene therapy in clinical applications [Rissanen TT 

and Ylä-Herttuala S 2007]. 

 

Inherited monogenic diseases  

The ultimate aim in treating monogenic diseases by gene therapy is the correction of the disorder by 

the stable transfer of the functioning gene into dividing cells (stem cells) to ensure the permanence 

of the correction. Cystic fibrosis (CF) is with no doubt the inherited monogenic disease that arouses 

more interest in gene therapy: one-third of the 109 trials for inherited monogenic disorders targeted 

this disease [Edelstein et al. 2007]. CF, is the most common inherited genetic disease in Europe and 
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the USA and the average life expectancy of patients with CF is less than 40 years, hence the interest 

in this disease as a prime target for gene therapy. The second most common group of inherited 

diseases targeted has been the severe combined immunodeficiency syndromes, representing about 

20% of the trials for monogenic diseases. This is a group of diseases in which gene therapy has 

shown lasting and clinically meaningful therapeutic benefit [Cavazzana-Calvo M, et al. 2000; Gaspar 

HB, et al. 2004; Ginn SL, et al. 2005; Gaspar HB, et al. 2006]. Another monogenic 

immunodeficiency, chronic granulomatous disease, has also been the target of a successful trial [Ott 

MG, et al. 2006]. Around 20 other monogenic diseases have been treated (see Table 1) and most of 

the trials have shown transient expression of the gene transferred, with detectable protein in some 

cases, but as yet no obvious therapeutic benefit.  

 

Neurological disorders 

Neurological disorders such as Parkinson's disease, Huntington's disease, amyotrophic lateral 

sclerosis, Alzheimer's disease, multiple sclerosis, stroke, and spinal cord injury are caused by a loss 

of neurons and glial cells in the brain or spinal cord. Cell replacement therapy and gene transfer to 

the diseased or injured brain have provided the basis for the development of potentially powerful new 

therapeutic strategies for a broad spectrum of human neurological diseases [Valori CF, et al. 2008; 

Kim SU and de Vellis J 2009]. To date, there are 20 registered phase I and II trials aimed at a variety 

of neurological diseases [Edelstein ML, et al. 2007].  

 

Ocular disorders  

Ocular gene therapy can be used for replacement of mutant genes or it can be used to achieve 

sustained local delivery of therapeutic proteins in the eye. The advantage of gene replacement is 

that it has the potential of correcting the primary defect and hence eliminates the source of a 

particular retinal disease [Campochiaro PA. 2002; 2007]. There are many potential applications of 

gene delivery in the eye including expression of antiangiogenic proteins in eyes of patients with 

neovascular diseases, expression of survival factors or anti-apoptotic proteins in eyes of patients 

with retinal degenerations, and expression of components of the antioxidant defense system in eyes 

of patients with diseases caused or exacerbated by oxidative stress [Nguyen QD, et al. CLEAR-AMD 

1 Study Group. 2006; Campochiaro PA, et al. 2006]. Ocular pathologies have been tackled with 12 

trials to date focused on conditions including retinitis pigmentosa, glaucoma and age-related macular 

degeneration [Edelstein ML, et al. 2007].  
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Pulmonary Gene Therapy 

Gene therapy is currently being evaluated for a wide range of acute and chronic lung diseases.  CF, 

SP-B deficiency and α1-antitrypsin deficiency are diseases that are associated with single gene 

defects and represent the obvious rationale for gene therapy of replacing the defective or absent 

gene. Chronic acquired respiratory disorders such as chronic obstructive pulmonary disease 

(COPD), asthma, or interstitial lung diseases are considered to be the product of a variety of 

endogenous (polygenic) and exogenous influences, and less obviously are associated with gene 

replacement therapy. These chronic inflammatory conditions likely arise from an imbalance between 

destructive and protective mechanisms, such that transient gene therapy, or gene therapeutics, can 

be useful to reconstitute a homeostatic balance by the short-term overexpression of protective genes 

or the suppression of damaging genes. Gene therapy is also considered a potential therapeutic 

approach for correction of pathological lung conditions, such as pulmonary hypertension. Kamezaki 

and co-workers demonstrated that extracellular super-oxide dismutase ameliorated pulmonary 

hypertension induced in the monocrotaline rat model [Kamezaki F, et al. 2008]. Recent advances in 

cancer biology have identified a number of tumor-associated antigens, and these can be targeted by 

cell-based and gene-based therapeutic vaccines for immunotherapy interventions in patients with 

lung cancer [Kolb M, et al. 2006]. To date, at least 90 gene therapy trials for lung conditions have 

been undertaken [Edelstein ML, et al. 2007] 

Cystic fibrosis. Since the discovery of the cystic fibrosis transmembrane receptor (CFTR) gene in 

1987, CF has been considered the major lung disease for intervention through gene therapy. 

However, 16 years after the first clinical trial for CF [Zabner J, et al. 1993] there is still no satisfactory 

treatment options. Several reasons can be considered for this failure. The ideal vector system has 

not yet been developed. Strategies to treat CF have employed vectors derived from adenovirus, AAV 

and oncoretroviruses [Engelhardt JF, et al. 1992; Zsengellér ZK, et al. 1999], but the utility of these 

vectors is limited by either host immune response, restricted packaging capacity, or low transduction 

efficiency, respectively. Even if adenoviral vectors, AAV vectors, and liposomes have been shown to 

transfer sufficient amounts of gene to the lung, but expression is always transient and the levels of 

expression are never high enough or lasting [Middleton PG and Alton EW 1998; Boucher RC 1999; 

Griesenbach U, et al. 2004]. The problems associated with repeat administration are yet unsolved. 

Harvey et al. delivered three doses of Ad-CFTR to the lungs of CF patients 3 months apart and 

demonstrated that after the third administration vector specific CFTR mRNA was no longer 

detectable [Harvey BG, et al. 1999]. Also, a phase 2B trial investigating the repeat administration of 

AAV-CFTR did not show significant improvement in lung function over time [Moss RB, et al. 2007]. 
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The answers to the questions of which pulmonary region and which cells are the best targets for CF 

gene therapy still must be elucidated. Clinical observations have shown that CF is initially localized in 

small airways, which are likely not within reach by the aerosols currently in use [Boucher RC 1999]. 

Mucous plugs and local infections may be real obstacles for gene transfer. The main target tissue for 

gene transfer is the superficial epithelium, which exhibits all ion transport functions of CFTR and is 

best accessible via the topical administration of vectors. However, the constitutively highest level of 

CFTR gene expression is localized in bronchial submucosal gland cells. These glands may be better 

accessed by the vasculature and systemic vector application [Boucher RC 1999; Griesenbach U, et 

al. 2004]. Another attempt to deliver gene vectors to these cells is to use adjuncts that can open tight 

junctions between surface epithelial cells (eg, sodium caprate) [Griesenbach U, et al. 2004]. The 

replacement of the CFTR gene in the airways alone will probably not compensate for all functional 

defects in CF patients. Data from the past few years have also suggested an impaired ability to clear 

bacterial airway infections, partly due to malfunctioning antimicrobial peptides (e.g., human -

defensin 1). Gene transfer could be used to deliver cytokines to the lung as an adjuvant therapy and 

thereby support the host response against bacteria. In pneumonia models, the survival of animals 

was improved by transient transgene expression of interleukin (IL)-12 and interferon (IFN)-, 

resulting in enhanced clearance of Klebsiella pneumoniae and Pseudomonas aeruginosa [Standiford 

TJ, et al.  2000]. This fact has important clinical relevance because of the increasing antibiotic 

resistance of P aeruginosa, which persistently colonizes airways in almost all CF patients.  

1-Antitrypsin deficiency is a second pulmonary disease with an underlying single gene defect and a 

target for gene therapy. It is still unclear whether the replacement of 1-antitrypsin in patients with 

emphysema affects the course of the disease [Abboud RT, et al. 2001]. Most attempts at gene 

replacement have seen unsuccessful because of the short-term expression and the high 

concentrations of protein required for therapeutic efficacy [Song S, et al. 1998]. However, using a 

nonhuman primate serotype of AAV, high levels of the persistent expression of 1-antitrypsin were 

seen in mice, even if there was preexisting immunity to human AAV [De BP, et al. 2006].  

Surfactant protein B deficiency is a rare disease caused by mutation in the Sp-B gene [Nogee LM, et 

al. 1994; Hamvas A, et al. 1995]. Because SP-B is normally made by type II epithelial cells in the 

lung, the onset of pulmonary function at birth causes affected newborns to develop progressive 

respiratory failure refractory to current therapeutic modalities. The SP-B gene mutation results in 

absent SP-B protein as well as perturbation of phospholipid, SP-A and C production in type II 

alveolar epithelial cells [Whitsett JA, et al. 1995]. Distal airspaces accumulate proteinaceous, 
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eosinophilic material, which is pathognomonic for congenital pulmonary alveolar proteinosis. 

Currently, the only curative therapeutic option for survival is lung transplantation. Prenatal gene 

therapy for SP-B deficiency could potentially prevent the fatal consequences of surfactant 

dysfunction. Prenatal diagnosis is currently possible. Although late gestational approaches have 

been successfully used [Hamvas A, et al. 1997; Pryhuber GS, et al. 1991], early gestational 

diagnosis via polymerase chain reaction-based techniques should facilitate prenatal treatment. Prior 

to birth the SP-B deficient lung is thought to develop normally, and SP-B-deficient mice show normal 

morphological lung development [Clark JC, et al. 1995]. The vector bearing SP-B should be 

delivered into the fetal lung with widespread transduction of type II cell precursors. The ultimate goal 

of in utero SP-B gene therapy is to correct the functional deficit even if in a temporary and/or partial 

way. This would prevent the onset of disease at birth and act as a bridge for lung transplantation. 

Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia 

dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract 

infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are 

progressively destroyed, leading to respiratory insufficiency. There is no treatment as of today that 

could restore normal ciliary beating. Recessive mutations in Dynein Axonemal Intermediate chain 

type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Chinn et al. 

have recently published a report showing that it is feasible to transfer DNAI1 gene ex vivo to human 

airway epithelial cells with a lentiviral vector based on Simian Immunodeficiency Virus (SIV) 

pseudotyped with Vesicular Stomatitis Virus Glycoprotein (VSVG). More important, defective cells 

that had immotile cilia due to compound heterozygous mutations in the DNAI1 gene recovered ciliary 

beating after treatment with a lentivirus containing a normal DNAI1 gene. This was the first report on 

gene therapy focusing in Primary Ciliary Dyskinesia [Chhin B, et al. 2009]. 

COPD and Asthma Although there is no directed research in gene therapy for COPD, several 

possibilities are imaginable. Currently, the most accepted theory for the development of COPD is 

protease/ antiprotease imbalance similar to emphysema due to hereditary 1-antitrypsin deficiency. 

Some have shown that the pathogenesis of COPD involves not only elastases but also collagenases 

and gelatinases studies [Segura-Valdez L, et al. 2000]. Thus, the reestablishment of the balance by 

overexpressing antiprotease genes is theoretically beneficial, and the levels of antiproteases 

required should be lower, as in patients with 1-antitrypsin deficiency. Experimental models have 

suggested a role for �1-antitrypsin and secretory leukoprotease inhibitor in the treatment of this 

disorder [Tomee JF, et al. 1998; Rogers DF and Laurent GJ 1998]. Neutrophils are a major source of 
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proteases and reactive oxygen, and, because of their overabundance in COPD, gene therapy could 

also target adhesion molecules for neutrophils to reduce the influx of inflammatory cells into the lung 

parenchyma. The benchmark for all future treatments of asthma are inhaled corticosteroids and 

bronchodilators, which are an established therapy for the majority of asthmatic patients [Alton EW, et 

al. 1999]. Transient gene therapy could bring some benefit for asthmatic patients with severe 

disease who require high doses of systemic corticosteroids and for patients with corticosteroid-

resistant asthma. Another potential area for gene therapy might be in patients with steroid-resistant 

asthma. A study [Mathieu M, et al. 1999] has shown that the transfer of the glucocorticoid receptor 

gene in vitro mediated the inhibition of NF-B activities even in absence of exgenous corticosteroids, 

and the authors suggested  hat this approach could restore corticosteroid sensitivity  in patients.  

Lung Cancer This is an area of development with gene based vaccines and immunotherapy of lung 

cancers. Here, access to the tumor is limited, and the intent is to stimulate the host immune 

response against unknown antigenic epitopes expressed by cancer cells in an effort to control cell 

growth and metastases. A nonviral vector expressing IL-12 was administered through intranasal 

instillation in mice to inhibit lung metastatic growth of osteosarcoma [Duan X, et al. 2006], while a 

granulocyte-macrophage colony-stimulating factor, gene-modified, autologous tumor cell vaccine 

elicited vaccine-induced immune activation in patients with advanced-stage non-small cell lung 

cancer [Nemunaitis J, et al. 2006]. Adenoviral vectors have been used to deliver intrapulmonary IFN-

 to mice bearing an orthotopic graft of bronchogenic adenocarcinoma of the lung [Wilderman MJ, et 

al. 2005] and to deliver suicide genes (herpes simplex virus thymidine kinase) to the pleural space in 

patients with malignant pleural mesothelioma, eliciting some surprising clinical responses [Sterman 

DH, et al. 2005]. These are examples of developments that will increase as the efficacy and 

specificity of gene transfer to the lung increases [Rüttinger D, et al. 2006]. 
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Gene Therapy Methods 

In gene therapy studies have to consider many different issues, ranging from the medical aspects of 

a specific disease (type of genetic modification, cellular target), to the basic laboratory work 

concerning the appropriate gene construct design (type of vector, size of transgene, type of 

promoter, reporter and, eventually, type of envelope) and delivery systems (administration route, 

timing, optimal titer) [Lazo PA and Yunta M 2000]. Each of these aspects will be discussed further on 

with special focus on pulmonary gene transfer. 

Types of vectors 

 

Several viral and non-viral gene transfer agents have been evaluated for a range of conditions in 

animal models and in the clinic (Figure 4). Both physical and immunological barriers exist, and these 

must be tackled. Although encouraging progress has been made, particularly for lung cancer and 

CF, all these studies are plagued by low levels of gene transfer. Given the diversity of disease 

targets that are potentially amenable to gene transfer, it has become clear that there can be no 

single vector that is suitable for all applications. It is unlikely that a single vector would be optimal for 

all lung gene therapy applications. Perhaps the only characteristics that are required by all vectors 

are (a) the abilities to be reproducibly and stably propagated and purified to high titers, (b) to mediate 

targeted delivery to the tissue or organ of interest without widespread dissemination, and (c) to 

mediate gene delivery and transgene expression without inducing harmful side effects [Thomas CE, 

et al. 2003]. Ultimately, all disease targets will benefit from an improved understanding of the biology 

of vector delivery, uptake and expression. Improvements in vector design will gather rewards in the 

clinic [Gill DR, et al. 2004].  
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Figure 4 – Vectors used in gene therapy clinical targets [Edelstein ML, et al. 2007].  

 

Viral vectors  

 

Viruses are highly evolved biological machines that efficiently gain access to host cells and exploit 

the cellular machinery to facilitate their replication. Ideal virus-based vectors for most gene-therapy 

applications harness the viral infection pathway but avoid the subsequent expression of viral genes 

that leads to replication and toxicity. This is achieved by deleting all, or some, of the coding regions 

from the viral genome, but leaving intact those sequences (usually the terminal repeat sequences) 

that are required in cis for functions such as packaging the vector genome into the virus capsid or 

the integration of vector DNA into the host chromatin. The expression cassette of choice is then 

cloned into the viral backbone in place of those sequences that were deleted. The deleted genes 

encoding proteins that are involved in replication or capsid/envelope proteins are included in a 

separate packaging construct to provide helper functions in trans. The packaging cells into which the 

vector genome and packaging construct are co-transfected then produce the recombinant vector 

particles [Thomas CE, et al. 2003]. After production in a packaging cell line, the recombinant vector 

particles are purified and quantified. Purification strategies have traditionally relied on the separation 

of vector particles from cellular components by density gradient centrifugation (usually a caesium 

chloride gradient); however, this process is laborious, difficult to scale up for industrial purposes and 

can sometimes damage the vector particles and reduce the infectious titre of the vector stock. 

Advances in column-chromatographic methods for the purification of several classes of vector have 

alleviated these concerns [Clark KR, et al. 1999; Green AP, et al. 2002] and most of the main 

classes of vector that are described here are now able to be grown and purified to the high titers 
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required for administration to humans. The number of different viruses that are under development 

as gene-therapy vectors is steadily increasing, but there are, at present, five main classes of 

clinically applicable viral vector that are derived from adenoviruses, AAVs, oncoretroviruses, 

lentiviruses, parainfluenza viruses. 

 

Adenoviral vectors 

Adenovirus has been one of the most extensively studied recombinant viral systems for gene 

transfer to the lung. Adenovirus has a large, complex linear 36-kb DNA genome and is attractive for 

gene therapy to the lung because it efficiently transduces dividing and non-dividing cells of the 

airway [Kovesdi I, et al. 1997; Cao H, et al. 2004]. Their viral coat proteins are organized in an 

icosohedral, non-enveloped capsid. The adenoviral genes are divided into early and late classes, 

based on the time of their expression during the viral lifecycle. Among the DNA regions for early 

RNA transcripts, E1a and E1b encode proteins for trans-activating other viral genes or regulating the 

host cell cycle, E2 for viral DNA replication, E3 for modulating host immune responses, and E4 for 

inhibiting host cell apoptosis [Parks RJ 2000]. Because the vector genomes persist as episome and 

do not integrate, repetitive dosing would be required in any gene therapy protocol for inherited 

genetic deficiencies. Numerous regulator and structural viral genes have made this virus one of the 

more complex vector systems to engineer in a fashion that does not invoke a cellular immune 

response.  

The first generation adenoviral vectors (FGAd) have been the most extensively used vector for 

pulmonary gene transfer, namely with the goal of treating CF. FGAd vectors are characterized by E1 

viral gene deletion that inhibit, but do not completely prevent, viral gene expression and replication. 

Transgene sequences are normally inserted into the E1-deleted region but can also be inserted into 

the E3 region. In most FGAd, the E3 region has also been deleted to make room for the insertion of 

a transgene cassette. Although once thought to be an ideal vector for CF gene therapy, more than a 

decade of research has revealed a number of serious shortcomings and the enthusiasm for FGAd as 

diminished for several reasons. First, pulmonary delivery of FGAd in small animals, large animals, 

and humans is inefficient [Grubb BR, et al. 1994; Harvey BG, et al. 1999; Zuckerman JB, et al. 1999; 

Joseph PM, et al. 2001; Perricone MA, et al. 2001]. It was discovered that the cellular receptor for 

adenovirus, the Coxsackie Adenovirus Receptor (CAR), resided on the basolateral surface of the 

airway epithelial cells and that the tight junctions prevented vector–receptor interactions required for 

transduction [Pickles RJ, et al. 2000]. Even if previous studies in mice and cotton rats have 
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demonstrated efficient gene transfer to the airway for both CFTR [Rosenfeld MA, et al. 1992; Yang 

Y, et al. 1994] and -1 antitrypsin gene [Rosenfeld MA, et al. 1991], comparison with human models 

has demonstrated that transduction from the apical surface of human airway cells is much less 

efficient than that found in rodents [Engelhardt JF, et al. 1993]. In part, this difference is thought to be 

the result of species-specific differences in the abundance of CAR [Bergelson JM, et al. 1997], on 

the apical surface of airway cells [Walters RW, et al. 1999]. �V�5 integrin, an identified co-receptor for 

adenovirus type-2, is also localized to the basolateral membrane of human airway epithelium and 

may be responsible for the low efficiency of recombinant adenovirus infection in polarized airway 

epithelia [Goldman MJ and Wilson JM. 1995; Pickles RJ, et al. 1998]. A significant finding was that 

transient disruption of the tight junctions could significantly increase the efficiency of transduction 

thus dramatically decreasing the vector dose required to achieve therapeutic levels of transduction. 

Various strategies have been proposed to improve adenoviral entry into airway epithelia including 

calcium phosphate coprecipitates [Lee JH, et al. 1999], EGTA [Chu Q, et al. 2001], EDTA [Wang G, 

et al. 2000], polycations [Kaplan JM, et al. 1998], polidocanol [Parsons DW, et al. 1998], sodium 

caprate [Johnson LG, et al. 2003], L-a-lysophosphatidylcholine [Koehler DR, et al. 2005], and other 

agents. A controversial issue is whether such tight junction openers can be used clinically in 

diseases like CF, given the heavy bacterial colonization in the lung and the attendant risk of systemic 

invasion. The second main reason that restrained the enthusiasm regarding adenoviral vectors is 

that gene expression from first-generation vectors is also accompanied by an intense cellular 

immune response to virally expressed genes [Kovesdi I, et al. 1997]. This has been attributed to 

expression of the viral genes present in the vector backbone of FGAds, which is directly cytotoxic 

and also provokes an adaptive cellular immune response against the transduced cells consequently 

resulting in transient transgene expression and longterm, chronic toxicity (through major 

histocompatibility complex class I-restricted antigen presentation and subsequent activation of CD4C 

and CD8C cytotoxic T-lymphocytes) [Yang Y, et al. 1995a; Dai Y, et al. 1995; Morral N, et al. 1997]. 

Second-generation vectors have been generated in an attempt to reduce this cellular immune 

response [Yeh P and Perricaudet M 1997; O’Neal WK, et al. 1998]. In such vectors, deletions or 

temperature-sensitive mutants of E2a, E2b, and/or E4 have been tested with some success 

[Engelhardt JF, et al. 1994; Lusky M, et al. 1998]. Complex complementing cell lines that express E2 

and/or E4 are needed to propagate second-generation viruses [Gorziglia MI, et al. 1999]. Some of 

these gene products require regulated expression because they are toxic to cells, thus making large-

scale clinical production of virus challenging. These second-generation vector systems have 

improved the longevity of transgene expression by reducing cellular immune responses to the vector, 

but they have not completely solved associated immunologic problems [Engelhardt JF, et al. 1994]. 
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Third-generation adenoviral vector systems, also called gutted or helper-dependent adenoviral 

vectors (HDAd), are devoid of all viral genes and therefore able to mediate long-term, high-level 

transgene expression in the absence of chronic toxicity [Parks RJ 2000; Zhou H, et al. 2002; Palmer 

DJ and Ng P 2005].  In addition, because the HDAd genome exists episomally in transduced cells, 

the risks of germline transmission and insertional mutagenesis leading to oncogenic transformation 

are negligible [Hillgenberg M, et al. 2001]. Moreover, the deletion of the viral sequences permits a 

large cloning capacity of ~37 kb allowing for the delivery of whole-genomic loci, multiple transgenes, 

and large cis-acting elements to enhance, prolong, and regulate transgene expression [Flotte TR, et 

al. 2007]. The major hurdles for this vector system are production and generation of replication-

competent adenovirus during passaging and propagation. Several strategies using CRE/Lox [Parks 

RJ, et al. 1996] or FLP/frt [Ng P, et al. 2001] helper adenoviral vector systems have aided in 

increasing the quantity and purity of vector preparation [Palmer D and Ng P 2003]. Although helper-

dependent adenoviral vectors are devoid of all viral genes and, hence, lack cellular immunity to 

foreign viral antigens, cellular immunity for foreign transgenes remains a concern. Additionally, 

adenoviral vectors invoke a substantial humoral immune response that inhibits repeat administration 

to the lung [Yang Y, et al. 1995a]. Several strategies to reduce both humoral and cellular responses 

have been tested in animal models and include the use of immunomodulatory agents or antibodies 

[Yang Y, et al. 1995a; 1995b; 1996]. However, the death of a patient undergoing liver-directed gene 

therapy for ornithine transcarbamylase deficiency with second-generation adenoviral vectors has 

suggested that the immunology of adenovirus in humans may be poorly understood [Raper SE, et al. 

2002]. For example, a recent report has described complement activation with adenoviral particles in 

the presence of pre-existing antibodies [Cichon G, et al. 2001]. Such mechanisms may play a role in 

the acute toxicity seen in clinical trials, and further investigation into acute innate immune response 

to viral capsid proteins is needed.  

Several in vitro and in vivo studies have assessed the safety and efficacy of HDAd in pulmonary 

gene transfer, with particular interest in CF models [Fisher KJ, et al. 1996; Koehler DR, et al. 2003; 

Toietta G, et al. 2003].  Koehler et al. used HDAd-K18-CFTR bearing the human CFTR cDNA 

expressed from the K18 control elements [Koehler DR, et al. 2003]. This vector was found to express 

properly localized CFTR in cultured cells and in the apical airway epithelia of mice after intranasal 

administration (preceded by EGTA pretreatment). These results indicate that HDAd can express 

properly localized CFTR in the appropriate target cell types for CF gene therapy in vivo as well as 

suggest that this vector could benefit CF patients by reducing susceptibility to opportunistic 

pathogens. Despite some encouraging results, several outstanding challenges remained in the 

transition to larger animals models: production of the large quantities of HDAd, the need for a 
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pretreatment with a tight-juntion disruptor (e.g. EGTA), increasing procedure time and compromising 

transduction efficiency, optimization of vector delivery (intranasal administration not efficient in large 

animal models).  

 

 

Adeno-associated viral vectors 

AAVs are members of the Dependovirus genus of the Parvovirus Family. AAV consists of a very 

compact 20-nm non-enveloped icosahedral capsid surrounding a 4.7-kb single-stranded DNA 

molecule with inverted terminal repeats (ITR) of 145 nucleotides at either end. Between these ITR 

are the two viral genes, rep, which encodes functions required for replication and gene regulation, 

and cap, which encodes the capsid proteins, known as VP1, VP2, and VP3 [Berns KI 1996; Flotte 

TR and Berns KI 2005]. Members of this genus require helper virus coinfection for active replication 

in cell culture or in non-human primate experimental infections, and in the absence of a helper virus 

(such as an adenovirus or herpes virus) AAV will establish stable latency within cells without a 

significant risk of pathological effects [Berns KI, et al. 1975; Cheung AK, et al. 1980]. Primate AAV 

exists in well over 100 distinct variants, some defined as serotypes and others as genomovars, being 

AAV serotype 2 the most studied serotype. In addition to primate AAVs, a variety of other AAVs have 

been identified, including avian, canine, and bovine strains. Interestingly, many of these strains 

possess divergent tissue tropism, while seemingly retaining the basic properties of stability and non-

pathogenicity [Flotte TR, et al.  2007]. AAV derived vectors aroused as promising tool in gene 

therapy studies due to their genome simplicity, good safety profile, broad tissue tropism, long 

duration of expression, and suggestion of their superior escape from immune system surveillance 

compared with other viruses [Griesenbah U, et al. 2004]. Most recombinant AAV vectors have rep 

and cap deleted. Cells that express rep and cap and helper virus genes will package recombinant 

AAV genomes if they are flanked by ITRs and are 5 kb or less in length. Packaging is generally 

efficient with the capsid of any AAV serotype, so long as the ITRs and the rep gene are from the 

same serotype (usually both are type 2) [Hermonat PL and Muzyczka N 1984; Tratschin JD, et al. 

1985]. Progress in the development of recombinant AAV as a gene therapy vector has been 

developed to solve several long-standing hurdles in the use of this vector system: viral production 

and purification, limited packaging capacity (< 5kb). Knowledge of the molecular mechanisms by 

which AAV vector converts its single-stranded DNA genome into large concatamers has also led to 

the development of novel techniques, including cis-activation, trans-splicing and homologous 

recombination, to expand the packaging capacity of this vector system [Yan Z, et al. 2000; Sun L, et 

al. 2000; Nakai H, et al. 2000; Duan D et al. 2001; Halbert CL, et al. 2002]. The basic principle of 
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these techniques is to split the therapeutic cDNA and required promoter elements, and package 

them into two viruses, which when transfecting the same cell may recombine and generate a full-

length therapeutic gene. 

The lung was one of the first sites for in vivo transduction with first-generation AAV2 vectors. As with 

many other sites of delivery, initial transduction efficiency was relatively low, but gene transfer was 

noted to be stable and safe [Flotte TR, et al. 1992; Wagner JA, et al. 1998]. Early studies with lung 

cells in culture and in vivo also provided the initial evidence that rep-deleted recombinant AAV 

persists as a stable episome, rather than as an integrated provirus [Kearns WG, et al. 1996]. Most of 

the AAV serotypes have been tested for lung gene transfer. Although subtle differences in the 

efficiencies are found between various laboratories, the general consensus is that transduction 

efficiencies to airway epithelia follow this general order AAV-5 > AAV-6/AAV1 > AAV-2 > AAV-3 > 

AAV-4 vectors [Walters RW, et al. 2000; Duan D, et al. 2000; Auricchio A, et al. 2002; Halbert CL, et 

al. 2000]. AAV2 with capsids from serotypes 1, 5, 6 and 9 (AAV2 genome plus AAV1, 5, 6 or 9 

capsids) have been evaluated for lung gene therapy and appear to be more efficient in transducing 

airway epithelial cells than AAV2 [Sirninger J, et al. 2004; Virella-Lowell I, et al. 2005].  

Several lung-specific limitations for the use of AAV derived vectors in the pulmonary system are 

easily pointed out: (1) small packaging capacity, (2) paucity of AAV receptors in the apical surface of 

airway epithelial cells, (3) rapid turnover of airway epithelium implies limited persistence of the 

vector. The small packaging capacity of AAV precludes the use of this vector for transfer of larger 

genes as CFTR. Although there is enough space for the CFTR cDNA (over 4.4kb), it is not possible 

to include potent promoter/enhancer elements. Several strategies were and are being developed, 

including design of compact promoter elements [Haberman RP, et al.  2000], trans-splicing and 

homologous recombination [Duan D, et al. 2001; Halbert CL, et al. 2002], truncation of the 

therapeutic transgene [Ostedgaard LS, et al. 2005; Mueller C, et al. 2007]. Several primary 

attachment receptors and co-receptors have been identified for AAV: heparan sulfate proteoglycan, 

the primary attachment receptor for AAV-2, �Vß5-integrin and human FGFR1, co-receptors critical for 

AAV-2 entry [Summerford C and Samulski RJ 1998; Summerford C, et al. 1999; Qing K, et al. 1999]. 

Despite the identification of these receptors and co-receptors, current studies in the field reveal that 

airway epithelial cells present few of these in their apical surface. Detailed studies in polarized 

epithelial cells have clearly indicated that apical entry of the vector is possible through an alternate 

import pathway [Duan D, et al. 2000; Sanlioglu S, et al. 2001] and treatment of airway epithelium 

with proteasome inhibitors facilitates nuclear transport of the vector. This combined vector/small 

molecule approach might be a feasible alternative to enhance AAV mediated gene transfer to the 

lung [Yan Z, et al. 2004]. Since the airway epithelium is turning over once over several months in 
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normal individuals and perhaps four times faster in CF patients, it is unclear how any episomal 

version of recombinant AAV would be able to persist for more than a few months. Studies attempting 

to improve vector persistence focus on the development of vectors capable of a greater degree of 

integration, whether it is Rep-mediated site-specific integration or some less-specific form of 

integration that might occur by blocking host pathways involved in the formation of AAV episomes 

[Flotte TR 2007]. Besides, AAV-mediated lung transduction efficiency may be improved by astute 

selection of the promoter/enhancer elements. Halbert et al. demonstrated that the use of an AAV 

vector with a hybrid promoter consisting of a CMV enhancer, a -actin promoter and splice donor, 

and a -globin splice acceptor, was most effective and lead to more than 90% transduction efficiency 

in mouse airways [Halbert SL, et al. 2007].  Liu et al. showed that rAAV was capable of transducing 

airway epithelial progenitors that had the capacity to clonally expand, both in culture and in vivo 

following lung injury. These studies suggest that recombinant AAV may be a useful vector for gene 

targeting of airway stem/progenitor cells [Liu X, et al. 2009]. 

 

 

Oncoretroviral vectors 

Retroviruses are lipid-enveloped particles comprising a homodimer of linear, positive-sense, single-

stranded RNA genomes of 7 to 11 kb. Following entry into target cells, the RNA genome is retro-

transcribed into linear doublestranded DNA and integrated into the cell chromatin. This family of 

viruses includes several varieties being exploited for gene therapy: the mammalian and avian C-type 

retroviruses (hereafter also referred to as oncoretroviruses), lentiviruses (immunodeficiency viruses) 

and spumaviruses. They tend to establish chronic infection that is usually well tolerated by the host 

but may also cause latent diseases ranging from malignancy to immunodeficiency [Coffin J, et al. 

2000]. All retroviral genomes have two long terminal repeat (LTR) sequences at their ends. LTR and 

neighboring sequences act in cis during viral gene expression, and packaging, retro-transcription 

and integration of the genome. The LTR sequences frame the tandem gag, pol and env genes 

encoding the structural proteins, nucleic-acid polymerases/integrases and surface glycoprotein, 

respectively. The viral envelope glycoprotein dictates the host range of retroviral particles through its 

interaction with receptors on target cells. Maloney murine leukemia virus (MLV)-based vectors were 

the first type of recombinant retrovirus used for gene delivery. Other examples of vectors derived 

from oncoretroviruses are Spleen Necrosis Virus, Rous Sarcoma Virus and Avian Leukosis Virus -

based vectors [Hu WS and Pathak VK 2000]. Recombinant oncoretrovirus-based genomes are 

composed of two LTR at either end of the genome, and a packing sequence (). The transgene 
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cassettes (up to 8 kb) are inserted in place of the three viral genes gag, pol and env. A useful 

property of retroviral vectors is the ability to integrate efficiently into the chromatin of target cells. 

Although integration does not guarantee stable expression of the transduced gene, it is an effective 

way to maintain the genetic information in a self-renewing tissue and in the clonal outgrowth of a 

stem cell. This is advantageous for gene transfer applications requiring sustained expression in 

proliferating targets, such as hematopoietic stem and progenitor cells. However, integration can have 

important effects on the engraftment, proliferation and survival of transduced cells because the 

integrated proviral DNA can either activate or disrupt host cell genes, resulting in immortalization 

[Calmels B, et al. 2005], clonal dominance [Fehse B and Roeder I 2007], and in worst case scenario, 

malignant transformation [Hacein-Bey-Abina S, et al. 2003; Seggewiss R, et al. 2006]. The initial 

assumption was that activation of proto-oncogenes via replication-incompetent retrovirus vectors 

was extremely unlikely when vectors integrated only once or a small number of times per target cell. 

This assumption was refuted after four of the ten patients enrolled in the severe combined 

immunodeficiency (SCID)-X1 gene therapy trial [Cavazzana-Calvo M, et al. 2000], developed clonal 

vector–containing T-cell lymphoproliferations resembling de novo acute T-cell leukemias [Hacein-

Bey-Abina S, et al. 2003]. Subsequently, several large scale surveys of murine retrovirus and 

integration profiles were carried out in cell lines, and uncovered preferences for integration within or 

near expressed genes, indicating that the risk of adjacent proto-oncogene activation might be higher 

than previously estimated based on a random integration model [Baum C, et al. 2003; Wu X, et al. 

2003; Métais J-Y and Dunbar CE 2008]. Disruption of the nuclear membrane is required for the pre-

integration complex to gain access to the chromatin, and productive transduction by retroviral vectors 

is strictly dependent on target cell mitosis shortly after entry. Since retroviral vectors can only 

transduce diving cells and because only a fraction of cells pass through mitosis at any given time, 

this severely limits the applications of retroviral vectors in gene therapy [Roe T, et al. 1993; Miller 

DG, et al. 1990; Halene S and Kohn DB 2000]. Pseudotyping consist in the substitution of one viral 

Env by another from a different virus.  Such an approach can expand the host-range of retroviral 

vectors by incorporating sequences from unrelated viruses. For example, vectors pseudotyped with 

the VSVG  can infect most cells, are particularly stable, and can be concentrated to high titers 

(excedding 1 × 1010t.u./ml ). 

The first clinical trial of human gene therapy used a MLV-based vector, to correct a genetic disorder 

known as adenosine deaminase deficiency [Blaese RM, et al. 1995.]. Also, one of the first successful 

trials of gene therapy used γ-retroviral vectors and demonstrated full correction of SCID-X1 

phenotype in 10 of 11 patients [Cavazzana-Calvo M, et al. 2000]. Unfortunatly, beginning 3 years 

after reinfusion of transduced cells, four of the ten patients developed acute T-cell leukemias, related 
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with proto-oncogene activation, has mentioned above [Hacein-Bey-Abina S, et al. 2003]. Nowadays, 

insertional mutagenesis continues to be a major concern in hematopoietic stem cell gene therapy. 

Non-conventional gene transfer vectors, as Avian Sarcoma Leukosis Viruses (ASLV), with more 

favorable integration features, are being developed and optimized [Hu J, et al. 2008]. 

The application of this vector system for in vivo gene delivery in the lung has been hindered by the 

inability of this virus to infect non-dividing cells of the airway epithelium. Nonetheless, MLV-based 

vectors have been proposed for application of in utero gene transfer, where epithelial proliferation is 

high [Duan D, et al. 1998a].  

 

 

Lentiviral vectors 

Lentiviruses have a more complex genome than other retroviridae: in addition to the gag, pol and 

env genes, they encode two regulatory genes, tat and rev, essential for expression of the genome, 

and a variable set of accessory genes. Unlike retroviruses, they rely on active transport of the pre-

integration complex through the nucleopore by the nuclear import machinery of the target cell 

[Bukrinsky MI and Haffar OK 1999]. The lentiviral strategy for nuclear targeting enables infection of 

non-dividing cells, an attractive attribute for a gene therapy vector. Also, the lentiviral integration 

profile shows a reduced propensity to hit the promoter-proximal window or regulatory motifs such as 

DNAse 1 hypersensitive sites when compared to vectors based on the gammaretrovirus MLV 

[Schröder AR, et al. 2002; Mitchell RS, et al. 2004; Derse D, et al. 2007]. Nevertheless, lentiviral 

insertion pattern with its profound preference for active genes should not represent a reliable 

safeguard against the potential risk of insertional mutagenesis [Schambach A and Baum C 2008]. 

Replication-defective vectors were originally derived from human immunodeficiency virus (HIV)-1 to 

transduce lymphocytes, but it was a VSVG pseudotyped lentiviral vector with expanded tropism 

[Naldini L, et al. 1996] that spurred applications for gene therapy. The genetic information required to 

package a functional lentiviral core in the vector was then found to be only a fraction of the parental 

genome [Vigna E and Naldini L 2000]. An important approach to alleviate biosafety concerns is the 

use of self-inactivating transfer vectors (SIN) [Zufferey R, et al. 1998; Miyoshi H, et al. 1998]. These 

vectors contain a deletion in the downstream LTR that when transduced into target cells, results in 

the transcriptional inactivation of the upstream LTR and diminishes substantially the risk of vector 

mobilization and recombination [Bukovsky AA, et al. 1999]. As the non-required genes are critical for 

viral pathogenesis, new generations of “minimal” packaging constructs have been adopted to 

increase vector biosafety: the so called third-generation lentiviral vectors. These are lentiviral SIN 

vectors containing both Rev-responsive element (RRE) and Tat cognate motif and being dependent 
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upon the co-expression of Rev in packaging cells. When using strong promoters (e.g. the promoter 

from RSV) to drive the expression of the genomic vector message in packaging cells, Tat is not 

essential to achieve efficient expression of genomic RNA [Dull T, et al. 1998]. Hybrid lentiviral 

vectors have also been derived from nonhuman lentiviruses: Simian Immunodeficiency Virus (SIV), 

Equine Infectious Anemia Virus (EIAV), Feline Immunodeficiency Virus (FIV), Caprine 

Arthritis/Encephalitis Virus and Bovine Jembrana Disease Virus, following similar approaches to 

those used for HIV-derived vectors, on the rationale that they would be more acceptable for clinical 

application because the parental viruses are not infectious to humans [Olsen JC 1998; Poeschla EM, 

et al. 1998; Mitrophanous K, et al. 1999]. However, because of the lower number and yet unclear 

role of accessory genes in non-primate lentiviruses, the actual gain in biosafety of these advanced 

design remain to be established [Vigna E and Naldini L 2000]. The obligatory RNA step in the 

retroviral lifecycle poses great constraints on the viral genome and on its exploitation for gene 

transfer purposes. The transgene expression cassette must be of limited size (8 kb), without introns 

and internal polyadenylation signals. Together with the exposure to loco-regional differences in the 

structure and activity of chromatin consequent to random integration, these factors combine to limit 

expression of the transduced genes. VSV-pseudotyped lentiviral vectors can be delivered directly in 

vivo. Lentiviral vectors efficiently transduce several non-dividing, differentiated epithelial tissues of 

rodents, humans and other species, isolated or dissociated ex vivo [Vigna E and Naldini L 2000]. 

Direct transduction in vivo appears to be more sensitive to tissue barriers limiting vector access, as 

in the case of respiratory mucosa [Johnson LG, et al. 2000] and to intracellular conditions (for 

example, cell cycle status) as in the case of hepatocytes [Park F, et al. 2000].  

The ability of lentiviral vectors to transduce a great variety of non-dividing cells, and the substantial 

flexibility in the design of the expression cassettes, remain the most important rationales for their 

clinical use. The scope of potential clinical targets includes retinal or other sensory epithelium, 

neurons, cardiac or skeletal muscle, hepatocytes, endothelial cells, dendritic cells, hematopoietic 

stem cells, and dormant tumor stem cells. The ability to transduce non-dividing cells has also 

triggered the potential clinical development of integration-defective lentiviral vectors, sometimes 

addressed as non-integrating lentiviral vectors [Yáñez-Muñoz RJ, et al. 2006; Philpott NJ and 

Thrasher AJ 2007].  The first clinical trial using lentiviral vectors was conducted to treat individuals 

suffering from the acquired immunodeficiency syndrome caused by infection with HIV-1 [Dropulic B 

and June CH 2006; Levine BL, et al. 2006]. The first clinical trial using a non-HIV based lentiviral 

vector has started December 2007. For the treatment of Parkinson’s disease, the company Oxford 

Biomedica has developed a lentiviral vector, ProSavin, based on EIAV, expressing the three key 

dopamine biosynthetic enzymes (tyrosine hydroxylase, aromatic L-amino acid decarboxylase and 
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GTP cyclohydrolase 1). In this phase I/II clinical trial the lentiviral vector was directly administered 

bilaterally into the sensorimotor putamen of late stage Parkinson’s patients.  

The development of lentiviral and pseudotyped lentiviral vectors, which can infect nondividing cells, 

has overcome some of the limitations of MLV-based vectors and has renewed interest for this class 

of retroviridae for in vivo gene delivery to the lung [Naldini L, et al. 1996]. As with other viral vectors, 

factors at the airway surface pose barriers to retroviral and lentiviral gene transfer. Airway epithelial 

gene transfer efficacy with lentiviral vector system has previously been restricted by a paucity of 

pseudotypes, which can be produced at high titres as the commonly used VSVG. However, when 

pseudotyped with VSVG, lentiviruses can only enter airway epithelial cells via the basolateral 

membrane. Therefore, apical transduction by lentivirus has been developed by using a number of 

viral envelopes from diverse origins, both in vitro and in vivo, including filovirus [Medina MF, et al. 

2003; Sinn PL, et al. 2003], baculovirus [Sinn PL, et al. 2005], influenza [McKay T, et al. 2006] and 

parainfluenza [Kobayashi M, et al. 2003] viruses. Jaagsiekte Sheep Retrovirus envelope proteins 

have been shown to stabilize pseudotyped retrovirus in the presence of lung surfactant [Coil DA, et 

al. 2001] and evaluated for  pulmonary gene transfer [Liu S-L, et al. 2004]. For example, the Ebola 

virus envelope glycoprotein has been used successfully to achieve efficient transduction of the 

murine lung epithelium and human explants [Kobinger GP, et al. 2001; Lim FY, et al. 2003] although 

generation of consistently high viral titres has been problematic. Sinn et al. [Sinn PL, et al. 2003] also 

showed that transgene expression after lung application of feline immunodeficiency virus 

pseudotyped with the baculoviral gp64 envelope applied in a viscoelastic gel formulation was 

significantly higher than observed with VSVG pseudotyped construct. Buckley et al. [Buckley SM, et 

al. 2008] performed a comparative study using HIV-based lentiviral vectors pseudotyped with the 

baculovirus gp64 envelope versus VSVG to transduce fetal, neonatal or adult airways. They 

concluded that gp64 pseudotyped lentivirus efficiently transduces airway epithelial cells after both 

fetal and neonatal administration, whereas adult administration resulted in low level transduction in 

this tissue but efficient transduction of alveoli. Intra-amniotic administration of gp64 pseudotyped 

lentivirus appeared to be the most efficient mode of airway epithelial transduction in the murine 

model. Nevertheless, Kremer et al. [Kremer KL, et al. 2007] did not see increased apical uptake of 

gp64/HIV when compared to VSVG.  
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Parainfluenza viral vectors 

Parainfluenza virus has a negative-strand RNA genome and replicate in the cytoplasm. They do not 

go through a DNA intermediate and do not enter the nucleus. This family of viruses includes several 

varieties being exploited for gene therapy: the murine parainfluenza virus type 1 or Sendai virus, the 

human Respiratory Syncytial Virus and the human Parainfluenza Virus type 3 (PIV3). All of these 

have been shown to efficiently transfect airway epithelial cells via the apical membrane using sialic 

acid and cholesterol, which are abundantly expressed on the apical surface of airway epithelial cells 

[Ferrari S, et al. 2003; Zhang L, et al. 2005]. Only Sendai virus has been assessed in animal models 

in vivo. SeV-mediated gene expression is transient (lasting for about 7 days) and currently repeated 

administration is inefficient. Several groups are assessing a variety of immuno-modulatory strategies 

to improve the use of SeV for chronic lung diseases, as CF.  

 

 

Non-viral vectors 

 

Gene delivery systems based on non-viral vectors mainly comprise cationic liposomes [Bennett CF, 

et al. 1992; Ropert C, et al. 1993; Thierry AR, et al. 1993], DNA-protein complexes [Ryser HJ and 

Shen WC 1978] and mechanic administration of naked DNA [Tascon RE, et al. 1996; Ulmer JB, et 

al. 1993]. These systems are relatively easy to manipulate, are not infectious and are not very toxic. 

Furthermore, nonviral vectors allow for the delivery of large DNA fragments and are also particularly 

suitable to deliver oligonucleotides to mammalian cells, which is an excellent feature for the 

application of antisense strategies to downregulate the expression of certain genes. A number of 

obstacles have severely limited the application of nonviral-based vectors in therapy and preclinical 

studies [Romano G, et al. 1999]. The lack of specific targeting, the low transfection efficiency and the 

fact that transgene expression is only transient make difficult the in vivo applications of nonviral gene 

delivery systems. 

 

Cationic liposomes 

Cationic lipossomes as a vehicle for delivery of DNA, have also been extensively studied in animal 

models of lung gene therapy. Major attractions of liposome mediated gene delivery include (a) an 

easily scalable gene transfer formulation for clinical trials, (b) no apparent size limitation to the DNA 

transgene being delivered, and (c) the absence of exogenous protein in the delivered complexes that 

should reduce immune responses to the vector. Despite these theoretical advantages, progress in 

developing clinically efficacious protocols has been poor owing to the inherently low efficiency of 
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gene transfer, the transient nature of transgene expression, and immunogenicity to unmethylated 

CpG dinucleotides in plasmid derived bacterial DNA [Tan Y, et al. 1999]. The mechanism of gene 

transfer with cationic liposome/DNA complexes is poorly understood, but several general features 

appear to be important in the efficacy of gene expression with these reagents including (a) the lipid 

composition, (b) the complex charge density determined by the liposome/DNA ratio, and (c) the size 

of the complex. All these factors appear to be important for efficient endocytosis and/or intracellular 

escape from endosomes, which ultimately affect the efficiency of gene transfer [Lee ER, et al. 1996; 

Felgner PL 1996]. A major obstacle in the use of liposome/DNA complex-mediated gene transfer has 

been the apparent low level of endocytosis from the apical membrane of differentiated polarized 

airway epithelia [Matsui H, et al. 1997]. Despite these limitations, studies in CFTR knockout mice 

have demonstrated the ability of CFTR-expressing liposome/DNA complexes to correct ion transport 

abnormalities [Alton EW, et al. 1993; Hyde SC, et al. 1993]. However, studies in CF human bronchial 

xenografts have demonstrated that cationic liposome can mediate complementation of mucus 

sulfation defects in CF epithelia but not ion transport abnormalities [Zhang Y, et al. 1998]. 

Improvements in cationic liposome-mediated gene delivery were made possible by a massive 

functional screen of cationic lipids for gene transfer to the lungs of mice. In this study, the Genzyme 

Corporation identified a cationic lipid called GL-67 that was 100 times more effective than previously 

evaluated common cationic liposomes [Lee ER, et al. 1996]. However, even with the most effective 

GL-67 lipid formulation, gene transfer was maximal at 2 days post-transfection and quickly 

diminished thereafter. GL-67 lipid formulation was the basis of the first lung clinical trail using 

aerosolized cationic lipids in normal volunteers [Chadwick SL, et al. 1997]. Luton and coworkers 

administrered cationic cholesterol derivatives to sheep fetuses via surgical replacement of the fetal 

airway fluid by the transfection mixture followed by tracheal occlusion. Reporter gene expression 

was detected in both trachea and lung epithelial cells and some mesenchymal cells. However, the 

level of transgene expression was relatively low and there was evidence of acute toxic effects under 

lipofection conditions [Luton D, et al. 2004].  

 

Other non-viral vectors 

Other nonviral DNA delivery systems have been described, including polymers and small synthetic 

beads. Even naked DNA diluted in hypotonic fluids can produce some gene delivery to lung 

epithelium. However, the utility of these delivery systems into the lung, particularly in vivo, has not 

yet been proven. For all of these systems, it appears that gene expression efficiency is quite low. For 

diseases such as CF, this may be a major limitation, whereas for other diseases, low-level 

expression may be adequate [West J and Rodman DM 2001]. Several groups are assessing a 
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variety of physical delivery methods, including electroporation, magnetism, ultrasound and vibration, 

in an attempt to increase the transfection efficiency of nonviral formulations. Electroporation has 

been successfully used to enhance transfection in a variety of organs including muscle [Griesenbah 

U, et al. 2004]. Some results for lung gene transfer are encouraging and demonstrate that the 

transfection efficiency of naked DNA can be enhanced in the presence of electrical fields [Dean DA, 

et al. 2003]. Clearly, important technical questions and safety considerations have to be resolved. 

 

 

Vector promoter  

 

Many gene delivery vectors use viral promoters such as the cytomegalovirus-immediate early (CMV-

IE) promoter because this promoter can drive transgene expression in many cell types. Studies 

focusing on pulmonary gene transfer have used CMV-IE for this reason because it has yet to be 

resolved which of the 40 cell types in the respiratory tract needs to be targeted for each of the 

pulmonary disorders that may benefit from genetic therapy [Davies JC, et al. 1998]. However, many 

studies of fetal gene transfer [Bestor TH 2000; Rivella S and Sadelain M 1998; Tarantal AF, et al. 

2001] have provided evidence of transgene silencing with this promoter. In addition, the development 

of pulmonary gene transfer strategies may require selective targeting of transgene expression to 

specific cells of the developing lung to ultimately be curative. Lung-specific promoters such as 

surfactant protein-C (SP-C; targets type II cells) or CC10 (targets Clara cells) are of interest for fetal 

gene transfer because SP-C mRNAs appear at early human fetal gestational ages in association 

with the epithelium where airways branch, and SP-C mRNA and proSP-C are present in distal lung 

epithelial cells before differentiation into type II cells occurs [Khoor A, et al. 1994; Wert SE, et al. 

1993]. Whitsett et al. used the gene CFTR under the direction of the SP-C and CC10 promoters in 

transgenic mice and evaluated the effects of expression in utero [Whitsett JA, et al., 1992]. The use 

of SP-C and CC10 promoters in these studies ensured CFTR expression in more differentiated cell 

types because these proteins become specific markers of their respective cell types (type II and 

Clara cell) as they differentiate. 
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Table 3 — Advantages and disadvantages of currently used vector systems for lung gene transfer 

[Kolb M, et al. 2006].  

Vector Advantage Disadvantage 

Viral   

   Retrovirus / Lentivirus Viral genes removed, no viral proteins made, 
integrates into host DNA (retrovirus) 

Possible insertional mutagenesis, cell 
division necessary (retrovirus), low titers 

   Adenovirus Efficient, transduces nondividing cells, 
produced in high titers 

Prior exposure, immune response, 
inefficient with repeated application 

   AAV Virus genes removed, no viral proteins made, 
safe, transduces nondividing cells 

Production labor-intensive, small 
packaging capacity for foreign DNA 

   Parainfluenza virus 1 
Sendai virus 

RNA genome, targets apical surface of 

epithelium, replicates in cytoplasm 

Particles are inflammatory, 

 induces immunity 

   

Non-viral   

   Naked DNA Simple, nonimmunogenic, inexpensive, safe Inefficient transduction 

   Cationic liposomes Nonimmunogenic, repeated application 
possible, safe 

Gene expression transient and low 

 

Delivery systems 

Vectors are the vehicles that carry the genetic information into the patient's cells for treatment of 

diseases. Each vector system has unique properties. Therefore, different vectors will be required for 

treating the variety of diseases amenable to gene transfer. Vectors can be introduced into cells from 

the patient's body (e.g. blood cells) and then reintroduced into the patient, or the vectors can be 

administered directly into the body through injection or even possibly by mouth. Further discussion of 

gene delivery systems: routes and time of administration, experimental models, will be restricted to 

lung directed in utero gene therapy.  

 

 

 

 



 Cell and Gene Therapy                                                     61 
 

 

In utero gene therapy 

The current approaches of gene therapy into mature organisms are confronted with several 

problems including the following: (1) the underlying genetic defect may have already caused 

irreversible pathological changes; (2) the level of sufficient protein expression to ameliorate or 

prevent the disease requires prohibitively large amounts of gene delivery vector; (3) adult tissues 

may be poorly infected by conventional vector systems dependent upon cellular proliferation for 

optimal infection, for example, oncoretrovirus vectors; (4) immune responses, either preexisting or 

developing following vector delivery, may rapidly eliminate transgenic protein expression and prevent 

future effective intervention. Early gene transfer, in the neonatal or even fetal period, may overcome 

some or all of these obstacles. [Waddington SN, et al. 2004a; 2005]. The major advantages of fetal 

and neonatal gene therapy are (1) prevention of irreversible pathological processes; (2) easier 

access to certain organs (in the case of the fetal lung, a fluid-filled structure is easier to disperse the 

gene transfer reagent) (3) reduced amount of vector required due to high ratio of vector particles to 

cells (4) ideal environment for infection of abundant stem cells and other progenitors (5) immaturity 

of immune system.  

Therapeutic gene transfer during development could be of benefit for those disorders that 

compromise prenatal structure and function and have significant morbidity soon after birth [Kawada 

T, et al. 2002; Melo LG, et al. 2004; Ryan K, et al. 2004]. Similarly, CF or �1-antitrypsin deficiency 

can result in significant morbidity and mortality [Ratjen F and Döring G 2003]. For these diseases, if 

treatment can be accomplished before severe damage occurs, then, theoretically, healthy newborns 

can be delivered free of disease at term. Lysosomal storage diseases such as the 

mucopolysaccaridoses, including Sly, Hunter and Hurler syndromes, Tay-Sachs disease and globoid 

cell leukodystrophy, demonstrate fetal pathology; nevertheless, substantial therapeutic benefits have 

been observed in mouse and dog models following neonatal gene therapy [Waddington SN, et al. 

2004b]. 

From birth to adulthood, body mass increases approximately 20-fold in humans, therefore, a 

relatively much lower amount of virus will infect a higher percentage of cells when introduced early 

rather than late in life. Also, in adult gene therapy studies of factor IX adenovirus vectors, larger 

animals (e.g. haemophiliac dogs) require far higher doses per kg body mass of viral vector to 

achieve the same levels of transgenic factor IX expression than the smaller mouse models, making it 

difficult to scale vector doses from small to large species based on body mass alone . 
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Many genetic disorders, the organ can be difficult to target after birth, for example the lung in cystic fibrosis, 

the brain in urea-cycle disorders, or the skin in epidermolysis bullosa. Fetal treatment can take advantage of 

developmental changes to access organs that are inaccessible after birth [David AL and Peebles D 

2008].  

Gene transfer to the developing fetus targets rapidly expanding stem-cell populations, providing a 

large population of transduced cells to provide a therapeutic effect. Many cell types, such as 

myoblasts, central nervous system stem cells, mesenchymal stem cells, and hematopoietic stem 

cells are more prevalent in early gestation and decrease in frequency with age. The genetic 

integration of a transgene into a pluripotential stem cell would potentially result in tremendous 

expansion of the transduced cell population with fetal and postnatal growth [Yang EY, et al. 1999a; 

1999b]. For example, after intravascular administration of lentivirus vectors to fetal mice, expression 

of a marker gene appeared to be distributed in the liver in focal clusters, suggesting they may have 

arisen from individual progenitors [Waddington SN, et al. 2003; MacKenzie TC, et al. 2002]. 

The fetus has a functionally immature immune system compared to an adult, which might be to its 

advantage. Worldwide, up to 50% of adults have pre-existing humoral immunity to adenovirus and 

adeno-associated virus serotypes from which commonly used gene therapy vectors are derived 

[Bessis N, et al. 2004] Even in the absence of a pre-existing immune sensitivity, vector 

administration to adults often results in the development of an immune response that reduces the 

duration and level of transgene expression [Gilchrist SC, et al. 2002]. Weaker fetal immune response 

towards a transgenic protein may be due to the following: (i) the reduced number of immune cells in 

early life; (ii) the developmental immaturity of cells participating in the immune response; (iii) the 

deviance of the early immune response from that of the adult, with particular bias towards a TH2 

rather than a TH1 response; and (iv) the absence of memory cells due to the naivety of the immune 

system. Immune tolerance to exogenous protein can be induced in the fetus if the protein is 

introduced before the immune system is competent. Tolerance also requires that the exogenous 

protein expression is maintained, even if at low level, and so the ability of the vector to give long-term 

expression is vital. As an example, in a mouse animal model of haemophilia B, one study showed 

that the functionally immature fetal immune system does not respond to the product of the introduced 

gene, and therefore immune tolerance can be induced [Waddington SN, et al. 2004b]. This means 

that treatment could be repeated after birth, if a single fetal treatment was not sufficient to cure the 

individual of the disease.  
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Safety and ethical issues 

Various safety issues in relation to in-utero gene therapy need to be addressed before such therapy 

can be applied clinically [Fletcher JC and Richter G 1996; U.S. National Institutes of Health. 

Recombinant DNA Advisory Committee 2000]. There is a theoretical risk that the therapeutic gene 

product or vector that is required later in life to correct a genetic disease could interfere with normal 

fetal development. This has been suggested in the case of cystic fibrosis, where in-utero infection of 

rats at 16–17 days gestation with a recombinant adenovirus carrying the human cystic fibrosis 

transmembrane receptor gene resulted in altered lung development and morphology [Morrow SL, et 

al. 1998]. The effects of a transgenic protein on developmental processes will be difficult to predict, 

depending on the time of gestation and the type of protein introduced, which will require careful long-

term monitoring. An established risk factor of integrating viral vectors is insertional mutagenesis (see 

“Oncoretroviral vectors”). The fetal system might be particularly sensitive to such events because 

integrating vectors prefer to insert their genomes into chromatin in open configuration. Whereas one 

of the aims of prenatal gene therapy is to achieve immune tolerance to the transgene and delivery 

system, vectors must be designed to be sufficiently different to the wild-type so that the immune 

system remains able to mount an effective immune response against wild-type virus infection. 

Hypothetical germ-line transmission is another potential concern, even if it was never reported, nor 

for the fetus neither for the mother. Any fetal therapy or procedure poses risks of infection, immune 

reactions and the induction of preterm labour for the fetus and the potential to harm the mother. A 

conflict of interest might potentially arise because treating the fetus might not be in the mother’s best 

interest [David AL and Peebles D 2008].  

 

Future perspectives 

Positive results of pre-clinical studies in rodent models have emerged to show proof-of-concept for a 

postnatal therapeutic effect of in utero gene delivery. Rucker et al. used an AAV serotype 1 vector 

(AAV-2/1) to deliver human α-glucosidase to the diaphragm of mice deficient in this enzyme, a 

condition which often results in death from respiratory failure in humans [Rucker M, et al. 2004]. 

Normal contractile function was restored for up to 6 months postpartum. In 2004, Dejneka et al. used 

the same AAV serotype to deliver human retinal pigment epithelium 65 to the retinal pigmented 

epithelium of Rpe65-/- mice and demonstrated restoration of visual function [Dejneka NS, et al. 

2004]. Karolewski and Wolfe also used AAV-2/1 to treat a mouse model of mucopolysaccharidosis 

type VII. This vector carrying the human β-glucuronidase cDNA was injected into the ventricle of the 

fetal brain and resulted in widespread gene expression in the brain and spinal cord and a significant 

improvement in survival after one year [Karolewski BA and Wolfe JH 2006]. Also in 2004, 
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Waddington and coworkers injected VSVG-pseudotyped HIV vector into the fetal vitelline vessels, 

which resulted in predominant expression of human Factor IX in the mouse liver (the site of 

endogenous synthesis) and achieved lifelong correction of the bleeding diathesis [Waddington SN, et 

al. 2004b]. Seppen et al achieved intraperitoneal and hepatic delivery of the transgene from direct 

intrahepatic HIV-based lentiviral vector injection. This significantly ameliorated the metabolic defect 

for one year [Seppen J, et al. 2003]. 

In the short term, two intermediate strategies for possible in utero gene therapy are emerging. The 

first involves the use of “advanced” non-integrating vectors, including helper-dependent adenovirus, 

integration-deficient lentivirus, and new adeno-associated virus serotypes [Waddington SN, et al. 

2007]. These may be applied to tissues from which the vector genome is slowly lost, such as muscle 

[Rucker M, et al. 2004], neuronal tissue in the central nervous system [Karolewski BA and Wolfe JH 

2006], and the retina [Dejneka NS, et al. 2004] for longer-term correction of genetic disease. They 

may also be applied to rapidly dividing tissues, such as the liver, to permit transient correction of 

genetic diseases which manifest perinatally until a postnatal treatment can be applied; and may also 

be applied to the fetus, placenta or extraembryonic membranes for treatment of pregnancy-

associated diseases such as pre-eclampsia [Koyama S, et al. 2006] or bronchopulmonary 

hypoplasia [Larson JE and Cohen JC 2006]. The second fetal gene therapy strategy is ex vivo 

transduction and subsequent re-implantation. This may now exploit the technological advances in 

maximizing safety and efficacy of ex vivo transduction, novel and safer integrating retroviral vectors, 

and advances in stem cell technology [Rio P, et al. 2005; Chan J, et al. 2005]. Recent advances in 

fetal medicine—particularly in imaging and minimally invasive intervention—have opened the way, in 

large animal models, for clinically relevant delivery of gene therapy vectors to virtually any fetal 

organ. However, although postnatal gene therapy has seen its first successful clinical applications, 

no trials are planned for human gene therapy in utero, now or in the near future. Indeed, many view 

the concept as having only academic value, with no potential for translation into the clinic [Coutelle C 

2008]. 
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In utero lung gene transfer 

 

The fetal lung is an attractive target organ for fetal gene transfer. There are a number of genetic and 

acquired disorders with peri- or postnatal pulmonary manifestations. These include monogenetic 

diseases like CF [Larson JE, et al. 2000] or SP-B deficiency that would presumably require long-term 

expression of the deficient or defective gene. However, there are also abnormalities of lung growth, 

such as congenital diaphragmatic hernia (CDH), or lung maturation, such as respiratory distress 

syndrome of prematurity, that could potentially benefit from strategies that achieve transient gene 

expression in specific pulmonary distributions. Additionally, an important advantage of the use of 

non-integrating viral vectors with transient gene expression is the avoidance of many of the current 

concerns regarding integrating vectors in the fetus, i.e., insertional mutagenesis, developmental 

abnormalities, and germline alteration. Success of gene therapy will depend on the choice of vector, 

defining the optimal site, route and timing of gene delivery during lung development [Yu ZY, et al. 

2007]. One additional advantage of targeting the fetal lung is that is more efficient to disperse the 

gene transfer reagent in a fluid-filled structure rather than across air-liquid interface.   

Adenoviral vectors have been used in most in utero investigations, except those using retroviral 

vectors  [Douar AM, et al. 1997; Pitt BR, et al. 1995]. Although having the advantage of being able to 

be concentrated in high titers and providing efficient gene transfer, adenoviral vectors may lead to 

substantial inflammation and even fetal loss [Iwamoto HS, et al. 1999; Yang EY, et al. 1999a]. 

Retroviral vector use in in utero applications has been limited because retroviral infectivity is reduced 

by amniotic fluid [Douar AM, et al. 1996]. Previous work, however, suggests that AAV gene transfer 

to respiratory epithelia is limited by vector entry and postentry interactions of cellular components 

with vector DNA [Duan D, et al. 1998b]. In particular, well-differentiated pulmonary epithelial cells 

may lack the factors necessary for efficient AAV-mediated gene expression. AAV-mediated gene 

expression is much more efficient in undifferentiated pulmonary cells [Bals R, et al. 1999]. These 

observations suggest that one strategy for generating higher degrees of vector entry and gene 

expression in AAV may be targeting rapidly dividing undifferentiated epithelial cells with an in utero 

or neonatal approach. The neonatal approach has been studied [Rubenstein RC, et al 1997; Zeitlin 

PL, et al. 1995] but studies of in utero administration of AAV are limited to recent investigations of the 

effect of intraperitoneal and intramuscular delivery in a mouse model [Lipshutz GS, et al. 2001; 

Mitchell M, et al. 2000]. Pulmonary applications of in utero lentiviral gene transfer in vivo have 

broadened. Following successful demonstration of in vivo gene transfer to human xenografts 
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[Goldman MJ, et al. 1997] and rabbit airways [Wang G, et al. 1999] groups have demonstrated 

efficacy of in utero vector delivery. Following intrapulmonary delivery of an HIV vector encoding 

green fluorescent protein (GFP) into rhesus monkey fetuses, Tarantal et al. [Tarantal AF, et al. 2001; 

2005] reported gene expression in pulmonary epithelia confirmed by direct fluorescence and Q-PCR. 

Lim et al. [Lim FY, et al. 2003] had similar success in targeting epithelia in human fetal tracheal 

xenografts using HIV-LacZ. Transgene expression remained detectable 9 months posttransduction. 

 

Route of administration 

If fetal gene therapy is to be clinically applicable, developments in vector technology must be 

accompanied by improvements in minimally invasive methods of delivering vectors to the fetus. 

Traditionally, invasive surgical techniques such as maternal laparotomy or hysterotomy have been 

performed to access the fetus in small- and even large-animal models. However, in clinical practice, 

minimally invasive techniques such as ultrasound-guided injection, or even fetoscopy, could be used 

to deliver gene therapy to the fetus with less morbidity and mortality.  

Experiments that use intra-amniotic injection of oligodeoxynucleotides have demonstrated excellent 

expression in fetal skin, but no expression in the fetal lung [Hayashi SI, et al. 1996]. Intra-amniotic 

administration of adenovirus showed low level pulmonary expression of transferred marker genes in 

3 of 4 studies [Sekhon HS and Larson JE 1995; McCray PB Jr, et al. 1995; Douar AM, et al. 1997; 

Holzinger A, et al. 1995]. In contrast, much higher levels of gene transfer were observed in the 

proximal gastrointestinal tract (oropharynx and esophagus) because of fetal swallowing of amniotic 

fluid. Thus, the net efflux of fetal hmg fluid probably predominates over any influx of fluid with fetal 

breathing movements, preventing vector access to the lung. An alternate approach is direct 

administration of vector into the fetal trachea. This has been performed by open fetal surgical 

[McCray PB Jr, et al 1995; Vincent MC, et al 1995] or fetoscopic techniques [Sylvester KG, et al. 

1997].  

Intra-tracheal injection of retroviruses, which are much less efficient at transduction than adenovirus, 

resulted in only spotty single-cell areas of gene transfer [Pitt BR, et al. 1995]. Results with 

recombinant adenovirus have been much more successful. Several studies have documented high 

efficiency marker gene transfer in the lung parenchyma of late gestation sheep within 7 days after 

intratracheal injection of first generation recombinant adenovirus [McCray PB Jr, et al 1995; Vincent 

MC, et al 1995; Sylvester KG, et al. 1997]. Although only 1 study quantified transduction of distal 

alveolar cells as high as 12% [McCray PB Jr, et al 1995], areas of higher level transduction were 

observed in other studies. A notable finding was that the distal lung parenchyma appeared to be the 

major site of gene transfer. In 2 of 3 studies, no expression could be detected in any large airways 
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[Vincent MC, et al 1995; Sylvester KG, et al. 1997]. Tracheal gene transfer was only observed in I 

study and may have been due to concomitant epithelial injury due to instrumentation or vehicle 

toxicity [McCray PB Jr, et al 1995]. One interpretation is that the late gestation fetal airways are well 

differentiated and similar to adult airways in terms of tight junctions and basolateral distribution of 

viral receptors. This conclusion is substantiated by electron microscopy studies [Schneeberger EE, 

et al. 1978]. Although discouraging for the purposes of treating CF, an encouraging finding was that 

parenchymal gene transfer was specifically localized to type II alveolar epithelial cells by 

colocalization with sheep SP-B protein [Sylvester KG, et al. 1997]. Thus, recombinant adenovirus 

can target the appropriate cell type for treating SPB deficiency. Despite the initially high gene 

transfer efficiency with recombinant adenovirus, long-term results have been disappointing. The 

appearance of cellular inflammation at about 7 to 10 days heralds loss of transferred gene 

expression [McCray PB Jr, et al. 1995; Yang EY, et al. 1999c]. This suggests that the late gestation 

fetus reacts in a manner very similar to adult animals in response to first generation adenoviruses. 

With the use of completely deleted recombinant adenoviruses, which are devoid of adenoviral 

structural genes, and with application of fetal gene therapy earlier in gestation, it is conceivable that 

transferred gene expression can be prolonged. In summary, initial results with first generation 

adenoviruses in the fetal lung have been promising. Clearly, administration of vector can be 

achieved via minimally invasive, fetoscopic methods. Distribution of vector is broad throughout the 

lung, and gene transfer occurs in a high percentage of cells. The limited pattern of gene expression 

in parenchymal tissues would be favorable for the purposes of treating SP-B deficiency, yet because 

conducting airways generally did not show transferred gene expression, recombinant adenovirus 

may not be the optimal vector for treating CF. With further improvements in reducing the 

immunogenicity of recombinant adenovirus and further analysis of the optimal timing of vector 

delivery during gestation, prolonged gene expression may be obtainable [Yang EY, et al. 1999b].  

 

 

Time of administration 

Accessing the respiratory epithelium prior to acquisition of a fully differentiated phenotype, that has 

proven resistant to virus-mediated transduction, and the possibility of successfully targeting epithelial 

progenitor cells with integrating vector systems such that durable therapeutic benefit results 

[Waddington SN, et al. 2004a]. Gene delivery via the airway lumen becomes theoretically possible 

from the beginning of the pseudoglandular stage of fetal lung development, occurring between 5 and 

17 weeks of gestation in humans (term 40 weeks), but is more realistically achievable during the 

subsequent canalicular phase, which extends through to week 26 of gestation [Jeffrey PK 1998]. 
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During the pseudoglandular stage airway branching is completed and epithelial differentiation and 

maturation begins in the proximal airway and progresses distally, with the upper lung lobes 

developing slightly ahead of the lower lobes. In the monkey the pseudoglandular stage occurs 

between 55 and 110 days (term 165 days) and the canalicular stage between 110 and 138 days 

gestation; in the fetal lamb, where lung development has been well characterised and shown to 

parallel that of the human fetus, the pseudoglandular stage of lung development occurs between 40 

and 80 days of gestation (term 147 days) [Alcorn DG, et al. 1981].  

 

 

Experimental models 

Fetal gene transfer studies on rodents take advantage of the wide range of disease models, short 

gestation time and the need for relatively small amounts of vector. However, it is important to 

translate these studies to larger animal models if the goal of human fetal gene therapy is to be 

achieved. Larger animal models are valuable since they are more relevant to humans in terms of 

gestation time, maturation of the fetal immune system, and fetal mass as well as in relation to the 

vector application technology. The importance of a nonhuman primate model for these studies is 

related to the similarity of rhesus monkeys to humans developmentally and anatomically. For 

example, the fetal monkey lung passes through the same stages of development at similar 

gestational time points compared to the human fetus, and during prenatal and postnatal life, the 

human and nonhuman primate lung are still developing [Fannuchi MV and Plopper CG 1997]. In 

addition, human and nonhuman primates share a variety of pulmonary cell phenotypes not found in 

other species, and the overall structure of the monkey lung is more similar to that in the human than 

any other mammalian species [Plopper CG and Hyde DM 1992]. It is likely that non-human primates 

will be the ultimate animal model that will be used for safety studies in the immediate preparation for 

a clinical trial of fetal gene therapy. However, the high maintenance costs and breeding conditions 

prohibit their use in the routine development of novel injection techniques. Sheep are much easier to 

breed and maintain and are a well established animal model of human fetal physiology. 
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Table 4 - In utero lung gene transfer studies’ synopsis. 

Route 
Type 

vector 

Development 

stage 

Targeted  

compartment 

References and 

experimental model 

Intrapulmonary 
(US) Lentiv  

Embryonic Airway epitehlium Tarantal 2001 
 (Rhesus monkey) 

Pseudogland 
and early 
Canalic 

Airway epithelium (type I and II 
cells), endothelium, macrophages 

Tarantal 2001 and 2005 
(Rhesus monkey) 

Intratracheal 

Adv Canalic to 
Saccular 

Trachea and bronchial epithelium 
(including type II cells) 

David 2003, 2006, Peebles 
2004 (Transduction 

enhancers), Sylvester 1997 
(TO); sheep. 

Lentiv Saccular Bronchiolar airway Yu 2007  
(HIV; sheep) 

Oncoretro Saccular 
Airway and respiratory epithelium; 
submucosal space   

Pitt 1995 
 (MLV; sheep) 

Cationic 
lipossome 

Canalic Trachea and bronchial epithelium; 
few mesenchymal cells 

Luton 2004 (sheep; TO) 

Intraamniotic 

Adv 

Embryonic No significant expression  Douar 1997 (mouse),  
Buckley 2005 (mouse) 

 
Pseudogland 

Low levels of expression  McCray 1995 (mouse) 

Trachea and bronchioles epithelium  Buckley 2005 (mouse) 

Airway epithelium (except trachea 
and alveoli)  

Douar 1997 (mouse), Sekhon 
and Larson 1995 (rat), Cohen 
1998 (mouse) Morrow 1998 

(rat; CFTR); Cohen and Larson 
2005, 2006 (rat; 

CFTR/ASCFTR; NI-CDH, 
TIUKO) 

Some cells in the parenchyma 
surrounding small airways  

Cohen 2008  
(mouse; CFTR) 

 
Canalic 

Trachea, epithelial cells (including 
type I and II cells), airway 

Cohen 2008 (mouse; CFTR) 
Larson 2000 (Rhesus monkey; 

CFTR) 

Saccular 
Trachea, airway epithelium (small 
bronchus and bronchiolus) and 
alveoli 

Holzinger 1995 (sheep), 
McCray 1995 (sheep; CFTR; 

TO) 

AAV 
Canalic 

Pulmonary epithelium including 
type I and II cells 

Garrett 2003 (mouse, rat and 
Rhesus monkey) 

Saccular 
Trachea, pulmonary epithelium 
including type II cells 

Boyle 2001 (rabbit) 

Lentiv Pseudogland Airway epithelium  Buckley 2008 (HIV; mouse) 

Intravenous 
(yolk sac 
vessels) 

Adv 
Embryonic 
Pseudogland 
Saccular 

Epithelium; Endothelium Schachtner 1999 (mouse) 

AAV Pseudogland (Lung) Bilbao 2005 (mouse) 

Lentiv Pseudogland Interstitial cells Waddington 2003  
(EIAV; mouse) 

Intraperitoneal 
AAV Pseudogland Airway Lipshutz 2001, 

Bilbao 2005 (mouse) 
Oncoretro Canalic to 

Saccular 
Epithelium, fibroblasts, 
macrophages of alveoli, SMC 

Porada 2005 
(MSLV; sheep) 
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AAV- adeno-associated viral vector; Adv- Adenoviral vector; ASCFTR- Antisense CFTR; Canalic- canalicular stage of 

lung development; CFTR- cystic fibrosis transmembrane receptor; EIAV- equine infectious anemia virus; HIV- human 

immunodeficiency virus; Lentiv- Lentiviral vector; MLV- murine leukemia virus; NI-CDH- Nitrofen-induced Congenital 

Diaphragmatic Hernia; Oncoretro- oncoretroviral vector; Pseudogland- pseudoglandular stage of lung development; 

SMC- smooth muscle cells; TIUKO- transient in utero knockout;  TO- tracheal occlusion; US- ultrasound guided. 
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Aims  

Unique therapeutic opportunities occur during fetal life, related with normal developmental events, 

which favor prenatal over postnatal treatment. These opportunities create a compelling rationale for 

the prenatal treatment of pulmonary fetal, pediatric and even adult disorders, with potentially less 

morbidity and mortality than that associated with currently available portnatal treatments. The 

combination of advances in maternal screening for fetal diseases, fetal imaging, molecular diagnosis 

and gene chip technology shift the diagnosis window, of most anatomic and genetic diseases, for 

early gestation. Fetal treatment offers many advantages: developmental plasticity allow restoration of 

function after genetic correction; immature immune system allow the development of tolerance to the 

vector and transgenic protein; higher frequency and more accessible populations of stem cells and 

progenitor cells; high vector/cell ratio reduces the amount of vector to be administred.  

There are a number of genetic and acquired disorders with peri or postnatal pulmonary 

manifestations. These include monogenetic diseases like cystic fibrosis or surfactant protein B 

deficiency, congenital diaphragmatic hernia, congenital cystic adenomatoid malformation, respiratory 

distress syndrome of prematurity that could potentially benefit from prenatal strategies. Rather than 

consider gene replacement therapy to monogenetic diseases, we intented to modulate lung growth 

and maturation, envisaging therapeutic applications in diseases like CDH or respiratory distress 

syndrome of prematurity. Congenital diaphragmatic hernia (CDH) is a malformation that remains with 

high mortality mainly due to fetal lung hypoplasia and pulmonary hypertension, despite sophisticated 

postnatal clinical approach. Now, it’s possible to stratify the fetuses into low- and high-risk groups 

and offer antenatal therapy for the later ones, in order to promote prenatal lung growth and/or 

modulate pulmonary hypertension.  

The developing lung has been considered an attractive target organ for fetal gene transfer, however 

to achieve our purposes we needed to develop a new method that selectively target the fetal lung 

early in gestation. Several issues should be addressed: route of administration, type of vector, safety 

and vector biodistribution, gene transfer efficiency and kinetics (transient or sustained), cellular 

target. Following the establishment of a new model of intrapulmonary in utero gene transfer, it was 

our intent to modulate lung development acting upon key players envisaging a potential induction of 

growth in hypoplastic lungs and/or maturation in abnormally immature lungs. 
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Thus, the specific aims of this study are: 

 

1. To develop a new approach to fetal lung gene therapy 

  1.1. To selective target rat fetal lung using ultrasound guided microinjections 

  1.2. To compare different viral vectors for fetal lung gene therapy 

 

2. To study the effects of FGF10 gene transfer in modulation of fetal lung growth 

  2.1. To induce over-expression of FGF10 by adenoviral gene transfer 

  2.2. To characterize the effects of FGF-10 on fetal lung growth 

  2.3 To clarify the regulatory mechanisms by which FGF-10 acts on fetal lung growth  

 



  

 

 

 

 

 

 

 

 

 

CHAPTER 2 

TARGETED FETAL LUNG GENE TRANSFER   
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CHAPTER 3 

MODULATION OF LUNG DEVELOPMENT BY FGF10 GENE TRANSFER 
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Discussion 

 

Advances in prenatal diagnosis of genetic and congenital disorders with progressively more sensitive 

techniques may increase opportunities for consideration of prenatal gene therapy. There are a 

number of genetic and acquired disorders with peri or postnatal pulmonary manifestations. These 

include monogenetic diseases like cystic fibrosis or surfactant protein B deficiency that would 

presumably require long-term expression of the deficient or defective gene. However, there are also 

abnormalities of lung growth, such as congenital diaphragmatic hernia, or lung maturation, such as 

respiratory distress syndrome of prematurity, that could potentially benefit from strategies that 

achieve transient gene expression in specific pulmonary distributions. Considered an attractive target 

organ for fetal gene transfer, the developing lung, poses also some obstacles that would only be 

overcome with the development of a variety of gene transfer methodologies: different types of vector, 

optimal site, route and timing of gene delivery.  

The goal of this thesis was to develop new strategies to specifically target the developing lung in 

early stages of development. The optimized model would constitute an important tool of in utero 

gene delivery. After this, the newly established gene transfer model was used to modulate lung 

growth and development, by inducing transient overexpression of a key factor in lung development, 

FGF10, in the fetal rat lung. This study, not only contributed for further characterization of FGF10 

role in normal lung development, but also provided an unique insight into developmental 

mechanisms that may contribute to congenital cystic adenomatoid malformation (CCAM) etiology.  

In chapter 2, we report the feasibility of using ultrasound biomicroscopy (UBM) to perform in utero 

intrapulmonary injections in rats at the pseudoglandular stage of lung development. Several routes of 

vector administration have been utilized to achieve prenatal gene transfer to the lung including intra-

pulmonary. Intra-amniotic and systemic approaches share the same limitations of being nonspecific 

for fetal lung. Intratracheal and intrapulmonary delivery, although more specific to the lung, have 

previously only been performed in large animal models, such as ovine and non-human primates [Pitt 

BR, et al., 1995; Sylvester KG, et al 1997; David AL, et al. 2003, 2006; Luton D, et al. 2004; Peebles 

D, et al., 2004; Yu ZY, et al. 2007; Tarantal AF, et al. 2001, 2005]. One of the major concerns in 

gene transfer protocols is to target a specific organ/system, in our case, we aimed to specifically 

target the lung. This was only possible, by using a relatively new imaging technology: the ultrasound-

guided biomicroscopy (UBM).  UBM utilizes high-frequency (20–100 MHz), pulse-echo ultrasound for 

imaging live tissues and organs, allowing near microscopic resolution and has been previously 
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utilized for fetal brain injections [Turnbull DH, et al. 1995; Foster FS, et al. 2000]. Using UBM, we 

could successfully target the rat lung at E15.5, which corresponds to the mid-point of the 

pseudoglandular stage of lung development. In fact, we attempt to target the developing lung earlier, 

at E13.5 and E14.5, however the lung bud was very difficult to visualize and mortality was 

unacceptably high. Biodistribution of the viral vectors was evaluated and we concluded that gene 

delivery was localized to the injected lung with the only exceptions being the needle track through 

the thorax and a very low copy number in the heart. This could be due to inadvertent injection of the 

heart but is more likely due to the small amount of intravascular injection associated with this 

technique. A few animals had EGFP expression noted by stereoscopic fluorescent analysis in the 

skin or eye. However, in the animals selected for PCR analysis, these tissues did not have 

statistically higher gene copy numbers than PBS controls. This discrepancy likely represents 

inconsistent amounts of leakage of the vector into the amniotic space during removal of the 

micropipette. The lack of pulmonary epithelial transduction in these animals despite intra-amniotic 

leakage is most likely explained by the very minimal volume of leakage into the amniotic space 

relative to the volume of injectate in the intra-amniotic injection experiments as well as the timing of 

the injection.  

The timing of vector administration was definitively one of the major challenges of this work. We 

aimed to establish a model of lung in utero gene transfer, envisaging the manipulation of normal and 

abnormal lung development during pseudoglandular stage. This stage, characterized by intense 

branching morphogenesis, is the period of greatest overall growth of the airways and vasculature of 

the fetal lung, and corresponds to a stage of immunologic immaturity. Therefore, gene transfer 

during this period has the potential to have major effects on the key elements of lung growth with 

minimal potential for detrimental immune responses. Also, stem-cell targeted gene transfer and 

intervention in rodent models for human diseases (e.g. nitrofen-induced congenital diaphragmatic 

hernia rat model and cystic fibrosis murine models), that requires pertinent therapeutic window 

periods, would benefit from gene delivery early in lung development.  

Regarding the type of vectors we used first-generation adenoviral and EIAV-based lentiviral vectors. 

We chose to study first-generation adenoviral vectors rather than adeno-associated viral vectors 

because we wished to see rapid, high-level expression of the marker gene. EIAV-based owing to the 

fact that HIV-1-based lentiviral vectors have not shown high efficiency transduction [Hofmann W, et 

al. 1999, Romano G, et al. 2000] in many tissues and owing to the successful application of EAIV 

vectors in fetal rodent models by Waddington et al. [Waddington SN, et al. 2003]. Adenovirus has 
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been one of the most extensively studied recombinant viral systems because of its high transduction 

efficiency, rapid expression, accommodation of large transgene inserts, and high titers [Romano G, 

et al. 2000; Senoo M, et al. 2000; Breyer B, et al. 2001; Driskell RA and Engelhardt JF 2003]. The 

primary problem with adenovirus is its high immunogenicity and propensity to invoke strong immune 

responses. Previous studies documented this problem with intratracheal administration in late 

gestational fetal lambs; however, in the same model, no significant inflammation is observed with 

adenoviral administration during the preimmune phase of lamb immunologic development [Yang EY, 

et al. 1999b]. Similarly, as we would predict from the stage of rat immune development at E15.5, we 

saw no overt inflammatory response. In contrast to adenovirus, lentiviral vectors are relatively non-

toxic and minimally immunogenic and can stably integrate transgene into dividing and non-dividing 

cells with subsequent long-term gene expression [Naldini L, et al. 1996, Zufferey R, et al. 1997]. The 

main disadvantages are the low titers that are usually obtained in vitro [Romano G, et al. 2000]. EIAV 

vector obtained titers were relatively low (107–108 infectious particles per mL), therefore we needed 

to inject the maximal tolerated volume of 350 nL of EIAV to achieve significant transduction. The 

rapid loss of EGFP expression in the adenoviral-transduced lungs was expected due to the episomal 

location of adenoviral gene expression, the small volume of vector administered, and the rapid 

proliferation of fetal lung tissue. We confirmed that EIAV to stably integrate transgene into the host 

genome. As expected, adenoviral vector expression appeared quickly and was transient, whereas 

lentiviral vector expression was relatively delayed and persisted through the time period of this study. 

Adenoviral would be the most appropriate vector to use when the goal is to induce rapid and 

transient overexpression of a gene in this model, whereas, lentivirus would be a more suitable vector 

to induce sustained and long-term gene expression.  

Interestingly, both viral vectors efficiently transduced the interstitial compartment of developing lung, 

Unexpectedly, in contrast to intra-amniotic injections, both vectors selectively transduced interstitial 

cells and not alveolar or airway epithelial cells, or vascular endothelial cells. There was no 

expression of reporter gene in the surface epithelium of airways or in the vascular endothelium. We 

were not able to definitively identify the cells in this study owing to a lack of specific markers for cell 

types in the interstitium. Although we suspected that the cells were mesenchymal in origin, they do 

not stain with vimentin, a common mesenchymal and fibroblast marker. Attempts to colocalize EGFP 

staining with SP-B, a surfactant protein expressed in type II pneumocytes, confirmed that the 

transduced cells were not epithelial, and that they were located within the interstitial compartment of 

the lung. This is in distinct contrast to the epithelial restricted expression seen with intra-amniotic 

vector injections. Although the obvious explanation is the route of injection, in the two previous 
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studies of direct lung transduction in primates using human immunodeficiency virus-1 lentiviral 

vectors, only epithelial expression was described, so this appears to be a model-dependent 

observation. At the time of publication, this was the first observation of this pattern of parenchymal 

expression with any reports of prenatal lung gene transfer. Recently, Cohen and coworkers [Cohen 

JC, et al. 2008] were able to induce the expression of reporter gene in parenchymal cells 

surrounding small airways, following intraamniotic administration of adenoviral vector in mouse 

fetuses at E16. The adenoviral vectors contained full-length CFTR, a short anti-sense CFTR gene 

fragment, or a reporter gene as control were used in an intraamniotic gene therapy procedure to 

transiently modify CFTR expression in the fetal lung. The modulation of gene expression of lung 

parenchymal cells is, in this case, related with the use of BAT-gal transgenic reporter mouse line, 

expressing β-galactosidase under a canonical Wnt/β-catenin-responsive promoter. The observation 

of transduction of distinct cell populations within the lung with different routes of transduction raises 

the possibility of manipulating gene expression in specific and separate cell populations within the 

developing lung. This may have interesting applications toward understanding mesenchymal 

epithelial inductive interactions during the pseudoglandular phase of lung development.  

The ability to achieve gene transfer by direct intrapulmonary injection in a rat model provides a novel 

tool for the exploration of potential therapeutic strategies for lung disorders and for biological studies 

examining the effects of specific genes on lung development. Obvious advantages of this technique 

include ease of manipulation, minimal expense, and, if translatable to the mouse, the availability of 

well-characterized murine models of human lung diseases [Boyd RL, et al. 1984; Muller RM, et al. 

1985; Tenbrinck R, et al. 1990].  

 

 

The established model of intrapulmonary in utero gene transfer would constitute an important tool in 

pursuing the studies of the mechanisms related to lung development in normal and hypoplastic 

lungs. We aimed to modulate lung development acting upon key players envisaging a potential 

induction of growth in hypoplastic lungs and/or maturation in abnormally immature lungs.  

After long time, our lab has focused our research on the pathophysiology and development of 

potential prenatal therapeutics for CDH. The possibility to revert fetal lung hypoplasia, one of the 

major causes of mortality in CDH infants, by prenatal gene transfer, was appealing. Bearing that in 
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mind, we considered that rapid, high-level of expression of the transgene was preferable whether 

sustained long-term expression was not required. Therefore, we pursue our studies with modulation 

of lung development by intrapulmonary adenovirus-mediated gene transfer, as described in chapter 

3. 

After an extensive review of the main factors involved in the branching process and those implicated 

in CDH, we selected two strong candidates for transgene: FGF10 and TTF1. FGF10 null mice lack of 

lung development and die after birth [Sekine K, et al. 1999] and TTF-1 null mice have disruption in 

lung branching morphogenesis and also present a perinatal lethal phenotype [Kimura, et al. 1996]. In 

addition, both factors are reduced in experimental CDH [Chinoy MR, et al. 2001; Teramoto H, et al. 

2003]. Also, Acosta and collaborators, using lung explants from animals exposed to nitrofen, 

demonstrated that this toxic induced an almost complete arrest of lung budding in the left lung and 

significantly decreased branching in the right lung [Acosta JM, et al. 2001]. Exogenous FGF-10 

produced a significant lung growth by stimulating lung branching morphogenesis in both control and 

nitrofen exposed lungs in culture. Gains in branching with FGF-10 after nitrofen exposure were very 

impressive with the right lung restored to the same number of branches as the wild-type lungs grown 

without the benefit of FGF-10, whereas the number of branches in the left lung increased by 77% 

[Acosta JM, et al. 2001]. Besides these evidences about the potent role that FGF10 has in lung 

growth another theoretical advantage of FGF10 as compared to TTF-1 is that the former can induce 

directly cellular growth, whereas the latter need to bind to a promoter region and activate its target 

gene. Therefore, we decided to construct an adenoviral vector with FGF10 as the transgene and to 

analyze the effects of FGF10 transient overexpression by fetal lung gene transfer during the 

pseudoglandular stage. 

FGF10 overexpression from the mesenchyme was focally and transiently induced at different 

locations and developmental stages in the fetal rat lung using our method of intraparenchymal gene 

transfer. In the area of forced FGF10 expression, pulmonary morphogenesis was markedly 

perturbed with the very rapid appearance of localized cystic lung malformations. The type of 

malformation observed was developmental stage and location dependent, with the spectrum ranging 

from macrocystic malformations lined by predominantly bronchial epithelium, to focal microcystic 

malformations lined by predominantly alveolar epithelium. The malformations were detectable by 

prenatal ultrasound examination within 24 hours after vector injection, and persisted until at least 1 

week after birth. Whether examined grossly, by pre or postnatal imaging, or microscopically, the 

malformations appeared remarkably similar to the spectrum of human malformations characterized 
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as CCAM. Preliminary in vitro results, confirm that microinjection of adenoviral vector encoding 

rFGF10 induces focal cystic formations in fetal rat lung explant cultures (data not shown).    

As expected, overexpression of FGF10 in this study was focal rather than diffuse, and was 

expressed in interstitial cells rather than ectopically from respiratory epithelium. The expression 

profile of FGF10 demonstrated that there is a peak approximately 24 hours after injection with rapid 

decrease of transgene expression. Preliminary results of in vitro study showed that fetal rat lung 

explants injected with Ad-rFGF10 exhibited an increase of phosphorylated ERK1/2, whereas no 

differences were observed in p38, Akt and Src phosphorylation, when compared with PBS injected 

explants. These data confirm the involvement of ERK-MAPK pathway in the formation of FGF10-

induced cyst malformation.  

Current models in branching morphogenesis propose that FGF10 and reciprocal influences such as 

Bmp4 and Spry2 regulate lung development. Highly localized expression of fgf10 in the 

mesenchyme adjacent to the tip of the nascent airway stimulates proliferation and growth outward. 

FGF10 signaling induces a steady increase in Bmp4, Spry2 or other reciprocal factors in epithelial 

cells. Bmp4 and Spry2 are inhibitory to epithelial cell proliferation/movement arresting the outward 

movement of the developing airway [Mailleux AA, et al. 2001; Weaver M, et al. 2000]. The distinct 

phenotypes for cystic formations, secondary to early versus late overexpression of FGF10, can be 

interpreted. During early stages of branching morphogenesis, high levels of mesenchymal FGF10 

expression would be expected to induce a burst of proliferation and outward migration of the 

epithelium responsive to FGF10, with less proliferation at branch points where Bmp4 and other 

antagonists are expressed. Our results showed that BMP4 and for Spry2 inhibitory effect over 

FGF10 might not be effective in lungs. Thus, at the early time point, within the first 24 to 48 hours 

when FGF10 levels are high unopposed action of FGF10 allows the rapid formation of large cysts. In 

contrast, in late injected lungs, expression of these two factors increase in the epithelium 

surrounding cystic areas, leading to the formation of smaller cysts. Taking in consideration the 

spatial variable of our model: proximal versus distal injections, we suggest that, during 

pseudoglandular stage, lungs injected in the proximal airways, where fewer branch points exist, and 

high columnar epithelium predominates, unopposed FGF10 signaling would be predicted to result in 

large cysts lined by predominantly bronchial epithelium. Whereas, in distal airways, where multiple 

branch points are already present and cuboidal epithelium predominates, smaller and more 

numerous cysts would form lined by predominantly alveolar epithelium. During the canalicular stage 

of lung development only terminal branching occurs, so FGF10 overexpression might stimulate short 
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segments of responsive epithelium into small cyst and differentiated adenomas formation. Curiously, 

the binome Hoxb-FGF10 is a well established as the promoter of cystic like structure formation in the 

chick lung. Studies showed that the pattern difference between the branched airway (dorsal) and the 

air-sac (ventral cystic structure) in chick lung is due to the difference in the diffusion coefficient of 

FGF10 between these two regions [Miura T, et al. 2009], and that that the cyst-branch difference in 

this system is caused by region-specific mesenchymal properties related to Hoxb cluster nested 

gene expression [Sakiyama J, et al. 2000]. In our study, we observed rapid formation and 

persistence of the cystic lesions. These findings support the hypothesis that FGF10 is involved in the 

early inductive events in CCAM formation and that continued presence of FGF10 is not necessarily 

required in the natural evolution of CCAM malformations.  

CCAMs are relatively rare developmental abnormalities of the lung that cause significant morbidity 

and mortality in infants due to associated respiratory distress, lung hypoplasia, fetal hydrops and 

pulmonary infections. The lesions are currently described as hamartomatous lesions, i.e. normal lung 

tissues in a disorganized spatial arrangement. In these lesions, the terminal bronchioles develop a 

nonsystematic overgrowth, with a consequent suppression of alveolar growth. The result of this 

process is a multicystic mass that replaces the normal lung structure. Human CCAMs are confined to 

a single lobe and can be classified as macrocystic or microcystic [Wilson RD, et al. 2006; Laje P and 

Liechty KW 2008]. 

Interestingly, the ultrasound and MRI appearance, lobar distribution, and ultrasound classification of 

the malformations observed were strikingly similar to human CCAM. FGF10 gene transfer during the 

pseudoglandular stage resulted in macrocystic lesions by ultrasound classification that were 

confirmed by MRI evaluation at Postnatal Day 7. A completely different ultrasound pattern was 

observed when gene transfer was performed during the canalicular stage—no cysts were visualized, 

but well-defined areas of increased echogenicity could be identified. Other classification of CCAM, 

based on clinical features, macroscopic and microscopic criteria, proposed by Stocker [Stocker JT 

1994], classified CCAM into five 5 types. Depending on differences in cytodifferentiation, these five 

categories could be assembled into two major subtypes: CCAM types 1, 2, and 3, with a bronchiolar-

type epithelial differentiation; and a second subtype consisting of CCAM type 4, which has an acinar-

alveolar epithelial differentiation. Despite CCAM pathogenesis remains unknown, several authors 

have hypothesized that to originate at distinct stages of lung development the first subtype (CCAM 

types 1, 2, and 3) may develop at the pseudoglandular stage, and the second subtype (CCAM type 

4) may be due to a late event that disrupts branching of the distal acinar structures in the saccular 
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period [Morotti RA, et al. 1999]. Our results support this pathophysiologic hypothesis: 

pseudoglandular stage injections induced cysts resembling bronchiolar-type epithelial differentiation, 

whereas canalicular stage injections induced cysts resembling acinar epithelial-type differentiation of 

human CCAMs.  

Several studies, using human fetal resected CCAM tissue, tried to discern factors that could be 

responsible for this pathology. Volpe et al. demonstrated that Hoxb5, in human fetal resected CCAM 

tissue, was maintained in a higher level of expression, characteristic of early stages of lung 

development [Volpe MV, et al. 2003]. Recently, these authors have also demonstrated that specific 

cell adhesion molecules, such as -2 integrin and E-cadherin, important to lung development and 

airway morphogenesis are altered. They also suggested that CCAM pathogenesis might be 

associated with potentially altered integrin cytoplasmic signaling [Volpe MV, et al. 2009]. Fgf 7 gene 

expression or protein production was evaluated and no differences were found when compared with 

normal lungs [Cass DL, et al. 1998]. PDGF-BB gene expression and protein production were found 

to be increased [Liechty KW, et al. 1999], and glial cell–derived neurotrophic factor presented 

abnormal expression in epithelial cells lining CCAM cysts. Jancelewicz et al., analyzed gene 

expression from laser dissected epithelium and mesenchyme of human fetal and postnatal CCAM. 

They demonstrated that markers of early lung development, such as Hoxb5 and TTF1, are 

overexpressed in fetal CCAM. They also demonstrated that FGF9 was overexpressed, however a 

decrease in FGF7 and no altered expression of FGF10 and FGFR2 [Jancelewicz T, et al. 2008]. 

Besides, increased proliferation and decreased apoptosis were also verified in CCAM specimens 

[Cass DL, et al. 1998]. All these data, strongly suggest a focal arrest in lung maturation during the 

fetal period. However, these studies have a common major limitation, which is that the analysis was 

performed in CCAM specimens that were surgically resected, analysis of which is unlikely to reveal 

the initial inciting events.  Previous studies in transgenic murine models, where heterotopic 

overexpression of FGF7 [Simonet WS, et al. 1995] and FGF10 [Clark JC, et al. 2001], and orthotopic 

overexpression of FGF9 [White AC, et al. 2006] resulted in marked perturbations of lung 

morphogenesis, suggesting that these factors might be implicated in the development of 

adenomatoid malformations. Again, it is unknown whether anomalous overexpression of genes such 

as FGF9 represents causation or a global delay in differentiation. 
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In our study, we have been able to evaluate in a prospective fashion the formation of CCAM-like 

malformations in response to overexpression of FGF10 in the mesenchymal compartment of the 

developing lung. We have demonstrated that transient overexpression of a single gene in a focal 

area of the lung is sufficient to reproduce the spectrum of gross and histologic features of human 

CCAM in a rat model. The striking similarity of these lesions to those seen in human CCAM strongly 

implicates mesenchymal overexpression of FGF10 in the initial events invoking CCAM formation. 

Our data thus far support FGF10 overexpression as the most important mechanistic component of 

CCAM formation. However, the identity of the primary mesenchymal perturbation that induces 

FGF10 over-expression remains to be determined.    

We have developed a powerfull tool for lung development modulation early in gestation that 

specifically targets the mesenchymal compartment. Despite not being able to induce lung growth, we 

contribute to unveil the mechanism underlying the formation of CCAM, and possibly to establish an 

experimental animal model for this disease. The selection of other growth or transcription factors and 

the application of the intrapulmonary fetal gene transfer methodology to murine models of human 

diseases, opens the perspectives for future pre-clinical studies.      
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Main Conclusions 

 

1. We report for the first time, the feasibility of using ultrasound biomicroscopy to perform in utero 

intrapulmonary injections in rats during pseudoglandular stage of lung development. Both adenoviral 

and lentiviral vectors efficiently transduced lung parenchyma, although different expression patterns 

were observed following injection. Adenoviral vector expression was transient and started very 

quickly after its injection, whereas lentiviral vector expression was relatively delayed and persisted 

through seven days after birth, the time-point that we analyzed.  

 

2. The possibility of targeting the lung during the pseudoglandular stage may present unique 

experimental and ultimately perhaps clinical opportunities. Gene transfer during this period has the 

potential to modulate major key elements of pulmonary branching with minimal effects on immune 

responses. The ability to achieve gene transfer by direct intrapulmonary injection in a rat model 

provides a novel tool for exploration of potential therapeutic strategies for lung diseases. 

 

3. Pulmonary interstitial cells, rather than alveolar or airway epithelial cells, or vascular endothelial 

cells, were selectively transduced both by adenoviral and lentiviral vectors. This was the first 

observation of this pattern of parenchymal expression following prenatal lung gene transfer. The 

ability to target mesenchymal compartment raises the possibility to modulate mesenchymal-factors 

involved in  lung development with a more discrete and physiological approach.   

 

4. FGF10 over-expression in the lung mesenchyme during pseudoglandular stage by 

intraparenchymal gene transfer did not induced lung growth. Instead, there was a disturbance of 

pulmonary morphogenesis with appearance of localized cystic lung malformations. The type of 

malformation observed was developmental stage and location dependent, with the spectrum ranging 

from macrocystic malformations lined by predominantly bronchial epithelium, to microcystic 

malformations lined by predominantly alveolar epithelium.  

 

5. We have demonstrated prospectively that transient over-expression of a single gene in a focal 

area of the lung is sufficient to reproduce the spectrum of gross and histological features of human 

CCAM in a rat model. The striking similarity of these lesions to those seen in human CCAM strongly 

implicates mesenchymal over-expression of FGF10 in the initial events invoking CCAM formation.  
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