
Universidade do Minho
Escola de Engenharia

Marco António de Castro Barbosa

Specification and Refinement
of Software Connectors

Julho de 2009

U
M

in
ho

|2
00

9
M

ar
co

 A
nt

ón
io

 d
e

C
as

tr
o

B
ar

bo
sa

S
p

e
c
if

ic
a

ti
o

n
 a

n
d

 R
e

fi
n

e
m

e
n

t
 o

f
S

o
ft

w
a

re
 C

o
n

n
e

c
to

rs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55610659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tese de Doutoramento em Informática
Área de Conhecimento de Fundamentos da Computação

Trabalho efectuado sob a orientação do
Professor Doutor Luís Soares Barbosa

Universidade do Minho
Escola de Engenharia

Marco António de Castro Barbosa

Specification and Refinement
of Software Connectors

Julho de 2009

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE/TRABALHO APENAS PARA EFEITOS DE

INVESTIGAÇÃO, MEDIANTE AUTORIZAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.

Universidade do Minho, ____/____/____

Contents

1 Introduction 1
1.1 Motivation, objectives and research questions 1
1.2 Thesis structure and contributions 4
1.3 Context: Components, coordination and architectures 8

1.3.1 Components . 8
1.3.2 Architectures . 10
1.3.3 Coordination . 12

1.4 Mathematical preliminaries . 15
1.4.1 Functions . 15
1.4.2 Relations . 18
1.4.3 Coalgebras . 21

2 Stateless Software Connectors 25
2.1 Synchronous stateless connectors 25
2.2 New connectors from old . 29
2.3 An example . 33
2.4 Towards a connector calculus . 35

2.4.1 The equational fragment 35
2.4.2 Connector refinement . 40

2.5 Extensions . 41
2.5.1 Time-stamped connectors 41
2.5.2 Connectors with alternative ports 42

3 Stateful Software Connectors 45
3.1 Introduction . 45
3.2 Connectors as coalgebras . 47

i

ii Contents

3.2.1 The general model . 47
3.3 Combinators . 50

3.3.1 Concurrent composition 50
3.3.2 Interleaving . 51
3.3.3 Hook . 51

3.4 Examples . 53
3.4.1 Broadcasters and Mergers 53
3.4.2 Drains . 55
3.4.3 The Dining Philosophers 56

3.5 Towards a connector’s calculus . 58
3.5.1 Bisimilarity . 58
3.5.2 Reasoning about connectors 61

3.6 Towards mobile connectors . 65
3.6.1 Behaviour and configurations 67
3.6.2 A connector for orchestration 68
3.6.3 Coordination Patterns . 70
3.6.4 An example . 71

4 Behavioural Interfaces 75
4.1 Interfaces and behaviour . 75
4.2 Revisiting process algebra . 77

4.2.1 Introduction . 77
4.2.2 Combinators . 78
4.2.3 Interaction . 80

4.3 Proofs and prototypes . 81
4.3.1 Hiding . 81
4.3.2 The expansion law . 84
4.3.3 Functional prototyping . 85

4.4 Interruption and Recovery . 86
4.4.1 Apomorphisms . 86
4.4.2 Parallel Composition with Interruption 87
4.4.3 Conditional Fusion . 89
4.4.4 A Recovery Operator . 92

4.5 Behaviour-annotated interfaces . 93

5 Context-aware Connectors and Architectural Configurations 97

Contents iii

5.1 Interfaces, connectors and configurations 97
5.2 The coordination layer . 101

5.2.1 Connectors . 101
5.2.2 New connectors from old 105

5.3 Propagation of context dependent behaviour 112
5.4 Towards a connector calculus . 115
5.5 Configurations . 120

5.5.1 Examples . 123

6 Case-study: Interactors 131
6.1 Introduction . 131
6.2 A logic for behaviour . 133

6.2.1 A modal language . 133
6.2.2 Typical properties . 136

6.3 M-interactors . 136
6.3.1 A language for M-interactors 136
6.3.2 Composing interactors . 138

6.4 The coordination layer . 139
6.4.1 Elementary connectors. 140
6.4.2 New connectors from old 141

6.5 Configurations of M-interactors 146
6.6 Concluding . 149

7 A Functional Library for Prototyping Software Connectors 151
7.1 Functional components and their interfaces 151
7.2 Connectors . 153
7.3 Combinators . 157

8 Conclusions and Future Work 161
8.1 Concluding . 161
8.2 Future work . 163
8.3 Styles and performance in software architecture 165

8.3.1 Architectural styles . 165
8.3.2 Performance in software architecture 171

iv Contents

List of Figures

2.1 The External control flow pattern. 34
2.2 A synchronization barrier . 34

3.1 The broadcaster connector. 54
3.2 The merger connector. 55
3.3 Dining Philosophers (1). 57
3.4 A Fork connector (1). 57
3.5 Dining Philosophers (2). 58
3.6 The initial configuration. 71
3.7 The final configuration. 72

5.1 An example of a configuration. 99
5.2 A merger. 110
5.3 A broadcaster. 112
5.4 Imp — An ’impossible’ connector. 117
5.5 SB — A synchronization barrier. 118
5.6 XR — The exclusive router connector. 118
5.7 An alternate merger. 121
5.8 A elementary bank system . 123
5.9 A folder from two stacks. 125
5.10 Air traffic control configuration . 127
5.11 Air traffic control configuration - connector 128

6.1 A model-based Interactor. 132
6.2 A window interactor . 138
6.3 The space interactor . 139
6.4 A classical solution . 140

v

vi List of Figures

6.5 A merger: only aw ∨ [b]only w,∼b. 143
6.6 A broadcaster and a detached channel. 144
6.7 An example of hook usage. 146
6.8 A coordination-based solution. 147
6.9 An alternate merger. 148

8.1 Pipes and Filter . 166
8.2 Abstract Data Types and Objects 167
8.3 Layered Systems . 168
8.4 Blackboard . 169
8.5 Interpreter . 170

Abstract

Modern computer based systems are essentially based on the cooperation of
distributed, heterogeneous component organized into open software architectures
that, moreover, can survive in loosely-coupled environments and be easily adapted
to changing application requirements. Such is the case, for example, of applica-
tions designed to take advantage of the increased computational power provided
by massively parallel systems or of the whole business of Internet-based software
development.

In order to develop such systems in a systematic way, the focus in development
method has switched, along the last decade, from functional to structural issues:
both data and processes are encapsulated into software units which are connected
into large systems resorting, to a number of techniques intended to support reusabil-
ity and modifiability.

Actually, the complexity and ubiquity achieved by software in present times
makes it imperative, more than ever, the availability of both technologies and sound
methods to drive its development. Programming ‘in–the–large’, component–based
programming and software architecture become popular expressions which embody
this sort of concerns and correspond to driving forces in current software engineer-
ing.

In such a context this thesis aims at introducing formal models for software con-
nectors as well as the corresponding notions of equivalence and refinement upon
which calculation principles for reasoning and transforming connector-based soft-
ware architectures can be developed. This research adopts an exogenous coordina-
tion point of view in order to deal with components’ temporal and spatial decoupling
and, therefore, to provide support for looser levels of inter-component dependency.

The thesis also characterises a notion of behavioural interface for components

vii

viii List of Figures

and services. Interfaces and connectors are put together to form configurations, an
abstraction for representing software architectures.

A prototype implementation of a subset of the proposed models is provided, in
the form of a H library, as a proof of concept. Furthermore, the thesis reports
on a case study in which exogenous coordination is applied to the specification of
interactive systems.

Resumo

Um número crescente de sistemas computacionais é baseado na cooperação de
componentes interdependentes e heterogêneas, organizadas em arquiteturas abertas
capazes de sobreviverem em ambientes altamente distribuídos e facilmente adap-
táveis a alterações nos requisitos das aplicações que os suportam. Tal é o caso, por
exemplo, de aplicações que exploram o poder computacional de sistemas massiva-
mente paralelos ou de sistemas desenvolvidos sobre a Internet.

Para desenvolver este tipo de sistemas de forma sistemática, o foco nos métodos
de desenvolvimento alterou-se, ao longo da última década, dos aspectos funcionais
para os aspectos estruturais dos sistemas: ambos, estruturas de dados e processos
são encapsulados em unidades computacionais que são conectadas em grandes sis-
temas utilizando-se de diversas técnicas que se pretendem capazes de suportar a
reutilização e a adaptabilidade do software.

Na realidade, a complexidade e ubiqüidade atingidas pelo software nos dias
correntes tornam imperativo, mais do que nunca, a disponibilidade de tecnologias
e sólidos métodos para conduzir este processo de desenvolvimento. Programação
’em-grande-escala’, programação baseada em componentes e arquiteturas de soft-
ware são expressões populares que englobam esta preocupação e correspondem aos
esforços direcionados pela engenharia de software.

Em tal contexto, esta tese tem por objetivo introduzir modelos formais para
conectores de software bem como as correspondentes noções de equivalência e re-
finamento que suportem cálculos para raciocinar e transformar arquiteturas de soft-
ware baseada em conectores. Esta pesquisa adota um ponto de vista de coordenação
exógena para lidar com a separação espacial e temporal das componentes e suportar
níveis elevados de independência entre componentes.

A tese caracteriza, ainda, uma noção de interface comportamental para compo-

ix

x List of Figures

nentes e serviços. Interfaces e conectores agregam-se para formar configurações,
uma abstração introduzida para representar arquiteturas de software.

A implementação, em protótipo, de parte dos modelos propostos, sob a forma
de uma biblioteca em H, é fornecida como prova de conceito. Finalmente, a
tese percorre um estudo de caso em que coordenação exôgena é utilizada na especi-
ficação de sistemas interactivos.

Acknowledgements

First of all, I would like to thank FCT, the Portuguese Foundation for Sci-
ence and Technology by the financial support of this research under a grant nr
SFRH/BD/11083/2002.

From now on I will ask permission to the reader and shift the language from
English to Portuguese.

Quero agradecer aos maiores incentivadores desta jornada, meus pais, Raul e
Heloisa, pelo longo período de ausência física porém, nunca emocional. Vocês sem-
pre estiveram comigo e foram um importante alicerce para este projeto. Agradeço
também minhas irmãs Raquel, Luciana e Fabiana, também pelo apoio emocional e
pela torcida para que tudo desse certo.

Agradeço ao meu grande amigo Giovani Rubert Librelotto, meu companheiro
de outras jornadas acadêmicas e profissionais. Tu sabes da tua importância neste
trabalho pois foi um dos grandes responsáveis em apresentar-me o professor Luís
Barbosa e por ter dado todo o suporte quando cheguei em Portugal. Gigio, obrigado
por tudo!

No período que morei em Portugal conheci muitos pessoas que ajudaram a min-
imizar a saudade e a distância do Brasil. Alfrânio, Gustavo, Ricardo, Fábio, Thiago
e Victor. Graças a vocês, os ‘brazucas_braga’ a jornada foi ainda mais prazerosa.

Durante minha estada em Portugal juntaram-se a nós Ronnie e Ana. Sem dúvida
outros amigos importantes para este processo. Ronnie foi um grande colega de
gabinete e um grande companheiro nos cafés.

Tenho que agradecer também ao meu padrinho e amigo, Ogi Librelotto, pelo
apoio em todos os momentos, bons e ruins, sempre disposto a ouvir e dar uma
palavra de alento.

xi

xii List of Figures

Em Portugal conheci grandes pessoas, amigos muito queridos. Primeiro quero
agradecer ao David Costa, por sua amizade e acolhida a todos os brasileiros que
chegavam ao Departamento de Informática da Uminho. Agradeço também pela
ajuda ciêntifica, estava sempre disposto a auxiliar nas dúvidas que eu tinha sobre
Haskell e outros assuntos.

Agradeço ao Pedro Gabriel, pelo amizade, pelo agradável convívio no gabinete,
pelos cafés e pelos finos.

Agradeço também aos companheiros de grupo Nuno Rodrigues e Jacome Cunha.
A ajuda de vocês foi também muito importante ao longo deste trabalho.

Agradeço a equipa técnico/administrativa do DI pelo suporte e a atenção que
sempre dispendem aos alunos e professores. Vou citar o nome da Paula Anjo e do
Jaime para que estes representem o meu agradecimento a todos.

Agradeço ao Grupo LMF pelo convívio, aprendizado e pelos saborosos ‘Pure-
Cafe’s que "degustei" nestes anos de projeto.

Quero agradecer ao professor Pedro Henriques pela maneira tão acolhedora e
bondosa de receber não apenas a mim, mas todos os brasileiros não apenas no DI,
mas em sua própria casa.

Quero agradecer em especial minha namorada–noiva–esposa, Adriana. Ao longo
desta jornada, desde o primeiro contacto com o professor Luís, ela estava ao meu
lado. Mesmo sabendo que meu plano era ir viver ao longe ela apoiou me o tempo
todo. A dor da saudade do primeiro ano em Portugal reverteu-se na grande alegria
de ter você ao meu lado como esposa. Muito obrigado meu amor!

Minha estada em Portugal acabou por gerar mais que uma tese de doutorado
gerou aquela que hoje é a grande razão do meu viver, minha querida filha Júlia.

Por fim, propositadamente deixo o meu orientador, não pela ordem de importân-
cia mas por esta ser a pessoa a quem mais devo agradecimentos. Devo agradecer,
claro, por este trabalho que chega ao fim, mas não só, devo agradecer pela confiança
depositada, pela acolhida que tive de sua parte, pelo apoio que sempre deu me para
que eu pudesse crescer cientificamente. Agradeço pela amizade e atenção com que
tratou a mim e minha esposa nestes anos. Afinal, no momento que vou defender
esta tese minha esposa irá defender o mestrado que foi também possível por sua
ajuda. Professor Luís Barbosa, falar de sua capacidade docente não é necessário por
quem convive com o senhor a reconhece, quero exaltar sua capacidade humana, seu
rigor científico misturado com sua generosidade o tornam um exemplo de profes-
sor, pesquisador e ser humano, professor Luís, ao senhor o meu muito obrigado por
tudo!

Chapter 1

Introduction

Summary
This chapter provides the context for and states the problem addressed in this thesis: the
development of formal models for software connectors and the study of their properties. The
thesis structure and contributions are outlined, providing a ‘roadmap’ for the chapters to
follow.

1.1 Motivation, objectives and research questions

Continuous evolution towards very large, heterogeneous, highly dynamic comput-
ing systems requires innovative approaches to master their complexity. Complex
software systems are built by plugging components and services together which
interact by exchanging data, performing computation, and modifying their envi-
ronment. They are usually dynamic entities, running on different platforms, often
owned by different organisations, interacting through public interfaces, and typi-
cally remaining loosely coupled, if not utterly unaware of each other.

Designing such systems right is very difficult, because their complexity is be-
yond the current practical reach of formal methods. Additional difficulties arise with
third-party services, often under-specified or failing to meet their specifications.

1

2 1. Introduction

Over the last decade component-based software development [Szy98, WW99]
emerged as a promising paradigm to deal with the ever increasing need for mastering
complexity in software design, evolution and reuse. As a paradigm it retains from
object-orientation the basic principle of encapsulation of data and code, but shifts
the emphasis from (class) inheritance to (object) composition to avoid interference
between the former and encapsulation and, thus, paves the way to a development
methodology based on third-party assembly of components. This is often illus-
trated by the visual metaphor of a palette of computational units, treated as black
boxes, and a canvas into which they can be dropped. Connections are established
by drawing wires, corresponding to some sort of interfacing code.

The expression component-based programming, although it has been around
for a long time, became a buzzword in mid 1990’s (see, e.g., [ND95, Szy98]). The
basic motivation is to replace conventional programming by the composition and
configuration of reusable off–the–shelf units, often regarded as ‘abstractions with
plugs’. In this sense, a component is a ‘black-box’ entity which both provides and
requires services, encapsulated through a public interface, which may exhibit both
static and behavioural information.

In practice, however, software components do not fit together as Lego pieces.
Moreover, as important as components themselves are the ways in which they can
be put together to interact and cooperate in order to achieve some common goal.
This motivated the development of new research questions concerning component
adaptation, wrapping, composition and interaction. There is a number of answers to
such questions, often formulated from disparate point of views, either technological,
methodological or foundational. From the pragmatic, techonology-centred view,
typically reducible to the famous Woody Allen’s aphorism (the answer is yes, but
would you mind to repeat the question?), to the most hard, if not exoteric, formal
proposal, we have to recognize that component engineering is still in its infancy.
Moreover, as it happened before with object-orientation, and software engineering
in a broad sense, the paradigm has grown up to a collection of popular technologies,
methods and tools, before consensual definitions and principles (let alone formal
foundations) have been put forward.

There are essentially two ways of regarding, conceptually, component-based
software development. The most wide-spread, which underlies popular technolo-
gies like, e.g., C, DC or JB, reflects what could be called the object
orientation legacy. A component, in this sense, is essentially a collection of objects
and, therefore, component interaction is achieved by mechanisms implementing the
usual method call semantics. As F. Arbab stresses in [Arb03] this

1.1. Motivation, objectives and research questions 3

induces an asymmetric, unidirectional semantic dependency of users (of
services) on providers (...) which subverts independence of components,
contributes to the breaking of their encapsulation, and leads to a level of
inter-dependence among components that is no looser than that among
objects within a component.

An alternative point of view is inspired by research on coordination languages
[GC92, PA98] and favours strict component decoupling in order to support a looser
inter-component dependency. In this view, computation and coordination are clearly
separated, communication becomes anonymous and component interconnection is
externally controled. This model is (partially) implemented in JS on top of
J and fundamental to a number of approaches to component-based development
which identify communication by generic channels as the basic interaction mecha-
nism — see, e.g., R [Arb03] or P [NA03].

The research reported in this thesis affiliates itself in the latter point of view. Our
aim was to investigate formal models for gluing code to orchestrate components of
different origins and with different purposes.

In such a context, the concept of software connector emerged as a key one. The
expression was coined by software architects to represent the interaction patterns
among components, the latter regarded as basic computational elements or informa-
tion repositories. Actually they are even mentioned in the pioneering papers on the
then emerging Software Architecture discipline, in the early 1990’s [PW92, GS93].
A software connector aims at mediating the communication and coordination activi-
ties among components, abstracting the actual gluing code between them. Examples
range from simple channels or pipes, to event broadcasters, synchronisation barriers
or even more complex structures encoding client-server protocols or hubs between
databases and applications.

Therefore, the problem to be addressed in this PhD project became formulated
in terms of the following research questions:

• What is a software connector and how can it be formally charac-
terised in order to became an useful abstraction to reason about soft-
ware design in-the-large?

• In which ways can software connectors be composed?

• Is there an algebra of software connectors upon which to formulate
and discuss equivalence and refinement of connector-based designs?

These research questions lead to the development of an hierarchy of three mod-

4 1. Introduction

els of software connectors, progressively enriched, which constitutes the central
contributions of the thesis. In all cases, an algebra was defined and part of the un-
derlying structure studied. The mentioned hierarchy goes from purely synchronous,
stateless connectors, to stateful ones and, finally, to connectors which are contex-
t-aware in the sense of exhibiting context-dependent behaviour.

The specific contributions of the thesis are enumerated in section 1.2. After-
wards, section 1.3 covers, in some detail, its research context. Finally, a few math-
ematical notions, on functions, relations and coalgebras, are briefly reviewed in
section 1.4 for future reference.

We should not, however, end this section without making two comments which
we believe help to situate this work in its most direct influences.

A major influence of this work was the previous body of research at Minho
Formal Methods group on coalgebraic models for components and services, docu-
mented in [Bar00, BO03, Bar03, CBO05, MB05, BO06]. Initially this thesis was
thought as a follow-up of such work. Soon, however, our focus shifted from com-
ponents to connectors: instead of an algebra of components, this work centred in an
algebra of connectors, more appropriated, from our point of view, to deal correctly
with exogenous coordination problems.

In the meantime, i.e., around 2003-2004 where our work began, the R frame-
work was emerging and attracting a lot of research efforts and resources. Most of
our aims were also shared by the R community. In a sense this fact reshaped our
own work: what is presented here as the thesis outcome can very well be seen as
a specific contribution to the semantics of R-like frameworks. A distinguished
feature of the work reported here with respect to mainstream literature on R, is
our insistence on the explicit definition of combinators for composing connectors,
as a more algebraic alternative to composition based on graph transformation. On
the other hand, the quest for a semantics for connectors able to propagate context
constraints, which was for a long time a main open problem in R, was set of a
research objective for our work. Our own solution, detailed in chapter 5, was pre-
sented, even if in a partial formulation, at F’06, in Bonn, and later published
in [BB09]. In any case the influence of R and the effective contact with the R
group at CWI, Amsterdam, cannot be underestimated in the outcome of this thesis.

1.2 Thesis structure and contributions

The thesis introduces three formal models for software connectors, each one en-
dowed with a set of combinators and notions of equivalence and refinement. Con-

1.2. Thesis structure and contributions 5

nectors are intended to coordinate components or services and, therefore, the thesis
also discusses the specification of behaviour in component interfaces. Finally, com-
ponent interfaces and connectors are put together in what we called a configuration,
which amounts to an abstraction of a software architecture, and their joint behaviour
computed.

Most of the results presented were previously published in a series of scientific
publications: 3 journal papers, 2 conference papers and 3 papers in refereed work-
shops. In the sequel we sum up each chapter contribution and its association to
published papers.

Chapter 2 is based on

M. A. Barbosa and L. S. Barbosa. A relational model for com-
ponent interconnection. Journal of Universal Computer Science,
10(7):808-823, 2004.

It introduces a relational model for software connectors which do not exhibit any
form of internal memory (or local state). Therefore, a connector is modeled as a
relation between values present at its input and output ports. Of course, only simul-
taneous observation of ports is allowed. Despite this restriction in expressiveness,
the model is both simple and intuitive, and useful in a number of relevant applica-
tions. Connector equivalence and refinement correspond to relational equality and
inclusion, respectively.

Chapter 3 introduces a different model, resorting to coalgebras to model software
connectors. The chapter is based in

M. A. Barbosa and L. S. Barbosa. Specifying software connec-
tors. In K. Araki and Z. Liu, editors, 1st International Colloquium
on Theorectical Aspects of Computing (ICTAC’04), pages 53-68,
Guiyang, China. Springer Lect. Notes Comp. Sci. (3407). 2004.

The model is intended to capture software connectors whose input-output behaviour
is partially determined by a memory of past computations encoded as the connec-
tor’s state space. Therefore each connector becomes a coalgebra for a functor cap-
turing its signature of communication ports. Standard coalgebraic techniques apply;
in particular connector equivalence boils down to bisimulation. In brief this mod-
els extends the one presented in chapter 2 in exactly the same sense that transition
systems extend binary relations: coalgebras are just relations extended in time.

The chapter also discusses how some form of mobility can be expressed within
the model. It introduces a special connector, the orchestrator, whose role is to

6 1. Introduction

manage interconnection patterns that can change at run-time. A limitation of this
solution is its too operational character. This contribution was presented in

M. A. Barbosa and L. S. Barbosa. An orchestrator for dynamic
interconnection of software components. In Proc. 2nd Interna-
tional Workshop on Methods and Tools for Coordinating Concur-
rent, Distributed and Mobile Systems (MTCoord’06), volume 181
of Electronic Notes in Theoretical Computer Science, pages 49-6.
Elsevier, 2007.

Chapter 4 suspends the introduction of connector models, to shift attention to com-
ponent interfaces. Actually, making software connectors context-aware, i.e., able
to sense their environment and actuate accordingly, entails a deeper update of our
basic model. In particular it becomes necessary to endow interfaces, of both compo-
nents and connectors, with a specification of their behaviour or interaction protocol.
Process algebras are a natural candidate for such specifications. This, however,
entails the need for more generic and adaptable approaches to their design. For ex-
ample, similar combinators coexisting with different interaction disciplines may be
required. In such a context, chapter 4 pursues a research programme on a coinduc-
tive rephrasal of classic process algebra documented in [Bar01, BO02]. A particular
emphasis is put on the study of interruption combinators defined by natural co-recur-
sion. The chapter also illustrates the verification of their properties in an pointfree
reasoning style as well as their direct encoding in Haskell. Finally, behaviour-an-
notated interfaces are defined paving the way to the third connector model to be
presented in chapter 5. The idea of behavioural interfaces, in the context of this
research, was first introduced in

M. A. Barbosa, L. S. Barbosa, and J. C. Campos. Towards a coor-
dination model for interactive systems. In A. Cerone and P. Curzon,
editors, FMIS 2007: Proc. 1st Inter. Workshop in Formal Methods
for Interactive Systems, volume 347 of Electronic Notes in Theo-
retical Computer Science, pages 89-103. Elsevier, 2007.

The technical contributions of the chapter were published in

P. Ribeiro, M. A. Barbosa, and L. S. Barbosa. Generic process al-
gebra: A programming challenge. Journal of Universal Computer
Science, 12(7):922-937, 2006.

Chapter 5 is devoted to the third of the three models for software connectors dis-
cussed in the thesis. It builds on the behavioural interfaces discussed in chapter 4
and is based on

1.2. Thesis structure and contributions 7

M. A. Barbosa and L. S. Barbosa. A perspective on service orches-
tration. Science of Computer Programming, 74(9):671-687, 2009.

as a consolidation of some ideas first discussed in

M. A. Barbosa and L. S. Barbosa. Configurations of web services.
In FOCLASA’06: Proc. 5th Inter. Workshop on the Foundations of
Coordination Languages and Software Architectures, volume 175
(2) of Electronic Notes in Theoretical Computer Science, pages
39-57. Elsevier, 2006.

The model was designed to deal correctly with context dependent behaviour and
its propagation. Actually, capturing context dependent behaviour and ensuring it is
suitably propagated through complex connector networks, is a difficult problem, still
not addressed, for example, in the most popular semantics for R. A second con-
tribution of the paper is a notion of configuration, which abstracts away fragments
of a software architecture, putting together connectors and components’ interfaces.

Chapter 6 was originally thought as a case-study, but it turned out to be a little more
than that, introducing a logic for specifying connectors. It is based on

Marco A. Barbosa, L. S. Barbosa, and José C. Campos. A coor-
dination model for interactive components. In F. Arbab and M.
Sirjani, editors, Proc. of FSEN 2009, Kish, Iran. Springer Lect.
Notes Comp. Sci. (to appear), 2009.

The case study was about interactors, thought as abstract characterisations of in-
teractive components. Interactors are well-known in the area of formal modelling
techniques for interactive systems. The chapter proposes to replace traditional, hi-
erarchical, ‘tree-like’ composition of interactors in the specification of complex in-
teractive systems, by their exogenous coordination through general-purpose soft-
ware connectors which assure the flow of data and the meet of synchronisation
constraints. The chapter’s technical contribution is twofold. First a modal logic is
defined to express behavioural properties of both interactors and connectors. The
logic is new in the sense that its modalities are indexed by fragments of sets of ac-
tions to cater for action co-occurrence. Then, this logic is used in the specification
of both interactors and coordination layers which orchestrate their interconnection,
providing a case-study in the use of software connectors for program coordination.

Chapter 7 introduces a set of basic programming primitives which implement some
of the main concepts and models described in the thesis, for prototyping purposes.
Components’ interfaces and connectors are encoded in H. The former are
defined by constructing generic ports allowing anonymous communication among

8 1. Introduction

components. Although not expected to be a proof-of-concept for the models intro-
duced in the thesis, this library allows the software architect to ’play’ with connec-
tors and configurations when designing a new system.

Chapter 8, finally, concludes the thesis and enumerates a number of issues for
future work. In particular, it is suggested that the connector models proposed in
the thesis may of use to formalise software architectural patterns and styles, which
justifies a somewhat detailed review of this area as a landscape for future research.

1.3 Context: Components, coordination and architectures

The problem addressed in this thesis can be framed into three main research areas
emerging in Software Engineering: software components, software architecture and
coordination models and languages. This section provides a brief overview of such
a context.

1.3.1 Components

The 1990s have shown that object-oriented technology alone is not enough to cope
with the rapidly changing requirements of present day applications. One of the
reasons is that, although object-oriented methods encourage one to develop rather
expressive models that reflect the objects of the problem domain, this does not nec-
essarily yield software architectures that can be easily adapted to changing require-
ments. In particular, object–oriented methods do not typically lead to designs that
make a clear separation between computational and compositional aspects; this sep-
aration is, however, a hallmark of component-based systems [SN99].

Actually, component-based software development offers a plausible solution to
one of the toughest and most persistent problems in software engineering: how to
effectively maintain software systems in the face of changing and evolving require-
ments. Software systems, instead of being programmed in the conventional sense,
are constructed and configured using libraries of components. Applications can be
adapted to changing requirements by reconfiguring components, adapting existing
components, or introducing new ones. Component-based systems, achieve flexibil-
ity by clearly separating the stable of the system (components) from the specifica-
tion of their composition.

Components are black-box entities that encapsulate services behind well-de-
fined interfaces. These interfaces tend to be very restricted in nature, reflecting a
particular model of plug-compatibility supported by a component framework, rather

1.3. Context: Components, coordination and architectures 9

than being very rich and reflecting real world entities of the application domain.
Note, however, that components are not used in isolation, but according to a soft-
ware architecture [SG96] that determines the interfaces that components may have
and the rules governing their composition.

Actually, a software component provides and requires services. These services
can be seen as plugs (or, more prosaically, interfaces). The added value of com-
ponents comes from the fact that the plugs must be standardized (i.e. a component
must be designed to be composed) [ND95]. A component that is not plug-compat-
ible with anything can hardly be called a component. The plugs of a components
take many different shapes, depending on whether the component is a function, a
template, a class, a data-flow filter, a widget, an application, or a server. It is impor-
tant to note that components also require services, as this makes them individually
configurable (e.g., consider a sorting component that behaves differently given dif-
ferent containers or comparison operators [MS96]).

Still, it may be necessary to adapt the behaviour of components in order to com-
pose them. Such adaptation is needed whenever components have to be used into
systems that they have not been designed for. Adaptations of this kind, however,
are often nontrivial (if not impossible) and considerable glue code may be needed
to reuse components coming from different frameworks [GAO95]. In general glue
code is rather application specific and cannot to be reused in different settings, un-
less well-understood glue abstractions can be used.

Component-based software development is always driven by an underlying com-
ponent framework. A component framework offers a predefined set of reusable and
plug-compatible components and defines a set of rules specifying how components
can be instantiated, adapted, and composed. Component-based software develop-
ment has the advantage that applications do not have to be developed from scratch:
new systems can benefit from well-understood properties and important design de-
cisions of previous systems, leading to increased flexibility and adaptability during
maintenance and evolution.

Component-based applications provide added value over conventionally devel-
oped applications, since they are easier to adapt to new and/or changing require-
ments. This is the case since one can:

• configure and adapt individual components;

• unplug components and plug in others;

• reconfigure the connections between sets of components at a high level of
abstractions;

10 1. Introduction

• define new plug-compatible components from either existing components or
from scratch;

• take legacy components and adapt them to make them plug-compatible, and

• treat a composition of components as a component itself.

In programming practice, components come often associated to some form of
scripting languages [NTdMS91]. Whereas conventional programming languages
are perfectly suitable for implementing software components, scripting languages
are designed for configuring and connecting components. The use of scripting lan-
guages encourages the development of reusable components highly focused on the
solution of particular problems, and the assembly of these components by means of
scripts. A script specifies how components are plugged together. It may be seen like
the script that tells actors how to play various roles in a theatrical piece. The essence
of a true scripting language will also let we treat a script as a component: a Unix
shell script, for example, can be used as a Unix command within other scripts. Ac-
tually, a script makes architectures explicit by exposing exactly how the components
are connected.

1.3.2 Architectures

Components are by definition elements of a component framework or architecture:
they adhere to a particular architectural style that defines the plugs, the connectors,
and the corresponding composition rules. A component framework is a collection
of software components and architectural styles that determines the interfaces that
components may have and the rules governing their composition. In contrast to an
object-oriented framework where an application is generally by subclassing frame-
work classes that respond to specific application requirements, a component frame-
work primarily focuses on object and class (i.e., component) composition. A con-
nector is the wiring mechanism used to plug components together [SG96]. Again,
depending on the kind of components they deal with, connectors may or may not
be present at run-time: contrast, for example, C++ template compositional to Unix
pipes and filters.

Software architecture emerged as a proper discipline[PW92, GS93, AG97, Gar03,
BCK03] in Software Engineering, from the need to explicitly consider, in the de-
velopment of increasingly bigger and more complex systems the effects, problems
and opportunities of the system’s overall structure, organisation and emergent be-
haviour. In a broad definition, the architecture of a system describes its fundamental
organisation, which illuminates the top level design decisions, namely

1.3. Context: Components, coordination and architectures 11

• how is it composed and of which interacting parts?

• which are the interactions and communication patterns present?

• which are the key properties of parts the overall system rely and/or enforce?

As a model it acts as an abstraction of a system that surpresses details of ele-
ments that do not affect how they use, are used by, relate to or interact with other
elements. Therefore it focus on the structural elements and their interfaces by which
a system is composed, their separate and joint behaviour as specified in collabora-
tions among those elements, and finally the composition of these structural and
behavioral elements into larger subsystems. According to norm ANSI/IEEE Std
1471-2000, which is part of a on-going standardisation effort, it describes the fun-
damental organisation of a system, embodied in its components, their relationships
to each other and the environment, and the principles governing its design and evo-
lution.

The primary focus of software architectures is the identification of components
that are necessary for the architecture, design, and implementation of a system. The
importance of software architectures in the software life-cycle is often understi-
mated. Having reusable architectural styles is a precondition of successfully devel-
oping reusable components and frameworks [BCK03] and, therefore, for building
component-based applications.

Architectural description languages (ADL) are intended to specify and reason
about architectural styles [SG96]. An ADL is a notation that allows for a precise
description of the externally visible properties of a software architecture, support-
ing different architectural styles at different levels of abstraction. Externally visi-
ble properties refer to those assumptions other components can make of a compo-
nent, such as its provided services, performance characteristics, error handling, and
shared resource usage.

More will be said, by the end of this thesis, on architectural styles, as a challenge
for extended application of some of our results. For the moment, however, consider,
as an illustration, a very elementary example of an architectural design, well-known
of all programmers. The example is the following UNIX shell script which reverses
the lines of a 7-bit character input stream:

cat -n | sort -r -n | cut -b8-

Analyzing this shell script, we can immediately identify components and con-
nectors as well as the underlying architecture: the script consists of:

12 1. Introduction

1. a data source (i.e., the standard input stream of cat);

2. three components (the UNIX processes cat, sort, and cut;

3. two connectors (i.e character streams); and

4. a data sink (the standard output of cut).

The components and the character streams of the script form a pipeline, where
each component only depends on the output of its predecessor. Since all shell scripts
fulfill similar restrictions, they all share a similar overall structure. They conform to
a pipe and filter architectural style [SG96].

1.3.3 Coordination

A new class of formalisms has recently evolved for describing concurrent and dis-
tributed computations based on the concept of coordination. In a sense, coordination
can be considered as the scripting of concurrent and distributed components.

the coordination paradigm [JMA96, Arb98], claiming for a strict separation be-
tween effective computation and its control, appeared as a solution to the problem
of managing interaction among concurrent activities in a system. emerged from
the need to exploit the full potential of massively parallel systems which requires
models able to deal, in an explicit way, with the concurrency of cooperation among
very large number of heterogeneous, autonomous and loosely-coupled components.
Coordination models [GC92, PA98, Arb03] make a clear distinction between such
components and their interactions and focus on their joint emergent behaviour.

Traditionally, coordination models and languages have evolved around the no-
tion of a shared dataspace — a memory abstraction accessible, for data exchang-
ing, to all processes cooperating towards the achievement of a common goal. The
first coordination language to introduce such a notion was Linda [ACG86]; many
related models evolved later around similar notions [JMA96, BCG97]. The under-
lying model was data-driven, in the sense that processes can actually examine the
nature of the exchanged data and act accordingly.

An alternative family of models, called event-driven or control-driven, more
suitable to systems whose components interact with each other by posting and re-
ceiving events, the presence of which triggers some activity. A pioneer model in this
family is M [AHS93], which implements the I model [Arb96]. Contrary
to the case of the data-driven family where coordinators directly handle data values,
in these models processes are regarded as black boxes and communicate with their

1.3. Context: Components, coordination and architectures 13

environment by means of clearly defined interfaces (often referred to as input or
output ports).

Let us briefly review some popular coordination paradigms, within the family of
control-driven models. The choice is justified by the emphasis placed in this thesis:
as mentioned above, this research affiliates itself in overall approach of which R
is the landmark representative.

• P [ALSN01] is a language which applies the paradigm “Applications
= Components + Scripts”. P models components and compositional
abstractions by means of communicating concurrent agents. Flexibility, ex-
tensibility, and robustness are obtained by modeling both interfaces of com-
ponents and the contexts they live in by “forms”, a special notion of exten-
sible records. The main language element in P is a so-called form ex-
pressions that represents a unified concept of both π–agents and π-forms. In
fact, forms expressions are sequences of form terms (e.g, synchronous and
asynchronous functions calls, binding extensions). Using form expressions,
P programs or scripts can be defined without using that low-level prim-
itives of the underlying in π-calculus. The parallel composition operator, for
example, is modeled by asynchronous function calls whereas the rendezvous
of input – and output – prefixes is achieved by a synchronous function call.
P has a syntax similar to that of P and H.

• I [Arb96] is a communication model that avoids the shortcomings of a
typical message passing model and can be used in a paradigm to construct
complex cooperation protocols. The basic concepts in the I model are
processes, events, ports, and channels. A process is a black box with well
defined connection ports through which it exchanges units of information
with the other processes in the environment. A port is a named opening
in the bounding walls of a process through which units of information are
exchanged using standard I/O type primitives analogous to read and write.
Without loose of generality, we assume that each port is used for exchange
of information in only one direction: either into (input port) or onto of (out-
put port) a process. It is used the notation p.i to refer to the port i of the
process instance p. The interconnections between the ports of processes are
made through channels. A channel connects a (port of a) producer (process)
to a (port of a) consumer (process). The notation p.i→ q.i denotes a channel
connecting the port o of the producer process p to the port i of the consumer
process q.

• M [AHS93] is a coordination language based on the I model. It is
a language whose sole purpose is to manage complex interconnections among

14 1. Introduction

independent, concurrent processes. The basic components in the M
model of computation are processes, events, ports, and streams. A process is a
black box with level well defined connection ports through which it exchanges
units of information with the other processes int its environment. The internal
operation of some of these black boxes are indeed written int the M
language, which makes it possible to open them up, and describe their internal
behavior using the M model. These processes are called manifolds.
Other processes may in reality be pieces of hardware, programs written in
other programming languages, or human beings. These processes are called
atomic processes in M.

• R (Pεω) [Arb03, Arb04] is a paradigm for composition of software com-
ponents based on the notion of mobile channels. It is a channel-based exoge-
nous coordination model wherein complex coordinators, called connectors,
are compositionally built out of simples ones. The simplest connectors in
Reo are a set of channels with well-defined behavior supplied by users. R
can be used as a language for coordination of concurrent processes, or as a
“glue language” for compositional construction of connectors that orchestrate
component instances in a component-based systems. The emphasis in R is
on connectors and their composition only, not on the entities that connect
to, communicate and cooperate through these connectors. Each connector in
R imposes a specific coordination pattern on the entities (e.g., components)
that perform I/O operations through that connector, without assuming any the
knowledge of these entities.

The purpose of a coordination model is similar to that of software architectures:
making a clear separation between computational elements and their relationships
by proving abstractions for controlling synchronization, communication, creation
and termination of concurrent and distributed computational activities [Arb96] .
One can also consider coordination as the scripting of concurrent and distributed
components.

For the last 15 years, the emergence of massive concurrent, heterogeneous sys-
tems and the growing complexity of interaction protocols has brought coordination
to a central place in software development. Such development contributed to broad-
ening its scope of application and entailed the development of a number of specific
models, languages and semantics. Coordination languages have been applied in
several contexts. For example, to the parallelization of computation intensive se-
quential programs in the fields of simulation of Fluid Dynamics systems, matching
of DNA strings, molecular synthesis, parallel and distributed simulation, monitor-
ing of medical data, computer graphics, analysis of financial data integrated into

1.4. Mathematical preliminaries 15

decision support systems, and game playing (chess). See ([AHDLM96], [CH96],
[GM97]) for some concrete examples.

1.4 Mathematical preliminaries

This section reviews a number of mathematical concepts and notation used in the
thesis. It is not exhaustive and can be easily skipped on first reading. The section
is organised into three parts: on pointfree functional notation, the calculus of bi-
nary relations and coalgebra. Reference [BM97] is an excellent textbook for the
categorical-inspired calculi of both functions and relations. An alternative refer-
ence for the latter is [BH93]. Note that, due to its ability to represent partiality and
nondeterminacy, the relational calculus, specially in its pointfree style, has been ex-
tensively used in Computer Science. Reference [Fok92a] is mandatory reading on
the envisaged calculational style.

Several phenomena in computing are hardly definable (or even simply not de-
finable) as algebras, i.e., in terms of a complete set of constructors. For example,
processes, transition systems, objects, stream-like structures used in lazy program-
ming languages, ‘infinite’ or non well-founded objects arising in semantics, and so
on. Such ‘systems’ are inherently dynamic, do possess an observable behaviour,
but their internal configurations remain hidden and have therefore to be identified if
not distinguishable by observation. Furthermore, the formalisation of the possibly
infinite behaviour they may exhibit requires infinite structures, whereas elements of
an initial algebra are always finite. Coalgebraic structures seem appropriate to deal
with such issues. References [Rut00] and [Jac02] are excellent introductions to the
topic.

From the point of view of a Computer scientist, it is remarkable that the basic
properties captured in the categorical framework [Mac71, AHS90, McL92] — such
as universality, functoriality and naturality — can be phrased in a ‘calculational’
style. This means that such properties can be formulated as (usually equational)
laws and used to manipulate and reason about objects and arrows of the underlying
category. Such a ‘calculational’ style matches nicely a main concern in computer
science — the seek for program calculi able to promote programming to a modern
engineering discipline.

1.4.1 Functions

In the sequel, as an illustration of the pointfree functional calculus, the product and
coproduct constructions are recalled and some associated laws that turn out to be

16 1. Introduction

most useful in calculation. Product and coproduct are the categorical generalisation
of Cartesian product and disjoint union in an universe of sets. In a sense, they
capture the duality between co-occurrence and choice, which may explain their
major role in modelling computational systems.

Products& Splits. Functions with a common domain can be glued through a split
〈 f , g〉 as shown in the following diagram:

Z
f

||yy
yy

yy
yy

y
g

""EE
EE

EE
EE

E

〈 f ,g〉
��

A A × Bπ1
oo

π2
// B

which defines the product of two sets by the following universal property:

k = 〈 f , g〉 ≡ π1 · k = f ∧ π2 · k = g (1.1)

from which the following properties can be derived:

〈π1, π2〉 = idA×B (1.2)

π1 · 〈 f , g〉 = f , π2 · 〈 f , g〉 = g (1.3)

〈g, h〉 · f = 〈g · f , h · f 〉 (1.4)

(i × j) · 〈g, h〉 = 〈i · g, j · h〉 (1.5)

known respectively as × reflection, cancelation, fusion and absorption laws. Simi-
larly arises structural equality:

〈 f , g〉 = 〈k, h〉 ≡ f = k ∧ g = h (1.6)

Finally note that the product construction is functorial:

f × g = λ 〈a, b〉 . 〈 f a, g b〉 (1.7)

Sums & Eithers. Dually, functions sharing the same codomain may be glued to-
gether through an either combinator, expressing alternative behaviours, and intro-
duced as the universal arrow in a datatype sum construction. A + B is defined as the
target of two arrows ι1 : A −→ A + B and ι2 : B −→ A + B, called the injections,
which satisfy the following universal property: for any other set Z and functions
f : A −→ Z and g : B −→ Z, there is a unique arrow [f , g] : A + B −→ Z, usually
called the either (or case) of f and g, that makes the following diagram to commute:

1.4. Mathematical preliminaries 17

A
ι1 //

f ""EE
EE

EE
EE

E A + B

[f ,g]
��

B
ι2oo

g
||yy

yy
yy

yy
y

Z
Again this universal property can be written as

k = [f , g] ≡ k · ι1 = f ∧ k · ι2 = g (1.8)

from which one infers correspondent cancelation, reflection and fusion results:

[f , g] · ι1 = f , [f , g] · ι2 = g (1.9)

[ι1, ι2] = idX+Y (1.10)

f · [g, h] = [f · g, f · h] (1.11)

Products and sums interact through the following exchange law

[〈 f , g〉, 〈 f ′, g′〉] = 〈[f , f ′], [g, g′]〉 (1.12)

provable by either product (1.1) or sum (1.8) universality. The sum combinator also
applies to functions yielding

f + g : A + B −→ A′ + B′ (1.13)

defined as [ι1 · f , ι2 · g].

Conditional expressions are modelled by coproducts. In this paper we adopt
the McCarthy conditional constructor written as (p → f , g), where p : A −→ 2
is a predicate. Intuitively, (p → f , g) reduces to f if p evaluates to true and to g
otherwise. The conditional construct is defined as

(p → f , g) = [f , g] · p?

where p? : A −→ A + A is determined by predicate p as follows

p? = A
〈id,p〉 // A × (1 + 1) dl // A × 1 + A × 1

π1+π1 // A + A

where dl is the distributivity isomorphism. The following laws are usefull to calcu-
late with conditionals [Gib97].

h · (p → f , g) = (p → h · f , h · g) (1.14)

(p → f , g) · h = (p · h → f · h, g · h) (1.15)

(p → f , g) = (p → (p → f , g), (p → f , g)) (1.16)

18 1. Introduction

1.4.2 Relations

Basics. Let R : B ←− A denote a binary relation on (source) type A and (target)
type B, and bRa stand for the representation of 〈b, a〉 ∈ R. The set of relations
from A to B is ordered by inclusion ⊆, with relation equality being established by
anti-symmetry. Fact R ⊆ S means that relation S is either more defined or less
deterministic than R, that is, for all a and b of the appropriate types, bRa→ bS a.

The algebra of relations is built on top of three basic operators: composition
(R ·S), meet (R∩S) and converse (R◦). As expected, aR◦b iff bRa, meet corresponds
to set-theorectical intersection and · generalizes functional composition: b(R · S)c
holds iff there exists some a ∈ A such that bRa ∧ aS c.

Any function f can be seen as the relation given by its graph, which, in this
paper, is also denoted by f . Therefore b f a ≡ b = f a. In this setting functions
enjoy a number of properties of which the following is singled out by its role in the
pointwise to pointfree conversion:

b (f ◦ · R · g) a ≡ (f b) R (ga) (1.17)

Conversely, any relation R : B ←− A can be uniquely transposed into a set-valued
function ΛR : PB ←− A, where the transpose operator Λ satisfies the following
universal property:

f = ΛR ≡ (bRa ≡ b ∈ (f a)) (1.18)

The interplay between functions and relations is also captured by the so-called
shunting laws [BH93], of which the following is an example:

f · R ⊆ S · g ≡ R ⊆ f ◦ · S · g (1.19)

Special relations on A × B include the bottom and top relations:

⊥ ⊆ R ⊆ >

where B oo > A is the largest relation of its type (universal relation) and B oo ⊥ A
is the smallest relation of this type (empty relation).

An order (or endo–relation) A oo R
A is:

• reflexive: iff idA ⊆ R

• coreflexive: iff R ⊆ idA

1.4. Mathematical preliminaries 19

• transitive: iff R · R◦ ⊆ idA

• anty-symmetric: iff R ⊆ R◦(≡ R = R◦)

• connected: iff R ∪ R◦ = >

A relation is an equivalence relation if it is reflexive, symmetric and transitive
and a relation is a preorder if it is transitive and reflexive. The combination of a
set S and a binary relation on S that is a preorder is called a preordered set. When
a relation is transitive, reflexive and anti-symmetric it is called a partial ordering.
The combination of the set S and a partial ordering on the set is called a partially
ordered set, or a poset for short. A relation R is a total ordering if it is a partial
ordering and, fora all x and y, either xRy and yRx.

Many useful properties of relations have simple relation–algebraic formulations.

In particular, a relation B oo R
A is called entire (or total) if:

R is entire ≡ idA ⊆ R◦ · R (1.20)

and is called simple (or functional) if:

R is simple ≡ R · R◦ ⊆ idB (1.21)

Relation R◦ · R is called the kernel of R; similarly, R · R◦ is called its image:

ker R , R◦ · R

img R , R · R◦

Therefore,

R is entire ≡ idA ⊆ ker R (1.22)

R is simple ≡ img R ⊆ idB (1.23)

Simple relations are also called partial functions. Relations may also be surjec-
tive or injective:

R is surjective iff R◦ is entire (1.24)

R is injective iff R◦ is simple (1.25)

As usual, a relation R is bijective iff it is injective and surjective. Moreover,

R is entire and injective ≡ ker R = id (1.26)

R is simple and surjective ≡ img R = id (1.27)

20 1. Introduction

The domain of a relation R is the set denoted by dom R and the range of a
relation R is the set denoted by rng R. Formally,

dom R = idA ∩ ker R (1.28)

rng R = idB ∩ img R (1.29)

Other properties include,
Identity:

R · id = R = id · R (1.30)

Empty relation:

R · ⊥ = ⊥ = ⊥ · R (1.31)

Universal relations:

R · > = > = > · R (1.32)

Associativity:

R · (S · T) = (R · S) · T (1.33)

The category of sets and binary relations is denoted by Rel. References [BM97]
and, mainly, [BH93], provide a detailed account of the calculus of binary relations,
in a pointfree calculational style.

Galois connections. Several constructions in the relational calculus emerge as
Galois connections [Bac02], C a C′. Such is the case, for example, of the left and
right division operators given, respectively by

·R a /R and R· a R\

A lot of properties about relations are related with Galois connections. A Ga-
lois connection involves two preordered sets (A,≤) and (B,�) and two functions,
F ∈ A ← B and G ∈ B ← A. These four components together form a Galois
connection iff for all x ∈ B and y ∈ A the following holds

F · x ≤ y ≡ x � G · y (1.34)

The theory of Galois connections can entirely be developed for preordered sets,
although it is occasionally simpler to assume a partial ordering.

1.4. Mathematical preliminaries 21

1.4.3 Coalgebras

Coalgebras and infinite behaviours. In the semantics of programming, finite
data types such as finite lists, have traditionally been modelled by initial algebras.
Later the dual structure of final coalgebras [Rut00, Jac02] were introduced to deal
with infinite data types, transition systems, automata, and several phenomena in
computing which are hardly definable (or even simply not definable) as algebras,
i.e., in terms of a complete set of constructors.

Although previously known in Universal Algebra, coalgebras began to be seri-
ously considered only after the categorical account of both algebraic and coalgebraic
structures of a type T (i.e., for an endofunctor T in an arbitrary category) has pro-
vided the right generic framework in which several phenomena and theories fit. The
systematic study of their theory, essentially along the lines of Universal Algebra,
was initiated by J. Rutten in [Rut00]. Reference [JR97] provides an introductory
tutorial. The relevance of coalgebraic concepts and tools was first recognised in
programming semantics — see, for example, P. Aczel foundational work on ‘non
well-founded sets’ and the semantics of processes [Acz88, Acz93]; H. Reichel char-
acterisation of behavioural satisfaction [Rei81] and J. Rutten, G. Plotkin and D. Turi
work on final semantics [RT94, Tur96, TP97].

The notion of coalgebras is general enough to cover many types of systems
and is specific enough to allow for quite a number of interesting results. They are
typically used to describe state-based dynamical systems, where the state space (set
of states) of the system is considered as a black box, and nothing is known about the
way the observable behaviour is realised. Such ‘systems’ are inherently dynamic,
do possess an observable behaviour, but their internal configurations remain hidden
and have therefore to be identified if not distinguishable by observation.

While data entities in an algebra are built by constructors and considered to be
different if differently constructed, coalgebras deal with entities which are observed,
or decomposed, by observers (or ‘destructors’). Any two internal configurations are
identified if they cannot be distinguished by observation. Given an endofunctor F, a
F-coalgebra is a map p : U −→ F U which may be thought of as a transition struc-
ture, of shape F, on object U, usually referred to as its carrier or state space. The
shape of F describes not only the way the state is (partially) accessed, through ob-
servers, but also how it evolves, through actions. F specifies a signature of actions
and observers over a carrier but it omits its constructors. As a consequence equal-
ity has to be replaced by bisimilarity (i.e., equality with respect to the observation
structure provided by F) and coinduction replaces induction as a proof principle.

The dual concept to initial algebra is that of final coalgebra. For a given F,
it consists of all possible behaviours up to bisimilarity, in the same sense that an

22 1. Introduction

initial algebra collects all terms up to isomorphism. It is also a (greatest) fixpoint of
a functor equation and provides a suitable universe for reasoning about behavioural
issues. In this context, final coalgebras are called coinductive or left datatypes in
[Hag87b] or [CS92], codatatypes in [Kie98b, Kie98a], final systems in [Rut00] or
object types in [Jac96].

Morphisms and bissimulation. Let (S , αS) and (T, αT) be two F-coalgebras,
where F is an arbitrary functor. A function f : S → T is a homomorphism of
F-coalgebras, or F-homomorphism, if F(f) · αs = αT · f . Pictorially,

S
f //

αS

��

T

αT

��
F(S)

F(f)
// F(T)

Intuitively, homomorphisms are functions that preserve and reflect F-transition
structures. The identity function on an F-coalgebra (S , αs) is always a homomor-
phism, and the composition of two homomorphisms is again a homomorphism.
Thus the collection of all F-coalgebras and corresponding homomorphisms forms a
category, which is denoted by S etF .

An F-homomorphism f : S → T with an inverse f −1 : T → S which is also
a homomorphism is called an isomorphism between S and T . As usual, S � T
means that there exists an isomorphism between S and T . An injective homomor-
phism is called monomorphism. Dually, a surjective homomorphism is called epi-
morphism. Given systems S and T , we say that S can be embedded into T if there
is a monomorphism from S to T . If there exists an epimorphism form S to T , T is
called a homomorphic image of S . In that case, T is also called a quotient of S .

A bisimulation between two systems is intuitively, a transition structure respect-
ing relation between sets os states. Formally, it is defined, for an arbitrary Set func-
tor F as follows:

Let (S , αS) and (T, αT) be F-coalgebras. A subset R ⊆ S × T of the Cartesian
product of S and T is called an F-bisimulation between S and T if there exists an
F-transition structure αR : R → F(R) such that the projections form R to S and T
are F-homomorphisms.

1.4. Mathematical preliminaries 23

Pictorially,

S

αS

��

R
π1oo π2 //

αR

��

T

αT

��
F(S) F(R)

F(π1)
oo

F(π2)
// F(T)

We also say, making explicit reference to the transition structures, that (R, αR)
is a bisimulation between (S , αS) and (T, αT). If (T, αT) = (S , αS) then (R, αR) is
called a bisimulation on (S , αS). A bisimulation equivalence is a bisimulation which
is also an equivalence relation. Two states s and t are called bisimilar if there exists
a bisimulation R with 〈s, t〉 ∈ R.

Coinduction. Structures which are generated by a collection of constructors, like
natural numbers (generated by zero and the successor function) or finite lists or
trees, are classified as algebraic. Formally they are initial algebras. Induction is
used both as a definition principle, and as a proof principle for such structures. Their
duals are the coalgebraic structures, which do not come equipped with constructor
operations but with what are sometimes called “destructor” operations (also called
observers, accessors, transition maps, or mutators). [JR97]

Spaces of infinite data (including, for example, infinite lists, and non-well-
founded sets) are generally of this kind. In general, dynamical systems with hid-
den, black-box state space, to which a user only has limited access via specified
(observer or mutator) operations, are coalgebras of some kind. In the coalgebraic
context coinduction is the appropriate technique both as a definition principle and as
a proof principle. Proofs by coinduction equivales to finding an appropriate bisim-
ulation relating the terms under consideration.

Consider, for example, functor T X = A×X, where A is a fixed set. A coalgebra
U → T U consists of two functions U → A and U → U, called value : U → A
and next : U → U. Given an element u ∈ U, we can either

1. produce an element in A, namely value(u);

2. produce a next element in U, namely next(u).

Steps 1. and 2. can be repeated, starting from any other element in U, namely
next(u). By proceeding in this way we can get for each element u ∈ U an infi-
nite sequence (α1, α2, ...) ∈ AN of elements of αi = value(next(n)(u)) ∈ A. This
sequence of elements that u gives rise to is what we can observe about u. Two el-
ements u1 and u2 ∈ U may well give rise to the same sequence of elements of A,

24 1. Introduction

without actually being equal as elements of U. In such a case one calls u1 and u2
observationally indistinguishable, or bisimilar.

The study of a broad notion of abstract data type, in the initial algebraic and
final coalgebraic trends, dates back to the A group in the 1970’s and later to T.
Hagino landmark thesis [Hag87a]. As a research area it is now usually referred to
as the theory of categorical data types. Generic combinators, parametric on the
functor encoding the type signature, arise as universal arrows. They encode several
recursion patterns which depend on the shape of the structure which the algorithm
consumes, generates or, simply, ‘rests on’ (as a virtual data structure). In particular,
iteration (respectively, coiteration) is modelled by the inductive (coinductive) ex-
tension of an algebra (coalgebra), i.e., the unique arrow from (to) the initial (final)
algebra (coalgebra). Such constructions become known in the area of constructive
algoritmics [Mal90, Fok92b, BM97], as, respectively, catamorphisms and anamor-
phisms. A number of specialisations of such basic schemata have been proposed.
L. Meertens introduced paramorphisms in [Mee92] which correspond to primitive
recursion. The dual notion of apomorphism, that will be used in chapter 4, is due to
T. Uustalu and V. Vene [VU97].

Such a research area, devoted to the development of program calculi directly
based on, i.e., actually driven by, type specifications, builds upon both the gener-
icity and the calculational style entailed by category theory, the latter arising from
the fact that most categorical properties can be formulated as (usually equational)
laws. This has had a fundamental impact on algorithm derivation and transforma-
tion, mainly on the framework of functional programming. Around the end of the
eighties, the so-called Bird-Meertens formalism [Bir87, BM87], originally an equa-
tional theory of sequences which formed the basis of a calculus for transforming list
based programs, had emerged. R. Backhouse [Bac88] published on the basic role
of category-theoretic universals in programming and G. Malcolm [Mal90] made
the community aware of the foundational work of Hagino. Since then the area has
known a remarkable progress, as witnessed by the vast bibliography published on
both the theory and applications (see [BM97] as a textbook and [BJJM98] for a
tutorial introduction).

Chapter 2

Stateless Software Connectors

Summary
This chapter introduces a purely relational model for software connectors which do not
exhibit any form of internal memory (or local state). Therefore, a connector is modeled as a
relation between values present at its input and output ports. Of course, only simultaneous
observation of ports is allowed. Despite this restriction in expressiveness such connectors
are still useful in a number of relevant applications. Moreover the model is both simple
and intuitive. In particular, connector equivalence and refinement correspond to relational
equality and inclusion, respectively. The chapter is based on publication [BB04a].

2.1 Synchronous stateless connectors

Connectors have interface points, or ports, through which messages flow. Each port
has an interaction polarity (either input or output), but, in general, connectors are
blind with respect to the data values flowing through them. Consequently, let us
assume D as the generic type of such values.

Definition 2.1 (Connector) Let C be a connector with m input and n output ports.
Its semantics is given by a relation

[[C]] : Dn ←− Dm (2.1)

We start by defining a number a number of basic connectors.

25

26 2. Stateless Software Connectors

Synchronous channel

The most elementary connector is the synchronous channel with two ports of oppo-
site polarity. Its semantics is simply the identity relation on the data domain D:

[[• � // •]] = IdD (2.2)

which forces input and output to become mutually blocking, in the sense that any of
them must wait for the other to be completed. The synchronous channel, however,
is just a special case, for f = id, of a more generic connector with the ability to
perform, in a systematic way, any kind of data conversion on the flow of messages.
For any function f : D←− D, the corresponding transformer is defined by

[[• � p f q // •]] = f (2.3)

where f in the right hand side is the relation denoting the graph of function f .

Unreliable Channel

Any coreflexive relation over D provides a model for unreliable channels, i.e., syn-
chronous channels which may non-deterministically loose data.

[[• � ··· // •]] ⊆ IdD (2.4)

Filter

A filter is a channel in which some messages are discarded in a controlled way,
according to a given predicate φ : 2←− D. Noting that any predicate φ can be seen
as a coreflexive Φ : D←− D such that

dΦd′ iff d = d′ ∧ (φ d)

define

[[• � pφq // •]] = Φ (2.5)

2.1. Synchronous stateless connectors 27

Sources and Sinks

For each value d ∈ D, a source ♦d is a device which permanently outputs d. It has
only one output port, therefore, [[♦d]] : D←− 1. Formally,

[[♦d]] = d (2.6)

which defines the semantics of a source as a point in data domain D. In pointwise
notation,

[[♦d]] = {(d, ∗)} (2.7)

Alternatively, source can be represented graphically by

• oo d
•

Dually, a sink has only an input port which accepts, and discards, any possible
message. Therefore, [[�]] : 1←− D is given by

[[�]] = !D (2.8)

i.e., by relation {(∗, x)| x ∈ D}, corresponding to the embedding of the universal
final arrow in the category Set os sets and functions into the category Rel of sets
and relations taken in this chapter as our universe of discourse.

An alternative graphic representation for sinks is

•
�
•

Drain

A drain [[• � �
•]] : 1 ←− (D × D) has two input, but no output, ports. This

means that every message dropped at one of its ports is simply lost. A drain is syn-
chronous if both write operations are requested to succeed at the same time (which
implies that each write attempt remains pending until another write occurs in the
other end-point). Formally, its definition is similar to that of the sink connector
given above

[[• � �
•]] = !D×D (2.9)

i.e., going pointwise, to relation {(∗, (x, y))| x, y ∈ D}.

28 2. Stateless Software Connectors

Broadcaster

The broadcaster connector replicates in each of its two output ports, any input re-
ceived in its (unique) entry. The broadcaster C is depicted as follows:

y

z �
•

77

((z

its semantics is, therefore, given by the diagonal relation MD: (D × D) ←− D on D,
defined by 〈y, z〉 MD x ≡ x = y = z:

[[C]] = MD (2.10)

Concentrator

The dual of the broadcaster is the concentrator which accepts identical messages
in both of its input ports to be delivered on its unique output.

x

��
• // y

z

HH

Formally,
[[B]] = [[C]]◦ (2.11)

Selective gateway

The selective gateway may be considered a variation of a concentrator connector: it
does not impose uniformity on input, but on receiving two different values in its two
different ports, it chooses one of them to be passed away through the output port.
Such choice is non deterministic.

2.2. New connectors from old 29

The connector is depicted as a concentrator

y

��
� // x

z

GG

but with a totally different semantics:

[[I]] = π1 ∪ π2 (2.12)

It is instructive to compute the corresponding pointwise expression:

x (π1 ∪ π2) 〈y, z〉 ≡ x(id◦ · π1)(y, z) ∨ x(id◦ · π2)(y, z)

≡ x = π1(y, z) ∨ x = π2(y, z)

≡ x = y ∨ x = z

Selective broadcaster

The converse of a selective gateway is the selective broadcaster which selects non
deterministically one of its output ports. Formally,

[[J]] = [[I]]◦ (2.13)

Note that this connector in not admissible in R [Arb03, Arb04] whose seman-
tics takes as a basic assumption that all data is dispatched in all available output
ports (cf., the pumping station metaphor).

2.2 New connectors from old

Aggregation

The typical aggregation scheme for connectors is parallel composition — putting
connectors side by side without any interaction between them. The formal semantics

30 2. Stateless Software Connectors

is given by relational product, in the general case, or relational split, when both
connectors have identical input signatures,

[[C1 � C2]] = [[C1]] × [[C2]] (2.14)

[[〈C1,C2〉]] = 〈[[C1]], [[C2]]〉 (2.15)

where × and 〈 , 〉 are both relators in Rel. Recall that a relator is an endofunctor in
Rel which, additionally, preserves inclusion ⊆ and commutes with converse. Rela-
tional product is defined as R × S = 〈R · π1, S · π2〉, where the split combinator is
given by 〈R, S 〉 = π◦1 · R ∩ π◦2 · S .

Computing their pointwise definition may help to build up one’s intuition. For ex-
ample,

〈y, z〉〈[[C1]], [[C2]]〉x = 〈y, z〉(π◦1 · [[C1]] ∩ π◦2 · [[C2]])x

= 〈y, z〉(π◦1 · [[C1]])x ∧ 〈y, z〉(π◦2 · [[C2]])x

= π1〈y, z〉 [[C1]] x ∧ π2〈y, z〉 [[C2]]x

= y[[C1]]x ∧ z[[C2]]x

Using split one may, for example, built a broadcaster out of two synchronous chan-
nels:

〈[[• � // •]], [[• � // •]]〉

= { semantics of synchronous channel}

〈idD, idD〉

= { M definition }

MD

= { semantics of broadcaster}

[[C]]

As expected, the � operator inherits from Rel the properties of relational prod-
uct. In particular, it is associative and commutative.

Hook

The basic way of combining two connectors is by plugging the output ports of one of
them to the inputs of the other. Semantically, this amounts to relational composition:

[[C1 ; C2]] = [[C2]] · [[C1]] (2.16)

2.2. New connectors from old 31

for C1, C2 with matching signatures.

In the general case, however, this form of composition has to be made partial,
i.e., connecting only a (specified) subset of ports. This is achieved by the hook com-
binator which encodes a feedback mechanism, drawing a direct connection between
an output and an input port. Formally, [[C � j

i]] is obtained from [[C]], by deleting
references to ports i and j. Formally,

q′([[C � j
i]])q iff 〈∃ t, t′ :: t′[[C]]t ∧ q′ = t′|i ∧ q = t| j ∧ t′#i = t# j〉 (2.17)

where t|i and t#i represents, respectively, a tuple of data values t from which the data
corresponding to port i has been deleted, and the tuple component corresponding to
such data. Clearly, R � j

i : Dm−1 ←− Dn−1 if R : Dm ←− Dn.

Sequential composition in the sense of definition (2.16) is retrieved as a special
case. Actually, suppose C1 has a unique output port labelled o whereas connector
C2 has a unique port input port i. Then,

q′([[(C1 � C2) �o
i]])q

≡ { hook definition}

〈∃ t, t′ :: t′[[(C1 � C2)]]t ∧ q′ = t′|i ∧ q = t|o ∧ t′#i = t#o〉

≡ { semantics of aggregation}

〈∃ t, t′ :: t′([[C1]] × [[C2]])t ∧ q′ = t′|i ∧ q = t|o ∧ t′#i = t#o〉

≡ { signatures of [[C1]] and [[C2]]}

〈∃ c :: (c, q′)([[C1]] × [[C2]])(q, c)〉

≡ { relational product }

〈∃ c :: c[[C1]]q′ ∧ q[[C2]]c〉

≡ { relational composition }

q′([[C1]] · [[C2]])q

≡ { definition (2.16) }

q′[[C1 ; C2]]q

Join.

The effect of this combinator is to plug ports with identical polarity. The aggregation
of input ports is done by a right join (C i

j > z), where C is a connector, and i and
j are ports and z is a fresh name used to identify the new port. Port z receives

32 2. Stateless Software Connectors

asynchronously messages sent by either i or j. When messages are sent at same
time the combinator chooses one of them in a nondeterministic way. On the other
hand, aggregation of output ports resorts to a left join (z <i

j C). This behaves like a
broadcaster sending synchronously messages from z to both i and j.

Formally, given a connector [[C]] : Dn ←− Dm, a right join over C is specified
by

q′([[C i
j > z]])q iff 〈∃ t :: t[[C]]q ∧ q′|z = t|i, j ∧ (q′#z = t#i ∨ q′#z = t# j)〉 (2.18)

Clearly, [[C i
j > z]] : Dn−1 ←− Dm.

The definition of a left join is similarly made in terms of a relation [[z <i
j C]] :

Dn ←− Dm−1 given by

q′([[z <i
j C]])q iff 〈∃ t :: q′[[C]]t ∧ q|z = t|i, j ∧ q#z = t#i = t# j〉 (2.19)

Lemma 2.1 The order in which ports are plugged is irrelevant. In particular

C i
j > z = C j

i > z (2.20)

(C i
j > z) z

k > v = (C i
k > z) z

j > v = (C k
j > z) z

i > v (2.21)

z <i
j C = z < j

i C (2.22)

v <z
k (z <i

j C) = v <z
j (z <i

k C) = v <z
i (z <k

j C) (2.23)

Proof. The proofs are obtained by unfolding the definitions. For (2.20) we reason

C i
j > z

≡ { signature of C}

q′([[C i
j > z]])q

≡ { right join definition}

〈∃ t :: t[[C]]q ∧ q′|z = t|i, j ∧ (q′#z = t#i ∨ q′#z = t# j)〉

≡ { t|i, j = t| j, i and ∨ commutative }

〈∃ t :: t[[C]]q ∧ q′|z = t| j,i ∧ (q′#z = t# j ∨ q′#z = t#i)〉

≡ { definition (2.18)}

q′([[(C j
i > z)]])q

≡ { right join definition }

C j
i > z

2.3. An example 33

Similarly, for (2.22)

z <i
j C

≡ { signature of C}

q′([[z <i
j C]])q

≡ { left join definition }

〈∃ t :: q′[[C]]t ∧ q|z = t|i, j ∧ q#z = t#i = t# j〉

≡ { t|i, j = t| j, i and ∧ commutative }

〈∃ t :: q′[[C]]t ∧ q|z = t| j,i ∧ q#z = t# j = t#i〉

≡ { definition (2.19)}

q′([[z < j
i C]])q

≡ { left join definition}

z < j
i C

�

2.3 An example

This section illustrates through an example the use of stateless connectors to build
useful coordination patterns. They are, of course, a subset of what can be expressed
in R, in the sense that no local state nor context information is considered in this
model. Such issues will be revisited, however, in chapters 3 and 5, respectively.

The pattern depicted in Fig. 2.3 assures that the flow of messages in a syn-
chronous channel σ is externally controlled. This means that a control signal, pro-
duced by an external source, is required for a received message to be delivered at the
output end-point. Within the model introduced above this is achieved by directing
messages to the input of a broadcaster whose output ports are connected to syn-
chronous channel and to a synchronous drain which, on its turn, accepts the control
signals. Formally, the pattern is given by the following expression in the connector
algebra:

(C � • � // • � • � �
•) �m,n

i, f (2.24)

The intuition on the correctness of this scheme is that, because, both the outputs
of the broadcaster and the two end-points of the drain are synchronized, the read

34 2. Stateless Software Connectors

m i � // o

i �
•

77

'' n f � � e

Figure 2.1: The External control flow pattern.

•
� // o1

i1
�

•

88

''
•_

_
•

i2
�

•

77

''
•

� // o2

Figure 2.2: A synchronization barrier

operation on channel σ is completed simultaneously with the writing of the control
signal on the free end-point of the drain. The reason for choosing a drain is simply
that the actual contents of control messages is irrelevant in this context.

A generalization of this pattern is shown in Fig. 2.3. This pattern, quite popular
in the the coordination literature, is known as a synchronization barrier, aiming at
enforcing of mutual synchronization between two channels. Formally it is described
by the following expression as the reader may confirm,

(C � C) ; ((• � // •) � (• � �
•) � (• � // •)) (2.25)

2.4. Towards a connector calculus 35

2.4 Towards a connector calculus

As glimpsed above, an algebra of connectors begins to emerge in which a variety of
coordination patterns can be expressed. Moreover connectors in this model enjoy a
number of properties generically applicable to reason and transform such patterns.
Their validity is easily established by simple computations within the relational cal-
culus.

2.4.1 The equational fragment

Relational equality provides the basic comparison tool for connectors, resulting in
rich equational calculus. Let us look briefly into some of its laws.

• First notice that a synchronous channel acts as the identity for connector com-
position,

(C ; • � // •) = C = (• � // • ; C) (2.26)

for C with a matching signature. As ; inherits associativity from composition
in Rel, the algebra has, at least, the structure of a category.

Proof.

[[C ; • � // •]]

= { relation composition (2.16)}

[[• � // •]] · [[C]]

= { definition (2.2) }

IdD · [[C]]

= { Id is the left unit of composition }

[[C]]

= { Id is the right unit of composition }

[[C]] · IdD

= { definition (2.2) }

[[C]] · [[• � // •]]

= { relation composition (2.16) }

[[• � // • ; C]]

36 2. Stateless Software Connectors

• Similarly, an unreliable channel acts as an absorbing element for sequential
composition with any kind of synchronous channels σ (including filters):

(• � ··· // • ; • � σ // •) = (• � σ // • ; • � ··· // •) = •
� ··· // •

(2.27)

Proof. The proof is directly obtained from the law (2.26) above:

[[• � ··· // • ; • � σ // •]]

= { definitions (2.26) and (2.16)}

IdD · [[•
� ··· // •]]

= { IdD is the identity for relational composition}

[[• � ··· // •]] · IdD

= { definition (2.26)}

[[• � σ // • ; • � ··· // •]]

• The expected behaviour of transformers is stated by the following law

(• � p f q // • ; • � pgq // •) = •
� pg· f q // • (2.28)

Proof.

[[• � p f q // •]] ; [[• � pgq // •]]

= { relational composition (2.16)}

[[• � pgq // •]] · [[• � p f q // •]]

= { definition (2.3)}

c · f

= { (2.28)}

[[• � pg· f q // •]]

• The behaviour of filters composition is given by the law

(• � pφq // • ; • � pψq // •) = •
�pφ∧ψq // • (2.29)

2.4. Towards a connector calculus 37

Proof.

[[• � pφq // • ; • � pψq // •]]

= { (2.16) and (2.5)}

Ψ · Φ

= { union of coreflexives is intersection}

Ψ ∩ Φ

= { (2.5)}

[[• �pφ∧ψq // •]]

• A synchronous channel can be implemented by the composition of a broad-
caster and a concentrator:

(C ; B) = •
� // • (2.30)

• •

��
•

�
•

66

((

• // • = • � // •

• •

GG

Proof.

[[C ; B]]

= { (2.16)}

[[B]] · [[C]]

= { definitions (2.11) and (2.10) }

MD ·(MD)◦

= { identity}

IdD

= { definition (2.2) }

[[• � // •]]

• Curiously, replacing a concentrator by a merger also produces a synchronous
channel.

38 2. Stateless Software Connectors

(C ; I) = •
� // • (2.31)

Proof.

[[C ; I]]

= { (2.16)}

[[I]] · [[C]]

= { definitions (2.12) and (2.10) }

(π1 ∪ π2) · MD

= { ·R is lower adjoint in ·R a /R, thus preserving colimits}

π1 · MD ∪ π2 · MD

= { definition of MD and product cancelation}

IdD ∪ IdD

= { identity}

IdD

= { definition (2.2) }

[[• � // •]]

Similarly,

(J ; I) = •
� // • (2.32)

• Sink can be realized by the composition of a broadcaster and a synchronous
drain.

C ; • � �
• = � (2.33)

••_

_

•
�

•

33

++

= �

••

2.4. Towards a connector calculus 39

Proof.

[[C ; • � �
•]]

= { relational composition (2.16)}

[[• � H �
•]] · [[C]]

= { definitions (2.9) and (2.10) }

!D×D· MD

= { ! universal: ! · f =!}

!D
= { definition (2.8) }

[[�]]

• A symmetric law resorts to a concentrator and a sink to produce a drain, i.e.,

B ; � = •
� �

• (2.34)

•

��
•

� // • ; • �
• = •

� �
•

•

HH

Proof.

[[B ; �]]

= { relational composition (2.16)}

[[�]] · [[B]]

= { definitions (2.8) and (2.11) }

!D· M◦D
= { ! universal: ! · f =!}

!D×D

= { definition (2.9) }

[[• � �
•]]

40 2. Stateless Software Connectors

2.4.2 Connector refinement

In a model which specifies connectors as binary relations, refinement laws are stated
in terms of relational inclusion. This means that for every input for which connector
C is defined, all results delivered by C for this input are explicitly allowed by the
refined connector R. On the other hand, if R is not defined for some input, then
S also must not be defined for the same input. The situation is illustrated by the
following two laws:

• A lossy channel is refined by a synchronous channel,

•
� ··· // • ⊆ • � // • (2.35)

as any coreflexive is, by definition, a subset of the identity relation.

• The composition of a concentrator with broadcaster, which replicates on the
output ports the pair of identical values received on input, is refined by a
product of two synchronous channels,

(B ; C) ⊆ (• � // • × • � // •) (2.36)

Proof.

[[B ; C]]

= { relational composition (2.16)}

[[C]] · [[B]]

= { definitions (2.11) and (2.10)}

M◦D · MD

⊆ { definition of the diagonal relation}

IdD×D

= { functoriality}

IdD × IdD

= { definition (2.2) and product }

[[(• � // • × • � // •)]]

2.5. Extensions 41

2.5 Extensions

2.5.1 Time-stamped connectors

In a number of common situations it becomes increasingly difficult to keep track
of time constraints and a more precise setting is needed. In order to cope with sit-
uations like that the model is enriched with a (rather weak) notion of time. The
model assumes that, on crossing the borders of a connector, every data value be-
comes labelled by a ‘time stamp’ intended to express order of occurrence. As in
[Arb03], temporal simultaneity is simply understood as atomicity, in the sense that
two equally tagged input or output events are supposed to occur in an atomic way,
that is, without being interleaved by other events.

Definition 1 (Time-stamped connectors) Let C be a connector with m input and n
output ports, D a generic type of values, and T a domain for time tags. Its semantics
is given by a relation

[[C]] : (D × T)n ←− (D × T)m (2.37)

where 〈T,≤〉 is a total order acting as the domain of time tags.

Note that the semantics of a connector

[[C]] : (D × T)←− (D × T)

can be split into two relations: one, data.[[C]] : D ←− D, over the data values and
another, time.[[C]] : T←− T, over the time tags, as follows,

data.[[C]] = π1 · [[C]] · π◦1
time.[[C]] = π2 · [[C]] · π◦2

This extends to the general case (2.37) in the obvious way

data.[[C]] = Πi=1..nπ1 · [[C]] · Πi=1..mπ
◦
1 (2.38)

time.[[C]] = Πi=1..nπ2 · [[C]] · Πi=1..mπ
◦
2 (2.39)

Within this extended model it is possible to specify some form of asynchronous
connectors. This is illustrated in the sequel by the introduction of three such connec-
tors: a postponer, which introduces delays, and asynchronous versions of a drain
and a broadcaster.

42 2. Stateless Software Connectors

Postponer

Temporal adjustments, through the introduction of delays, are often required in co-
ordination situations. In this extended model, a postponer is specified as

data.[[• � δ // •]] = IdD (2.40)

time.[[• � δ // •]] = > (2.41)

Asynchronous drain

In an asynchronous drain • � O �
• : 1 ←− (D × D) writing is non blocking. Just

the opposite, the constraint is that the writing in both ports is not allowed to succeed
at the same time. Formally,

time.[[• � O �
•]] ∩ IdT = ∅ (2.42)

where, in this context, given a relation R : T × T −→ 1, relation R : T −→ T is
given by

t′Rt ≡ ∗R (t′, t)

Asynchronous broadcaster

Different from the synchronous version, the asynchronous broadcaster does not per-
mit the simultaneous activation of its two output ports. Therefore, if at the data level
both definitions coincide:

data.[[^]] = [[C]] = MD (2.43)

the asynchronous semantics is imposed by the following temporal restriction:

=T ·time.[[^]] = false (2.44)

where =T is the equality predicate over T.

2.5.2 Connectors with alternative ports

In the model discussed in the previous sections, neither the concentrator (B) nor the
selective gateway (I) connector is able to capture the informal semantics typically

2.5. Extensions 43

associated to a merger. Actually, a merger is a connector which reads from either of
its two input ports, with no specified order, and outputs the corresponding values.
Clearly its domain is the disjoint sum D+D, but this contradicts the basic signature
of a connector given in definition 2.1.

Let us relax that definition for a moment and admit coproducts in the signature
of a connector. This enables the introduction of a new form of connector aggrega-
tion in alternative to parallel composition �. Such an alternative form of aggrega-
tion resorts to relational sum, in the general case, or relational either, when both
connectors have identical output signatures. I.e.,

[[C1 � C2]] = [[C1]] + [[C2]] (2.45)

[[[C1,C2]]] = [[[C1]], [[C2]]] (2.46)

where + and [,] are both relators in Rel, given by R + S = [ι1 · R, ι2 · S] and
[R, S] = R · ι◦1 ∪ S · ι◦2. Clearly, just as �, � inherits from Rel the properties of the
underlying relational combinator. In particular, it is associative and commutative.

In this setting, the effect of merger can be easily obtained as the either of two
synchronous channels. Formally,

[[[• � // •]], [[• � // •]]]

≡ { semantics of synchronous channel}

[idD, idD]

≡ { [,] definition }

idD · ι
◦
1 ∪ idD · ι

◦
2

≡ { identity }

ι◦1 ∪ ι◦2

Notice that, by an argument similar to the one used in the proof of (2.34), an-
other variant of an asynchronous drain, in which both simultaneous or non simulta-
neous input are allowed, can be obtained by the composition

[[[• � // •]], [[• � // •]]] ; � (2.47)

We shall not, however, pursue this path, which would require further extensions
to the definition of connector combinators. Instead, there are two equivalent deci-
sions one may resort to achieve similar expressive power: either to define the type
of a port as an eventually 0-ary sum of data values (in which case a merger would

44 2. Stateless Software Connectors

be just a synchronous channel with a single input port of type D + D), or to impose
flat partial order structure to D so that the bottom value could stand for absence of
information. In this last case the product of input ports will still be able to capture
asynchronous arriving and dispatching of incoming data. A similar option, which
explicitly takes into account negative information, will be considered in the model
discussed in chapter 5.

Chapter 3

Stateful Software Connectors

Summary
This chapter introduces a new model for software connectors whose input-output behaviour
is partially determined by a memory of past computations encoded as the connector’s state
space. Therefore each connector becomes a coalgebra for a functor capturing its signature
of communication ports. Standard coalgebraic techniques apply; in particular connector
equivalence boils down to bisimulation. In brief this models extends the one presented in
chapter 2 in exactly the same sense that transition systems extend binary relations: coal-
gebras are just relations extended in time. The chapter also discusses how some form of
mobility can be expressed within the model, introducing a special connector, the orches-
trator, whose role is to manage interconnection patterns that can change at run-time. The
chapter is based on publications [BB04b] and [BB07].

3.1 Introduction

A major limitation of the model introduced in the previous chapter is the impossibi-
lity of modelling connecters with buffering capacities. Those include, for example,
a queue-based channel (known in R as a fifo channel) in which reading and writing
are non mutually blocking operations.

A first attempt to accommodate in our repertoire connectors with some sort of
asynchronous behaviour has already been suggested in the previous chapter: ex-

45

46 3. Stateful Software Connectors

tending the elementary relational definition

[[C]] : Dn ←− Dm

to
[[C]] : (D × T)n ←− (D × T)m

under the assumption that, on crossing the borders of a connector, every data value
becomes labelled by a time stamp of type T. As then explained, T represents a
(rather weak) notion of time intended to express order of occurrence.

Such an extension, however, is not enough to specify a channel obeying a strict
fifo discipline. Actually, to express this kind of constraints in connector specification
requires a fine-grain control over the flow of data; typical solutions resort to infinite
data structures, for example i.e., infinite sequences of messages and time stamps, as
in [AR02, Arb03] or [BRS+00].

The alternative model proposed in this chapter defines a connector not only in
terms of input-output behaviour but also with respect to a memory of past computa-
tions encoded as an internal state space.

Let U be the type of such memory. A connector is then modelled as a relation
involving not only the input and output domains, as before, but also U itself, that is

[[C]] : D × U ←− U × D (3.1)

which can also be represented, by transposition [OR04], by function

[[C]] : P(D × U)←− U × D (3.2)

or, in an equivalent way,

[[C]] : P(D × U)D ←− U (3.3)

that is, in the form of a coalgebra ([Rut00, JR97]) for functor FX = P(X × D)D.

The coalgebraic format is adequate to single out U as the connector internal
state space, not externally available. For example, a channel with a single buffering
capacity is modeled as a coalgebra over U = D, whereas an unbounded buffer re-
quires U = D∗, where notation X∗ stands, as usual, for finite sequences of X. In both
cases a write operation updates the state variable and a read operation consumes it
(or, respectively, its last element).

In this framework the queue-based channel mentioned above, to be referred in
the sequel as the fifo∞ connector, is given by the specification of two ports to which
two operations over D∗, corresponding to the reception and delivery of a D value,

3.2. Connectors as coalgebras 47

are associated. The rationale is that the operations are activated by the arrival of a
data element (often referred to as a message) to the port. Formally,

receive : D∗ × D → D∗

= cons · swap

deliver : D∗ → D∗ × (D + 1)

= 〈tl, hd〉

where swap is the product commutativity isomorphism. Grouping them together
leads to a specification of the channel as an elementary transition structure over D∗,
i.e., a pointed coalgebra

〈[] ∈ D∗, c : D∗ −→ (D∗ × (D + 1))(D+1)〉

where

c = D∗ × (D + 1) dr
−−−−−→ D∗ × D + D∗

receive+deliver
−−−−−−−−−−−→ D∗ + D∗ × (D + 1)

'
−−−−−→ D∗ × 1 + D∗ × (D + 1)

[id×ι2,id]
−−−−−−−→ D∗ × (D + 1)

and the seed value [] ∈ D∗ represents its initial state.

Note how this specification meets all the exogenous synchronization constraints,
including the enforcing of a strict FIFO discipline. The temporal dimension, how-
ever, is no more explicit, but built-in in coalgebra dynamics.

The next four sections detail and exemplify this connectors as coalgebras model.
Sections 3.6 introduces a special orchestrator connector to cope with some form of
mobility and dynamic reconfiguration within the model.

3.2 Connectors as coalgebras

3.2.1 The general model

A software connector is specified by an interface which aggregates a number of
ports represented by operations which regulate its behaviour. Each operation en-
codes the port reaction to a data item crossing the connector’s boundary. Let U
be the type of the connector’s internal state space and D a generic data domain for
messages, as before. In such a setting we single out three kinds of ports with the
following signatures:

post : U −→ UD (3.4)

read : U −→ (D + 1) (3.5)

get : U −→ U × (D + 1) (3.6)

48 3. Stateful Software Connectors

where

• post is an input operation analogous to a write operation in conventional pro-
gramming languages (see e.g., [Arb02, PA98, Arb03]). Typically, a post port
accepts data items and store them internally, in some form.

• read is a non-destructive output operation. This means that through a read
port the environment might ‘observe’ a data item, but the connector’s state
space remains unchanged. Of course read is a partial operation, because
there cannot be any guarantee that data is available for reading.

• get is a destructive variation of the read port. In this case the data item is not
only made externally available, but also deleted from the connector’s memory.

As mentioned above, connectors are formed by the aggregation of a number of
post, read and get ports. According to their number and types one specific connec-
tor with well-defined behaviour may be defined. Let us consider some possibilities.

Sources and Sinks

The most elementary connectors are those with a unique port. According to its
orientation they can be classified as

• Data sources, specified by a single read operation

♦d = 〈d ∈ D, ι1 : D→ D + 1〉 (3.7)

defined over state space U = D and initialized with value d.

• Data sinks, ie, connectors which are always willing to accept any data item,
discarding it immediately. The state space of data sinks is irrelevant and,
therefore, modeled by the singleton set 1 = {∗}. Formally,

� = 〈∗ ∈ 1, ! : 1→ 1D〉 (3.8)

where ! is the (universal) map from any object to the (final) set 1.

Binary Connectors

Binary connectors are built by the aggregation of two ports, assuming the corre-
sponding operations are defined over the same state space. This, in particular, en-
forces mutual execution of state updates.

3.2. Connectors as coalgebras 49

• Consider, first, the aggregation of two read ports, denoted by read1 and
read2, with possibly different specifications. Both of them are (non destruc-
tive) observers and, therefore, can be simultaneously offered to the environ-
ment. The result is a coalgebra simply formed by their split:

c = 〈u ∈ U, 〈read1, read2〉 : U → (D + 1) × (D + 1)〉 (3.9)

• On the other hand, aggregating a post to a read port results in

c = 〈u ∈ U, 〈post, read〉 : U → UD × (D + 1)〉 (3.10)

• Replacing the read port above by a get one requires an additive aggregation
to avoid the possibility of simultaneous updates leading to

c = 〈u ∈ U, γc : U → (U × (D + 1))D+1〉 (3.11)

where1

γc = U × (D + 1) dr
−−−−−→ U × D + U

post+get
−−−−−−−→ U + U × (D + 1)

'
−−−−−→ U × 1 + U × (D + 1)

[id×ι2,id]
−−−−−−−→ U × (D + 1)

Channels of different kinds are connectors of this type. Recall the fifo∞ exam-
ple above: ports identified by receive and deliver have the same signature of
a post and a get, respectively. An useful variant is the filter connector which
discards some messages according to a given predicate φ : 2 ←− D. The get
port is given as before, i.e., 〈tl, hd〉, but post becomes conditional on predicate
φ, i.e.,

post = φ→ cons · swap, π1

• A similar scheme is adopted for the combination of two post ports:

c = 〈u ∈ U, γc : U → UD+D〉 (3.12)

where

γc = U × (D + D)
dr

−−−−−→ U × D + U × D
post1+post2
−−−−−−−−−→ U + U

O
−−−−−→ U

1In the sequel dr is the right distributivity isomorphism and O the codiagonal function defined as
the either of two identities, i.e., O = [id, id].

50 3. Stateful Software Connectors

The General Case. Examples above lead to the specification of the following
shape for a connector built by aggregation of P post, G get and R read ports:

c = 〈u ∈ U, 〈γc, ρc〉 : U −→ (U × (D + 1))P×D+G × (D + 1)R〉 (3.13)

where ρc is the split R read ports, i.e.,

ρc : U −→ (D + 1) × (D + 1) × . . . × (D + 1) (3.14)

and, γc collects ports of type post or get, which are characterized by the need to
perform state updates, in the uniform scheme explained above for the binary case.
Note that c is a coalgebra for functor

FX = (X × (D + 1))P×D+G × (D + 1)R (3.15)

which can be rewritten as

FX = (
∑
i∈P

XD +
∑
j∈G

X × (D + 1)) ×
∏
k∈R

(D + 1) (3.16)

The latter is, however, less amenable to symbolic manipulation in proofs.

3.3 Combinators

In the previous section, a general model of software connectors as pointed coalge-
bras was introduced and their construction by port aggregation discussed. To obtain
descriptions of more complex interaction patterns, however, some forms of connec-
tor composition are needed. Such is the topic of the present section in which three
combinators are defined: concurrent composition, interleaving and a generalisation
of pipelining capturing arbitrary composition of post with either read or get ports.

3.3.1 Concurrent composition

Consider connectors c1 and c2 defined as

ci = 〈ui ∈ Ui, 〈γi, ρi〉 : (Ui × (D + 1))Pi×D+Gi × (D + 1)Ri〉

with Pi ports of type post, Ri of type read and Gi of type get, for i = 1, 2. Their
concurrent composition, denoted by c1 � c2 makes externally available all c1 and
c2 single primitive ports, plus composite ports corresponding to the simultaneous
activation of post (respectively, get) ports in the two operands. Therefore, P′ =

3.3. Combinators 51

P1 + P2 + P1 × P2, G′ = G1 +G2 +G1 ×G2 and R′ = R1 + R2 become available in
c1 � c2 as its interface sets. Formally, define

c1 � c2 : U′ −→ (U′ × (D + 1))P′×D+G′ × (D + 1)R′ (3.17)

where

γc1�c2
=

U1 × U2 × (P1 + P2 + P1 × P2) × D + (G1 +G2 +G1 ×G2)
'

−−−−−−−→

(U1 × (P1 × D +G1) × U2 + U1 × U2 × (P2 × D +G2) + U1 × (P1 × D +G1) × U2 × (P2 × D +G2)
γ1×id+id×γ2+γ1×γ2
−−−−−−−−−−−−−−→ (U1 × (D + 1)) × U2 + U1 × (U2 × (D + 1)) + (U1 × (D + 1)) × (U2 × (D + 1))

'
−−−−−−−→ U1 × U2 × (D + 1) + U1 × U2 × (D + 1) + U1 × U2 × (D + 1)2 O+id

−−−−−−−→

U1 × U2 × (D + 1) + U1 × U2 × (D + 1)2 '
−−−−−−−→ U1 × U2 × ((D + 1) + (D + 1))2

and

ρc1�c2 = U1 × U2
ρ1×ρ2
−−−−−→ (D + 1)R1 × (D + 1)R2

'
−−−−−→ (D + 1)R1+R2

3.3.2 Interleaving

Interleaving is a restricted form of parallel composition which rules out the simulta-
neous execution of two ports, one in each of its operands. Formally the definition of
c1�c2 is obtained from that of c1�c2 taking in (3.17) P′ = P1+P2 and G′ = G1+G2,
and removing from the definition of γc1�c2

all references to composite terms, i.e.,

γc1�c2
= U1 × U2 × (P1 + P2) × D + (G1 +G2)

'
−−−−−→

(U1 × (P1 × D +G1) × U2 + U1 × U2 × (P2 × D +G2)
γ1×id+id×γ2
−−−−−−−−−→ (U1 × (D + 1)) × U2 + U1 × (U2 × (D + 1))
'

−−−−−→ (U1 × U2 × (D + 1)) + (U1 × U2 × (D + 1))
O

−−−−−→ U1 × U2 × (D + 1)

3.3.3 Hook

The hook combinator, �p
r plugs ports with opposite polarity within an arbitrary con-

nector
c = 〈u ∈ U, 〈γc, ρc〉 : U −→ (U × (D + 1))P×D+G × (D + 1)R〉

There are two possible plugging situations:

52 3. Stateful Software Connectors

1. Plugging a post port pi to a read r j one, resulting in

ρc�pi
r j
= 〈r1, . . . , r j−1, r j+1, . . . , rR〉

γc�pi
r j
= U × ((P − 1) × D +G)

θ×id
−−−−−→ U × ((P − 1) × D +G)

'
−−−−−→

∑
P−1 U × D +

∑
G U

[p1,...,pi−1,pi+1,...,pp]+[g1,...,gG]
−−−−−−−−−−−−−−−−−−−−−−−−→

U + U × (D + 1)
'

−−−−−→ U × 1 + U × (D + 1)
[id×ι2,id]
−−−−−−−→ U × (D + 1)

where θ : U → U

θ = U
M

−−−−−→ U × U
id×r j
−−−−−→ U × D + 1

'
−−−−−→ U × D + U

pi+id
−−−−−→ U + U

O
−−−−−→ U

2. Plugging a post port pi to a get g j one, resulting in

ρc�pi
r j
= ρc

γc�pi
g j
= U × ((P − 1) × D + (G − 1))

θ×id
−−−−−→

U × ((P − 1) × D + (G − 1))
'

−−−−−→
∑

P−1 U × D +
∑

G−1 U
[p1,...,pi−1,pi+1,...,pp]+[g1,...,g j−1,g j+1,...,gG]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

U + U × (D + 1)
'

−−−−−→ U × 1 + U × (D + 1)
[id×ι2,id]
−−−−−−−→ U × (D + 1)

where θ : U → U

θ = U
g j

−−−−−→ U × (D + 1)
'

−−−−−→ U × D + U
pi+id
−−−−−→ U + U

O
−−−−−→ U

Note that, according to the definition above, if the result of a reaction at a port
of type read or get is of type 1, which encodes the absence of any data item to be
read, the associated post is not activated and, consequently, the interaction does not
become effective.

Such unsuccessful read attempt can alternatively be understood as a pending
read request. In this case the intended semantics for interaction with the associated
post port is as follows: successive read attempts are performed until communication

3.4. Examples 53

occurs. This version of hook is denoted by �p
r c and easily obtained by replacing, in

the definition of θ above, step

U × D + U
pi+id
−−−−−→ U + U

by

U × D + U
pi+θ
−−−−−→ U + U

Both forms of the hook combinator can be applied to a whole sequence of pairs
of opposite polarity ports, the definitions above extending as expected.

As done in the relational model discussed in the previous chapter, combinators
interleave and hook can be put together to define a form of sequential composition
in situations where all the post ports of the second operand (grouped in in) are
connected to all the read and get ports of the first (grouped in out). It is assumed
that hooks between two single ports extend smoothly to any product of ports (as
arising from concurrent composition) in which they participate. Formally, we define
by abbreviation

c1 ; c2
abv
= (c1 � c2) �in

out (3.18)

and
c1 ./ c2

abv
= �in

out (c1 � c2) (3.19)

3.4 Examples

3.4.1 Broadcasters and Mergers

Our first example is the broadcaster, a connector which replicates in each of its two
(output) ports, any input received in its (unique) entry as depicted bellow. There
are two variants of this connector denoted, respectively, by C and J. The first
one corresponds to a synchronous broadcast, in the sense that the two get ports are
activated simultaneously. The other one is asynchronous, in the sense that both of
its get ports can be activated independently. Although we use the same symbol
which, in the previous chapter, expresses the selective broadcaster, the connector is
actually different, in the sense that in this asynchronous broadcaster all information
arriving to the input port will eventually be present at both output ports. Also note
this connector is also different from ^ defined by (2.43) and (2.44) which does not
allow simultaneous output at both ports.

54 3. Stateful Software Connectors

get1

post �
•

88

&&
get2

Figure 3.1: The broadcaster connector.

The definition of J is rather straightforward as a coalgebra over U = D + 1 and
operations

post : U × D → U = ι1 · π2

get1, get2 : U → U × (D + 1) = M

where M is the diagonal function, defined by M= 〈id, id〉. The synchronous case,
however, requires the introduction of two boolean flags initialized to 〈false, false〉
to witness the presence of get requests at both ports. The idea is that a value is made
present at both the get ports if it has been previously received, as before, and there
exists two reading requests pending. Formally, let U = (D+ 1)× (B×B) and define

post : U × D → U = 〈ι1 · π2, π2 · π1〉

get1 : U → U × (D + 1) = (=∗ ·π1 → 〈id, π1〉, getaux1)

where

getaux1 = (π2 · π2 → 〈(ι2 · ∗) × (false × false), π1〉, 〈id × (true × id), ι2 · ∗〉)

I.e., if there is no information stored flag ∗ is returned and the state left unchanged.
Otherwise, an output is performed but only if there is a previous request at the
other port. If this is not the case the reading request is recorded at the connector’s
state. This definition precludes the possibility of a reading unless there are read-
ing requests at both ports. The fact that both requests are served depends on their
interaction with the associated post ports, i.e., on the chosen hook discipline. The
definition of get2 is similar but for the boolean flags update:

getaux2 = (π1 · π2 → 〈(ι2 · ∗) × (false × false), π1〉, 〈id × (id × true), ι2 · ∗〉)

Dual to the broadcaster connector is the merger which concentrates messages
arriving at any of its two post ports. The merger, denoted by B, is similar to an asyn-

3.4. Examples 55

post1

��
•

� // get

post2

EE

Figure 3.2: The merger connector.

chronous channel, as given in section 3.2, with two identical post ports. Another
variant, denoted by I, accepts one data item a time, after which disables both post
ports until get is activated. This connector is defined as a coalgebra over U = D+ 1
with

post1 = post2 : U × D → U

= (=∗ ·π1 → π1, ι1 · π2)

get : U → U × (D + 1)

= (=∗→ 〈M, id〉, 〈ι2 · ∗, id〉)

3.4.2 Drains

A drain is a symmetric connector with two inputs, but no output, points. Opera-
tionally, every message arriving to an end–point of a drain is simply lost. A drain is
synchronous when both post operations are required to be active at the same time,
and asynchronous otherwise. In both case, no information is saved and, therefore
U = 1. Actually, drains are used to enforce synchronisation in the flow of data.
Formally, an asynchronous drain is given by coalgebra

[[• � O �
•]] : 1 // 1D+D

where both post ports are modelled by the (universal) function to 1, i.e.

post1 = !U×D = post2

The same operations can be composed in a product to model the synchronous vari-
ant:

[[• � �
•]] : U // UD×D

56 3. Stateful Software Connectors

defined by

1 × (D × D)
�

−−−−−→ 1 × D × 1 × D
post 1×post 2
−−−−−−−−−−→ 1 × 1

!
−−−−−→ 1

There is an important point to make here. Note that in this definition two post
ports were aggregated by a product, instead of resorting to the more common ad-
ditive context. Such is required to enforce their simultaneous activation and, there-
fore, to meet the expected synchrony constraint. This type of port aggregation also
appears as a result of concurrent composition. In general, when presenting a con-
nector’s interface, we shall draw a distinction between single and composite ports,
the latter corresponding to the simultaneous activation of two or more of the former.

Composite ports, on the other hand, entail the need for a slight generalisation
of hook. In particular it should cater for the possibility of a post port requiring,
say, two values of type D be plugged to two (different) read or get ports. Such
a generalisation is straightforward and omitted here (but used below on examples
involving drains).

3.4.3 The Dining Philosophers

Originally posed and solved by Dijkstra in 1965, the dinning philosophers problem
provides a good example to experiment an exogenous coordination model of the
kind proposed in this thesis.

The basic version reads as follows. Five philosophers are seated around a table.
Each philosopher has a plate of spaghetti and needs two forks to eat it. When a
philosopher gets hungry, he tries to acquire his left and right fork, one at a time, in
either order. If successful in acquiring two forks, he eats for a while, then puts down
the forks and continues to think. In the sequel we discuss two possible solutions to
this problem.

A merger-drain solution. One possible solution assumes the existence of five
replicas of a component Phi(losopher), each one with four get ports, two on the
lefthand side and another two on the righthand side. The port labeled lefti is ac-
tivated by Phii to place a request for the left fork. On the other hand, port leftfi
is activated on its release (and similarly for the ports on the right). Coordination
between them is achieved by a software connector Fork with four post ports, to be
detailed below. The connection between two adjacent philosophers through a Fork
is depicted in Fig. 3.4 which corresponds to the following expression in the calculus

(Phii � Forki � Phii+1) �rri rfi lri lfi
righti rightfi lefti+1 leftfi+1

(3.20)

3.4. Examples 57

J

J I

Ileftfi

lefti righti

rightfi

Phii
.

. /

/rfi

rri lri

lfi

Forki

J

J I

Ileftfi+1

lefti+1 righti+1

rightfi+1

Phii+1

Figure 3.3: Dining Philosophers (1).

p1

��

p′1

��
•

� // • � �
• •

�oo

p2

GG

p′2

WW

Figure 3.4: A Fork connector (1).

The synchronization constraints of the problem are dealt by connector Fork built
from two blocking mergers and a synchronous drain depicted in figure 3.4 and given
by expression

(I � I) ; • � �
• (3.21)

A token solution. Another solution is based on a specification of Fork as an ex-
change token connector. Such a connector is given as a coalgebra over U = {t}+ 1,
where t is a token representing the (physical) fork. From the point of view of a
philosopher requesting a fork equivales to an attempt to remove t from the connec-
tor state space. Dually, a fork is released by returning it to the connector state space.
In detail, a fork request at a philosopher port, say right, which is a post port hooked
to (the get port) rr of the connector is only successful if the token is available. Oth-
erwise the philosopher must wait until a fork is released. The port specifications for
Fork are as follows

rr = lr : U → U × (D + 1)

= (=t→ (ι2 · ∗) × (ι1 · t), id × (ι2 · ∗))

58 3. Stateful Software Connectors

J

. /

Ileftfi

lefti righti

rightfi

Phii
.

J I

/rfi

rri lri

lfi

Forki

J

. /

Ileftfi+1

lefti+1 righti+1

rightfi+1

Phii+1

Figure 3.5: Dining Philosophers (2).

rf = lf : U × D → U

= ι1 · t

Again, the Fork connector is used as a mediating agent between any two philoso-
phers as depict in figure 3.5. The corresponding expression is

(Phii � Forki � Phii+1) �righti rfi lefti lfi
rri rightfi lri+1 leftfi+1

(3.22)

3.5 Towards a connector’s calculus

3.5.1 Bisimilarity

If, in the previous chapter, relational equality and inclusion were used to model
connector equivalence and refinement, respectively, standard coalgebraic tools can
play a similar role in this new model. In particular, connectors being regarded as
coalgebras, their equivalence can be expressed in terms of bisimilarity.

Bisimilarity is an equivalence relation among transition systems which relate
states which allow identical observations and able to maintain such a property along
their evolution. The original notion, introduced by David Park [Par81], is funda-
mental to process algebra (from the semantics of C [Mil89] onwards). Coalgebra
theroy [Rut00] made it generic, i.e., parametric on the functor which captures the
coalgebra dynamics. Formally,

Definition 2 (Bisimulation) Given two F-coalgebras 〈U, α〉 and 〈V, β〉, for a Set
endofunctor F, a F-bisimulation is a relation R ⊆ U × V which is closed under α
and β:

(x, y) ∈ R ⇒ (α(x), β(y)) ∈ FR. (3.23)

3.5. Towards a connector’s calculus 59

for all x ∈ X and y ∈ Y.

A popular alternative formulation requires the possibility of R to be extended to a
coalgebra ρ such that projections π1 and π2 lift to F-morphisms. Reference [BOS08]
discusses bisimulations in a more general, essentially relational setting building on a
synergy with Reynolds’ relation on functions constructor involved in the abstraction
theorem on parametric polymorphism [Rey83]. In particular it is shown that R is a
bisimulation iff inequality

α · R ⊆ FR · β (3.24)

holds in the category Rel of sets and relations.

In (3.23) and (3.24), FR stands for the relational lifting of R via functor F. This
sends relation R ⊆ X × Y to relation FR ⊆ FX × FY is defined by induction on the
structure of the functor F as follows

1. if F is the identity functor, then

F R = R

2. if F is constant functor K, then

F R = IdK

3. if F is a product F1 × F2, then

(F1 × F2) R = {((x1, y1), (x2, y2)) | (x1, x2) ∈ F1R ∧ (y1, y2) ∈ F2R}

4. if F is a coproduct F1 + F2, then

(F1 + F2) R = {((ι1, x1), (ι1, x2)) | (x1, x2) ∈ F1R ∧ (y1, y2) ∈ F2R} ∪

{((ι2, y1), (ι2, y2)) | (y1, y2) ∈ F1R ∧ (y1, y2) ∈ F2R}

5. if F is an exponent GA then

FA R = {(f , g) | ∀a ∈ A · (f a, ga) ∈ FR}

Bisimilarity for functor F defined in (3.15) becomes the basis for establishing
connector equivalence in this model. Often, however, when the signature of the con-
nectors under discussion is fixed, it becomes simpler to derive a specific bisimula-
tion scheme and express it directly in terms of the port operations. This is illustrated
in the following two examples.

60 3. Stateful Software Connectors

Example 3.1 Let us consider, a basic connector c composed by a post and a read
ports, the definition is given by the following coalgebra

c = 〈post, read〉 : X −→ XD × (D + 1)

For functor FX = idD × (D + 1),

FR = {((f , σ), (g, σ′)) | ∀d ∈ D · FR(f (d), g(d)) ∧ σ = σ′}

Thus, a relation R ⊆ X × X is a bisimulation w.r.t. the connector signature
functor if, for all x, y ∈ X,

R(x, y)⇒ FR ((post(x), read(x)), (post(y), read(y)))

≡

R(x, y)⇒ ∀d ∈ D · (post(x)(d)) R (post(y)(d)) ∧ read(x) = read(y)

Example 3.2 Replacing a read port by a get port we have a connector where the
state space U is updated both at input and output.

c = 〈u ∈ U, γc : U → (U × (D + 1))D+1〉

Thus, calculating FR, for the functor FX = (X × (D + 1))(D+1), yields

FR = {(f , g)| 〈∀ x : x ∈ D + 1 : (π1 f x, π2gx) ∈ R ∧ π1 f x = π2gx〉} (3.25)

which expresses that outputs observed through get are identical and the relation is
maintained for all pairs of states reached by either post or get. If get is expressed
as a split of an attribute and a state transformer, i.e.,

get = 〈up, ob〉 : X −→ X × (D + 1)

the bisimulation condition can be given in terms of the port operations considered.
That is, relation R ⊆ X × X is a bisimulation if, for all x, y ∈ X,

R(x, y)⇒

〈∀ i : i ∈ (D + 1) : post(x)(d) R post(y)(d) ∧ up(u) R up(u′) ∧ ob(x) = ob(y)〉

3.5. Towards a connector’s calculus 61

3.5.2 Reasoning about connectors

This sub-section illustrates the use of bisimilarity to establish, or disproof, connec-
tors equivalence. Our small case study involves a discussion of the following law,
which turns out to be false:

fifo1 ; fifo1 ∼ fifo2 (3.26)

Intuitively, fifo1 is a one-place buffer, a basic connector in R, where it arises as the
source of asynchrony in the corresponding coordination language [Arb04]. We start
by defining fifo1, and its two-place variant fifo2, as coalgebras. Both have a post and
a get port. The fact that coalgebras (in Set) are total functions, force us to introduce
a special empty state which can be sent as an output and propagated. Formally, for
the specification of fifo1, let U = D + 1 and define

post : U → UD

post (ι1u) (d) = ι1u

post (ι2∗) (d) = d

and

get : U → U × (D + 1)

get u = (ι2∗, u)

A fifo2 connector is defined over V = (D + 1) × (D + 1) with

post : V → VD

post (ι2∗, ι2∗) (d) = (ι2∗, d)

post (ι2∗, ι1x) (d) = (d, ι1x)

post (ι1x, v) (d) = (ι1x, v)

and

get : V → V × (D + 1)

get (v, v′) = ((ι2∗, v), v′)

Note that in both cases, the port specifications can be put together as coalgebra

γ : S → (S × (D + 1))D+1

γ (s, ι1d) = post(s) (d)

γ (s, ι2∗) = get s

62 3. Stateful Software Connectors

where S is either U, for the fifo1 connector, or V , for fifo2.

Now let γ1 and γ2 be the dynamics of two fifo1 connectors. Their interleaving
γ1�γ2 allows for the independent activation of each of its four ports over the product
state space U × U. In detail, one has post1 and get1 corresponding to the ports of
the first fifo1 operand, and correspondingly post2 and get2 for the second:

post1 (ι1u, u′) (d) = (ι1u, u′)

post1 (ι2∗, u′) (d) = (d, u′)

get1 (u, u′) = ((ι2∗, u′), u)

and

post2 (u, ι1u′) (d) = (u, ι1u′)

post2 (u, ι2∗) (d) = (u, d)

get2 (u, u′) = ((u, ι2∗), u′)

The feedback of get1 to post2 in

fifo1 ; fifo1 , (fifo1 � fifo1) �post2
get1

(3.27)

eliminates those ports from the connectors interface and results and redefines the
operations associated to the remaining post and get ports (actually, post1 and get2)
as follows:

post (u, v) (d) = let ((u′, v′), x) = get1(u, v)

if x = ι1d′

then let (u′′, v′′) = post2(u′, v′) (d′) in post1 (u′′, v′′) (d)

else post1 (u′, v′) (d)

and

get (u, v) = let ((u′, v′), x) = get1(u, v)

if x = ι1d′

then let (u′′, v′′) = post2(u′, v′) (d′) in get2 (u′′, v′′)

else get2 (u′, v′)

Note that both definitions follow the same pattern: before executing the operation a
sequence get1 eventually followed by post2 (if the output of get1 is different from
ι2∗), is performed, thus invisibly changing the connectors state space. This pattern

3.5. Towards a connector’s calculus 63

is just a pointwise transliteration of function θ used in the definition of the hook
combinator in section 3.3.

The hook definition entails the execution of, at least, the output operation in-
volved which may result in some intuitively unexpected consequences. In this case
this means that, in a situation in which both fifo1 buffers are full performing a post
or get operation will empty the first buffer as a first effect, leading to unwanted data
lost. This would not be critical if the second buffer was empty, as in that case the
removed data would be correctly transferred to it.

This means that connectors fifo1 ; fifo1 and fifo2 are not bisimilar, thus falsifying
equation (3.26). Actually connector fifo2 has a sort of lookahead capacity built
in in its dynamics, which prevents a new data insertion, through port post if the
two positions in the state space are already taken. Such a capacity is absent in
composition fifo1 ; fifo1: function θ forces the execution of the feedback sequence,
or at least of part of it, irrespective of the state of the second fifo1 connector.

Consider, now, the specification of the unbounded buffer connector fifo∞ given
in section 3.1 as a coalgebra over state space U = D∗. Renaming its ports according
to our general port designation scheme and translating the original definition into
pointwise notation, yields

post∞ (u, d) = receive (u, d) = cons(d, u)

get∞ u = deliver u = (tl u, hd u)

Repeating the construction made above for the hook over the interleaving of two
buffers, but now for the case

fifo1 ; fifo∞ , (fifo1 � fifo∞) �post2
get1

(3.28)

results in the following definitions over the product of state spaces U = (D+1)×D∗.
Note that port p∞ refers to p∞ acting over the compound state space. Similarly for
p1 which is the p of the fifo1 connector acting over (D + 1) × D∗.

post (u, v) (d) = let ((u′, v′), x) = get1(u, v)

if x = ι1d′

then let (u′′, v′′) = post2(u′, v′) (d′)

in post1 (u′′, v′′) (d)

else post1 (u′, v′) (d)

= {by definition of post∞}

post (u, v) (d) = let ((u′, v′), x) = get1(u, v)

64 3. Stateful Software Connectors

if x = ι1d′

then post1 (u′, cons(d′, v′)) (d)

else post1 (u′, v′) (d)

= {by definition of get1 and post1}

post (u, v) (d) = let ((ι2∗, v), x) = get1(u, v)

if x = ι1d′ then (d, cons(v, d′)) else (d, v)

and

get (u, v) = let ((u′, v′), x) = get1(u, v)

if x = ι1d′

then let (u′′, v′′) = post2(u′, v′) (d′) in get1 (u′′, v′′)

else get1 (u′, v′)

= {by definition of post∞}

get (u, v) = let ((u′, v′), x) = get1(u, v)

if x = ι1d′

then get2 ((u′, cons(d′, v′)), d)

else get2 ((u′, v′), d)

= {by definition of get1 and get∞}

get (u, v) = let ((ι2∗, v), x) = get1(u, v)

if x = ι1d′ then ((ι2∗, cons(d′, v)), hd cons(d′, v))

else ((x, tl v), hd v)

= {hd · cons = π1}

get (u, v) = let ((ι2∗, v), x) = get1(u, v)

if x = ι1d′ then ((ι2∗, cons(d′, v)), d′)

else ((x, tl v), hd v)

Comparing these definitions with those of the fifo2 connector above, it is easy
to exhibit a relation R ⊆ (D + 1) × D∗ satisfying the bisimulation condition de-
rived in Example 2 in the previous sub-section. Alternatively one may show that
isomorphism

η , (D + 1) × D∗
dr

−−−−−→ D × D∗ + D∗
[cons,id]
−−−−−−→ D∗ (3.29)

which in pointwise notation is given by the following two clauses:

η (ι1d, l) = cons(d, l)

η (ι2∗, l) = l

3.6. Towards mobile connectors 65

is a morphism for coalgebras over F X = (X × (D + 1))(D+1), i.e., such that the
following diagram commutes:

(D + 1) × D∗
γ

(fifo1�fifo∞)�
post2
get1 //

η

��

F ((D + 1) × D∗)

F η

��
D∗ γfifo∞

// F D∗

This shows that
fifo1 ; fifo∞ ∼ fifo∞ (3.30)

Other laws of a connector calculus can be proved in a similar way. For example
commutativity of both � and �, i.e.,

c1 � c2 ∼ c2 � c1 (3.31)

c1 � c2 ∼ c2 � c1 (3.32)

can be proved by showing isomorphim swap : X × Y −→ Y × X is a coalgebra mor-
phism for the functor capturing the signature of connectors c1 and c2. On the other
hand, refinement results can be proved in this model through the construction of
suitable simulations. The reader is referred to [MB05] for a generic (i.e., parametric
on the functor) way of computing simulations in a coalgebraic setting.

3.6 Towards mobile connectors

The increasing demand for complex and ubiquitous applications places new chal-
lenges to the way software is designed and developed. One of such challenges
concerns the way in which an application deals with the dynamic reconfiguration of
its components. Actually, components are no more static pieces of code assembled
at compile time, but dynamic entities, often executing in different processing units,
which interact only through well defined public interfaces. Component assembly is
understood as interconnection of ports, declared in such interfaces, and more often
than not such interconnection patterns change at runtime. This explains why, since
the 1980’s, mobility has become a buzzword both in academia and industry.

From a foundational point of view, the publication of Milner, Parrow and Walker
original reports on the π-calculus [MPW92], in 1992, was a fundamental mile-
stone. Since then the topic became increasingly popular in both theorectical and
applied research. It arises, for example, in connection with software architecture
(e.g., [BGR+99, Oqu04, NA03, GS04]), coordination models (e.g., [Lum99, LF02])

66 3. Stateful Software Connectors

or programming languages (e.g., [Kir02, BTL05]), just to name a few. But still,
in the practice of software engineering, mobility remains hard to express and to be
reasoned about.

Mobility is structurally associated with distribution, system’s temporal evolu-
tion and dynamic creation or reconfiguration of processes, links or components’
instances. The model introduced in this chapter, however, assumes a fixed inter-
connection structure between the components and connectors involved, making the
envisaged approach static. The remaining of this chapter reports preliminary work
on a possible extension of this coalgebraic model to deal with dynamic reconfigu-
ration. More precisely the extension consists of the explicit inclusion of a special
connector — called the orchestrator — which plays the role of a connections man-
ager. Such is achieved through a set of basic primitives to break or rebuild links
between component’s instances and connectors at run-time.

The proposed solution, which appeared in [BB07], is essentially operational: it
does not contribute for explaining the mathematics of mobility, but provides a posi-
ble way of dealing with dynamic reconfiguration within an exogenous coordination
model. The basic requirement placed by the exogenous nature of the model is the
absence of direct communication between component’s instances. One of them, for
example, may decide at some point to disconnect from a connector’s port and, let
us suppose, to send that port identifier to be part of a new connection. All it can do,
however, is to post the port identifier through another connector’s port. What will
happen afterwords, and in particular, which other component’s instance, if any, will
re-use such a port is not controlled by, in fact not even known to, the original com-
ponent. In our approach each component’s instance interfaces with the glue code,
represented as a connector, and is not aware of the presence of other components
equally connected to the same connector. That is why communication is anonymous
and direct reconfiguration orders (like ’link this to that’) are not possible.

Before detailing the specification of the orchestrator connector given in sub-
-section 3.6.2, we introduce a new element in the model to capture the interface
behaviour of both connectors and components. This adds up to the static seman-
tics discussed in the previous sections and it turns out to be a fundamental issue if
one wants to deal with dynamic reconfiguration within the model. Such a notion of
behavioural specification will be revisited and further elaborated in the model pro-
posed in chapter 5. The version discussed in the sequel is enough for the moment.

3.6. Towards mobile connectors 67

3.6.1 Behaviour and configurations

In an exogenous coordination model component instances are always regarded as
black boxes. All that is assumed to be known about them are

• the port interface signature, i.e., the identifier and polarity of each of its ports

• a specification of the interface behaviour, which defines what is called here
the component’s usage, and denoted by use().

This is given by a process algebra-like expression and intended to define the activa-
tion pattern of the component interface. For example,

use(C) = (in.in.out)∗

establishes that the port activation pattern for component instance C requires two
activations of port in before an activation of port out. The notation used is based on
C [Mil89] over a set Act of actions, each action corresponding to a port activation.
Differently from C, however, actions come equipped with a co-occurence operator
‖— action a‖b stands for the simultaneous ocurrence of both a and b. Syntax is as
follows:

B ::= 0 | a.B | B + B | B|B | B\K | σB | B∗

where a ∈ Act, · is the prefix operator, + and | denote non deterministic choice and
parallel composition, respectively. Notation B\K represents restriction to a set K
of actions, [σ] stands for action renaming in accordance with substituion σ, and ∗
denotes iteration.

As described above, a connector is internally specified as a coalgebra built by
port aggregation. Its external behaviour, however, is also given by a process algebra
expression. For example, behaviour of a synchronous channel with port in and out
is given by (in‖out)∗ whereas the asynchronous case is specified by (in.out)∗.

Component instances never interact with each other directly, but always through
the connector network. Actually they are not even aware of each other’s presence.
The whole system is described by a number of component instances and a connector
built from elementary connectors using a connector’s combinators described early
in this chapter2. The joint behaviour of connectors and component instances in a
particular setting is called a con f iguration. This describes, in particular, the actual
connections between ports.

2The extension of their definitions to the behavioural dimension is discussed, in a more general
setting, in chapter 5.

68 3. Stateful Software Connectors

3.6.2 A connector for orchestration

Central to our approach is the presence of a particular coordination connector, called
the orchestrator, whose role is to manage the interactions among all other elements
in the architectural network. In a sense, the orchestrator corresponds to an inter-
mediary layer between components and ordinary connectors, i.e., it acts as a bridge
among components and connectors.

The orchestrator is a listener permanently attentive to the flow of messages
which do not contain data but port identifiers, instead. Such messages will be un-
derstood as an order for control transfer. Actually, the orchestrator is triggered
whenever a message with a port identifier arrives at a port of a particular compo-
nent instance. This means that interception is made on the execution of a read or
get operation. At this point, it intercepts the message, and re-organizes the overall
network connections according to some reconfiguration script. Notice, however,
that neither component’s instances nor the connectors in the network are aware of
its presence.

To fulfill its role the orchestrator is defined as a coalgebra over state space U
specified as datatype

U : P ×Cmp × P(P × P) (3.33)

where P is the set of port identifiers known to the orchestrator, P(P × P) is a set of
active connections and Cmp is a component manager defined as function

Cmp = (PP)cmpId (3.34)

which associates to each component instance, identified by a value of type cmpId,
the set of its ports. There is an obvious type invariant associated to U stating that all
connections are point-to-point:

inv u = 〈∀ p : p ∈ π1u : card {c ∈ π3u | π1c = p ∨ π2c = p} ≤ 1〉 (3.35)

The Orchestrator is equipped with a set of primitives to manage connections
and allow their dynamic (re)-configuration. The underlying operations are defined
as follows

• Get Connection (getCon): This operation takes a port identifier and, if such
an identifier is part of a connection, returns the corresponding end point. For-

3.6. Towards mobile connectors 69

mally,

getCon : U × P→ P + 1

getCon(u, p) ,

let

e = {π2c| c ∈ π3u ∧ π1c = p} ∪ {π1c| c ∈ π3u ∧ π2c = p}

in

(e , ∅ → ι1 the(e), ι2⊥)

• Disconnection (disCon): This operation updates the connector’s state space
by deleting an existing connection.

disCon : U × (P × P)→ U

disCon(u, (p, p′)) , (π1u, π2u, (π3u)\{(p, p′)})

• Add Port (addPort): This operation updates the connector’s state space by
adding a new available port.

addPort : U × P→ U

addPort(u, p) , ({p} ∪ π1u, π2u, π3u)

• Available Ports (avPort): This operation searches for ports in a given compo-
nent instance available for connection.

avPort : U × cmpId → P(P)

avPort(u, i) ,

let

used = P(π1) (π3u) ∪ P(π2) (π3u)

in

(π3u) i ∩ used

• Make Connection (mkCon): This operation aggregates a new connection to
the orchestrator’s state space.

mkCon : U × (P × P)→ U

mkCon(u, (p, p′)) , (π1u, π2u, {(p, p′)} ∪ (π3u))

70 3. Stateful Software Connectors

3.6.3 Coordination Patterns

The set of primitives specified above are used to build the already mentioned re-
configuration scripts which constitute the orchestrator reaction to the interception
of (incoming) messages. The idea is that the orchestrator’s behaviour is parameter-
ized by such scripts, which, given their role in the model, will be also referred to as
coordination pattern. Let us consider one of such patterns to illustrate how they can
be specified in terms of the orchestrator primitives.

The intuition on this patterns is as follows: On interception of a message con-
taining a port identifier m arriving to port p, the orchestrator identifies the compo-
nent instance to which p belongs and tries to find another port in it to connect to
m. In case m was previously part of another connection, such connection has to be
traced and broken. Formally,

pattern1(u, p,m) ,

let

ap = avPort(u, owner(u, p))

in

(ap , ∅ → let r ∈ ap in reconf(u, p,m, r) , u)

where

reconf(u, p,m, r) ,

let

x = getCon(u,m)

in

(x = ι1(m′) → mkCon(disCon(u, (m,m′)), (m, r)) , mkCon(u, (m, r))

and function owner inspects the component manager in the orchestrator’s state to
return the identifier of the component instance to which a particular port belongs.
Formally,

owner(u, p) , the {c ∈ cmpId| p ∈ (π2u) c}

Note that in this coordination pattern if there is no port available for the new
connection, the configuration if not changed. This is not, however, the only possi-
bility. Reasonable alternatives would be

• to disconnect port m in any case

• or to suspend until the a port becomes available for connection in owner(u, p).

3.6. Towards mobile connectors 71

Such alternatives can also be encoded as coordinating patterns to act as a parameter
to the orchestrator.

3.6.4 An example

For illustration purposes let us consider how to model, in the framework outlined in
the previous sections a variation of the example presented in [Mil99].

We consider a wireless network where a notebook (component Client) is con-
nected to a network which has two servers (Base1 and Base2). These two servers
are connected to each other and the client is connected to one of them.

In the initial configuration of the system the Client is communicating with the
server Base1 according to the Fig 3.6. The Client may permanently communicate
with the network through its input port ci and output port co. Such a behaviour is
captured by

use(Client) = (ci + co)∗

Base1 is permanently communicating with Base2, through its output port b1.3
and input port b1.4. In such a system configuration Base1 is also communicating
with the Client using the output port b1.1 and the input port b1.2. This behaviour is
given by,

use(Base1) = (b1.1 + b1.2 + b1.3 + b1.4)∗

Figure 3.6: The initial configuration.

Base2 communicates with Base1 though its input port b2.3 and output port b2.4.
Base2 also has an input port b2.1 and an output port b2.2. In this case both ports are

72 3. Stateful Software Connectors

available and disconnected from the connectors network. The behaviour of Base2
is given by,

use(Base2) = (b2.3 + b2.4)∗

The components involved in the network are interconnected by a connector
made of the four synchronous channels depicted in Fig 3.6. Its behaviour, use(C), is
obtained by the parallel composition of each channel. Behaviour composition will
be further discussed in chapter 5. For the moment it is enough to point out that, as
usual, the semantics of parallel composition is given in terms of both interleaving
and synchronous product.

The whole system is specified by configuration con f whose behaviour is

use(con f) = use(Client)[b/ci, c/co] | use(C)

| use(Base1)[a/b1.1, d/b1.2, e/b1.3, h/b1.4]

| use(Base2)[f /b2.3, g/b2.4]

Note that the renaming operation connects the components ports to the connectors
ports.

Now, let us consider that the user moves and the signal becomes weak. The
server Base1 communicates with the server Base2 and sends the port identifiers so
that Base2 becomes in charge of providing the service. The Fig 3.7 represents the
result of such an operation.

Figure 3.7: The final configuration.

After the orchestrator has intercepted the message the behaviour of the confi-

3.6. Towards mobile connectors 73

guration becomes

use(con f ′) = use(Client)[b/ci, c/co] | use(C)
| use(Base1)[e/b1.3, h/b1.4]
| use(Base2)[d/b2.1, a/b2.2, f /b2.3, g/b2.4]

Let us now focus on the orchestrator role. Suppose it is parametrized with
pattern1 above and let its initial state be u = 〈p, cmp, con〉, where

p = {ci, co, b1.1, b1.2, b1.3, b1.4, b2.1, b2.2, b2.3, b2.4}

cmp = {(Client, {ci, co}), (Base1, {b1.1, b1.2, b1.3, b1.4}), (Base2, {b2.1, b2.2, b2.3, b2.4})}
con = {(a, b), (c, d), (e, f), (g, h)}

Suppose, now, the following situation occurs: Base1 sends port identifier a of
channel ch1 to Base2 through the connector C. The orchestrator captures such a
message and starts the script defined in pattern1, as follows.

• With avPort the orchestrator selects port b2.2 as an alternative to connect to
a.

• With operation getCon it obtains port b1.1, which was previously connected
to a.

• As such a port has a current connection, the following step is to break it with
disCon.

• Finally, the new connection, linking a to b2.2 is completed.

As this example shows, by designing suitable patterns to feed the orchestrator, a
number of dynamic reconfiguration situations can be (at least operationally) handled
within the model.

The idea underlying the behaviour specification, use(), will be generalised in
chapter 4, to specify components interfaces, an important ingredient of the model
proposed in chapter 5.

74 3. Stateful Software Connectors

Chapter 4

Behavioural Interfaces

Summary
State-based connectors were introduced, in the previous chapter, as an extension of ele-
mentary input-output relations to coalgebras. Making connectors context-aware, i.e., able
to sense their environment and actuate accordingly, entails a deeper update of our basic
model. In particular it becomes necessary to endow interfaces, of both components and
connectors, with a specification of their behaviour or interaction protocol. Process alge-
bras are a natural candidate for such specifications. This, however, entails the need for
more generic and adaptable approaches to their design. For example, similar combinators
coexisting with different interaction disciplines may be required. In such a context, this
chapter pursues a research programme on a coinductive rephrasal of classic process alge-
bra documented in [Bar01, BO02]. A particular emphasis is put on the study of interruption
combinators defined by natural co-recursion. The chapter also illustrates the verification of
their properties in an pointfree reasoning style as well as their direct encoding in H.
Finally, behaviour-annotated interfaces are defined paving the way to a model of contex-
t-aware connectors to be introduced in chapter 5. The idea of behavioural interfaces, in the
context of our research, was first introduced in [BBC07]. The technical contributions of the
chapter were published in [RBB06].

4.1 Interfaces and behaviour

Usually, a system architecture is depicted by block diagrams representing compo-
nents and arrows corresponding to their interconnections. In order to capture ac-
curately the high-level structure of a system components have to make public the

75

76 4. Behavioural Interfaces

services they provide and how they should be used. In such a context interfaces
play a fundamental role.

Along the two previous chapters interfaces were restricted to provide only pure
syntactic information, i.e., the names of services (each one associated to a specific
port) and the types of their parameters. Formally interfaces were identified with
algebraic signatures.

Often, however, this view is too restrictive. In particular, it fails to describe
when services may be invoked and what sequences of interactions are allowed for
each component. This is sometimes referred to as the interaction protocol or the
component behaviour.

Enriching component interfaces with this sort of behavioural information turns
out to be fundamental if the envisaged coordination layer is supposed to include
context-aware connectors, i.e., connectors able to sense their environment and actu-
ate accordingly. Such is the justification for this chapter, previous to the introduction
of a model for context awareness in chapter 5.

The idea of behaviour-annotated interfaces, in itself, is not new. On the contrary,
it appears in most modern ADLs (Architectural Description Languages), where
behaviour is expressed through transition systems [MKG99], regular-expressions
[PV02] or process algebras [AG97]. Moreover, the formal treatment of interfaces
(as in, e.g., [AH01]), supports compositional design for checking both interface
compatibility and refinement.

Process algebra [PS01], in particular, provides an expressive setting for repre-
senting behavioural patterns and establish or verify their properties in a composi-
tional way. Each process algebra introduces a number of combinators for processes
(or behaviours) and an interaction discipline, for example synchronisation of com-
plementary labels in C [Mil89], or of identical named actions in C [Hoa85].
In the context of component coordination, however, sticking to a fixed interaction
discipline is a severe limitation. Actually, different such disciplines have to be used,
at the same time, to capture different aspects of component coordination. As dis-
cussed in chapter 5, the discipline governing the composition of software connectors
(to build the overall glue code) differs from the one used to capture the interaction
between the connectors and the relevant components’ interfaces. Thus some flexi-
bility in the definition and support of interaction disciplines is required.

To meet this goal, which entails the need for a generic way to design process
algebras, we built on top of previous work at Minho documented in references
[Bar01, BO02]. Such an approach is revisited in the following section. Afterwards,
sections 4.3 and 4.4 present our own contribution to this approach. In particular, a
generic version to the expansion law is proved in section 4.3, which is heavily used

4.2. Revisiting process algebra 77

in chapter 5. Section 4.4 introduces combinators for composition with interruption
and recovery, a topic quite promising for extending the coordination models dis-
cussed in this thesis, but not used further in the thesis. Finally, in section 4.5, we
come back to the thesis main stream, introducing behaviour-annotated interfaces for
both components and connectors.

4.2 Revisiting process algebra

4.2.1 Introduction

This section provides an introduction to our own coalgebraic approach to the design
of generic process algebra. References [Bar01, BO02] introduce a denotational
approach to the design of process algebras in which processes are identified with
inhabitants of a final coalgebra and their combinators defined by coinductive exten-
sion (of ’one-step’ behaviour generator functions). The goal was to apply to this area
of computing the same reasoning principles and calculational style one gets used to
in the dual world of functional programming with algebraic datatypes. Actually,
it is well known that initial algebras and final coalgebras provide abstract descrip-
tions of data and behavioural structures, respectively. Both initiality and finality,
as universal properties, entail definitional and proof principles, which form a basis
for the development of program calculi directly based on (actually driven by) type
specifications. The role of universals constructions, such as initial algebras and final
coalgebras, is — when combined with the ‘calculational’ style entailed by category
theory — fundamental to a whole discipline of algorithm derivation and transfor-
mation, which can be traced back to the so-called Bird-Meertens formalism [BM87]
and the foundational work of T. Hagino [Hag87b]. Dually, our research programme
regards processes as inhabitants of coinductive types, i.e., final coalgebras for the
powerset functor P(Act × Id), where Act denotes a set of action identifiers. Finally,
process combinators are defined as anamorphisms [MFP91], i.e., by coinductive ex-
tension. Note that, if coalgebras for a functor T can be regarded as generalisations of
transition systems of shape T, their behavioural patterns are revealed by the succes-
sive observations allowed by the signature of observers recorded in T. Then, just as
initial algebras are canonnically defined over the terms generated by successive ap-
plication of constructors, such ‘pure’ observed behaviours form the state spaces of
final coalgebras. It comes with no surprise that bisimulation coincides with equality
in such coalgebras. Therefore our approach has the attraction of replacing proofs
by bisimulation, which as in e.g., [Mil89], involves the explicit construction of such
a relation, by equational reasoning. Recently this approach has been extended to
capture weak equivalences, as documented in [RBW07].

78 4. Behavioural Interfaces

Technically, our approach amounts to the systematic use of the universal prop-
erty which characterizes anamorphisms. Recall that, for a functor T and an arbitrary
coalgebra 〈U, p : U −→ T U〉 , an anamorphism is the unique morphism to the fi-
nal coalgebra ωT : νT −→ T νT. Written, in the tradition of [MFP91], as [(p)]T or,
simply, [(p)], an anamorphism satisfies the following universal property:

k = [(p)]T ↔ ωT · k = T k · p (4.1)

which corresponds to the commutativity of the following diagram

νT
ωT // T νT

U
p //

[(p)]T

OO

T U

T [(p)]T

OO

from which the following cancellation, reflection and fusion laws are easily derived:

ωT · [(p)] = T [(p)] · p (4.2)

[(ωT)] = idνT (4.3)

[(p)] · h = [(q)] if p · h = T h · q (4.4)

The existence assertion underlying (4.1) (corresponding to the left to right im-
plicants) provides a definition principle for (circular) functions to the final coalgebra
which amounts to equip their source with a coalgebraic structure specifying the nex-
t-step dynamics. We call such a coalgebra the gene of the definition: it carries the
’genetic inheritance’ of the function. Then the anamorphism gives the rest. The
uniqueness part, underlying right to left implication in (4.1), on the other hand,
offers coinduction as a proof principle.

4.2.2 Combinators

In this approach, transition systems over a state space U and a set A of labels,
classicaly specified as binary relations

α←− : U −→ A × U (4.5)

are given by coalgebras
α : U −→ P(A × U) (4.6)

for P(A × Id), where P and Id denote, respectively, the (finite) powerset and the
identity functor. It is well-known that set-valued functions, such as coalgebra (4.6)

4.2. Revisiting process algebra 79

are models of binary relations and, conversely, any such relation is uniquely trans-
posed into a set-valued function. The existence and uniqueness of such a transfor-
mation leads to the identification of a transpose operator Λ [BM97] characterized
by an universal property which, for this particular case, reads

α = Λ α←− ≡ α←−= ∈ · α (4.7)

where ∈ denotes set membership and · is relational composition. Moreover, when-
ever P in (4.6) is restricted to the finite powerset, to enforce the existence of a final
universe, equivalence (4.7) establishes again a bijective correspondence between the
resulting coalgebras and image finite relations.

In [Bar01] processes are regarded as inhabitants of the final coalgebra

ω : ν −→ P(Act × ν)

where P is the finite powerset functor. The restriction to the finite powerset avoids
cardinality problems and assures the existence of a final coalgebra for T. This
means, of course, we are restricted to image-finite processes,

The carrier ofω is the set of possibly infinite labelled trees, finitely branched and
quotiented by the greatest bisimulation [Acz93], on top of which process combina-
tors are defined. The first set contains the so-called dynamic combinators, i.e., com-
binators which are ‘consumed’ on action occurrence, disappearing from the expres-
sion representing the process continuation. Typical examples (from e.g. [Mil89])
include inaction, prefix and non-deterministic choice. The first one is represented
as a constant nil : 1 −→ ν upon which no relevant observation can be made. Prefix
gives rise to an Act-indexed family of operators a. : ν −→ ν, with a ∈ Act. Fi-
nally, the possible actions of the non deterministic choice of two processes p and q
corresponds to the collection of all actions allowed for p and q. Formally,

inaction ω · nil = ∅ (4.8)

prefix ω · a. = sing · labela (4.9)

choice ω · + = ∪ · (ω × ω) (4.10)

where sing = λx . {x} and labela = λx . 〈a, x〉. Recursive combinators, on the
other hand, are defined as anamorphisms. A typical example is interleaving � :
ν × ν −→ ν which represents an interaction-free form of parallel composition. The
following definition captures the intuition that the observations over the interleaving
of two processes correspond to all possible interleavings of observations of their
arguments. Thus, � = [(α�)], where

α� = ν × ν
M // (ν × ν) × (ν × ν)

(ω×id)×(id×ω) // (P(Act × ν) × ν) × (ν × P(Act × ν))

τr×τl // P(Act × (ν × ν)) × P(Act × (ν × ν)) ∪ // P(Act × (ν × ν))

80 4. Behavioural Interfaces

Morphisms τr : P(Act × X)×C −→ P(Act × (X ×C)) and τl : C ×P(Act × X) −→
P(Act × (C × X)) stand for, respectively, the right and left strength associated to
functor P(Act × Id).

4.2.3 Interaction

The synchronous product models the simultaneous execution of two processes, which,
in each step, interact through the actions they realize. Let us, for the moment, rep-
resent such interaction by a function θ : Act −→ Act × Act. Formally, � = [(α�)]
where

α� = ν × ν
(ω×ω) // P(Act × ν) × P(Act × ν)

sel·δr // P(Act × (ν × ν))

where sel filters out all synchronisation failures. and δr is given by

δr 〈c1, c2〉 = {〈a′ θ a, 〈p, p′〉〉| 〈a, p〉 ∈ c1 ∧ 〈a′, p′〉 ∈ c2}

But what is θ? This operation defined over Act what we call an interaction struc-
ture: i.e., an Abelian positive monoid 〈Act; θ, 1〉with a zero element 0. It is assumed
that neither 0 nor 1 belong to the set of elementary actions. The intuition is that θ de-
termines the interaction discipline whereas 0 represents the absence of interaction:
for all a ∈ Act,aθ0 = 0. On the other hand, a positive monoid entails aθa′ = 1 iff
a = a′ = 1. The role of 1, often regarded as an idle action, is essentially technical.
Notice that the role of both 0 and 1 is essentially technical in the description of the
interaction discipline. In some situations 1 may be seen as an idle action, but its
role, in the general case, is to equip the behaviour functor with a monadic structure,
which would not be the case if Act were defined simply as an Abelian semigroup.
This structure was inpired by Winskel’s synchronisation algebras [WN95], and is,
in fact, the main source of genericity in our approach.

As a matter of fact by parameterizing a basic calculus by an interaction struc-
ture, one becomes able to design quite a number of different, application-oriented,
process combinators. For example, C assumes a set L of labels with an involu-
tive operation, represented by an horizontal bar as in a. Any two actions a and a
are called complementary and a special action τ < L is introduced to represent the
result of a synchronisation between a pair of complementary actions. Therefore,
the result of θ is τ whenever applied to a pair of complementary actions and 0 in
all other cases, except, obviously, if one of the arguments is 1. In C, on the other
hand, aθa = a for all action a ∈ Act. Yet other examples emerge in component coor-
dination. Typically a glass-box view of a particular architectural configuration (i.e.,
a ’glued’ set of components and software connectors) will call for a co-occurrence

4.3. Proofs and prototypes 81

interaction: θ is defined as aθb = 〈a, b〉, for all a, b ∈ Act different from 0 and 1. For
the black-box view, however, actions are taken as sets of labels, and θ defined as set
intersection.

Synchronous product depends in a crucial way on the interaction structure adopted.
For example its commutativity depends only on the commutativity of the underlying
θ. Such is also the case of the standard parallel composition which combines the
effects of both � and �. Note, however, that such a combination is performed at the
genes level:

� = [(α�)] (4.11)

where

α� = ν × ν
M // (ν × ν) × (ν × ν)

(α�×α�) //

P(Act × (ν × ν)) × P(Act × (ν × ν)) ∪ // P(Act × (ν × ν))

4.3 Proofs and prototypes

As mentioned above, definition and proof by coinduction forms the base of the
Minho approach to process calculi design. In this section we

• illustrate the underlying rationale by considering the definition of a new com-
binator \k whose aim is to make internal all occurrences of a specific action
k;

• prove a generic version of Milner’s expansion law;

• and introduces (a fragment of) a H library for prototyping process al-
gebras directly based on the coinductive definitions.

4.3.1 Hiding

Let us first consider the definition of a new combinator, \k, whose aim is to make
internal all occurrences of a specific action k. Thus,

\k = [(αk)]

82 4. Behavioural Interfaces

with

αk = ν
ω // P(Act × ν)

P(subk×id) // P(Act × ν)

and subk , (=k) → τ, id, τ standing for a representation of an internal action.
Once defined a combinator, its theory arises by finding out how it interacts with the
rest of the algebra. We consider now interaction with interleaving. This provides
a first example of a coinductive proof by calculation, to be opposed to the more
classic proof by bisimulation.

Lemma 4.1

\k ·� = � · (\k × \k) (4.12)

Proof. Note that equation (4.12) does not allow a direct application of the fusion
law. Since ω is an isomorphism, however, we may rewrite it as

ω · \k ·� = ω ·� · (\k × \k) (4.13)

which can be further simplified in terms of the corresponding genes, because both
� and \k were defined by coinduction. Consider first the left hand side of (4.13).

ω · \k ·�

= { definition of ω · \k, cancellation}

P(id × \k) · αk ·�

= { definition of αk}

P(id × \k) · P(subk × id) · ω ·�

= { � is a morphism }

P(id × \k) · P(subk × id) · P(id ×�) · α�

= { functors and definition of α� }

P(id × \k) · P(id ×�) · P(subk × (id × id)) · ∪ · (τr × τl) · (ω × id) × (id × ω) · ∆

= { ∪, τr and τl are natural i.e.τr · (B f × g) = B(f × g) · τr e τl · (f × Bg) = B(f × g) · τl for B = P(Act × Id)}

P(id × \k) · ∪ · (τl × τr) · (P(subk × id) · ω × id) × (id × P(subk × id) · ω) · ∆

= { definition of αk}

P(id × \k) · ∪ · (τl × τr) · ((αk × id) × (id × αk)) · ∆

4.3. Proofs and prototypes 83

Consider, now, the right hand side of the same equation:

ω ·� · (\k × \k)

= { � is morphism }

P(id ×�) · α� · (\k × \k)

= { defintion of α�}

P(id ×�) · ∪ · (τr × τl) · ((ω × id) × (id × ω)) · ∆ · (\k × \k)

= { ∆ is natural, functors }

P(id ×�) · ∪ · (τr × τl) · ((ω · \k × \k) × (\k × ω · \k)) · ∆

= { \k is morphism }

P(id ×�) · ∪ · (τr × τl) · ((P(id × \k) · αk × \k) × (\k × P(id × \k) · αk)) · ∆

= { functors, τr and τl are natural }

P(id ×�) · ∪ · P(id × (\k × \k)) × P(id × (\k × \k)) · (τr × τl)

·((αk × id) × (id × αk)) · ∆

= { ∪ is natural }

P(id × (� · (\k × \k))) · ∪ · (τr × τl) · ((αk × id) × (id × αk)) · ∆

The simplification of both sides of equation (4.13) did not lead to the same expres-
sion. Actually, what we have concluded is that

ω ·� · (\k × \k) = P(id × (� · (\k × \k))) · γ

and

ω · \k ·� = P(id × (\k ·�)) · γ

for coalgebra

γ = ∪ · (τr × τl) · ((αk × id) × (id × αk)) · ∆

This means that both � · (\k × \k) and \k ·� are morphisms between γ and the final
coalgebra ω. As there can only be one such morphisms we conclude they are equal.

�

This sort of proof is quite common in the calculus. The strategy is as follows:
once a direct application of fusion is not possible, the aim becomes to show that both
forms of composition of the two combinators can be defined as an anamorphism for
a common gene coalgebra γ. Clearly, by the universal property, they must coincide.
An important issue is the fact that γ was not postulated from the outset, but inferred
from the calculations process.

84 4. Behavioural Interfaces

4.3.2 The expansion law

A number of laws expressing equivalence between behaviours can be proved in this
same calculational style. Reference [Bar01], for example, proves that both �, � and
� form Abelian monoids for whatever interaction discipline one might consider.
Similarly, sum (i.e., choice) is also an Abelian idempotent monoid. These results
will be used in the sequel.

In this subsection we concentrate in proving the well-known expansion law.
This law, a cornerstone in interleaving models of concurrency [Mil89], states a pro-
cess is bisimilar to the sum of its immediate derivations, i.e.,

Lemma 4.1 For all p,
p ∼

∑
p′

a
−→p

a.p′ (4.14)

Proof. Recalling that a final coalgebra ω is always an isomorphism, the proof is as
follows:

ω (
∑

p′
a
−→p

a.p′)

= { definition of
a
−→}

ω (
∑

〈a,p′〉∈ω p

a.p′)

= { equation (4.10)}⋃
Pω {a.p′| 〈a, p′〉 ∈ ω p}

= { definition of P }⋃
{ω (a.p′)| 〈a, p′〉 ∈ ω p}

= { equation (4.9)}⋃
{{〈a, p′〉}| 〈a, p′〉 ∈ ω p}

= { ∪ reduction}

{〈a, p′〉| 〈a, p′〉 ∈ ω p}

= { functions}

ω p

�

4.3. Proofs and prototypes 85

4.3.3 Functional prototyping

One advantage of this approach to process algebra design is the fact that it allows an
almost direct translation for a functional programming language like H. This
section highlights a few issues in the construction of a H library for process
algebra prototyping. Reference [BO02] reports on a first, alternative implementa-
tion on top of C [CF92, CS95].

Our starting point is the definition of the powerset functor Pr (assuming an im-
plementation of sets as lists) and the definition of the semantic universe of processes
as the coinductive type Proc a, as follows,

type Proc a = Nu (Pr a)
data Pr a x = C [(a, x)] deriving Show
instance Functor (Pr a)

where fmap f (C s) = C (map (id >< f) s)

obsProc :: Pr a x -> [(a, x)]
obsProc p = f where (C f) = p

newtype Nu f = Fin (f (Nu f))
unFin :: Nu f -> f (Nu f)
unFin (Fin x) = x

The second step is the definition of the interaction structure as an inductive type,
parametric on an arbitrary set of actions, over which one defines operator θ, denoted
here as prodAct. To compare actions one must include in the class requirements
a notion of action equality eqAct, expressed as the closure of an order relation
leAct. For example, the C interaction structure requires the following definition
of actions:

data Act l = A l | AC l | Nop | Tau | Id deriving Show

Dynamic combinators have a direct translation as functions over the final universe,
as exemplified in the encoding of prefix and choice:

preP :: Act a -> Proc (Act a) -> Proc (Act a)
preP act p = Fin (C [(act,p)])

sumP :: Proc (Act a) -> Proc (Act a) -> Proc (Act a)
sumP p q = Fin (C (pp ++ qq)) where

(C pp) = (unFin p)
(C qq) = (unFin q)

86 4. Behavioural Interfaces

On the other hand the definitons of static combinators are directly translated to
H, provided that first one defines anamorphisms as a (generic) combinator.
The following definition is standard:

ana :: Functor f => (c -> f c) -> c -> Nu f
ana phi = Fin . fmap (ana phi) . phi

Note, for example, how parallel composition | is defined in terms of the genes of �
(alphai) and � (alphap):

par :: (Eq a) => (Proc (Act a), Proc (Act a)) -> Proc (Act a)
par (p, q) = ana alpha (p, q)

where alpha (p, q) =
C ((obsProc (alphai (p,q))) ++ (obsProc (alphap (p,q))))

4.4 Interruption and Recovery

4.4.1 Apomorphisms

This section introduces two interruption combinators, defined by natural co-recur-
sion, and encoded as apomorphisms [VU97]. In this pattern the final result can
be either generated in successive steps or ‘all at once’ without recursion. There-
fore, the codomain of the source ‘coalgebra’ becomes the sum of its carrier with the
coinductive type itself. The universal property is

The diagram is

νT
ωT // T νT

X p
//

apo p

OO

T (X + νT)

T [apo p,id]

OO

which entails the following universal property

h = apo p ⇐⇒ ωT · h = T [h, id] · p (4.15)

from which one can easily deduce the following cancellation, reflection and fusion
laws.

ωT · apoϕ = T[apoϕ, id] · ϕ (4.16)

id = apo T(ι1) · ωT (4.17)

ψ · f = T(f + id) · ϕ⇒ apoψ · f = apoϕ (4.18)

4.4. Interruption and Recovery 87

Note that every anamorphism [(ϕ)] can be regarded as an apomorphism: apo T(ι1) ·
ϕ. Dually, apomorphims reduce to anamorphisms composed with injections, i.e.,
apoT p = [([p,T ι2 · ωT])]T · ι1. Encoding apomorphisms in H is straightfor-
ward:

apo :: Functor f => (c -> f (Either c (Nu f))) -> c -> Nu f
apo phi = Fin . fmap (either (apo phi) id) . phi

We shall, then, jump into the two announced applications.

4.4.2 Parallel Composition with Interruption

Our first combinator is a form of parallel composition which may terminate if some
undesirable situation results from the interaction of the two processes. Such unde-
sirable situation is abstractly represented by a particular form of interaction denoted
by ∗. Therefore, combinator ‡ terminates execution as a result of an ∗-valued inter-
action. Formally, it is defined by an apomorphism

‡ = apoα‡ (4.19)

according to the following diagram

ν × ν
α‡ //

‡

��

P(Act × ((ν × ν) + ν))

P(id×[‡,id])
��

ν
ω // P(Act × ν)

where 1

α‡ = ν × ν
ω×ω // P(Act × ν) × P(Act × ν)

Pτl·τr // PP((Act × ν) × (Act × ν))

Pm·∪ // P((Act × Act) × (ν × ν))

P(θ×id) // P(Act × (ν × ν))

Ptest // P(Act × ((ν × ν) + ν))

1Note that, in this definition, strengths τl and τr are taken with respect to the powerset functor
P , in contrast with other combinators’ definitions in this chapter where functor P(Act × Id) is taken
instead.

88 4. Behavioural Interfaces

where

test = 〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉

and m : (A × B) × (C × D) −→ (A × C) × (B × D) is a natural isomorphism which
exchanges the relative positions of factors in a product. Let us now illustrate how
to compute with apomorphisms, by discussing the comutativity of this combinator,
i.e., that the following equation, where s is the comutativity isomorphism, holds.

‡ · s = ‡ (4.20)

As a first step we derive
‡ · s = ‡

≡ { ‡ definition}

apoα‡ · s = apoα‡

← { apomorphism fusion law }

α‡ · s = P(id × (s + id)) · α‡

Now, let us unfold the left hand side of this last equality.
α‡ · s

= { α‡ definition }

P(〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl · τr · ω × ω · s

= { s natural }

P(〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl · τr · s · ω × ω

= { τr · s = Ps · τl }

P(〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl · Ps · τl · ω × ω

= { τl · s = Ps · τr, functors }

P(〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · PPs · Pτr · τl · ω × ω

= { ∪ natural }

P(〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · Ps · ∪ · Pτr · τl · ω × ω

= { m natural: m · s = (s × s) ·m }

P(〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · P(s × s) · Pm · ∪ · Pτr · τl · ω × ω

= { Pτr · τl = Pτl · τr, because P is a commutative monad [Koc72]; functors }

P(〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉) · P((θ · s) × s) · Pm · ∪ · Pτl · τr · ω × ω

= { ×-fusion }

P(〈π1 · ((θ · s) × s) , (=∗ · π1 → ι2 · nil, ι1 · π2) · ((θ · s) × s)〉) · Pm · ∪ · Pτl

· τr · ω × ω

= { conditional fusion, ×-cancellation, constant function }

P(〈θ · s · π1 , (=∗ · θ · s · π1 → ι2 · nil, ι1 · s · π2)〉) · Pm · ∪ · Pτl · τr · ω × ω

4.4. Interruption and Recovery 89

Unfolding the right hand side we arrive at

P(id × (s + id)) · α‡

= { α‡ definition }

P(id × (s + id)) · P(〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl

· τr · ω × ω

= { functors, ×-absorption }

P(〈π1, (s + id) · (=∗ · π1 → ι2 · nil, ι1 · π2)〉) · P(θ × id) · Pm · ∪ · Pτl · τr · ω × ω

= { conditional fusion }

P(〈π1,=∗ · π1 → (s + id) · ι2 · nil, (s + id) · ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl

· τr · ω × ω

= { +-cancellation }

P(〈π1,=∗ · π1 → ι2 · nil, ι1 · s · π2〉) · P(θ × id) · Pm · ∪ · Pτl · τr · ω × ω

= { conditional fusion law, functors, ×-fusion }

P(〈θ · π1 , =∗ · θ · π1 → ι2 · nil, ι1 · s · π2〉) · Pm · ∪ · Pτl · τr · ω × ω

These two unfolding processes did not lead to the same expression; equation (4.20)
is, therefore, in general false. Note, however, that the difference between the two
expressions is only in the order in which the same arguments are supplied to θ. We
may thus suppose the existence of a result weaker than (4.20), but still relevant and
useful, may result from this calculation. This requires a more general discussion
which follows.

4.4.3 Conditional Fusion

The aim of the previous calculation was to prove equation (4.20) which, by fusion,
reduced to

α‡ · s = P(id × (s + id)) · α‡ (4.21)

Note the advantage of using a fusion law is to get rid of direct manipulation of
recursion: all computation is done in terms of the recursion genes. In this way we
succeeded in reducing (4.21) to

P(〈θ · s · π1 , (=∗ · θ · s · π1 → ι2 · nil, ι1 · s · π2)〉) · γ

=

P(〈θ · π1 , (=∗ · θ · π1 → ι2 · nil, ι1 · s · π2)〉) · γ

where

γ = Pm · ∪ · Pτl · τr · ω × ω

90 4. Behavioural Interfaces

Now note that this equation is only valid if one postulates an additional condition
expressing the commutativity of θ, i.e.,

θ · s = θ (4.22)

The interesting question is then: what does such a conditional validity at the genes
level imply with respect to the validity of the original equation (4.20)? In general,
suppose that in a proof, one concludes that the validity of the antecedent of the
fusion law

α · f = T(f + id) · β ⇒ apoα · f = apo β (4.23)

depends on an additional condition Φ, i.e.,

Φ → α · f = T(f + id) · β (4.24)

What happens is that Φ is stated as a local condition on the genes of the apomor-
phisms, i.e., on the imediate derivatives of the proocesses involved. Such a condi-
tion needs to be made stronger enforcing validity over all derivatives. Technically,
Φ should be transformed into an invariant: i.e., a predicate which is preserved by
the coalgebra dynamics, ω, in the present case. To state such a result we need a
modal language interpreted over coalgebras. The following notions are relatively
standard in the literature (see, e.g., [Mos99] or [Jac99]).

A predicate φ : U −→ 2 over the carrier of a T-coalgebra 〈U, γ : U −→ T U〉 is
called a γ-invariant if closed under γ. Formally, one defines a predicate combinatore
γ

2:
(e

γ φ) u ≡ ∀u′∈Tγ u . φ u′

whose meaning reads: e
γ φ is valid in all states whose immediate γ-derivatives

verify φ. Then, φ is an invariant iif

φ → e
γ φ

that is
φ ⊆ e

γ φ

The closure of e
γ defines the coalgebraic equivalent to the always in the future

modal operator (just as e
γ corresponds to the next operator in modal logic). Thus,

�γ φ is introduced in [Jac99] as the greatest fixpoint of function λx . φ ∩
e
γ x.

Intuitively, �γ φ reads ‘φ holds in the current state and all the other states under γ.
In such a definition contains the key to answer our previous question, as stated in
the following lemma.

2Notation ∈T refers to the extension of the membership relation to regular functors [MB04].

4.4. Interruption and Recovery 91

Lemma 4.2 Let α and β stand for two T-coalgebras and Φ a predicate over the
carrier of β. Then,

(Φ⇒ α · h = T(h + id) · β) → (�β Φ → (apoα · h = apoβT)) (4.25)

Proof. Let X be the carrier of β and iΦ the inclusion in X of the subset classified by
predicate Φ, i.e., Φ · iΦ = true·!. Any β-invariant induces a subcoalgebra β′ which
makes i�β Φ a coalgebra morphism from β′ to β. Then,

Φ⇒ α · h = T(h + id) · β

≡ { definition of inclusion iΦ}

α · h · iΦ = T(h + id) · β · iΦ

⇒ { �βΦ ⊆ Φ}

α · h · i�βΦ = T(h + id) · β · i�βΦ

≡ { i�βΦ is a morphism from β′ to β}

α · h · i�βΦ = T(h + id) · T(i�βΦ) · β′

≡ { functors }

α · h · i�βΦ = T((h + id) · i�βΦ) · β′

≡ { apomorfism fusion law }

apoα · h · i�βΦ = apo β′

≡ { i�βΦ is a coalgebra morphism }

apoα · h · i�βΦ = apo β · i�βΦ

≡ { inclusion i�β Φ}

�βΦ⇒ (apoα · h = apo β)

�

We call formula (4.25) the conditional fusion law for apomorphisms. A similar
result, but restricted to anamorphisms was proved in [Bar01]. Let’s come back to
our example. Note that in this case the relevant predicate, given by equation (4.22),
does not involve states, but just actions. Therefore

�ω (θ · s = θ) = (θ · s = θ)

92 4. Behavioural Interfaces

which, according to lemma 4.2, is the predicate to be used as the antecendent of
(4.21). We may now conclude this example stating the following general law con-
cerning the interruption operator:

(θ · s = θ) → ‡ · s = ‡ (4.26)

4.4.4 A Recovery Operator

We now discuss a combinator which models fault recovery3. Intuitively, the com-
binator allows the execution of its first argument until an error state is reached. By
convention, an error occurrence is signalled by the execution of a special action x.
When this is detected, execution control is passed to the second process. This pro-
cess, which is the combinator second argument, is an abstraction for the system’s
recovery code. The combinator is defined as B = apoαB, where

αB = ν × ν
ω×id // P(Act × ν) × ν

tx·π1→ι1,ι2·π2 // P(Act × ν) × ν + ν
τr+ω // P(Act × (ν × ν)) + P(Act × ν)

[P(id×ι1),P(id×ι2)] // P(Act × (ν × ν + ν))

where tx : P(Act × ν) −→ B is given by

tx = <x ·Pπ1

We shall go on exploring the calculational power of this approach to process
algebra through the discussion of a new conditional property. The intuition says
that should no faults be detected in the first process, the recovery process will not be
initiated. In other words, in the absence of faults, a process running in a fault tolerant
environment behaves just as it would do if executed autonomously. Formally,

Lemma 4.3

�ω (<x ·Pπ1) → B = π1 (4.27)

Proof. Note that predicate <x ·Pπ1 only states fault absence in the immediate suc-
cessors of each state. It is, therefore, sufficient to establish the antecedent of the
fusion law, as shown below.

3Although the very abstract level in which it is approached here, it should be underlined that fault
tolerence is a fundamental issue in software engineering.

4.5. Behaviour-annotated interfaces 93

P(id × (π1 + id)) · αB

= { definition of tx, assuming hypothesis <x ·Pπ1 }

P(id × (π1 + id)) · [P(id × ι1),P(id × ι2)] · (τr + ω) · ι1 · ω × id

= { τr + ω = [ι1 · τr, ι2 · ω]}

P(id × (π1 + id)) · [P(id × ι1),P(id × ι2)] · [ι1 · τr, ι2 · ω] · ι1 · ω × id

= { +-cancellation }

P(id × (π1 + id)) · P(id × ι1) · τr · ω × id

= { P is a functor, +-cancellation, functors }

P(id × ι1) · P(id × π1) · τr · ω × id

= { P(id × π1) · τr = π1 }

P(id × ι1) · π1 · ω × id

= { f × g = 〈 f , g〉, ×-cancellation }

P(id × ι1) · ω · π1

Note that what we would expect to have proven was

P(id × (π1 + id)) · αB = ω · π1

but, actually, all that was shown was that

P(id × (π1 + id)) · αB = P(id × ι1) · ω · π1

This comes to no surprise: the role of the additional factor P(id × ι1) in the right
hand side is to ensure type compatibility between both sides of the equation. The
important point, however, is the fact that the whole proof was carried under the
assumption, recorded in the very first step, that <x ·Pπ1. Thus, by lemma 4.2, we
conclude as expected.

�

4.5 Behaviour-annotated interfaces

We end this chapter with a definition of what is to be called in the sequel a be-
haviour-annotated interface. As before, we assume a unique, general data domain,
denoted by D, as the type of all data values flowing in an application. Interfaces
are defined over D, but their behaviour is no long restricted to keeping track of
port names and, possibly, of admissible types for data items flowing through them.
Actually,

94 4. Behavioural Interfaces

Definition 4.1 Let D be a data domain understood as a general type for messages.
An interface for a component C is specified by a port signature, sig(C) over D,
given by a port name and a polarity annotation (either in(put) or out(put)), and a
use pattern, use(C), given by a process term over port activations.

In the context of component orchestration a use pattern, intended to abstract a
component behaviour, is defined as follows:

Definition 4.2 LetP be the set of port identifiers and S (the specification of) a com-
ponent. Its use pattern, use(S), is given by a process expression over A according
to the grammar below, where A is defined as the union of the powerset of P with
special symbol 0 (to represent inaction),

P ::= 0 | a · P | P + P | P � P | P � P | P � P | σ P | fix (X = P)

where a is an element of A (i.e., a set of port identifiers) and σ is a substitution.

Regarding as an action, a port identifier a asserts the activation of the corre-
sponding port, i.e., the fact that a datum has crossed its boundaries. Note that
choosing A as a set of port identifiers allows for the synchronous activation of sev-
eral ports in a single computational step.

The semantics of such expressions is fairly standard, but for the parametrization
of all forms of parallel composition (i.e., � and �) by an interaction discipline
as discussed above. Combinators 0, ., +, �, � and �, were already introduced.
Renaming is given by term substitution. Expression fix (X = P) is a fixed point
construction, which, as usual, can abbreviated in an explicit recursive definition.

As a basic principle underlying all models proposed in this thesis, direct inter-
action between components is precluded: all interaction are mediated by a specific
connector. Therefore, if two components are active in a particular application, their
joint behaviour will allow the realization of both use patterns either simultaneously
or in an independent way. Formally,

Definition 4.3 The joint behaviour of a collection {S i| i ∈ n} of components is given
by

use(S 1) � . . . � use(S n)

where the interaction discipline is fixed by θ = ∪ , i.e., the synchronisation of actions
corresponds to the simultaneous realization of all of them. Clearly, the monoid unit
is the emptyset ∅.

4.5. Behaviour-annotated interfaces 95

This joint behaviour is computed by the application of the expansion law (4.14)
proved above, while obeying to the interaction discipline given by θ. The following
examples illustrate this construction.

Example 4.1 Consider a component S 1 with two ports a and b whose use pattern
is restricted to the activation of either a or b, forbidding their simultaneous occur-
rence. The expected behaviour is captured by

use(S 1) = fix (X = a · X + b · X)

Now consider another component, S 2, with ports c and d whose behaviour is given
by the co-occurrence of actions in both ports. Therefore,

use(S 2) = fix (X′ = cd · X′), where cd abv
= {c, d}

According to definition (4.3), the joint behaviour of S 1 and S 2 is

use(S 1) � use(S 2) = fix (X = acd · X + bcd · X + a · X + b · X + cd · X)

As a final example, consider still another component S 3, with ports e and f activated
in strict order, i.e.,

use(S 3) = fix (Y = e · f · Y)

Clearly, expansion leads to use(S 2) � use(S 3) = P, where

P = fix (X = cd · X + e · Q + cde · Q)

Q = fix (X = cd · X + f · P + cd f · P)

In the next chapter we will introduce behaviour annotations also for software
connectors and discuss the disciplines underlying their composition and interaction
with components.

96 4. Behavioural Interfaces

Chapter 5

Context-aware Connectors and
Architectural Configurations

Summary
This chapter presents yet another model for software connectors with explicit behavioural
annotations. The model was designed to deal correctly with context dependent behaviour
and its propagation. Actually, capturing context dependent behaviour and ensuring it is
suitably propagated through complex connector networks, is a difficult problem, still not
addressed, for example, in the most popular semantics for R. A second contribution of the
paper is a notion of configuration, which abstracts away fragments of a software architec-
ture, putting together connectors and components, the latter specified by public interfaces
in the style discussed in chapter 4. The chapter is based on [BB09], which formalises some
of the constructions originally suggested in [BB06].

5.1 Interfaces, connectors and configurations

Up to this chapter we have considered models for software connectors understood as
special devices intended to regulate the flow of data, by relating data items crossing
its input and output ports, and enforce synchronization constraints. Typically the
coordinated entities, or components, are regarded as black-boxes, characterized by
a set of ports through which data values are sent or received. Ports have a polarity

97

98 5. Context-aware Connectors and Architectural Configurations

(either input or output) and, maybe, a type to classify the admissible values. In
general, our models made few assumptions on components.

As discussed in chapter 4, this is clearly insufficient to count as an interface for,
for example, a web service. Typically, the latter includes a description of what is
commonly called the business protocol or behavioural pattern, i.e., a specification
of which, when and under what conditions ports become activated (i.e., ready to
deliver or consume a datum). To be useful such specifications have to be composi-
tional, in the sense that the overall behaviour of an application should be computed
from the behaviour of individual components and that of the connectors forming
the coordination layer. The contribution of chapter 4 concerned precisely the def-
inition of such enriched interfaces, building a formalism that can be used both for
specifying component interfaces, as discussed there, and connector behaviours, as
proposed in the present chapter.

Actually, the purpose of the present chapter is twofold:

• To define a framework for specification of coordination-based software archi-
tectures, putting together connectors and components, the latter exclusively
accessed through behavioural interfaces. The key concept to be discussed is
that of a configuration, as an abstraction of a piece of software architecture.

• To introduce yet another formal model for software connectors which, differ-
ently from the models discussed so far, allows the specification of connectors
with context dependent behaviour.

Actually, a specific feature of the connector model to be proposed in the se-
quel is the ability to deal with context-awareness. By this we mean the ability of
a connector to adapt its behaviour, in a non monotonic way, in response to context
changes. Context is formed by the processes running in the coordinated compo-
nents, as captured by the pending activity at the connector ports. This notion, even
if in general is difficult to formalise, is regarded as fundamental in exogenous co-
ordination research and as such is considered in the informal semantics of R as
presented in its foundational papers [Arb03, Arb04].

Capturing context dependent behaviour and ensuring it is suitably propagated
through a connector network, is a difficult problem. In the context of R it was not
solved in the two main formal semantics proposed for the language based on timed
data streams [AR03] and constraint automata [BSAR06], and remains, up to the
time of writing a debatable issue. A partial solution was put forward in the so-called
connector-coulouring semantics [CCA07], which is highly operational and admits
degenerated behaviour in a number of cases. A semantics for R context-aware

5.1. Interfaces, connectors and configurations 99

DataSource
$$
© // Processor

Authenticator

::

Figure 5.1: An example of a configuration.

connectors was announced as an outcome of a PhD thesis by David Costa [Cos10]
but not yet published.

The development of a connector model dealing with context-awareness was put
forward as main challenge back in 2004, at the proposal of this thesis. The out-
come appeared in [BB09], as a follow up to ideas originally presented at F’06
[BB06], and, in a revised version, in the present chapter.

A motivation example. Before jumping to the technical details, let us illustrate
the envisaged strategy by means of a small example on web services coordination.
Consider, thus, the situation depicted in Fig. 5.1 involving three web services: one
produces data items, another emits authentication certificates for them and, finally,
the third collects both data and certificates and processes them in a certain way.

According to the World Wide Web Consortium, a web service is a software ap-
plication identified by a uniform resource identifier (URI), whose interfaces and
binding can be defined, described, and discovered by X artifacts, and that sup-
ports direct interactions with other software applications using X based messages
via Internet-based protocols. Less biased definitions abstract from concrete repre-
sentations of data and messages. In [IBM03] a Web service is a self-contained,
modular applications that can be described, published, located, and invoked over a
network, generally the Web. And in [ACKM04] it is characterised as a program ac-
cessible over the Web with a stable interface, published with additional descriptive
information on some service directory. At an even more abstract level, the under-
lying notion of a service emerges as a platform-independent computational entity
which can be defined, published, classified, discovered and dynamically assembled
for developing distributed, interoperable, evolvable systems and applications.

In general, services make themselves available by publishing an interface which
describes a number of operations that other services may invoke according to given
patterns, known as conversations, whose collection forms what is called the service
business protocol. In the case of Web services, interfaces are typically described in
W [W2C07], which resemble a classical IDL (’interface description language’)

100 5. Context-aware Connectors and Architectural Configurations

enriched with contextual information, such as the service address or the transport
protocol used for access. The definition of admissible behaviours and the roles asso-
ciated to them, usually resorts to a coreography language — e.g. W-C [W2C05]
It should also be noted that, unlike conventional middleware, a service can proac-
tively initiate an interaction, a fact that blurs the classical distinction between clients
and servers.

As in the previous chapters, we assume services are black box entities, accessed
by purely syntactic interfaces. Moreover, such black boxes encapsulate active en-
tities which are responsible for producing or consuming data items through their
boundaries. The primary role of an interface is to keep track of port names and,
possibly, of admissible types for data items flowing through them. The model,
however, extends interfaces with a protocol specification over port activations, as
formally defined in chapter 4.

For the moment, let us suppose each service in Fig. 5.1 has a particular protocol
attached and moreover that there exists an overall restriction specifying that data
from DataSource and Authenticator are received by the processing service in strict
alternation (i.e., each data item is followed by the corresponding certificate).

The latter restriction clearly belongs to the coordination layer (the glue code):
in principle the two data sources not even need to be aware of it. Enforcing such
restrictions is the role of connectors which mediate services’ interconnection. Con-
nectors have ports through which the exchange of messages takes place. The acti-
vation of their ports also obey particular patterns, whose specification resort to the
same formalism used for business protocols. When interfacing with services both
sides impose constraints on how the conversation has to proceed. The purpose of
the model discussed in the sequel is to be able to infer the global behaviour of an
application from such constraints.

As detailed in section 5.2, connectors are specified by a relation, which captures
the flow of data, and a behavioural pattern. Their construction is compositional:
new connectors are built out of old through six specific connectives: parallel and
concurrent aggregation, interleaving, left and right port join and hook, the latter
corresponding, as before, to a feedback mechanism.

Connectors provide the essential mechanism for service composition. This guar-
antees loosely coupled cooperation among services and entails a number of simpli-
fications. For example there is no need to syntactically distinguish between different
forms of interaction, e.g., between one-way or request-response interactions. Such
patterns are enforced at the coordination level. A collection of services, specified by
their interfaces, interconnected by a particular, eventually rather complex connector,
forms a configuration, as depicted in Fig. 5.1.

5.2. The coordination layer 101

The remaining sections are devoted to make all this precise. The glue code is
discussed in sections 5.2, 5.3, and 5.4, which are concerned with connectors and
their composition into a coordination layer. Finally, section 5.5 explains how con-
nectors and services (or components) are put together to cooperate in a loosely-cou-
pled way.

5.2 The coordination layer

The fundamental notion proposed in this model as a basis for component orchestra-
tion is that of a configuration. As explained above, this captures the intuition that
components cooperate through specific connectors which abstracts the idea of an
intermediate glue code to handle interaction. Having defined, in the previous chap-
ter, a notion of component interface, which records all what may be assumed to be
known by potential clients, we shall now complete the picture by defining

• what connectors are and how do they compose;

• how do services’ interfaces and connectors interact in a configuration.

These points are tackled in the following sections. It turns out that two forms of
composition (of connectors with themselves and with components’ interfaces) fol-
low different interaction disciplines, captured by specific definitions of θ.

5.2.1 Connectors

Connectors are glueing devices between services which ensure the flow of data and
the meet of synchronization constraints. Their specification builds on top of the
models presented earlier in the thesis, which are extended here with an explicit
annotation of activation, or use, patterns for their ports.

Ports are interface points through which messages flow. Each port has an inter-
action polarity, either input or output (a source or a sink end in the R terminol-
ogy), but, in general, connectors are blind with respect to the data values flowing
through them.

Let, as usual, C be a connector with m input and n output ports. Assume M
is a generic type of messages and P a set of (unique) port identifiers. In a num-
ber of cases it is necessary to consider a default value in D to represent absence
of messages, for example to describe a transition in a connector’s state in which

102 5. Context-aware Connectors and Architectural Configurations

a particular port is not involved. Therefore, the type of data D flowing through
connectors is defined as

D , M + 1 (5.1)

where 1 is the singleton set whose unique element is represented, by convention, as
⊥.

Elementary connectors are stateless, but to introduce asynchrony, e.g., through a
buffered channel, internal states might be considered. Let U stand for a generic type
of state spaces, typically given as a functorial expression in D. For example U may
be defined as a sequence of data (U = D∗) or, as in the specification of a one-fifo
buffer below, simply as U = D. Default value ⊥ standing now for absence of stores
information in the connectors memory. Formally, the behaviour of a connector is
defined as follows

Definition 5.1 The specification of a connector C is given by a relation

data.[[C]] : Dn × U←− Dm × U (5.2)

which records the flow of data, and a process expression

port.[[C]] ∈ Bhv (5.3)

which gives the behavioural pattern for port activation. Bhv is the process language
generated according to the grammar in definition 4.2.

In a first approximation set A, of actions, above is taken as A = P(P ∪ {τ}), i.e.,
as sets of connectors’ ends plus a special symbol, τ, to represent any unobservable
action. The introduction of τ is technically entailed by the semantics of the hook
combinator, as explained below. Regarded as an action, a port identifier a asserts the
activation of the corresponding port, i.e., the fact that a datum crosses its boundaries.
Note that choosing A as a set of port identifiers allows for the synchronous activation
of several ports in a single computational step. This is enough for the semantics of
a number of elementary connectors, as follows.

Synchronous channel.

The synchronous channel has two ports of opposite polarity. This connector forces
input and output to become mutually blocking, in the sense that any of them must
wait for the other to be completed.

data.[[a // b]] = IdD×U

port.[[a // b]] = fix (X = ab · X)

5.2. The coordination layer 103

Here, as well as in the next three cases, state information is irrelevant. Therefore,
U = 1. Its semantics is simply the identity relation on data domain D and its be-
haviour is captured by the simultaneous activation of its two ports.

Unreliable channel.

Any coreflexive relation, that is any subset of the identity, provides channels which
can loose information, thus modelling unreliable communications. Therefore, we
define, an unreliable channel as

data.[[a ··· // b]] ⊆ IdD×U

port.[[a ··· // b]] = fix (X = ab · X + a · X)

The behaviour is given by a choice between a successful communication, repre-
sented by the simultaneous activation of the ports or, by a failure, represented by
the single activation of the input port.

Filter channel.

This is a channel in which some messages are discarded in a controlled way, ac-
cording to a given predicate φ : 2←− D. Therefore, all messages failing to verify φ
are lost. Regarding predicate φ as a relation Rφ : D × U←− D × U such that

(d,⊥)Rφ(d′,⊥) iff d = d′ ∧ (φ d)

define

data.[[a
φ // b]] = Rφ

port.[[a
φ // b]] = fix (X = ab · X + a · X)

Drain.

A drain has two input, but no output, ports. Therefore, it looses any data item cross-
ing its boundaries. A drain is synchronous if both write operations are requested to
succeed at the same time (which implies that each write attempt remains pending
until another write occurs in the other extremity). It is asynchronous if, on the other
hand, write operations in the two ports do not coincide. The formal definitions are,

104 5. Context-aware Connectors and Architectural Configurations

respectively,

data.[[a � � b]] = (D × U) × (D × U)

port.[[a � � b]] = fix (X = ab · X)

and

data.[[a � O � b]] = (D × U) × (D × U)

port.[[a � O � b]] = fix (X = a · X + b · X)

Fifo1.

This is a channel with a buffer of a single position. Thus U = D

data.[[a �
� // b]] = R�

port.[[a �
� // b]] = fix (X = a · b · X)

where R� is given by the following clauses, for all d, u ∈ D,

(⊥, d) R� (d,⊥) (5.4)

(u,⊥) R� (⊥, u) (5.5)

Clause (5.4) corresponds to the effect of an input at port a, whereas clause (5.5)
captures output at port b, which requires the presence of a datum in the internal
state. Notice that clause (5.4) precludes input whenever the buffer is full. An eager
alternative overwrites the buffer’s memory:

(⊥, d) R� (d, u) (5.6)

Similarly, clause (5.5) defines b as what is often called a get port: data is read and
removed from the connector. Alternatively, a single read port can be specified by

(u, u) R� (⊥, u) (5.7)

In a number of practical situations component orchestration depends not only
on port activation, but also on the absence of service requests at particular ports
in configuration. A typical example is provided by one of the basic channels in
R: the lossy channel, which acts as a synchronous one if both an input and an
output requests are pending on its source and sink ends, respectively, but looses any
data item on input on the absence of an output request in the other end. Notice

5.2. The coordination layer 105

this behaviour is distinct from that of the unreliable channel, which looses data non
deterministically.

To handle these cases we enrich the specification of the set of actions A to in-
clude negative port activations , or more rigorously stated, absence of port requests,
denoted, for each port p, by p̃. Technically, actions are given by datatype

A = P(P ∪ {τ}) × PP (5.8)

subject to the following invariant

disjoint〈pos, neg〉 = (pos ∩ neg = ∅) (5.9)

Moreover, absence of port information is only relevant to output ports, which may
carry, or not, a request for receiving information. Therefore, if a is an input port,

a = ã (5.10)

Values of type A are represented according to the following abbreviation

〈{a, b, c}, {d, f }〉 abv
= abcd̃ f (5.11)

Therefore, the specification of a lossy channel becomes

Lossy.

data.[[• // •]] ⊆ IdD (5.12)

port.[[• // •]] = fix(X = ab · X + ab̃ · X) (5.13)

where b̃ corresponds to an absence of a reading request at port b. A lossy channel
only transmits if a potential receiver is asking for the data item sent. Otherwise, data
is lost.

5.2.2 New connectors from old

Complex connectors are built out of simpler ones through a set of six combinators:
parallel and concurrent composition, interleaving, hook, left join and right join. The
explicit use of combinators provides a structural alternative to composition through
graph manipulation, used, for example, in mainstream R literature.

In the sequel, let t#a, for t ∈ Dn × U and a ∈ P, denote the component of data
tuple t corresponding to port a, and t|a a tuple identical to t from which component
t#a has been deleted. Note that formal definitions of these operators were introduced
in chapter 2.

106 5. Context-aware Connectors and Architectural Configurations

Aggregation.

There are three combinators, denoted by �, � and �, whose effect is to place their
arguments side-by-side, with no direct interaction between them. They distinguish
one of the other by the way the arguments’s behavioural patterns are combined:
through parallel composition or interleaving, respectively. Formally,

port.[[C1 � C2]] = port.[[C1]] � port.[[C2]] (5.14)

port.[[C1 � C2]] = port.[[C1]] � port.[[C2]] (5.15)

port.[[C1 � C2]] = port.[[C1]] � port.[[C2]] (5.16)

taking, in the first two cases, θ = ∪ to capture the envisaged interaction discipline.

At data level all combinators behave as a relational product upon some re-ar-
ranging to separate state from data information. Such housekeeping task is done by
Set-isomorphism m : (A × B) × (C × D) � (A ×C) × (B × D). Formally,

data.[[C1 � C2]] = data.[[C1 � C2]] = data.[[C1 � C2]]

=

data.[[C1]] � data.[[C2]]

with

R � S = m · (R × S) ·m (5.17)

which, going pointwise, amounts to

((~d′, ~e′), (u′, v′)) R�S ((~d, ~e), (u, v)) ≡ (~d′, u′) R (~d, u) ∧ (~e′, v′) S (~e, v)

Combinators � and �, to be denoted by ⊗ and �, respectively, which enforce
interaction between their arguments, admit a strong version inn order to be able to
propagate negative information.

Let us consider first ⊗, the strong synchronous product. The intuition underlying
the definition of P ⊗ Qis as follows: whenever a term in the expansion of P has
a negative port p̃ (and recall that by (5.10) p has an output polarity), it must be
multiplied, through �, by P̃ to prepare the grounds for propagating the associated
negative information. This may, in particular, turn negative an output port in P
which may represent the propagation of negative information. Examples will be
given soon after the introduction of the hook combinator. Formally, let Υ(P) denote
the immediate expansion of behavioural expression P, i.e.,

Υ(P) =
∑

i∈{1,··· ,m}

ωi · Pi (5.18)

5.2. The coordination layer 107

such that P ∼ Υ(P). Each summand F in Υ(P) is said to be a factor of P, a fact we
represent by F ← Υ(P). Let F = ω · R such that

ω · R← Υ(P) and ω ∩ Ã , ∅

In this case F is said to be a factor of P with negated ports and represented by
F ← Υn(P). Now define ⊗ as

⊗ = [(α⊗)] (5.19)

with

α⊗ (P,Q) = α� (P,Q) ∪
⋃

ω·P′←Υn(P)
j∈{1,··· ,n}

(ω ∪ ω̃ j, (P′,Q j)) ∪
⋃

ω·Q′←Υn(Q)
i∈{1,··· ,m}

(ω̃i ∪ ω, (Pi,Q′))

for Υ(P) =
∑

i∈{1,··· ,m} ωi · Pi and Υ(Q) =
∑

j∈{1,··· ,n} ω j · Q j.

Note that (5.19) is the (coinductive) gene of the following explicitly recursive
definition:

P ⊗ Q = P � Q +
∑

ω·P′←Υn(P)
j∈{1,··· ,n}

(ω ∪ ω̃ j) · (P′ ⊗ Q j) +
∑

ω·Q′←Υn(Q)
i∈{1,··· ,m}

(ω̃i ∪ ω) · (Pi ⊗ Q′)

(5.20)

Clearly, if neither P nor Q have negative factors P ⊗ Q = P � Q.

The strong version of parallel composition is defined by combining, at the genes
level, the effects of both � and ⊗, just as � in (4.11) combines � and �. Formally,

� = [(α�)]

where

α� = ν × ν
M // (ν × ν) × (ν × ν)

(α�×α⊗) //

P(A × (ν × ν)) × P(A × (ν × ν)) ∪ // P(A × (ν × ν))

Note that ν is just, as in chapter 4, the carrier of the final coalgebra for this functor.

108 5. Context-aware Connectors and Architectural Configurations

Hook.

This combinator encodes a feedback mechanism, drawing a direct connection be-
tween an output and an input port. This has a double consequence: the connected
ports must be activated simultaneously and become externally non observable. For-
mally, such conditions must be expressed in port.[[C � j

i]] and their specification
requires some care.

The crucial issue is the suitable definition of a new combinator for behaviours,
hide c, parametric on a set c ⊆ A−{0}, whose effect is to prune its argument accord-
ing to the following rules

• all computations exhibiting occurrences of non empty strict subsets of c must
be removed, because ports in c have be activated simultaneously;

• there is, however, an exception to the rule above: if a computation exhibits
a non empty strict subsets of c, c′ such that c′ only contains negative out-
put ports, a property denoted by negfac(c′), then such a computation is not
removed.

The intuition for the last rule is that if in the only occurrence of an output port which
the hook combinator aims to internalise, is negative, i.e., has, in the computation
considered, no pending output request, it can be ignored: there is no matching input
port, but also no information to be transmitted.

The combinator then hides all references to c in the remaining computations,
either by removing them when occurring in a strictly larger context or by mapping
them to an unobservable action τ when occurring isolated. It is defined as

hide c = [(αhide c)] (5.21)

where

αhide c = ν
ω // P(A × ν) hc // P(A × ν)

and

hc s = {〈a \ c, u〉| 〈a, u〉 ∈ s ∧ ((a ∩ c , ∅) → (c ⊂ a ∨ negfac(a ∩ c)))}

∪ {〈τ, u〉| 〈c, u〉 ∈ s}

Thus, let i, respectively j, be an output, respectively, input, port in connector C. The
hook combinator links i to j according to the following definition:

port.[[C � j
i]] = hide {i, j} hide {̃i, j̃} port.[[C]]

5.2. The coordination layer 109

If data.[[C]] : Dn × U ←− Dm × U, the effect of hook on the data flow relation is
modelled by relation

data.[[C � j
i]] : Dn−1 × U ←− Dm−1 × U

t′
| j (data.[[C � j

i]]) t|i iff t′ (data.[[C]]) t ∧ t′# j = t#i

Example 5.1 Let us illustrate the hook combinator through two elementary exam-
ples, which do not involve negative information. More complex examples are dis-
cussed in next section, in which it is shown the suitability of this combinator to
handle composition of context-aware connectors. For the moment, consider con-
nectors C and F, both with an input and an output port, named a, a′ in the first
case, and b, b′ in the second. Let us analyse composition (C � F) �b

a′ . At the data
level, one gets

(y, (u′, v′)) data.[[(C � F) �b
a′]] (x, (u, v))

= { unfolding definitions }

∃z . ((z, y), (u′, v′)) data.[[C � F]] (x, z), (u, v))

= { unfolding definitions }

∃z . (z, u′) data.[[C]] (x, u) ∧ (y, v′) data.[[F]] (z, v)

which shows that the hook combinator encodes a form of relational composition
which is partial in the sense that only part of the output is fed back as new input.
For the behavioural component, consider C and F as synchronous channels. Then,

port.[[(C � F) �b
a′]] = fix (x = ab′.x)

because the other two terms in the expansion fix (x = aa′.x + bb′.x + aa′bb′.x)
contain strict subsets of c = {a′, b}. Note that the synchronous channel always acts
as the identity for hook. Suppose, now, that F is defined as a Fi f o1 channel. Thus,
and adopting, in the sequel, the convention which abbreviates port.[[C]] to C,

port.[[(C � F) �b
a′]]

∼ { hook definition and expansion law }

aa′b · (C � b′ · F) �b
a′ +aa′ · (C � F) �b

a′ +b · (C � F) �b
a′

∼ { hide definition }

a · (C � b′ · F) �b
a′

∼ { expansion law }

a · (aa′ · (C � b′ · F) �b
a′ +b′ · (C � F) �b

a′ +aa′b′ · (C � F) �b
a′)

110 5. Context-aware Connectors and Architectural Configurations

∼ { hide definition }

a · b′ · (C � F) �b
a′

∼ { introducing fix }

fix (x = a · b′ · x)

Join.

The last combinator considered here is called join and its effect is to plug ports
with identical polarity. The aggregation of output ports is done by a right join
(C i

j > z), where C is a connector, i and j are ports and z is a fresh name used to
identify the new port. Port z receives asynchronously messages sent by either i or
j. When messages are sent at same time the combinator chooses one of them non
deterministically.

On the other hand, aggregation of input ports resorts to a left join (z <i
j C). This

behaves like a broadcaster sending synchronously messages from z to both i and j.
Formally, for data.[[C]] : Dn × U ←− Dm × U, we define

Right join:
The data flow relation data.[[C i

j > z]] : Dn−1 × U ←− Dm × U for this operator is
given by

r (data.[[C i
j > z]]) t iff t′ (data.[[C]]) t ∧ r|z = t′

|i, j ∧ (r#z = t′#i ∨ r#z = t′# j)

At the behavioural level, its effect is that of a renaming operation

port.[[(C i
j > z)]] = {z← i, z← j} port.[[C]]

Example 5.2 The merger connector depicted in Figure 5.2 is obtained by a right
join of the sink end of two interleaved synchronous channels.

M , (a // a′ � b // b′) a′
b′ > w =

a
��
w

b
@@

Figure 5.2: A merger.

Its behavioural pattern is

port.[[M]] = fix (x = aw.x + bw.x)

5.2. The coordination layer 111

because,

port.[[M]]

∼ { definition of right join and synchronous channel }

{w← a′,w← b′} (fix (x = aa′ · x) � fix (x = bb′ · x))

∼ { definition of interleaving and expansion law }

{w← a′,w← b′} (fix (x = aa′ · x + bb′ · x))

∼ { substitution }

fix (x = aw.x + bw.x)

Left join:
The behaviour of a left join is a little more complex: before renaming, all computa-
tions of C in which ports i and j are activated independently of each other must be
removed. Again this is specified by a new process combinator force c which forces
the joint activation of a set c of ports. Formally,

force c = [(αforce c)] (5.22)

where

αforce c = ν
ω // P(A × ν) fc // P(A × ν)

fc s = {〈a, u〉 ∈ s| a ∩ c ⊆ {∅, c}}

Thus

port.[[(z <i
j C)]] = {z← i, z← j} force {i, j} port.[[C]]

On the other hand, the data flow specification data.[[z <i
j C]] : Dn×U ←− Dm−1×U

is given by

t′ (data.[[z <i
j C]]) r iff t′ (data.[[C]]) t ∧ r|z = t|i, j ∧ r#z = t#i = t# j

Example 5.3 A simple, but useful, illustration of this combinator is the broadcaster
connector depicted in Fig. 5.3. It is obtained by a left join of the source ports of
two synchronous channels put in parallel. Its behavioural pattern is computed as

112 5. Context-aware Connectors and Architectural Configurations

B , a <c′
b′ (b′ // b � c′ // c) =

c
a

//

..

b

Figure 5.3: A broadcaster.

follows:

port.[[B]]

∼ { definition of left join and synchronous channel}

{a← c′, a← b′} force {c′, b′} (fix (x = c′c · x) � fix (x = b′b · x))

∼ { parallel composition and expansion law (4.14)}

{a← c′, a← b′} force {c′, b′} (fix (x = c′c · x + b′b · x + c′cb′b · x))

∼ { definition of force and substituion}

fix (x = acb · x)

Notice that the broadcaster connector could also be realised replacing � by ⊗.
In that case, force would have no effect in the computation of the left join. Notice,
by the way, that all these examples can be stated either in terms of � and �, orelse,
as we did, in terms of their strong versions ⊗ and �.

5.3 Propagation of context dependent behaviour

The study of context dependent behaviour, and its propagation by composition, in
exogenous coordination models was motivated by the behaviour of channels which
react differently depending on the presence or absence of information at their ports.
The prototypical case is the R lossy channel defined, in our formalism, by (5.12)
and (5.13). In this section we show that the proposed model, with negative infor-
mation, is able the pass two tests which constitute the hallmark of propagation of
context dependent behaviour. They are concerned with the behaviour of a lossy
channel composed either with a synchronous channel or an empty fifo1. We formu-
late then as two lemmas to sustain the claim made about thsi model.

Lemma 5.1 Whenever a lossy channel is composed (via � and hook) with a syn-

5.3. Propagation of context dependent behaviour 113

chronous channel, on either side, the result must be again a lossy channel, i.e.

(a // a′ � b′ � // b) �b′
a′ = a // b (5.23)

(a � // a′ � b′ // b) �b′
a′ = a // b (5.24)

Proof. We concentrate on the behaviour part. For the data component of the def-
inition just observe that the identity relation is always the identity for relational
composition. Thus, for (5.23),

port.[[(a // a′ � b′ � // b) �b′
a′]]

∼ { definition of � and hook}

fix (X = aa′ · X + aã′ · X + aa′bb′ · X + aã′bb′ · X + bb′ · X + aã′b̃b̃′ · X)

∼ { definition of hide }

fix (X = ab · X + ab̃ · X)

∼ { definition of a lossy channel}

port.[[a // b]]

Similarly, for (5.24),

port.[[(a � // a′ � b′ // b) �b′
a′]]

∼ { definition of � and hook, expansion law}

fix (X = aa′ · X + bb′ · X + b̃b′ · X + aa′bb′ · X + aa′b̃b′ · X + ãã′bb̃′ · X)

∼ { definition of hide }

fix (X = ab · X + ab̃ · X + ãb · X)

∼ { property (5.10), + idempotent}

fix (X = ab · X + ab̃ · X)

∼ { definition of a lossy channel}

port.[[a // b]]

�

Lemma 5.2 Whenever a fifo1 is composed on the right with a lossy channel data
must flow through the latter to the former as the input port of an empty fifo1 is
always presenting a reading request. Therefore, no data is lost. Formally,

(a // a′ � b′ �
� // b) �b′

a′ = a �
� // b (5.25)

114 5. Context-aware Connectors and Architectural Configurations

Proof. Let L = port.[[a // a′]] and F = port.[[b′ �
� // b]]. Then

port.[[(a // a′ � b′ �
� // b) �b′

a′]]

∼ { definition of channels, � and hook, expansion law}

aa′ · (L � F) �b′
a′ +aã′ · (L � F) �b′

a′ +b′ · (L � b · F) �b′
a′ +

aa′b′ · (L � b · F) �b′
a′ +aã′b′ · (L � b · F) �b′

a′ +aã′b̃′ · (L � b · F) �b′
a′

∼ { property (5.10), + idempotent}

aa′ · (L � F) �b′
a′ +aã′ · (L � F) �b′

a′ +b′ · (L � b · F) �b′
a′ +

aa′b′ · (L � b · F) �b′
a′ +aã′b̃′ · (L � b · F) �b′

a′

∼ { definition of hide }

a · (L � b · F) �b′
a′ +a · (L � b · F) �b′

a′

∼ { + idempotent}

a · (L � b · F) �b′
a′

∼ { definition of channels, � and hook, expansion law}

a · (aa′ · (L � F) �b′
a′ +aã′ · (L � F) �b′

a′ +b · (L � F) �b′
a′ +aã′b · (L � F) �b′

a′ +

aã′b̃ · (L � F) �b′
a′)

∼ { definition of hide }

a · b · (L � F) �b′
a′

∼ { introducing fix}

fix (X = a · b · X)

∼ { definition of a fifo1 channel}

port.[[a �
� // b]]

For the data component notice that, once the lossy channel never looses any data,
as just shown, its static semantics, in this particular composition, is the identity
relation. Therefore

(data.[[a // a′ � b′ �
� // b) �b′

a′]] = data.[[a �
� // b]]

�

Lemmas 5.1 and 5.2 establish the adequacy of this model to propagate con-
text dependent behaviour. It is also instructive to compute the joint behaviour of

5.4. Towards a connector calculus 115

a fifo1 with a lossy channel. This yields, for F = port.[[a �
� // a′]] and L =

port.[[b′ // b]],

port.[[(a �
� // a′ � b′ // b) �b′

a′]]

∼ { definition of channels, � and hook, expansion law}

a · (a′ · F � L) �b′
a′ +bb′ · (F � L) �b′

a′ +b̃b′ · (F � L) �b′
a′ +

abb′ · (F � L) �b′
a′ +ab̃b′ · (F � L) �b′

a′ +ãb̃b′ · (F � L) �b′
a′

∼ { definition of hide }

a · (a′ · F � L) �b′
a′

∼ { definition of channels, � and hook, expansion law}

a · (a′ · (F � L) �b′
a′ +bb′ · (a′ · F � L) �b′

a′ +b̃b′ · (a′ · F � L) �b′
a′ +

a′bb′ · (F � L) �b′
a′ +a′b̃b′ · (F � L) �b′

a′ +ã′bb′ · (F � L) �b′
a′ +ã′b̃b′ · (F � L) �b′

a′)

∼ { property (5.10) and definition of hide }

a · (b · (F � L) �b′
a′ +b̃ · (F � L) �b′

a′ +b · (F � L) �b′
a′ +b̃ · (F � L) �b′

a′)

∼ { + idempotent}

a · (b · (F � L) �b′
a′ +b̃ · (F � L) �b′

a′)

∼ { introducing fix}

fix (X = a · (b · X + b̃ · X))

5.4 Towards a connector calculus

Notions of connector equivalence and refinement can be defined, entailing the basis
for a connector calculus to reason about the coordination layer of applications. For
connectors with identical signatures, refinement corresponds, at the data level, to
relational inclusion, as one would expect. In this subsection, however, our attention
will be focussed on the behavioural side.

Having above defined behaviours coalgebraically, we get for free the notion of
bisimulation associated to functor P(A × Id):

Definition 5.2 A relation S on processes is a simulation iff

pS q → ∀〈c,p′〉∈ω p . ∃〈c′,q′〉∈ω q . c = c′ ∧ p′S q′ (5.26)

116 5. Context-aware Connectors and Architectural Configurations

A bisimulation is a simulation whose relational converse is also a simulation. As
usual, we denote by - and ∼ the similarity and bisimilarity relation, respectively,
corresponding to the greatest simulation and bisimulation.

Clearly, by (5.26), one gets

port.[[• // •]] - port.[[• ··· // •]]

or
port.[[a // b � b // c]] ∼ port.[[a // c]]

A richer, weaker, inequational calculus is derived from the fact that actions in A
form a semilattice

〈P(P ∪ {τ}) × PP,⊆ × ⊆, 〈∅, ∅〉〉
by relaxing (5.26) to require c(⊆ × ⊆)c′ instead of action equality c = c′. Under
this new similarity relation, asynchrony appears as a refinement of synchrony as in,
e.g.,

port.[[• �
� // •]] - port.[[• // •]]

We shall now consider, in some detail, a number of examples of connector com-
position with a focus on computing the emergent behaviour. This is expected to
provide a ’flavour’ of the model in action.

Example 5.4 The first example is concerned with the proof of the following fact on
the ’impossible’ (or deadlocked) connector depicted in Fig. 5.4. In particular, this
example indicates our semantics is compliant with the operational description of
R in [Arb04]:

port.[[Imp]] ∼ 0 (5.27)

Actually, Imp is built as

Imp , a <a
d b <b

e (d � � e � (a // a′ � b // b′) a′
b′ > w))

Therefore

port.[[Imp]]

∼ { definiton of a left join, σ = {a← d, b← e}}

σ force {a, b, d, e} (fix (X = de · X) � fix (X = aw · X + bw · X))

∼ { expansion law (4.14)}

σ force {a, b, d, e} (fix (X = deaw · X + debw · X + de · X + aw · X + bw · X))

∼ { definition of force}

0

5.4. Towards a connector calculus 117

a_

_

��
w

b

EE

Figure 5.4: Imp — An ’impossible’ connector.

Example 5.5 As a second example, consider the implementation of an asynchronous
drain by plugging the output port of a merger to both input ports of a synchronous
drain. Formally,

(((a // a′ � b // b′) b′
c′ > w) � (c � � c′)z <c

c′) �z
w ≡ (a � O � a′)

port.[[(((a // a′ � b // b′) b′
c′ > w) � z <c

c′ (c � � c′)) �z
w]]

∼ { the merger connector in example 5.2 and definition of drain}

(fix (X = aw · x + bw · X) � port.[[z <c
c′ (c � � c′)) �z

w]]

∼ { definition of left join}

(fix (X = aw · X + bw · X) � {z← c, z← c′}force{c, c′}fix (X = cc′ · X)) �z
w

∼ { definition of force , substitution}

(fix (X = aw · X + bw · X) � fix (X = z · X)) �z
w

∼ { definition of hook, expansion law}

hide{z,w} fix (X = awz · X + bwz · X + aw · X + bw · X + z · X)

∼ { definition of hide }

fix (X = a · X + b · X

∼ { behaviour of an asynchronous drain}

port.[[a � O � b]]

Example 5.6 Consider now the construction of a synchronization barrier as de-
picted in Fig. 5.5. A synchronization barrier connector enables data items to pass
from a to b and from c to d, but only in a synchronised way. A possible way of
building SB is as follows (the use of � instead of � leads to the same result):

((a // a′ � c // c′) � (y <e′
d′ (x <b′

e (b // b′ � e � � e′) � d // d′)) �x,y
a′,c′

118 5. Context-aware Connectors and Architectural Configurations

a // a′ e b′ //
_

_

b

c // c′ e′ d′ // d

Figure 5.5: SB — A synchronization barrier.

a

��
•_

_�� ��
•

��

// • •

��

oo

b c

Figure 5.6: XR — The exclusive router connector.

Its behaviour is computed as

port.[[SB]]

∼ { definition of �}

(fix (X = aa′cc′ · X) � (y <e′
d′ (x <b′

e fix (X = bb′ee′dd′ · X))) �x,y
a′,c′

∼ { definition of left join}

(fix (X = aa′cc′ · X) � fix (X = xbdy · X))) �x,y
a′,c′

∼ { definition of hook and �}

fix (X = acbd · X)

Again the use of normal or strong versions is irrelevant in this example.

Example 5.7 As a final example, let us compute the behaviour of XR, the exclusive
router connector depicted in Fig. 5.6. The intended behaviour for this connector is
to transmit either in b or c, but not in both, whatever receives in a.

One component of XR, depicted in the lower part of the diagram, is the right
join by e′ and d′ mapping to new port z, of two broadcasters composed by �. Each
broadcaster is obtained by left joining the relevant synchronous channels. The as-

5.4. Towards a connector calculus 119

sembly process of XR1 is represented as

b′e

��

// e′d′ dc′

��

oo

b c

{ w1

��

// z w2

��

oo

b c

The computed behavioural pattern is

port.[[XR1]] ∼ fix (X = bzw1 · X + czw2 · X)

The other component, XR2 is a left join of two lossy channels and a drain, mapping
their source ports, h, g and f , to w, sequentially composed with a synchronous
channel from a to a′, i.e.,

a

��
w_

_�� ��
h′ f ′ g′

Its behavioural pattern is computed as follows:

port.[[XR2]]

∼ { definiton of XR2}

port.[[(a // a � w <
f
r r <h

g (h // h′ ⊗ f � � f ′ ⊗ g // g′)) �w
a′]]

∼ { definitions of channels, ⊗, left join and hook; expansion law (4.14)}

hide{a′,w} (fix (X = aa′ · X) �

fix (X = wh′ f ′g′ · X + wh̃′ f ′g′ · X + wh′ f ′g̃′ · X + w f ′h̃′g̃′ · X))

∼ { definition of �}

hide{a′,w} fix (X = aa′ · X + wh′ f ′g′ · X + wh̃′ f ′g′ · X + wh′ f ′g̃′ · X + w f ′h̃′g̃′ · X

+ aa′wh′ f ′g′ · X + aa′wh̃′ f ′g′ · X + aa′wh′ f ′g̃′ · X + aa′w f ′h̃′g̃′ · X

+ ãã′wh′ f ′g′ · X + ãã′wh̃′ f ′g′ · X + ãã′wh′ f ′g̃′ · X + ãã′w f ′h̃′g̃′ · X)

∼ { definition of hide}

fix (X = ah′ f ′g′ · X + ah̃′ f ′g′ · X + ah′ f ′g̃′ · X + a f ′h̃′g̃′ · X)

Finally, the connector XR is assembled as

XR , (XR1 ⊗ XR2) �w1,w2, f ′

h′,g′,w (5.28)

120 5. Context-aware Connectors and Architectural Configurations

leading, as expected, to

port.[[XR]]

∼ { by (5.28)}

hide{h′, g′,w,w1,w2, f ′} (port.[[XR1]] ⊗ port.[[XR2]])

∼ { computed above}

hide{h′, g′,w,w1,w2, f ′} (fix (X = bzw1 · X + czw2 · X) ⊗

fix (X = ah′ f ′g′ · X + ah̃′ f ′g′ · X + ah′ f ′g̃′ · X + a f ′h̃′g̃′ · X))

∼ { definition of ⊗; expansion law}

hide{h′, g′,w,w1,w2, f ′}

fix (X = bzw1ah′ f ′g′ · X + bzw1ah̃′ f ′g′ · X + bzw1ah′ f ′g̃′ · X + bzw1a f ′h̃′g̃′ · X +

czw2ah′ f ′g′ · X + czw2ah̃′ f ′g′ · X + czw2ah′ f ′g̃′ · X + czw2a f ′h̃′g̃′ · X +

b̃̃zw̃1ah̃′ f ′g′ · X + b̃̃zw̃1ah′ f ′g̃′ · X + b̃̃zw̃1a f ′h̃′g̃′ · X +

c̃̃zw̃2ah̃′ f ′g′ · X + c̃̃zw̃2ah′ f ′g̃′ · X + c̃̃zw̃2a f ′h̃′g̃′ · X)

∼ { definition of hide}

fix (X = ab · X + ab · X + ac · X + ac · X + ãb · X + ãb · X + ãc · X + ãc · X)

∼ { + idempotent}

fix (X = ab · X + ab · X + ãb · X + ãc · X)

Notice that the application of hide in the calculation above made use of possibility
of keeping terms where the intersection of their prefix set of ports with the argument
of hide reduce to a negated output port (cases of h̃′ and g̃′).

5.5 Configurations

Chapter 4 characterised interfaces for components given by process terms over the
collection of (input and output) ports, assuming that the active entities inside the
service consume or make available data items. Such a process term represents the
service bussiness protocol, its externally perceived behaviour referred to as the ser-
vice use pattern. As one could expect, such use patterns are defined in the same
process language used for specifying connectors in the previous sections.

Having such a characterisation for components and a model for the coordination
layer, we can now move to the whole picture. Technically, this will be called a
configuration.

5.5. Configurations 121

a_

_

��
w

b
�

EE

Figure 5.7: An alternate merger.

A configuration, like the one depicted in Fig. 5.1 is simply a collection of ser-
vices, characterized by their interfaces, interconnected through an orchestrator, i.e.,
a connector built from elementary connectors using the combinators introduced
above. Actually, we have now all the ingredients to replace the empty circle in
that figure by a suitable connector which enforces strict alternation of data sources.
Such is the purpose of the alternate merger depicted in Fig. 6.9. Formally, AM is
defined as

b<d′
f a<d

c (c // c′ � d � � d′ � f � // f ′)c′
f ′ >w

Following the method illustrated in the previous section, its behavioural pattern is
easily computed from this expression:

port.[[AM]] = fix (x = abw.w.x) (5.29)

Formally,

Definition 5.3 A configuration involving a collection S = {S i| i ∈ n} of components
is a tuple

〈U,C, σ〉 (5.30)

where
U = use(S 1) � use(S 2) � · · · � use(S n) (5.31)

is the (joint) use pattern for S , C is a connector and σ a mapping of ports in S to
ports in C.

The role of renaming σ in the definition above is to syntactically enforce a
link between a service port and a connector end. Clearly, σ respects polarities:
output (respectively, input) service ports can only be connected to connectors source
(respectively, sink) ends. Interaction is achieved by the simultaneous activation of
identically named ports.

122 5. Context-aware Connectors and Architectural Configurations

Actually, the relevant point concerning configurations is the semantics of inter-
action between the connector’s behavioural pattern and the joint use patterns of the
involved services. This is captured by a synchronous product ⊗ for a quite peculiar
θ, which is expected to capture the requirements below. Recall that, at each point
in the execution of a configuration, θ ’decides’ the result of the interaction combin-
ing a set of ports offered by the services’ side and the sets of positive and negative
connector’s ends. Therefore,

• There is no interaction if the connector requires absence of port requests in
an end linked to a port activated by a service.

• Similarly, there is no interaction if the connector’s side offers free ports (i.e.,
ports that are not connected to services).

• The dual situation is allowed, i.e., if the services’ side offer activation of all
ports plugged to the ones offered by the connector, their intersection is the
resulting interaction.

• Finally, free ports on the service side (i.e., ports that are not connected to a
connector’s end) are not affected by θ: their activation depends only on the
service they belong to.

Formally, this is captured in the following definition.

Definition 5.4 The behaviour bh(Γ) of a configuration Γ = 〈U,C, σ〉 is given by

bh(Γ) = σU ⊗ port.[[C]] (5.32)

where θ underlying the ⊗ connective is given by

s θ 〈p, np〉 =
{

(s ∪ {τ}) ∩ (p ∪ free) ⇐ s ∩ np = ∅ ∧ p ⊆ (s ∪ {τ})
s ∩ free ⇐ otherwise

(5.33)
where free denotes the set of unplugged ports in U, i.e., not in the domain of map-
ping σ.

Note that in the above definition θ relates different types of actions, its signature
being θ : PP × (P(P ∪ {τ}) × PP) −→ (PP ∪ {τ}). This means the behaviour of a
configuration is expressed in terms of services’ ports and the unobservable action
τ (which, as explained on introducing the hook combinator, can not be ignored).
It also means that the resulting synchronous product is not commutative, which
however does not restrict the expressive power of this approach.

5.5. Configurations 123

5.5.1 Examples

In the sequel the use of configurations, and the computation of their behaviours, is
illustrated by a few examples.

Example 5.8 Consider an elementary banking system composed by an AT M ma-
chine, a Bank, and a DBRep service whose purpose is to backup all the messages
flowing through the connector. Therefore, all messages are replicated before being
stored. Configuration BS , depicted in Fig. 5.8, is specified as

BS = 〈WBS , CON, σBS 〉

where

WBS = use(AT M) � use(Bank) � use(DBRep)

σHS = {a← Arq, e← Ars, c← DBr, f ← DBp, d ← Brs, b← Brq}

Fig. 7. Bank System

σBS :

use(ATM) = fix (x = a.e.x)

use(Bank) = fix (y = b.d.y)

use(DBRep) = fix (z = c.z + f.z + cf.z)

Connector CON behaves like a double broadcaster (hence its name). Its be-
haviour allows for both the simultaneous or independent activation of each
broadcast (co1 or co2) as shown by the following computation:

port.[[ch1]] = fix (x = b′b.x), port.[[ch2]] = fix (x = c′c.x)

port.[[co1]] = port.[[(a <b′

c′ (ch1 ! ch2))]] = fix (x = abc.x)

port.[[ch3]] = fix (x = e′e.x), port.[[ch4]] = fix (x = f ′f.x)

port.[[co2]] = port.[[(d <e′

f ′ (ch3 ! ch4))]] = fix (x = def.x)

port.[[CON]] = port.[[(co1 ! co2)]] = fix (x = abc.x + def.x + abcdef.x)

To determine bh(BS) one needs to expand WBS. According to (22), we need
only to look for summands prefixed by sets of ports which are super-sets of
prefix sets in port.[[CON]]. For the first level of expansion alternative abc.(e.x!
d.y ! z) is the only one to θ-compose with abc in port.[[CON]], resulting in
abc again. Then, consider the expansion of term (e.x ! d.y ! z): the only
alternative worth to consider (i.e., which does not lead to 0 on θ-composition)
is edf.(x ! y ! z), the resulting interaction being edf . From this point on the
same expansion pattern repeats. This means that bh(BS) becomes:

bh(BS) = fix (x = abc.edf.x) (23)

25

Figure 5.8: A elementary bank system

Consider the following use patterns of each web service after port renaming by

124 5. Context-aware Connectors and Architectural Configurations

σBS :

use(AT M) = fix (X = a · e · X)

use(Bank) = fix (Y = b · d · Y)

use(DBRep) = fix (Z = c · Z + f · Z + c f · Z)

Connector CON behaves like a double broadcaster (hence its name). Its be-
haviour allows for both the simultaneous or independent activation of each broad-
cast (co1 or co2) as shown by the following computation:

port.[[ch1]] = fix (X = b′b · X), port.[[ch2]] = fix (X = c′c · X)

port.[[co1]] = port.[[(a <b′
c′ (ch1 � ch2))]] = fix (X = abc · X)

port.[[ch3]] = fix (x = e′e · X), port.[[ch4]] = fix (x = f ′ f · X)

port.[[co2]] = port.[[(d <e′
f ′ (ch3 � ch4))]] = fix (X = de f · X)

port.[[CON]] = port.[[(co1 � co2)]] = fix (X = abc · X + de f · X + abcde f · X)

To determine bh(BS) one needs to expand WBS . According to (5.33), we need
only to look for summands prefixed by sets of ports which are super-sets of prefix
sets in port.[[CON]]. For the first level of expansion alternative abc ·(e ·X�d ·Y �Z)
is the only one to θ-compose with abc in port.[[CON]], resulting in abc again. Then,
consider the expansion of term (e·X�d·Y�z): the only alternative worth to consider
(i.e., which does not lead to 0 on θ-composition) is ed f · (X � Y � Z), the resulting
interaction being ed f . From this point on the same expansion pattern repeats. This
means that bh(BS) becomes:

bh(BS) = fix (X = abc · ed f · X) (5.34)

Notice how the particular use patterns in the web services act as a constraint over
the admissible behaviour of connector CON.

This example may be also used to check how definition (5.33) deals with the
presence of unplugged ports, such us port Bo in service Bank. Consider, then, the
following two alternatives for the use pattern of service Bank:

use(Bank) = fix (Y = bBo · d · Y) (5.35)

use(Bank) = fix (Y = b · d · Y + Bo · Y) (5.36)

In the expansion of WBS , expression (5.35), which captures the simultaneous acti-
vation of ports b and Bo, leads to term abBoc · (e ·X�d ·Y�z) which, as free = {Bo},
entails

bh(BS) = fix (x = abcBo · ed f · X) (5.37)

5.5. Configurations 125

PUSH1 • a •_

_

oo b • POP2oo

POP1 • r // •_

_

// • // t • PUSH2

c • TR d • TL i • IN

OO

Figure 5.9: A folder from two stacks.

Alternative (5.36) specifies that ports b and Bo are activated in alternative: no term
with both b and Bo will appear in the expansion and, therefore, bh(BS) remains as
given by equation (5.34).

Example 5.9 For a second example suppose a configuration with two instances of a
service modelling a stack and responding on ports PUSH and POP. A third service
intends to build a (electronic version of a paper) folder by providing ports to turn a
page left (TL), turn a page right (TR) and insert a new page (IN) in the (right side of
the) folder. The problem is to orchestrate the three services in such a way that each
service stack will manage one of the page piles of the folder.

In [BO03] a solution is given, in the context of a component-based framework,
two components modelling stacks are composed by specific operators to implement
an interface for a folder. We sketch here an exogenous coordination solution in
which the three services do not interact directly, the emergent behaviour of their or-
chestration being enabled by a suitable connector SF. The configuration is depicted
in Fig. 5.9. It is a small exercise to compute the behavioural pattern associated to
SF:

port.[[SF]] = fix (X = abc · X + rdt · X + it · X + acbrdt · X + acbit · X)

Assuming the three services involved can activate each of their ports at any time,
the global use pattern of the service layer becomes

use(S tack) ⊗ use(FInter f ace) ⊗ use(S tack) =

fix (X = PUSH1 · X + POP1 · X + TL · X + TR · X + IN · X + PUSH2 · X + POP2 · X)

Finally, the behaviour of the configuration is computed according to definition 3,
yielding

fix (X = {TL,PUSH1,POP2} · X + {TR,PUSH2,POP1} · X + {IN,PUSH2} · X)

126 5. Context-aware Connectors and Architectural Configurations

where the port mapping is the one represented in Fig. 5.9. The emergent behaviour
of this configuration includes the simultaneous activation of TL, PUSH1 and POP2,
’implementing’ a turn left action in the folder interface by a synchronisation be-
tween a pop in the right stack and a push in the left one. And dually for a turn right.
Also notice port PUSH2 is used either for achieving a turn right in the folder or for
inserting a new page. None of the three services involved interact directly with one
another and even do not need to be aware of each other existence.

Our last example is part of an attempt to apply exogenous coordination to inter-
active systems, documented in publication [BBC07]. Such systems can be regarded
as a special case of the more general class of reactive systems, but presenting some
specific characteristics which cannot be ignored in modelling [HT90]. One major
issue, for example, is the need to consider interaction with the user, and not only
between components of the user interface.

We will discuss here a configuration for a particular situation in an elementary
air traffic control system borrowed from [CH08]. The area is, however, vast and
challenging. This motivated further research on the intersection of interactive sys-
tems modelling and exogenous coordination, whose result is reported in chapter 6.

Example 5.10 Let us consider a simple air traffic control system. Our example
(see Fig. 5.10) is centred on a scenario where aircrafts A2 and A3 are on their
final approach to the runway, aircraft A1 is on the runway waiting the response for
its ‘accepted’ to take off requirement, and the tower T is responsible for air traffic
control. Aircraft A2 and A3 are on their “downwind leg” and are to be turned onto
a heading towards the runway. Before A2 can be turned it must reduce speed. This
means that A3 must reduce speed also to avoid loss of separation with A2. Of course,
A2 will be allowed to land just after A1 has taken off.

At this stage we are mainly interested in investigating how to combine interac-
tors in different ways for different scenarios. Investigating the appropriateness of
each configuration would be the next step in the design process.

First we express the expected behaviour of the interactors involved in this con-
figuration.

interactor: Ai

ports: slow′i , turn′i , accept′i
external behaviour:
use(Ai) = fix (X = slow′i · X + turn′i · X + accept′i · X), where 0 < i ≤ 3.

5.5. Configurations 127

Figure 5.10: Air traffic control configuration

Such a specification represents the three aircrafts involved in the scenario. Each
aircraft has three input ports (distinguished by the symbol: ′) available for commu-
nication in a non-deterministic manner. The tower is represented by interactor T.

interactor: T
ports: slowi, turni, accepti
external behaviour:
use(T) = fix (X = slowi · X + turni · X + accepti · X), where 0 < i ≤ 3.

Once the interactors defined, the following step is to define how they will coop-
erate, i.e., we need to represent how the whole system will behave. Such is done by
creating an architecture of interactors and connectors.

The scenario captured by Fig. 5.10 represents a critical situation where the
aircrafts must respond to actions appropriately or the safety will be dangerously
compromised. So, let us consider a situation where T sends a message accepted1

to A1, in order for A1 to take off, the message slow2 to A2, in for A2 to slow before
turning to the runway, and the message slow3 to A3 in order for A3 decrease speed
maintaining a safety distance to A2. In order to ensure that the response to these
actions will happens synchronously we may consider a special connector, called
synchronization barrier (S B) which enforces that all messages are delivered to their
destinations in a synchronous way.

128 5. Context-aware Connectors and Architectural Configurations

Figure 5.11: Air traffic control configuration - connector

Such a connector (see Fig. 5.11) is an aggregation among six synchronous
channels (c1, . . . , c6) and two synchronous drains (c7 and c8) which are composed
using hook and join combinators. This connector is computed starting from the
behaviours of the elementary connectors, e.g., port.[[c1]] = fix (x = aa′.x),
till the behaviour of the whole connector is calculated: port.[[S B]] = fix (X =
abce′f ′g′ · X)

The resulting behaviour of this connector means that the six ports must be ac-
tivated synchronously. It should be noted that, since we are not considering timing
issues at this stage, this synchronicity does not meant that the ports are activated
concurrently. In the current context, what we are stating is that if one port is ac-
tivated, then all the other must be activated, before the connector can engage in a
new interaction.

The configuration of such a scenario is given by

C f1 = 〈US C, C, σS C〉, where

US C = use(T) � use(A1) � use(A2) � use(A2)

C = S B

σc f1 = {a← A, b← B, c← C, e′ ← E′, f ′ ← F′, g′ ← G′}

where A abv
= accept1, B = slow2, C = slow3, E′ = accept′1, F′ = slow′2, and

G′ = slow′3.

The result of the ⊗ composition of US C and S B is the behaviour of configu-
ration C f1 . There is no need, however, to compute the complete expansion of the

5.5. Configurations 129

parallel composition in US C expression, which is

fix (X = a · X + · · · + e′. · X + f ′ · X + g′ · X+

ae′ · X + · · · + be′ · X + · · · + ce′ · X + · · · + abce′ · X + · · ·+

ae′f ′ · X + · · · + be′f ′ · X + · · · + ce′f ′ · X + · · · + abce′f ′ · X + · · ·+

ae′f ′g′ · X + · · · + be′f ′g′ · X + · · · + ce′f ′g′ · X + · · · + abce′ f ′g′ · X + · · ·+

e′f ′ · X + e′g′ · X + f ′g′ · X + e′f ′g′ · X)

because, according to interaction discipline (5.33), the only successful case of com-
position with port.[[S B]] corresponds to the underlined alternative in the expression
above. Clearly, the θ-composition of abce′f ′g′ with abce′f ′g′ (from the connector
side) is abce′f ′g′, while for all other cases it results in the empty set ∅. Therefore,
and finally,

bh(C f1) = fix (X = abce′f ′g′ · X)

130 5. Context-aware Connectors and Architectural Configurations

Chapter 6

Case-study: Interactors

Summary
Although presented with a variety of ‘flavours’, the notion of an interactor, as an abstract
characterisation of an interactive component, is well-known in the area of formal modelling
techniques for interactive systems. This chapter proposes to replace traditional, hierarchi-
cal, ‘tree-like’ composition of interactors in the specification of complex interactive systems,
by their exogenous coordination through general-purpose software connectors which assure
the flow of data and the meet of synchronisation constraints. The chapter’s technical con-
tribution is twofold. First a modal logic is defined to express behavioural properties of both
interactors and connectors. The logic is new in the sense that its modalities are indexed by
fragments of sets of actions to cater for action co-occurrence. Then, this logic is used in the
specification of both interactors and coordination layers which orchestrate their intercon-
nection, providing a case-study in the use of software connectors for program coordination.
This chapter is based on [BBC09].

6.1 Introduction

Modern interactive systems resort to increasingly complex architectures of user in-
terface components. With the generalisation of ubiquitous computing, the notion of
interactive system itself changed. Single interactive devices have been replaced by
frameworks where devices are combined to provide services to a number of differ-
ent, often anonymous, users accessing them in a competing way. This may explain
the increasing interest on rigorous methodologies to develop useful, workable mod-
els of such systems. In such a setting, the concept of an interactor was originally
proposed by Faconti and Paternò [FP90], as an abstraction for a graphical object

131

132 6. Case-study: Interactors

ρEvents

Presentation

State

Figure 6.1: A model-based Interactor.

capable of both input and output, typically specified in a process algebra. This was
further generalised by Duke and Harrison [DH93] for modelling interactive sys-
tems. Interactors become able not only to communicate through i/o ports, but also
to convey information about their state through a rendering relation that maps the
latter to some presentation medium.

The framework outlined in [DH93], however, does not prescribe a specification
notation for the description of interactor state and behaviour. Several possibilities
have been considered. One of them, which directly inspired this piece of research,
was developed by the third author in [CH01] and resorts to Modal Action Logic
(MAL) [RFM91] to specify behavioural constraints. Another one [Pat95] uses LO-
TOS to express a relation between input and output ports. Actually, the notion of an
interactor as a structuring mechanism for formal models of interactive systems, has
been an influential one. It has been used, for example, with LOTOS [FP90, Mar95],
Lustre [dSDR98], Petri nets [BNP03], Higher Order Processes [DF05], or Modal
Action Logic [CH08].

Whatever the approach, modelling complex interactive systems entails creating
architectures of interconnected interactors. In [CH01] such models are built hierar-
chically through ’tree-like’ aggregation. Composition is typically achieved by the
introduction of additional axioms and/or dedicated interactors to express the con-
trol logic for communication. This, in turn, adds dramatically to the complexity of
the proposed models. Moreover, it does not promote a clear separation of concerns
between modelling interactors and the specification of how they interact with each
other.

This chapter, however, adopts an exogenous coordination approach to the com-
position of interactors which entails an effective separation of concerns between the
latter and the specification of how they are organised into specific architectures and
interact to achieve common goals. Exogenous coordination draws a clear distinc-
tion between the loci of computational effort and that of interaction control, the latter
being blind with respect to the structure of values and procedures which typically

6.2. A logic for behaviour 133

depend on the application domains.

Research reported here is a follow-up of a previous attempt to use the coordina-
tion paradigm to express the logic governing the composition of interactors, reported
in [BBC07], where a process algebra framework was used to specify connector’s
behavioural constraints. This, however, proved difficult to smoothly combine with
interactors whose evolution is typically given by modal logic assertions.

Therefore, in this chapter an extension to Hennessy-Milner logic [HM85] is
proposed to express behavioural properties of both interactors and connectors. The
novelty in the logic is the fact that its modalities are indexed by sets of actions to
cater for action co-occurrence. Moreover, modalities are interpreted as asserting the
existence of transitions which are indexed by a set of actions of which only a subset
may be known. Both co-occurrence and such a sort of partial information about
transitions seem to be essential for software coordination.

The rest of this chapter is organised as follows. Section 6.2 introduces modal
language M, which is used to specify interactors in section 6.3, and software con-
nectors in section 6.4. Section 6.5 brings interactors and the coordination layer
together through the notion of a configuration. A few examples are discussed to
assess the merits of proposed approach. Finally, a few topics for future work are
discussed in section 6.6.

6.2 A logic for behaviour

6.2.1 A modal language

Like many other computing artefacts, both interactors and connectors exhibit re-
active behaviour. They evolve through reaction, either to internal events (e.g., an
alarm timeout) or to the accomplishment of interactions with environment (e.g., the
exchange of a datum in a channel end). Following a well established convention in
formal modelling, we refer to all such reaction points simply as actions, collected
on a denumerable set Act. Then we define modal operators which qualify the va-
lidity of logical formaluæ with respect to action occurrence, or, more generally, to
action co-occurrence.

Having mechanisms to express co-occurrence becomes crucial in modelling co-
ordination code. For example, what characterises a synchronous channel, the most
elementary form of software glue to connect two running interactors, is precisely
the fact that any interaction in its input end is simultaneous with another interaction
in the output end. Note that temporal simultaneity is understood here as atomicity:

134 6. Case-study: Interactors

simultaneous actions cannot be interrupted.

The modal language introduced in the sequel is similar to the well-known Hen-
nessy-Milner logic [HM85], but for a detail which makes it possible to express (and
reason about) action co-occurrence. The basic idea is that a formula like 〈a〉φ, for
a ∈ Act, which in [HM85] asserts the existence of a transition indexed by a leading
to a state which verifies assertion φ, is re-interpreted by replacing ’indexed by a’ by
’indexed by a set of actions of which a is part of’. Therefore, modalities are rela-
tive to sets of actions, whose elements are represented by juxtaposition, regarded as
factors of a (eventually larger) compound action.

In detail, modalities are indexed by either positive or negative action factors,
denoted by K and ∼K, for K ⊆ Act, respectively. Intuitively, a positive (respectively,
negative) factor refers to transitions whose labels include (respectively, exclude) all
actions in it. Annotation ∼ may be regarded as an involution over PAct (therefore,
∼∼K = K).

Formally M has the following syntax, where W is a positive or negative action
factor and Ψ ranges over elementary propositions,

φ ::= Ψ | true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1→ φ2 | 〈W〉φ | [W]φ

Its semantics is given by a satisfiability relation wrt to system’s states. For the
non modal part this is as one would expect: for example s |= true, s 6|= false and
s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2. For the modal connectives, we define

s |= 〈W〉φ ⇔ 〈∃ s′ : 〈∃ θ : s
θ
−→ s′ : W ≺ θ〉 : s′ |= φ〉

s |= [W]φ ⇔ 〈∀ s′ : 〈∃ θ : s
θ
−→ s′ : W ≺ θ〉 : s′ |= φ〉

where

W ≺ X ,

W = K, for K ⊆ Act ⇒ K ⊆ X
W =∼K, for K ⊆ Act ⇒ K * X

For example, if there exists a state s′ such that s
abcd
−→ s′ and s′ verifies some formula

φ, then s |= 〈bd〉φ. Dually, assertion [∼abc]false states that all transitions whose
labels do not involve, at least and simultaneously, actions in set {a, b, c} lead to
states which validate false and their occurrence is, therefore, impossible.

Modal connectives can be extended to families of both ’positive’ or ’negative’
action factors as follows:

s |= 〈F〉φ⇔ 〈∃W : W ∈ F : 〈W〉φ〉

s |= [F]φ⇔ 〈∀W : W ∈ F : [W]φ〉

6.2. A logic for behaviour 135

where F ⊆ (PAct ∪ ∼PAct). Just as actions in an action factor are represented
by juxtaposition, as in 〈abc〉, action factors in a family thereof are separated by
commas, as in 〈J,K, L〉. Set complement to PAct ∪ ∼PAct is denoted by symbol −
as in [−K]false or 〈−〉true, the latter abbreviating −∅. The first assertion states that
only transitions exactly labelled by factor K can occur. The second one that there
exists, from the current state, at least a possible transition (of which no particular
assumption is made).

Most results on Hennessy-Milner logic carry over M. In particular, it can be
shown that modal equivalence in M entails bisimulation equivalence for processes
in CCS-like calculus extended with action co-occurrence. Although this is not the
place to explore the structure of M, the following extension laws are needed in the
sequel:

Lemma 6.1 For all a, a′ ∈ Act, K,K′ ⊆ Act,

[a]φ ⇐ [aa′]φ (6.1)

〈a〉φ ⇐ 〈aa′〉φ (6.2)

[K]φ ⇐ [K,K′]φ (6.3)

〈K〉φ ⇒ 〈K,K′〉φ (6.4)

[K]φ ∧ [K′]φ ⇔ [K,K′]φ (6.5)

〈K〉φ ∨ 〈K′〉φ ⇔ 〈K,K′〉φ (6.6)

Proof. Proofs proceed by unfolding definitions. For example, (6.1) is proved as
follows:

s |= [a]φ

⇔ { definition }

〈∀ s′ : 〈∃ θ : s
θ
−→ s′ : {a} ⊆ θ〉 : s′ |= φ〉

⇐ { set inclusion }

〈∀ s′ : 〈∃ θ : s
θ
−→ s′ : {a, a′} ⊆ θ〉 : s′ |= φ〉

⇔ { definition }

s |= [aa′]φ

�

136 6. Case-study: Interactors

It is also easy to see that, for K and K′, both positive or both negative,

[K,K′]φ ⇒ [K ∪ K′]φ (6.7)

〈K,K′〉φ ⇐ 〈K ∪ K′〉φ (6.8)

6.2.2 Typical properties

To exemplify the use of the logic and introduce some notation to be used in the
sequel, let us consider a number of properties useful for the specification of both
interactors and coordination schemes. Most of the latter are designed to preclude
interactions in which some action factor K is absent. This leads to the following
property schemes

only K , [∼K]false and forbid K , only ∼K

Properties above entails conciseness in expression. For example, assertion only K ∧
only L ∧ forbid M abbreviates, by (6.5), to only K, L,∼M. A dual property asserts
the existence of at least a transition of which a particular action pattern is a factor,
i.e.,

perm K , 〈K〉true (6.9)

Or, not only possible, but also mandatory,

mandatory K , 〈−〉true ∧ only K (6.10)

More complex patterns of behaviour are expressed by nesting modalities, as in
[K]〈L〉φ, which expresses a sort of invariant: after every occurrence of an action
with factor K, there is, at least, a transition labelled by actions in L which validates
φ. The complement of 〈−〉true is [−]false which asserts no transition is possible.
Notice that their duals — 〈−〉false and [−]true — are just abbreviations of constants
false and true, respectively.

6.3 M-interactors

6.3.1 A language for M-interactors

As stated in the Introduction, our aim is to use a single specification notation for
both interactors, which, in this setting, correspond to the computational entities,
and connectors, which cater for the coordination of the former. Modal language M

6.3. M-interactors 137

is, of course, our candidate for this double job — this section focuses on its first
part.

The definition of a M-interactor is adapted from [DH93], but for the choice of
the behaviour specification language. Formally,

Definition 6.1 An interactor signature is a triple (S , α,Γ), where S is a set of sorts,
α a S -indexed family of attribute symbols, and Γ a set of action symbols. An
M-interactor is a tuple (∆, ρ, γ, Ax∆) where ∆ is an interactor signature, ρ : P←− α
and γ : P ←− Γ are rendering relations, from attributes and actions, respectively,
to some presentation medium P, and Ax∆ a set of axioms over ∆ expressed in the M
language.

The set of ports provided by an interactor is defined by ρ, γ, and Γ. Ports induced
by ρ are output ports used to read the value of attributes and are always available.
This condition is expressed by

〈∀ p : p ∈ ran ρ : 〈p〉true〉 (6.11)

Ports in Γ are input/output ports and their availability is governed by axioms in Ax∆.

Syntactically, the definition of an interactor has three main declarations: of at-
tributes, actions and axioms. The first two define the signature. The rendering
relation is given by annotations on the attributes. Actions can also be annotated to
assert whether or not that they are available to the user. Fig. 6.2 shows a very sim-
ple example of an interactor modelling an application window. Two attributes are
declared, indicating whether the window is visible or displays new information.

Available actions model the change of visibility and information displayed in
the window. Their effect in the state of the interactor is defined by the axioms in
the figure. In this example, the rendering relation is defined by the vis annotation,
which indicates that all attributes are (visually) perceivable.

Although the behavioural properties specified in this example are rather simple,
in general, it is necessary to specify when actions are permitted or required to hap-
pen. This is achieved with the perm and mandatory assertions, typically stated in a
guarded context. Thus,

• perm K→ Φ, where Φ is a non modal proposition over the state space of the
interactor, as perceived by the values of its attributes. The assertion means
that if actions containing action factor K are permitted then Φ evaluates to
true.

138 6. Case-study: Interactors

interactor window
attributes

vis visible, newinfo : bool
actions

hide show update invalidate
axioms

[hide] ¬visible
[show] visible
[update] newinfo
[invalidate] ¬newinfo
forbid hide show
forbid update invalidate

Figure 6.2: A window interactor

• Φ→mandatory K, meaning actions containing action factor K are inevitable
whenever Φ evaluates to true.

A useful convention establishes that permissions, but not obligations, are asserted
by default. I.e., by default anything can happen, but nothing must happen. This fa-
cilitates makes adding or removing permissions and obligations incrementally when
writing specifications.

6.3.2 Composing interactors

In the literature, and specifically in [CH01], interactors are composed in the ’clas-
sical’ way, i.e., by a specification import mechanism, illustrated below by means of
a small example. In the literature, and specifically in [CH01], interactors are com-
posed in the ’classical’ way, i.e., by a specification import mechanism, illustrated
below by means of a small example. This will be contrasted in section 6.5 to a
coordination-based solution. Consider a system that controls access to a specific
space (e.g, an elevator), modelled by the interactor in Fig. 6.3. Now suppose two
indicators have to be added to this model, one to announce open events, the other to
signal close events. We will use instances of the window interactor from Fig. 6.2
to act as indicators. The ’classical’ aggregation strategy, as in [CH01], requires that
two instances of the window interactor be imported into one instance of space to
build the new interactor. The rules that govern their incorporation are as follows:

• the open (respectively, close) indicator must be made visible and have its
information updated whenever the system is opened (respectively, closed).

6.4. The coordination layer 139

interactor space
attributes

vis state : {open, closed}
actions

open close
axioms

perm open→ state = closed
[open] state = open
perm close→ state = open
[close] state = closed

Figure 6.3: The space interactor

Additionally, it should be noted that whenever a window is made visible, it might
overlap (and hide) another one. The resulting interactor is presented in figure 6.4,
where a new axiom expresses the coordination logic. The fact that M allows for
action co-occurrence means that constraints on actions become simpler and more
concise than their MAL counterparts, as used in [CH01]: in our example only an
additional axiom is needed. Nevertheless, this solution still mixes concerns by ex-
pressing the coordination of interactors cI and oI at the same level than the internal
properties of the underlying space interactor. How such two levels can be disentan-
gled is the topic of the following sections.

6.4 The coordination layer

Actually, coordination entails a different perspective. As in [Arb04] this is achieved
through specific connectors which abstract the idea of an intermediate glue code to
handle interaction. Connectors have ports, thought of as interface points through
which messages flow. Each port has an interaction polarity (either input or output),
but, in general, connectors are blind with respect to the data values flowing through
them. The set of elementary interactions of a connector C forms its sort, denoted
by sort.[[C]]. By default the sort of C is the set of its ports, but often such is not the
case. For example, a synchronous channel with ports a and a′ has a unique possible
interaction: the simultaneous activation of both a and a′, represented by aa′.

Connectors are specified at two levels: the data level, which records the flow of
data, and the behavioural one which prescribes all the activation patterns for ports.
Formally, let C be a connector with m input and n output ports. Assume D as a
generic type of data values and P as a set of (unique) port identifiers. Then,

140 6. Case-study: Interactors

interactor spaceS ign
aggregates

window via oI
window via cI

attributes
vis state : {open, closed}

actions
vis open close

axioms
perm open→ state = closed
[open] state′ = open
perm close→ state = open
[close] state′ = closed
only open oI.update oI.show ∨ only close cI.update cI.show

Figure 6.4: A classical solution

Definition 6.2 The specification of a connector C is given by a relation data.[[C]] :
Dn ←− Dm, which relates data present at its m input ports with data at its n output
ports, and an M assertion, port.[[C]], over its sort, sort.[[C]], which specifies the
relevant properties of its port activation pattern.

6.4.1 Elementary connectors.

The most basic connector is the synchronous channel which exhibits two ports, a
and a′, of opposite polarity. This connector forces input and output to become
mutually blocking. Formally, data.[[a // a′]] = IdD, i.e., the identity relation
in D, and

sort.[[a // a′]] = {aa′} port.[[a // a′]] = only aa′

Its static semantics is simply the identity relation on data domain D and its behaviour
is captured by the simultaneous activation of its two ports.

Any coreflexive relation provides channels which can loose information, thus
modelling unreliable communications. Therefore, we define, an unreliable channel

as data.[[a ^ // a′]] ⊆ IdD and

sort.[[a ^ // a′]] = {a, aa′} port.[[a ^ // a′]] = only a

6.4. The coordination layer 141

The behaviour expression states that all valid transitions involve input port a, al-
though not necessarily a′. This corresponds either to a successful communication,
represented by the simultaneous activation of both ports, or to a failure, represented
by the single activation of the input port.

As an example of a connector which is not stateless consider fifo1, a channel
with a buffer of a single position. Formally, data.[[a � // a′]] = IdD and

sort.[[a � // a′]] = {a, a′} port.[[a � // a′]] = [a]only a′,∼a

Notice that its port specification equivales to [a](only a′ ∧ forbid a), formalising the
intuition of a strict alternation between the activation of ports a and a′.

If channels forward information, drains absorb it. However they play a funda-
mental role in controlling the flow of data along the coordination code. A drain
has two input, but no output, ports. Therefore, it looses any data item crossing its
boundaries. A drain is synchronous if both write operations are requested to succeed
at the same time (which implies that each write attempt remains pending until an-
other write occurs in the other end-point). It is asynchronous if, on the other hand,
write operations in the two ports do not coincide. The data part coincides in both
connectors: D × D. Then

sort.[[a � � a′]] = {aa′} port.[[a � � a′]] = only aa′

sort.[[a � O � a′]] = {a, a′} port.[[a � O � a′]] = only a, a′ ∧ forbid aa′

6.4.2 New connectors from old

Connectors can be combined in three different ways: by placing them side-by-side,
by sharing ports or introducing feedback wires to connect output to input ports. In
the sequel, note that behaviour annotations in the specification of connectors can
always be presented in a disjunctive form

port.[[C]] = φ1 ∨ φ2 ∨ · · · ∨ φn (6.12)

where each φi is a conjunction of

[K] · · · [K]︸ ︷︷ ︸
n

only F

Also let t|a and t#a, for t ∈ Dn and a ∈ P, represent, respectively, a tuple of data
values t from which the data corresponding to port a has been deleted, and the tuple
component corresponding to such data. Then,

142 6. Case-study: Interactors

Join. This combinator places its arguments side-by-side, with no direct interaction
between them. Then,

data.[[C1 � C2]] = data.[[C1]] × data.[[C2]]

sort.[[C1 � C2]] = sort.[[C1]] ∪ sort.[[C2]]

port.[[C1 � C2]] = port.[[C1]] ∨ port.[[C2]]

The relevance of sorts becomes now clear. Take, for example, the aggregation of
two synchronous channels Their joint behaviour is

port.[[(a // a′ � c // c′)]] = only aa′ ∨ only cc′

A transition labelled by, say, aa′c does not violate the behaviour prescribed above,
but it is made invalid by the sort specification, which is {aa′, cc′}.

Share. The effect of share is to plug ports with identical polarity. The aggregation
of output ports is done by a right share (C i

j > z), where C is a connector, i and j
are ports and z is a fresh name used to identify the new port. Port z receives asyn-
chronously messages sent by either i or j. When input from both ports is received
at same time the combinator chooses one of them in a non-deterministic way. Let
data.[[C]] : Dn ←− Dm. Then, the data flow relation data.[[C i

j > z]] : Dn−1 ←− Dm

for this operator is given by

r (data.[[C i
j > z]]) t ⇔ t′ (data.[[C]]) t ∧ r|z = t′

|i, j ∧ (r#z = t′#i ∨ r#z = t′# j)

At the behavioural level, its effect is that of a renaming applied to the M-formula
capturing the behavioural patterns of C, i.e.,

port.[[(C i
j > z)]] = {z← i, z← j} port.[[C]]

over

sort.[[(C i
j > z)]] = {z← i, z← j} sort.[[C]]

Figure 6.5 represents a merger formed by sharing the output ports of a synchronous
channel and a 1-place buffer.

On the other hand, aggregation of input ports is achieved by a left share mech-
anism (z <i

j C). This behaves like a broadcaster sending synchronously messages
from z to both i and j. This case is slightly more complex: before renaming, all
computations of C in which ports i and j are activated independently of each other
must be synchronised. Therefore, we take all disjuncts in port.[[C]] in which ports i

6.4. The coordination layer 143

 a // a′

b � // b′

 a′
b′ > w =

a
��
w

b �
@@

Figure 6.5: A merger: only aw ∨ [b]only w,∼b.

and j are involved, form their conjunction to force co-occurrence, and apply renam-
ing. Formally, let φθ be a disjunct in port.[[C]] (recall (6.12)) involving only ports in
θ. Define φi = 〈

∨
φθ ∈ port.[[C]] : i ∈ θ : φθ〉 and, similarly, φ j. Therefore, for

σ = {z← i, z← j},

port.[[(z <i
j C)]] = σ(φi ∧ φ j) ∨ 〈

∨
φθ′ ∈ port.[[C]] : i < θ′ ∧ j < θ′ : φθ′〉

and, again,

sort.[[(z <i
j C)]] = {z← i, z← j} sort.[[C]]

On the other hand, relation data.[[z <i
j C]] : Dn ←− Dm−1 is given by

t′ (data.[[z <i
j C]]) r ↔ t′ (data.[[C]]) t ∧ r|z = t|i, j ∧ r#z = t#i = t# j

As an example let us calculate the sharing of input ports a and b in a connector
composed by three, otherwise non interfering, synchronous channels,

port.[[z <a
b (a // a′ � b // b′ � c // c′)]]

⇔ { definition }

{z← a, z← b}(only aa′ ∧ only bb′) ∨ only cc′

⇔ { renaming and (6.5) }

only za′, zb′ ∨ only cc′

⇔ { (6.7) }

only za′b′ ∨ only cc′

which asserts that input on z co-occurs with output at both a′ and b′. Replacing
b // b′ by a one-place buffer leads to the connector depicted in Fig. 6.6 which

144 6. Case-study: Interactors

z <a
b


a // a′

b � // b′

c // c′

 =

a′

z

00

� // b′

c // c′

Figure 6.6: A broadcaster and a detached channel.

is calculated as follows

port.[[z <a
b (a // a′ � b � // b′ � c // c′)]]

≡ { definition }

{z← a, z← b}(only aa′ ∧ [b]only b′,∼b) ∨ only cc′

≡ { renaming }

(only za′ ∧ [z]only b′,∼b) ∨ only cc′

Hook. This combinator encodes a feedback mechanism, drawing a direct con-
nection between an output and an input port. This has a double consequence: the
connected ports must be activated simultaneously and become externally non ob-
servable.

Formally, such conditions are expressed in port.[[C � j
i]] applying to port.[[C]]

an operation � j
i on assertions defined as follows1. First notice that every φk in the

disjunctive form of port.[[C]] in (6.12), is a conjunction of modal assertions

µl = [K] · · · [K]︸ ︷︷ ︸
n

only F

for n ≥ 0. Thus, let Φ = port.[[C]] and compute Φ � j
i as follows:

1. Remove from Φ all assertions µi and µ j which involve at least an occurrence
of action i or j, respectively. Let Ψ be the remaining formula, i.e., the original
Φ where all removed µ are replaced by the relevant identity (either true or
false).

1The definition of hook given below is not entirely general but can handle most cases of interest
in coordination problems and all examples given here. Notice, in particular, all cases symmetric in φ
and ψ are omitted to enhance readability.

6.4. The coordination layer 145

2. For all µ involving simultaneously actions i and j, compute γ = {∅ ← i, ∅ ←
j} µ.

3. For all pairs µi and µ j, involving i and j, respectively, compute γ = µiµ j by

µi = only iK ∧ µ j = only jL { only K, L
µi = only iK ∧ µ j = [j] · · · [j]︸ ︷︷ ︸

n

only L,∼ j {

[K] · · · [K]︸ ︷︷ ︸
n

only L,∼K

µi = [K] · · · [K]︸ ︷︷ ︸
m

only i ∧ µ j = only jL { [K] · · · [K]︸ ︷︷ ︸
m

only L

µi = [K] · · · [K]︸ ︷︷ ︸
m

only i ∧ µ j = [j] · · · [j]︸ ︷︷ ︸
n

only L,∼ j {

[K] · · · [K]︸ ︷︷ ︸
m+n

only L,∼K

4. Let Γ be the conjunction of all formulas γ computed in steps 2, 3 and 4. Then
define Φ � j

i= Γ ∧ Ψ.

Note that γ assertions obtained in step 2. reduce to either true or false. It is instruc-
tive to compute the result of hooking of a synchronous channel and of a 1-place
buffer. In the first case we get

(only aa′) �a
a′ = only ∅ = true

In the second,

[a](only a′,∼a) �a
a′ = [∅](true ∧ false) = false

as one may have expected given the buffer strict alternation activation discipline.

Clearly the sort of C � j
i is obtained from that of C by consistently removing

from each elementary interaction port identifiers i and j. On the other hand, the
effect of hook on data, assuming data.[[C]] : Dn ←− Dm, is modelled by relation

data.[[C � j
i]] : Dn−1 ←− Dm−1

specified by

t′
| j (data.[[C � j

i]]) t|i iff t′ (data.[[C]]) t ∧ t′# j = t#i

Simple calculations show that the synchronous channel is the identity for hook or
that plugging two 1-place buffers sequentially produces a 2-place buffer.

146 6. Case-study: Interactors

a
��

a′

• // •

//

� //b �
AA

b′

Figure 6.7: An example of hook usage.

As a less obvious example consider hooking a merger M and a broadcaster B
(as represented in Fig. 6.5 and the upper part of Fig. 6.6). The resulting connector
is depicted in Fig. 6.7 and its behaviour computed by

port.[[(M � B) �w
z]]

≡ { definition }

((only aw ∨ [b]only w,∼b) ∨ (only za′ ∧ [z]only b′,∼z)) �w
z

≡ { hook definition }

only aa′ ∧ [a]only b′,∼a ∧ [b]only a′,∼b ∧ [b][b]only b′,∼b

6.5 Configurations of M-interactors

Having introduced M-interactors and the coordination layer on top of the same
modal language, we may now complete the whole picture. The key notion is that of
a configuration, i.e., a collection of interactors interconnected through a connector
built from elementary connectors, combined trough the combinators defined above.
Formally,

Definition 3 A configuration is a tuple

〈I,C, σ〉 (6.13)

where I = {Ii| i ∈ n} is a collection of interactors, C is a connector and σ a
mapping of ports in I to ports in C. The behaviour of a configuration is given by the
conjunction of the modal theories for each In ∈ I, as specified by their axioms, and
the port specification port.[[C]] of connector C, after renaming by σ.

To illustrate the envisaged approach, consider again the example discussed in
section 6.3. A coordination-based solution, depicted in Fig. 6.8, replaces the hi-
erarchical import of window into spaceSign interactor, by a configuration in which

6.5. Configurations of M-interactors 147

Figure 6.8: A coordination-based solution.

the two instances of the former and one instance of the original space interactor are
connected by

BC , B � B

a connector which joins together two broadcasters B. Each B is formed by two
synchronous channels and a lossy channel, sharing their input ports, i.e.

B , z <w
c (w <a

b (a // a′ � b // b′) � c ^ // c′)

An easy calculation yields port.[[B]] = only za′, zb′, z, which, by (6.7), equivales
to only za′b′. In a configuration in which, through a renaming σ, port z is linked to
S .open, a′ to oI.update, b′ to oI.show and c′ to cI.hide, one may prove (i.e., dis-
cover, rather than assert) a number of desirable properties of the configuration. For
example, from axiom perm S .open, a default axiom of interactor space in section
6.3, and σ only za′b′, one concludes that

perm S .open oI.update oI.show

i.e., there are transitions in which all the three ports are activated at the same time.
But, because the connector does not allow actions not including the simultaneous
activation of such three ports, the joint behaviour of the configuration asserts not
only possibility but also necessity of this transition, i.e.,

perm S .open oI.update oI.show ∧ only S .open oI.update oI.show

This is stronger than the corresponding axiom added to interactor spaceSign in Fig.
6.4, although it can be deduced from the modal theory of this interactor (which,

148 6. Case-study: Interactors

a_

H

_

��
w

b
�

EE

Figure 6.9: An alternate merger.

of course, includes perm open). Note we are focussing only on one of the two B
connectors in BC, thus this conclusion does not interfere with a similar possibility
for the other connection of interactor instances S and cI (recall the behavioural
effect of � is disjunction).

On the other hand, one also has

perm S .open cI.hide

because action zc′ is in sort.[[B]], but, now only as a possibility, because an unreli-
able channel was used to connect these ports. From this property and

only S .open oI.update oI.show

above, we can easily conclude that cI.hide cannot occur independently of S .open,
oI.update and oI.show. Again, this is stronger than the interactor model in Fig. 6.4,
where the hide action was left unrestricted.

As a final example, consider an interactor which has to receive the location
coordinates supplied by two different input devices but in strict alternation. The
connector to plug these three interactors is the alternate merger depicted in Fig.
6.9, formally, defined as

b<d′
f a<d

c (c // c′ � d
H // d′ � f � // f ′)c′

f ′ >w

Its behavioural pattern is

port.[[AM]] = only awb ∧ [b]only w,∼b

Clearly, each activation of port a is synchronous with b and w. But then data re-
ceived in b (say, the coordinates of the one of the devices) is stored in the buffer.
Next action is necessarily w, whose completion empties the buffer.

6.6. Concluding 149

6.6 Concluding

It was the intention of this case-study to set the foundations for an approach to mod-
elling interactive systems entailing a true separation of concerns between modelling
of individual components (interactors) and their architectural organisation. For this
a new modal logic (the M language) was introduced, which is similar to the Hen-
nessy-Milner logic [HM85] but for the fact that its modal connectives are indexed
by sets of actions (actions factors). These action factors are interpreted over the
compound actions (themselves represented by sets) that label transitions using set
inclusion. This makes it possible to express properties over co-occurring actions in
the logic.

Although the main drive behind the development of M was the need for a modal
logic expressive enough to define the coordination layer, the language was also used
to specify interactors, thus providing a single language for expressing the behaviour
of both interactors and connectors that bind them.

The approach presents two major benefits over [FP90] or [CH01]. First of all, it
promotes a clear separation of concerns between the specification of the individual
interactors and the specification of how they interact with each other. Furthermore,
it frees us from the rigid structure imposed by hierarchical organisation.

At this point, it is worthwhile pointing out that when composing interactors into
different configurations, the resulting behaviour becomes an emergent feature of the
model. Hence, we discover, rather than assert, what the system will be like. This
is particularly relevant in a context were one is interested in exploring the impact
of different design decisions at the architectural level. Recent related work on the
use of (some type of) logic to specify component behaviour include [BM07] and
[JOT06], the latter with an emphasis on property verification.

A number of lines of research have been opened by the current endeavour. A
main one concerns temporal extension. Actually, language M seems expressive
enough to express connector’s behaviour, but not so when facing more elaborate
interactor’s specifications. A typical case relates to expressing obligation require-
ments. This entails the need for studying how M can be extended in a way similar
to D. Kozen’s µ-calculus [Koz83] in order to address these temporal issues.

150 6. Case-study: Interactors

Chapter 7

A Functional Library for
Prototyping Software Connectors

Summary
This chapter introduces a set of basic programming primitives which implement some of the
main concepts and models described in this thesis, for prototyping purposes. Components’
interfaces and connectors are encoded using the functional language H. Component
interfaces are built from generic ports allowing anonymous communication among com-
ponents. As discussed in the previous chapters, a connector is the device responsible for
orchestrating such sort of component interaction. Although not expected to be a proof-of-
concept for the models introduced in the thesis, this library allows the software architect to
’play’ with connectors and configurations when designing a new system.

7.1 Functional components and their interfaces

This chapter gives a glimpse of a functional library developed with the purpose of
animating software connectors and their composition.

The language used to implement the library H [Bir98]. H is a pow-
erfull language, endowed with several specific extensions and libraries. In particu-
lar, we resorted to C H, a expressive extension of H, with
explicit concurrency [JGF96].

151

152 7. A Functional Library for Prototyping Software Connectors

Components

The library Interface allows us create functional components, i.e., it provides
a way to wrap functional programs, giving to it a public interface specifying ports
which will be visible to the environment.

The data type Port is defined as follows,

data Port a
= Port (MVar a)

(MVar ())

In order to allow persistence and generality of data values, ports are imple-
mented as mutable variables, i.e., MVars, which are primitives of the Concurrent
Haskell [JGF96]. In fact, a MVar is a reference to a mutable location that either can
contain a value of type a, or can be empty.

The creation of a port is done by invoking the operation createPort. Such an
operation is defined by,

createPort :: IO (Port a)
createPort
= newEmptyMVar >>= \ datum ->
newMVar () >>= \ ack ->
return (Port datum ack)

Associated to a port there are a number of operations to read and write from/to
it. Such operations are: readPort, defined by,

readPort :: Port a -> IO a
readPort (Port datum ack)
= takeMVar datum >>= \ val ->
putMVar ack () >>
return val

and writePort, whose definition is given by

writePort :: Port a -> a -> IO ()
writePort (Port datum ack) val
= takeMVar ack >>
putMVar datum val >>
return ()

Example 7.1 A very simple example of the creation and the usage of a port is given
in the following,

7.2. Connectors 153

prt1 = unsafePerformIO $ createPort
send pt msg = do

writePort pt msg
receive

receive = do
x <- readPort p1

print (x)
main = do

forkIO (send prt1 123)

In this example a port prt1 is created and the function send writes a numeric
value which is read in the function receive. Notice this is just a very simple pro-
ducer/consumer example using basically one port.

7.2 Connectors

Let us now focus on the creation of mechanisms allowing components to mutually
cooperate and change information in order to achieve some common goal. In or-
der to do that, we have a set of primitives which allow us to create basic simple
connectors (or channels, in this case, enforcing a point–to–point anonymous com-
munication).

Connectors also have ports, i.e., regulated openings through which they ex-
change units of information.

The library Connectors provides the abstract data type Port which allow us to
create ports uniquely identified. The data type port is given by,

data Port a = Prt {idp :: PortId, hole :: MVar (Stream a)}
type PortId = String

where idp is a port identifier and hole is a mutable variable through which the
messages will flow.

Basic Channels

Let us call the most basic connectors (without any way of composition) by basic
channels. The synchronous and the asynchronous channels are the most well-known
examples of connectors of this kind. Both of them are connectors with a single input
port and a single output port. The difference relies on the absence or presence of
buffering capabilities.

A channel shares, in fact, the same data type, i.e., a channel is a structure with
two ports and the data flowing through such a structure must be the same at both

154 7. A Functional Library for Prototyping Software Connectors

input and output ports. The difference between a synchronous and an asynchronous
channel is in the obligation to synchronize or not. The library MyQsem is responsible
to ensure the synchronization constraints in case of a synchronous channel. Such
a library provides a semaphore which regulates the order of writing and reading
operation to/from ports, ensuring then the correct flow of messages.

The library provides the following basic channels:
Sync: S ync is a synchronous channel, it has an input and an output port and the I/O
operations occur simultaneously. This connector has no buffering capabilities. It is
defined as follows,

newSync :: PortId -> PortId -> IO (Channel i o)
newSync idw idr = do
buffer <- newEmptyMVar
read1 <- newMVar buffer
write1 <- newMVar buffer
canI’ <- CC.newQSem 0
wsyncL <- newMVar []
rsyncL <- newMVar []
rep <- newMVar 1
oo <- newMVar True
return Channel { writeC = [Prt {idp=idw, hole=write1}],

readC = [Prt {idp=idr, hole=read1}],
fC = id, canI = canI’, writeSyncList = wsyncL,
readSyncList = rsyncL, writeRep = rep, readRep = rep,
writeSync = rep, readSync = rep,
onlyOne = oo

}

Considering that the connectors obey the same principle of construction the syn-
chronous connector is enough to demonstrate the construction of a connector. The
particular feature of each channel will be regulated by the semaphore implemented
in the function canI which will regulate the synchrony of data flow when necessary.

Async: The Async type represents an asynchronous connector. It has an input and
an output port and unlimited buffering capabilities. The I/O operations occur at dif-
ferent time.

Lossy: The lossy connector is able to discard some messages in a controlled way.
Actually the lossy connector behaves exactly as a synchronous channel when both
operations, read and write, succeed at same time, on the other hand, when the oper-
ations do not coincide the data value pending on the connector is lost.

Asyncdrain: Represents an asynchronous drain connector. It is a connector with

7.2. Connectors 155

two inputs and no outputs. The input operations must occur at different time. This
connectors loses every message which comes into it.

Syncdrain: Represents a synchronous drain connector. It is a connector with two
inputs and no outputs and the input operations must occurs at a same time.

Concentrator: The concentrator connector is a ternary connector with two inputs
and a single output. In this connector the pair of inputs and the output operations
must occur simultaneously.

Merger: The merger connector is very similar to the concentrator connector, but in
this case only one input and the corresponding output may occur at same time.

SyncBroadcaster: The synchronous broadcaster is a connector with a single input
operation and two output operations. The input operation and the output operations
must occur simultaneously.

New connectors are created using the function createChannel defined as fol-
lows,

createChannel :: NewChannel i o -> IO (Channel i o)
createChannel (Sync w r) = newSync w r
createChannel (Async w r) = newAsync w r
createChannel (Lossy w r f) = newLossy w r f
createChannel (Merger w1 w2 r) = newMerger w1 w2 r
createChannel (Concentrator w1 w2 r) = newConcentrator w1 w2 r
createChannel (SyncBroadcaster w r1 r2) = newSBroadcaster w r1 r2
createChannel (AsyncDrain w1 w2) = newADrain w1 w2
createChannel (SyncDrain w1 w2) = newSDrain w1 w2

The data type NewChannel is defined by,

data NewChannel i o =
Sync PortId PortId

| Async PortId PortId
| Lossy PortId PortId (i -> o)
| Merger PortId PortId PortId
| Concentrator PortId PortId PortId
| SyncBroadcaster PortId PortId PortId
| AsyncDrain PortId PortId
| SyncDrain PortId PortId

So, in order to construct a new channel we must proceed according to following
command

156 7. A Functional Library for Prototyping Software Connectors

chan <- createChannel (Sync "p1" "2")

, i.e., we pass as arguments the type of the desired connector, S ync in this example
and the names of its ports, p1 and p2.

Basically a channel will be composed by two or three ports and, according to the
polarity of data flow (input or output), the channel will be formed. For instance, a
binary sync channel is composed by an input port and an output port, or a syncdrain
channel, also a binary channel but, composed by two input ports. The merger,
concentrator and SyncConcentrator are examples of ternary channels.

The input and output operations on connectors are provided by the input opera-
tion post and the output operation read.

The post operation is defined by,

post :: (Eq i, Show i) => Channel i o -> i -> PortId -> IO ()
post (Channel w r _ canI acts _ rep _ max _ oo) val idr =
block $ do
CC.waitQSem canI -- espaço?
rep’ <- readMVar rep
max’ <- readMVar max
if max’ /= 1 then do
rep’’ <- verActW’ idr acts [] max’ val rep’ o
writeAction w idr val rep’’

else do
writeAction w idr val rep’

where
mapList (f:fs) (x:xs) = (f x) : (mapList fs xs)
mapList _ _ = []
mapIO f [] _ = return ()
mapIO f (x:xs) (p:ps) = do

x’ <- x
f’ f x’ p >> mapIO f xs ps
where f’ _ [] _ = return ()
f’ f (h:t) p = f h p >> f’ f t p

The read operation is defined by,

_read :: (Eq i, Show o) => Channel i o -> PortId -> IO [o]
_read ch@(Channel writeC readC f canI _ acts _ rep _ max _) idr
=
block $ do
CC.signalQSem canI
rep’ <- readMVar rep
max’ <- readMVar max
if max’ /= 1
then do

7.3. Combinators 157

verActR’ idr acts [] rep’
x <- readAction readC idr f rep’ []
return x

else do
x <- readAction readC idr f rep’
return x

7.3 Combinators

The essence of coordination models is the capability of to construct more elaborated
connectors, from most basic channels. In our case, complex connectors may be
created aggregating or plugging ports with opposite polarity using the primitive
hook. In the follow we have the hook operation described,

hook :: (Eq o, Show o, Show k)
=>
Channel o o -> Channel o k -> [(String, String)] -> IO (Channel o k)
hook ch1@(Channel w1 r1)

ch2@(Channel w2 r2) l
=
if l == []
then

error "no ports available..."
else
let readPrts = map fst l

writePrts = map snd l
in if not (isAllIn readPrts (map idp r1)) ||

not (isAllIn writePrts (map idp w2))
then
error "incompatible ports..."

else do
forkIO $ readWrite readPrts writePrts
let w1’ = getNotUsedPorts writePrts $ w1++w2
let r2’ = getNotUsedPorts readPrts $ r1++r2
return $ Channel w1’ r2’ (a2.a1) b1 c1 d2 e1 f2 g1 h2 i1

where
readWrite readPrts writePrts = do
runInBoundThread $ do

xt <- barrier $ mapM__ (_read ch1) readPrts
let xt2 = (map_ (map (post_ ch2) writePrts)) xt
...

The hook combinator receives the ports to be plugged and returns a new con-
nector hidding the ports which were hooked. Let us consider an example of the
usage of the hook constructing a synchronous connector by plugging a synchronous

158 7. A Functional Library for Prototyping Software Connectors

broadcaster and a concentrator.

•r1 �w1
r1 w1•

��
w• �

•

77

''

• // r • w;= • � // • r

•r2 �w2
r2 w2•

AA

Consider the following function testS BroadConce,

testSBroadConce = do
ch1 <- createChannel (SyncBroadcaster "w" "r1" "r2")
ch2 <- createChannel (Concentrator "w1" "w2" "r")
ch <- hook ch1 ch2 [("r1", "w1"), ("r2", "w2")]
forkIO $ post ch ’a’ "w"
forkIO $ _read ch "r"

first the broadcaster connector ch1 is created with the input port w and two output
ports r1 and r2. After this, the concentrator connector ch2 is created with the input
ports w1 and w2 and the output port r. The hook combinator plugs the ports r1,w1
and r2,w2, creating the connector ch. This operation hides the ports which were
hooked and the visible resulting ports are the input port w and the output ports r.

Example 7.2 As an example, let us consider the elementary bank system perform-
ing a backup operation (see Fig. 5.8 in chapter 5). We have three components,
DBRep, AT M and Bank, and a connector composed by two synchronous broad-
caster connectors. The interface of the components are created using the library
interface allowing the creation of the ports. For component AT M we have ports:

arq = unsafePerformIO $ createPort
ars = unsafePerformIO $ createPort

The component DBRep has ports:

dbr = unsafePerformIO $ createPort
dbp = unsafePerformIO $ createPort

and, finally, the component Bank has the ports:

brs = unsafePerformIO $ createPort
bo = unsafePerformIO $ createPort
brq = unsafePerformIO $ createPort

7.3. Combinators 159

The main operation of a connector to orchestrate these components is the cre-
ation of two Synchronous Broadcaster, as we can see as follows,

bankconnector = do
...
co1 <- createChannel (SyncBroadcaster "a" "c" "b")
co2 <- createChannel (SyncBroadcaster "d" "f" "e"
...

The functional language H is a powerful tool to implement the main fea-
tures of a coordination language. The library Concurrency, on the other hand,
provides many useful devices to implement and create instances of new connectors,
other than the two native channels provided by this library, (the synchronous chan-
nels and the asynchronous channel with unlimited buffering). A lot of work, in this
respect, remains to be done, but this leads us to the final chapter of the thesis and its
conclusions.

160 7. A Functional Library for Prototyping Software Connectors

Chapter 8

Conclusions and Future Work

Summary
This chapter concludes the thesis and points out a number of issues for future work. A par-
ticular challenge is put forward: the development, based on the models and ideas proposed
in the thesis, of a calculus of architectural patterns, to give a solid, mathematical founda-
tion to the fundamental, but often neglected, discipline of Software Architecture. A review
of some research in such a direction is included.

8.1 Concluding

The increasing demand for complex and ubiquitous applications places new chal-
lenges to the way software is designed and developed. Such challenges bring to
scene a need to improve the Software Engineering discipline to cope with this new
reality.

Coordination models and architectural descriptions were born within different
contexts, concerns and typical application domains. However their focus is similar
and recent trends in the software industry stresses the relevance of basic underly-
ing principles. Recall, for example, the challenges entailed by the move from the
programming-in-the-large paradigm of two decades ago, to the recent program-
ming-in-the-world where not only one has to master the complexity of building

161

162 8. Conclusions and Future Work

and deploying a large application in time and budget, but also of managing an
open-ended structure of autonomous components, possibly distributed and highly
heterogeneous. Or the related shift from the traditional understanding of software
as a product to software as a service [Fia04], emphasising its open, dynamic recon-
figurable and evolutive structure. Terms like service orchestration and choreogra-
phy, and the associated intensive research effort (see [BGG+05, AF04, ZXCH07,
BCPV04], among many others), stress the relevance of main themes in both coor-
dination and architectural research to modern Software Engineering. In a sense, an
early definition of coordination which emphasises its goal of finding solutions to the
problem of managing the interaction among concurrent programs [Arb98], could
be taken as a main challenge to this Engineering domain.

Both, software architecture and coordination models, tackle component inter-
action, abstracting away the details of computation and focussing on the nature and
form of the interactions. Synchronisation, communication, reconfiguration, creation
and termination of computational activities are, thus, primary issues of concern.

It should also be remarked that, despite remarkable progress in the representa-
tion and use of software architecture, specification of architectural designs remain,
at present, largely informal. Typically, they rely on graphical notations with poor
semantics, and often limited to express only the most basic structural properties.
Recent coordination models and languages, on the other hand, present a higher de-
gree of formality — see, for example, the cases of R [Arb03, Arb04] or O
[KCM06, MC07] — which stresses the case for a coordination-driven view of sys-
tems’ architecture.

In such a context, this thesis presented a hierarchy of models to plug compo-
nents together in a exogenous coordination framework. Connectors, modelled in
chapters 2, 3 and 5, behavioural interfaces, addressed in chapter 4, and configura-
tions, discussed in chapter 5, form the main ingredients of the proposed approach.
A case study on its application to interactive systems, presented in chapter 6, and a
prototyping library, documented in chapter 7, complete the thesis contributions.

In writing the thesis we were guided by the conviction that any formal model in
Computer Science must provide reasonable answers to the following questions:

• How expressive is it (in our case, what kind of coordination schemes can be
expressed within it)?

• How easy it is to reason within the model (to prove properties of such schemes)?

• How can it guide an effective implementation in the programming practice?

We still think these should be taken as a basis to assess its results.

8.2. Future work 163

8.2 Future work

Naturally, a lot of issues remain to be tackled.

Services and workflows. Service-oriented computing is an emerging paradigm
with increasing impact on the way modern software systems are designed and de-
veloped. Services are autonomous and heterogeneous computational entities which
cooperate, following a loose coupling discipline, to achieve common goals. Web
services are one of the most prominent technologies in this paradigm. As an emerg-
ing technology, however, it still lacks not only sound semantical models but also
suitable calculi to reason about and transform service-oriented designs.

A related topic concerns what is known in the literature as workflow patterns
[AHKB03]. Although their role in the design of service-oriented systems is well
recognized, the corresponding formalization is still a ’hot’ research topic (see, e.g.,
[AAH98, ACM04], among many others). We are currently working on their encod-
ing in a slight extension of the formalism used here to specify behavioural interfaces.
In a broader perspective, one may ask whether formal models for coordination, like
the ones proposed in this thesis, can be of use in providing precise semantic foun-
dations of emerging languages for web services composition and choreography, as,
for example, W-B [WS-07] or W-C [W2C05].

Mobility. Maybe the most relevant issue for future work concerns mobility. It
is not clear how the models discussed in this thesis can be extended to cope with
mobility and, in particular, with dynamic reconfiguration of connector networks.
The question is, in fact, more general: we still know very little about the semantics
of mobility in the context of exogenous coordination models. Tentative solutions
in e.g., R [AM02] or our own contribution documented in [BB07], are still of an
operational nature.

The approach discussed in chapter 3 supports dynamic reconfiguration of con-
nections through the action of a special connector (abstracting a whole level of
middleware) which manages the active possibilities of communication. The pos-
sibility of dynamic configuration of connections arises in this model from two basic
assumptions: (a) ports have unique identifiers which can be exchanged in mes-
sages, (b) there is a special connector — the orchestrator — to manage all active
connections in the network. With them mobility can be achieved in the classical
name-passing style typical of process algebras of the π-calculus family [Mil99].

This approach should be compared with formal approaches to dynamically re-
configurable architectures, such as, for example, [CR97] or [WF98]. Our main cur-

164 8. Conclusions and Future Work

rent concerns, however, include the full development of the model and associated
calculus, as well as its application to realistic case-studies. Moreover we intend to
extend the generic process algebra approach discussed in chapter 4 to he π-calculus
[Mil93], [Tur95]. First attempts suggest this is actually far from trivial.

Further tool support. We are also currently working on the development of a
prototype implementation of the connectors model proposed in chapter 5. This will
build upon and generalise the H library introduced in chapter 7. In particular,
we intend to build a repository of coordination patterns.

Towards a calculus of architectural patterns. In retrospect, time is mature to
go deep into developing a proper theory of architectural patterns, encompassing a
semantics and a calculus, building on the lessons learnt from general research on
coordination and the specific contributions of this thesis. The focus on dynamic,
self-reconfigurable architectures, is relevant to a wide range of systems, from e-
commerce to mobile embedded systems operated with minimal human oversight
in the context of which the classical distinction between between ‘development’,
‘deployment’ and ‘maintenance’ tends to blur. Although a technological reality,
runtime service reconfiguration is hard to model, analyse and predict. Although
less common, architectures able to monitor and adapt themselves to faults (e.g., lost
connections or service failures), to variable resources (e.g., bandwidth availability)
and to unpredictable context changes, will grow in relevance in the near future.

These are big research challenges to which a calculus of architectural patterns
would provide relevant, even if partial, answers.

The software architecture of a system is fundamental as it allows or prevents
meeting the behavioral, performance and life-cycle requirements of such system. In
order to facilitate the analysis and decision-making when developing/buying a sys-
tem, the research community defined catalogs of architectural patterns (or styles)
[BMaSS96, GS93, Gar03]. These catalogs describe, in natural language, key as-
pects such as contexts of application, structure, behavior, variants, consequences
and known cases for relevant patterns of structural organization. The structure and
behavior include components, connector types, and a set of constraints on how they
can be combined. However, multiple patterns are usually applied in a single system
and it becomes difficult to precisely calculate the resulting structure and behavior.
Therefore, it is also hard to determine whether the desired requirements are still
being met or not.

Our main proposal for a follow-up of this thesis is, therefore, the development of
a rigorous discipline of architectural patterns. The envisaged discipline will consist

8.3. Styles and performance in software architecture 165

of a calculus of such patterns and their transformations, going far beyond the com-
mon, ad hoc notions of architectural styles (as in classical references to architectural
styles), and seeking for technology-independent formulations.

We also believe that an important issue in such a calculus would be the ex-
plicit introduction of architectural performance considerations. This was an issue in
which we had some previous experience, in the context of the author’s MSc thesis,
but that was not pursued in this PhD project. We were uncertain on how such issues
could be formally introduced in architectural models.

Some scientific maturity achieved along this thesis, makes us more confident in
tackling this challenge. As a preliminary work on such a direction, we present in
following section a review of main concepts regarding architectural styles (a sort of
matrix for the envisaged architectural patterns) and approaches to performance in
software architecture.

The otherwise strange fact that a PhD thesis ends with another research review,
should just witness no thesis is a full stop, but only the beginning of new challenges.

8.3 Styles and performance in software architecture

8.3.1 Architectural styles

An architectural style consists of a vocabulary of design elements, a set of well-
formedness constraints that must be satisfied by any architecture written in the style,
and a semantic interpretation of the connectors. We shall now review the most pop-
ular styles documented in the literature. We believe they should be taken as the
starting point for a more formal classification of architectural patterns.

Pipes and filters

In a pipe and filter style each component has a set of inputs and a set of outputs.
A component reads streams of data on its inputs and produces streams of data on
its outputs, delivering a complete instance of the result in a standard order. This is
usually accomplished by applying a local transformation to the input streams and
computing incrementally so that output begins before input is consumed. Hence
components are termed “filters”. The connectors of this style serve as conduits
for the streams, transmitting outputs of one filter to inputs of another. Hence the
connectors are termed “pipes”. Among the important invariants of the style, filters
must be independent entities: in particular, they should not share state with other

166 8. Conclusions and Future Work

filters. Another important invariant is that filters do not know the identity of their
upstream and downstream filters. Their specifications might restrict what appears
on the input pipes or make guarantees about what appears on the output filters, but
they may not identify the components at the ends of those pipes. Furthermore, the
correctness of the output of a pipe and filter network should not depend on the order
in which the filters perform their incremental processing–although fair scheduling
can be assumed [AG92]. Figure 8.1 illustrates this style.

Figure 8.1: Pipes and Filter

Common specialization of this style include pipelines, which restrict the topolo-
gies to linear sequences of filters; bounded pipes, which restrict the amount of data
that can reside on a pipe; and typed pipes, which require that the data passed be-
tween two filters have a well-defined type.

The best case of pipe and filter architectures are programs written in the Unix
shell [Bac86] (see section 1.3.2 for a detailed example).

Other examples of pipes and filters occur in signal processing domains [DG90],
functional programming [Kah74], and distributed systems [BWW78].

Data Abstraction and Object-Oriented Organization

In this style data representations and their associated primitive operations are en-
capsulated in an abstract data type or object. The components of this style are the
objects – or, instances of the abstract data types. Objects are examples of a sort of
component called a manager because it is responsible for preserving the integrity
of a resource (here the representation). Objects interact through function and pro-
cedure invocations. Two important aspects of this style are (a) that an object is
responsible for preserving the integrity of its representation (usually by maintaining
some invariant over it), and (b) that the representation is hidden from other objects.
Figure 8.2 illustrates this style.

Object-oriented systems have many nice properties, most of which are well

8.3. Styles and performance in software architecture 167

Figure 8.2: Abstract Data Types and Objects

known. Because an object hides its representation from its clients, it is possible
to change the implementation without affecting those clients. Additionally, the
bundling of a set of accessing routines with the data they manipulate allows de-
signers to decompose problems into collections of interacting agents.

Event-Based

Traditionally, in a system in which the component interfaces provide a collection of
procedures and functions, components interact with each other by explicitly invok-
ing those routines. The idea behind implicit invocation is that instead of invoking
a procedure directly, a component in the system can register an interest in an event
by associating a procedure with the event. When the event is announced the system
itself invokes all of the procedures that have been registered for the event. Thus
an event announcement “implicitly” causes the invocation of procedures in other
modules.

Architecturally speaking, the components in an implicit invocation style are
modules whose interfaces provide both a collection of procedures (as with abstract
data types) and a set of events. Procedures may be called in the usual way. But in
addition, a component can register some of its procedures with events of the system.
This will cause these procedures to be invoked when those events are announced at
run time. Thus the connectors in an implicit invocation system includes traditional
procedure call as well as bindings between event announcements and procedure
calls.

168 8. Conclusions and Future Work

Layered Systems

A layered system is organized hierarchically, each layer providing service to the
layer above it and serving as a client to the layer below. In some layered systems
inner layers are hidden from all except the adjacent outer layer, except for certain
functions carefully selected for export. Thus in these systems the components im-
plement a virtual machine at some layer in the hierarchy. (In other layered systems
the layers may be only partially opaque.) The connectors are defined by the pro-
tocols that determine how the layers will interact. Topological constraints include
limiting interactions to adjacent layers. Figure 8.3.

Figure 8.3: Layered Systems

The most widely known examples of this kind of architectural style are layered
communication protocols [McC91].

Layered systems have several desirable properties. First, they support design
based on increasing levels of abstraction. This allows implementors to partition a
complex problem into a sequence of incremental steps. Second, they support en-
hancement. Like pipelines, because each layer interacts with at most the layers
below and above, changes to the function of one layer affect at most two layers.
Third, they support reuse. Like abstract data types, different implementations of the
same layer can be used interchangeably, provided they support the same interfaces
to their adjacent layers. This leads to the possibility of defining standard layer inter-
faces to which different implementors can build. (A good example is the OSI ISO
model and some of the X Windows System protocols.)

8.3. Styles and performance in software architecture 169

Repositories

In a repository style there are two quite distinct kinds of components: a central data
structure represents the current state, and a collection of independent components
operate on the central data store. Interactions between the repository and its external
components can vary significantly between systems.

The choice of control discipline leads to major subcategories. If the types of
transactions in an input stream of transactions trigger selection of processes to exe-
cute, the repository can be a traditional database. If the current state of the central
data structures is the main trigger of selecting processes to execute, the repository
is called a blackboard [AG92]. (see Figure 8.4).

Figure 8.4: Blackboard

Table Driven Interpreters

In an interpreter organization a virtual machine is produced in software. An inter-
preter includes the pseudo-program being, interpreted and the interpretation engine
itself. The pseudo-program includes the program itself and the interpreter’s analog
of its execution state (activation record). The interpretation engine includes both the
definition of the interpreter and the current state of its execution. Thus an interpreter
generally has four components: an interpretation engine to do the work, a memory
that contains the pseudo–code to be interpreted, a representation of the control state
of the interpretation engine, and a representation of the current state of the program
being simulated. (See Figure 8.5).

Heterogeneous Architectures

Thus far we have been speaking primarily of “pure” architectural styles. While it is
important to understand the individual nature of each of these styles, most systems

170 8. Conclusions and Future Work

Figure 8.5: Interpreter

typically involve some combination of several styles.

There are different ways in which architectural styles can be combined. One way
is through hierarchy. A component of a system organized in one architectural style
may have an internal structure that is developed a completely different style. For ex-
ample, in a Unix pipeline the individual components may be represented internally
using virtually any style – including, of course, another pipe and filter, system.

What is perhaps more surprising is that connectors, too, can often be hierarchi-
cally decomposed. For example, a pipe connector may be implemented internally
as a FIFO queue accessed by insert and remove operations.

A second way for styles to be combined is to permit a single component to use
a mixture of architectural connectors. For example, a component might access a
repository through its interface, but interact through pipes with other components
in a system, and accept control information through another part os its interface.
(In fact, Unix pipe and filter systems do this, the file system playing the role of the
repository and initialization switches playing the role of control.)

Another example is an “active database”. This is a repository which actives
external components through implicit invocation. In this organization external com-
ponents register interest in portions of the database. The database automatically
invokes the appropriate tools based on this association. (Blackboards are often con-
structed this way; knowledge sources are associated with specific kinds of data, and
are activated whenever that kind of data is modified.)

8.3. Styles and performance in software architecture 171

8.3.2 Performance in software architecture

There are different approaches and methodologies concerning the derivation of per-
formance models from software architecture specification. In this section some of
these methodologies will be considered.

Each approach is based on a certain type of performance model and specifica-
tion language such as process algebras ([GUHR93], [Hil96]), Petri nets ([MBC+95],
[Mol82]) and Chemichal abstract machine [IW95], and UML based specification
[BRJ99]. Performance models include queueing networks (QN) and their exten-
sions called Extended Queueing Networks (EQN) and Layered Queueing Networks
(LQN), Stochastic Timed Petri nets (STPN), Stochastic Process Algebras (SPA) and
simulation models. Some of the proposed methods are based on the Software Per-
formance Engineering (SPE) methodology introduced by Smith in [Sim90].

Software Performance Engineering has been the first comprehensive approach
to the integration of performance analysis into the software development process,
from the earliest stages to the end. The SPE methodology is based on two models:

• Software execution model that is based on execution graphs (EG) and repre-
sents the software execution behavior, and

• System execution model that is based on queueing network models and rep-
resents the computer system platform, including hardware and software com-
ponents.

The analysis of the software model gives information concerning the resource
requirements of the software system. The obtained results, together with informa-
tion about the hardware devices, are the input parameters of the system execution
model, which represents the model of the whole software/hardware system.

Methodologies

Williams and Smith [LW98] apply the Software Performance Engineering method-
ology (SPE) to evaluate the performance characteristics of a software architecture.
The emphasis is in the construction and analysis of the software execution model,
which is considered the target model of the specified SA and is obtained from the
Sequence diagrams. The Class and Deployment diagrams contribute to complete
the description of the SA, but are not involved in the transformation process. The
SPE process requires additional information that includes software resource require-
ments for processing steps and computer configuration data.

172 8. Conclusions and Future Work

In [DM98], Menascè and Gomaa present a methodology to derive QN perfor-
mance models from SA specification. It has been developed and used by the authors
in a design of client/server applications. The methodology is based on CLISSPE
(CLIent/Server Software Performance Evaluation) [Men97], a language for the soft-
ware performance engineering of client/server applications. Although the method-
ology does not explicitly use UML, the functional requirement of the system are
specified in terms of use cases, and the system model is specified by the analogous
of a Class diagram. The use cases, together with the client/server SA specification
and the mapping associating software components to hardware devices, are used to
develop a CLISSPE program specification. The CLISSPE system provides a com-
piler that generates a corresponding QN model. By considering specific scenarios
one can define the QN parameters and apply appropriate solution methods, such
as the Layered Queuing Models (LQN) [RS95], [WNPM95] to obtain performance
results.

Balsamo et alt. [BIM98] provide a method for the automatic derivation of a
queuing network model from a SA specification, described using the CHAM for-
malism (CHemical Abstract Machine) [IW95]. Informally, the CHAM specifica-
tion of a SA is given by a set of molecules which represent the static components
of the architecture, a set of reaction rules which describe the dynamic evolution of
the system through reaction steps, and an initial solution which describes the initial
static configuration of the system. In [IW95] is presented an algorithm to derive
a QN model from the CHAM specification of a SA architecture. It is based on
the analysis of the Labeled Transition System (LTS) that represents the dynamic
behavior of the CHAM architecture, and that can be automatically derived from
the CHAM specification. The algorithm does not completely define the QN model
whose parameters, such as the service time distributions and the customer’s arrival
processes, have to be specified by the designer. The solution of the QN model is
derived by analytical methods or possibly by symbolic evaluation. Parameter in-
stantiation identify potential implementation scenarios and the performance results
allow to provide insights on how to carry on the development process in order to
satisfy given performance criteria.

Cortellessa and Mirandola [VC00] propose a methodology making a joint use of
information from different UML diagrams to generate a performance model of the
specified system. They refer to SPE methodology and specifie the software archi-
tecture by using Deployment, Sequence, and Use Case diagrams. This approach is
a more formal extension of the WS approach [LW98] and consists of the following
steps:

Andolfi et alt. [AABI00] propose an approach to automatically generate queu-
ing network models from software architecture specifications described by means

8.3. Styles and performance in software architecture 173

of Message Sequence Charts (MSC), that correspond to Sequence diagrams in the
UML terminology. The idea is to analyze MSCs in terms of the trace languages (se-
quences of events) they generate, in order to single out the real degree of parallelism
among components and their dynamic dependencies. This information is then used
to build a QN model corresponding to the software architecture description. The
authors present an algorithm to perform this step. This approach is built on the
previous work [BIM98] to overcome the drawback of the high computational com-
plexity due to possible state space explosion of the finite state model of the CHAM
description.

Aquilani [ABI01] proposes an approach which concerns the derivation of QN
models from Labeled Transition Systems (LTS) describing the dynamic behavior of
SAs. Starting from a LTS description of a SA makes it possible to abstract from any
particular SA specification language. The approach assumes that LTSs are the only
knowledge on the system that they can use. This means, in particular, that it does
not use any information concerning the system implementation or deployment.

Bernardo et alt. [MB00] propose an architectural description language based
on stochastically timed Process Algebras. This approach provides an integration of
a formal specification language and performance models. The aim is to describe
and analyze both functional and performance properties of SAs in a formal frame-
work. The approach proposes the adoption of an architectural description language
called ÆMPA, gives its syntax with a graphical and textual notation and its seman-
tics in terms of EMPA specifications, that is a stochastically timed process algebra
[Ber99]. The authors illustrate various functional and non-functional properties,
including performance evaluation which is based on the generation of the underly-
ing Markov chain that is numerically solved. To this aim the authors propose the
use of TwoTowers [Ber99], a software tool for systems modeling and analysis of
functional and performance properties, that support system EMPA description.

Methodologies based on architectural patterns

Architectural patterns identify frequently used architectural solutions and are used
to describe SAs. Each pattern is described by its structure (what are the compo-
nents) and its behavior (how they interact). Some approaches consider software
specification of architectural patterns and derive their corresponding performance
models. They use UML specification. The approaches identify a direct correspon-
dence between each pattern and its performance model, which can be immediately
derived.

Gomaa and Menascè in [GM00] investigate the design and performance model-

174 8. Conclusions and Future Work

ing of component interconnection patterns for client/server systems. Such patterns
define and encapsulate the way client and server components of software architec-
ture communicate with each other via connectors. The idea is to start with UML de-
sign models of component interconnection patterns, using Class diagrams (to model
their static aspects) and Collaboration diagrams (to depict the dynamic interactions
between components and connectors objects - instances of the classes depicted on
the Class diagrams). Such models are then provided with additional performance
annotations, and translated into an XML notation, in order to capture both the archi-
tecture and performance parameters in one notation. The performance models of the
considered patterns are extended QN and their definition, based on previous work
of the authors, depends on the type of communication. The EQN model solution is
obtained by Markov chain analysis or approximate analytical methods.

In ([PW99], [Pet00]) Petriu and Wang consider a significant set of architec-
tural patterns (pipe and filters, client/server, broker, layers, critical section and mas-
ter-slave) specified by using UML-Collaborations that are combined Class and Se-
quence diagrams showing explicitly the collaborating objects. The approach shows
the corresponding performance models based on LQN models. Moreover, they pro-
pose a systematic approach to build performance models of complex SAs based on
combinations of the considered patterns. The approach follows the SPE method-
ology and generates the software and system execution models by applying graph
transformation techniques. SAs are specified using UML-Collaborations, Deploy-
ment and Use Case diagrams. The Sequence diagram part of the UML-Collabo-
ration is used to obtain the software execution model (which is represented as a
UML Activity diagram); the Class part is used to obtain the system execution model
(which is represented as a LQN model). Use Case diagrams provide information on
the workloads, and Deployment diagrams allow for the allocation of software com-
ponents to hardware sites.

Simulation methods

Arief and Speirs [LA00] have proposed an approach that present a simulation frame-
work named Simulation Modelling Language (SimML) to generate a simulation
program from the system design specified with the UML. The proposed UML tool
allows the user to draw Class and Sequence diagrams and to specify the information
needed for the automatic generation of the process oriented simulation model. The
simulation program is generated in the Java programming language. The approach
proposes an XML translation of the specified UML models, in order to store the
information about the design and the simulation data in a structured way.

The approach proposed by de Miguel et alt. [MLH+00] focus on real time sys-

8.3. Styles and performance in software architecture 175

tems, and proposes extensions of UML diagrams to express temporal requirements
and resource usage. The extension is based on the use of stereotypes, tagged values
and stereotyped constraints. SAs are specified using the extended UML diagrams
without restrictions on the type of diagrams to be used. Then these UML diagram
are used as input for the automatic generation of the corresponding simulation mod-
els in OPNET. They also define a middleware model for scheduling analysis. The
simulation model is defined by instantiating with the application information the
generic models that represent the various UML metaclasses. The approach gen-
erates submodels for each application element and combines them into a unique
simulation model of the UML application. The approach provides also a feedback
mechanism: after the model has been analyzed and simulated, some results are in-
cluded in the tagged values. This constitutes a relevant feature, which ease the SA
designer in obtaining feedback from the performance evaluation results.

Case studies

Some approaches present the generation of performance models from a software
specification through an example or a case study. They consider UML specification
and different types of performance models.

In [PK99] King and Pooley show, through an example, how to generate Stochas-
tic Timed Petri Net models from the UML specification of systems. They consider
Use Case diagrams and combined diagrams consisting of a Collaboration diagram
with State diagrams (i.e. statecharts) of all the collaborating objects embedded
within them. The idea is to translate each State diagram that represents an ob-
ject of the Collaboration diagram into a Petri net: states and transitions in the State
diagram are represented by places and transitions in the Petri net, respectively. The
obtained Petri nets can be combined to obtain a unique STPN model that represents
the whole system, specifically a Generalized stochastic Petri net (GSPN) [MA86].
The merging of nets is only explained via the running example, i.e. the thesis does
not include a general merging procedure. The GSPN can be analyzed by specific
tools such as the SPNP package.

In [RP99] Pooley and King describe some preliminary ideas on how to derive
a queuing network model from the UML specification of a system. Use Case di-
agrams are used to specify the workloads and the various classes of requests of
the system being modeled. Implementation diagrams are used to define contention
and to quantify the available system resources. The idea is to define a correspon-
dence between combined Deployment and Component diagrams and queuing net-
work models, by mapping components and links to service centers.

176 8. Conclusions and Future Work

In [Poo99] Pooley describes how to derive stochastic process algebra models
from UML specifications. More precisely, the starting point is, like in [PK99], the
specification of a system via a combined diagram consisting of a Collaboration di-
agram with State diagrams (i.e. statecharts) of all the collaborating objects embed-
ded within them. The idea is to produce a Stochastic Process Algebra description of
each object of the Collaboration diagram and to combine them into a unique model.
The thesis shows how this can be done on a real although simple example. The
presents also an attempt to generate a continuous-time Markov chain directly from
the combined UML diagram of the running example. The key observation here is
that, at any time, each object of the collaboration diagram must be in one, and only
one, of its internal states. The combination of the objects current states is called
"marking”. The idea is to derive all possible markings by following through the in-
teractions: this allows building the corresponding state transition diagram and, then,
the underlying Markov chain.

Smith and Williams in [SW97] present an example to illustrate the derivation
of a performance model from an object-oriented design model, and propose the
use of the SPE•ED tool that supports the SPE methodology to evaluate object-ori-
ented systems. Starting from a set of scenarios described by Message Sequence
Charts, they derive the execution graphs that define the software execution model
and then by the analyst specification of computer resource requirements they define
the system execution model. The QN model is analyzed by approximate analytical
methods or by simulation integrated in the SPE•ED tool.

In [Hoe00] Hoeben discusses some rules that can be used to express or add
information useful to derive performance evaluation from the various UML dia-
grams. The work proposes some UML extensions based on the use of stereotypes
and tagged values and some rules to propagate user requests specified by UML mod-
els to define the performance model. These rules allow performance evaluation of
UML models at various levels of abstraction and a prototype tool to automatically
create performance estimates based on QN models uses them.

Bibliography

[AABI00] F. Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi. Deriving per-
formance models of software architectures from message sequence
charts. WOSP2000, 2000.

[AAH98] N. R. Adam, V. Atluri, and Wei-Kuang Huang. Modeling and analy-
sis of workflows using petri nets. J. Intell. Inf. Syst., 10(2):131–158,
1998.

[ABI01] F. Aquilani, S. Balsamo, and P. Inverardi. Performance analysis at
the software architectural design level. In Performance Evaluation,
45:205–221, 2001.

[ACG86] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE
Computer, 19(8):26–34, 1986.

[ACKM04] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services —
Concepts, Architectures and Applications. Data-centric Systems and
Applications. Springer-Verlag, 2004.

[ACM04] Roberta Amici, Flavio Corradini, and Emanuela Merelli. A process
algebra view of coordination models with a case study in computa-
tional system biology. In L. Bocchi and P. Ciancarini, editors, Pro-
ceedings of the First International Workshop on Petri Nets and Coor-
dination (PNC04), Satellite Event of the 25th International Confer-
ence on Application and Theory of Petri Nets, Bologna, Italy, June
21, 2004, pages 33–47, 2004.

[Acz88] P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes (14), Stan-
ford, 1988.

[Acz93] P. Aczel. Final universes of processes. In Brooks et al, editor, Proc.
Math. Foundations of Programming Semantics. Springer Lect. Notes
Comp. Sci. (802), 1993.

177

178 Bibliography

[AF04] L. F. Andrade and J. L. Fiadeiro. Composition contracts for service
interaction. Journal of Universal Computer Science, 10(4):751–761,
2004.

[AG92] R. Allen and D. Garlan. A formal approach to software architectures.
In Proceedings of IFIP’92 (J. van Leewen, ed.), 1992.

[AG97] R. Allen and D. Garlan. A formal basis for architectural connection.
ACM TOSEM, 6(3):213–249, 1997.

[AH01] L. de Alfaro and T. A. Henzinger. Interface automata. In
ESEC/FSE-9: Proceedings of the 8th European Software Engineer-
ing Conference, pages 109–120, New York, NY, USA, 2001. ACM
Press.

[AHDLM96] J-M Andreoli, C. Hankin, and Eds. D. Le Métayer. Coordination
programming: Mechanisms, models and semantics. Imperial College
Press, 1996.

[AHKB03] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski,
and A. P. Barros. Workflow patterns. Distrib. Parallel Databases,
14(1):5–51, 2003.

[AHS90] J. Adamek, H. Herrlich, and G. E. Strecker. Abstract and Concrete
Categories. John Wiley & Sons, Inc (revised electronic edition in
2004), 1990.

[AHS93] F. Arbab, I. Herman, and P. Spilling. An overview of Manifold
and its implementation. Concurrency: Practice and Experience,
5(1):23–70, 1993.

[ALSN01] Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar
Nierstrasz. Piccola – a small composition language. In Howard Bow-
man and John Derrick, editors, Formal Methods for Distributed Pro-
cessing – A Survey of Object-Oriented Approaches, pages 403–426.
Cambridge University Press, 2001.

[AM02] F. Arbab and F. Mavadatt. Coordination through channel composi-
tion. In Proc. Coordination Languages and Models. Springer Lect.
Notes Comp. Sci. (2315), 2002.

[AR02] F. Arbab and J. Rutten. A coinductive calculus of component con-
nectors. CWI Tech. Rep. SEN-R0216, CWI, Amsterdam, 2002.

Bibliography 179

[AR03] F. Arbab and J. J. M. M. Rutten. A coinductive calculus of component
connectors. In Martin Wirsing, Dirk Pattinson, and Rolf Hennicker,
editors, Recent Trends in Algebraic Development Techniques, 16th
Inter. Workshop, WADT 2002, Revised Selected Papers, pages 34–55.
Springer Lect. Notes Comp. Sci. (2755), 2003.

[Arb96] Farhad Arbab. The iwim model for coordination of concurrent activ-
ities. In Paolo Ciancarini and Chris Hankin, editors, Proc. Coordi-
nation Languages and Models, First Inter. Conf., COORDINATION
’96, Cesena, Italy, April 15-17, volume 1061, pages 34–56. Springer
Lect. Notes Comp. Sci. (1061), 1996.

[Arb98] Farhad Arbab. What do you mean, coordination. In Bulletin of the
Dutch Association for Theoretical Computer Science (NVTI), 1998.

[Arb02] F. Arbab. A channel-based coordination model for component com-
position. CWI Tech. Rep. SEN-R0203, CWI, Amsterdam, 2002.

[Arb03] F. Arbab. Abstract behaviour types: a foundation model for compo-
nents and their composition. In F. S. de Boer, M. Bonsangue, S. Graf,
and W.-P. de Roever, editors, Proc. First International Symposium
on Formal Methods for Components and Objects (FMCO’02), pages
33–70. Springer Lect. Notes Comp. Sci. (2852), 2003.

[Arb04] F. Arbab. Reo: a channel–based coordination model for component
composition. Mathematical Structures in Comp. Sci., 14(3):329–366,
2004.

[Bac86] M. J. Bach. The Design of the UNIX Operating System, volume ch.
5.12 of Software Series. Prentice–Hall, 1986.

[Bac88] R. Backhouse. An exploration of the Bird-Meertens formalism. CS
8810, Groningen University, 1988.

[Bac02] R. Backhouse. Galois connections and fixed point calculus. In
R. Crole, R. Backhouse, and J. Gibbons, editors, Algebraic and Coal-
gebraic Methods in the Mathematics of Program Constuction, pages
89–148. Springer Lect. Notes Comp. Sci. (2297), 2002.

[Bar00] L. S. Barbosa. Components as processes: An exercise in coalgebraic
modeling. In S. F. Smith and C. L. Talcott, editors, FMOODS’2000
- Formal Methods for Open Object-Oriented Distributed Systems,
pages 397–417. Kluwer Academic Publishers, September 2000.

180 Bibliography

[Bar01] L. S. Barbosa. Process calculi à la Bird-Meertens. In Marina Lenisa
Andrea Corradini and Ugo Montanari, editors, CMCS’01, volume
44.4, pages 47–66, Genova, April 2001. Elect. Notes in Theor. Comp.
Sci., Elsevier.

[Bar03] L. S. Barbosa. Towards a Calculus of State-based Software Compo-
nents. Journal of Universal Computer Science, 9(8):891–909, Au-
gust 2003.

[BB04a] M. A. Barbosa and L. S. Barbosa. A relational model for com-
ponent interconnection. Journal of Universal Computer Science,
10(7):808–823, 2004.

[BB04b] M. A. Barbosa and L. S. Barbosa. Specifying software connectors.
In K. Araki and Z. Liu, editors, 1st International Colloquium on The-
orectical Aspects of Computing (ICTAC’04), pages 53–68, Guiyang,
China, September 2004. Springer Lect. Notes Comp. Sci. (3407).

[BB06] M. A. Barbosa and L. S. Barbosa. Configurations of web services.
In FOCLASA’06: Proc. 5th Inter. Workshop on the Foundations of
Coordination Languages and Software Architectures, volume 175 (2)
of Electronic Notes in Theoretical Computer Science, pages 39–57.
Elsevier, 2006.

[BB07] M. A. Barbosa and L. S. Barbosa. An orchestrator for dynamic
interconnection of software components. In Proc. 2nd Interna-
tional Workshop on Methods and Tools for Coordinating Concurrent,
Distributed and Mobile Systems (MTCoord’06), volume 181, pages
49–61, Bologna, Italy, June 2007. Elsevier.

[BB09] M. A. Barbosa and L. S. Barbosa. A perspective on service orches-
tration. Science of Computer Programming, 74(9):671–687, 2009.

[BBC07] M. A. Barbosa, L. S. Barbosa, and J. C. Campos. Towards a coor-
dination model for interactive systems. In A. Cerone and P. Curzon,
editors, FMIS 2007: Proc. 1st Inter. Workshop in Formal Methods
for Interactive Systems, volume 347 of Electronic Notes in Theoreti-
cal Computer Science, pages 89–103. Elsevier, 2007.

[BBC09] Marco A. Barbosa, L. S. Barbosa, and José C. Campos. A coordi-
nation codel for interactive components. In F. Arbab and M. Sirjani,
editors, Proc. of FSEN 2009, Kish, Iran. Springer Lect. Notes Comp.
Sci. (to appear), 2009.

Bibliography 181

[BCG97] Robert Bjornson, Nicholas Carriero, and David Gelernter. From
weaving threads to untangling the web: A view of coordination from
linda’s perspective. In David Garlan and Daniel Le Metayer, editors,
Proc. of Second Inter. Conf. on Coordination Languages and Models,
COORDINATION ’97, Berlin, Germany, pages 1–17. Springer Lect.
Notes Comp. Sci. (1282), 1997.

[BCK03] L. Bass, P. Clements, and R. Kazman. Software Architecture in Prac-
tice (2nd ed.). Addison-Wesley, 2003.

[BCPV04] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web
services choreographies. In Proc. First Inter. Workshop on Web Ser-
vices and Formal Methods, volume 105, pages 73–94, Pisa, Italy,
2004.

[Ber99] Marco Bernardo. Lets evaluate performance algebraically. ACM
Computing Surveys (CSUR), 31(3es):7, 1999.

[BGG+05] N. Busi, R. Gorrieri, C. Guidi, R. Luchi, and G. Zavattaro. Choreog-
raphy and orchestration: A synergic approach for systems design. In
B. Benatallah, F. Casati, and P. Traverso, editors, Proc. ICSOC 2005
Thrid Inter. Conf. on Service-Oriented Computing, pages 228–240,
Amsterdam, The Netherlands, 2005.

[BGR+99] Klaus Bergner, Radu Grosu, Andreas Rausch, Alexander Schmidt,
Peter Scholz, and Manfred Broy. Focusing on mobility. In HICSS,
1999.

[BH93] R. C. Backhouse and P. F. Hoogendijk. Elements of a relational
theory of datatypes. In B. Möller, H. Partsch, and S. Schuman,
editors, Formal Program Development, pages 7–42. Springer Lect.
Notes Comp. Sci. (755), 1993.

[BIM98] S. Balsamo, P. Inverardi, and C. Mangano. An approach to perfor-
mance evaluation of software architectures. Workshop on Software
and Performance, WOSP’98, pages 12–16, 1998.

[Bir87] R. S. Bird. An introduction to the theory of lists. In M. Broy, editor,
Logic of Programming and Calculi of Discrete Design, volume 36 of
NATO ASI Series F, pages 3–42. Springer-Verlag, 1987.

[Bir98] R. Bird. Functional Programming Using Haskell. Series in Computer
Science. Prentice-Hall International, 1998.

182 Bibliography

[BJJM98] R. C. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic
programming: An introduction. In S. D. Swierstra, P. R. Henriques,
and J. N. Oliveira, editors, Third International Summer School on
Advanced Functional Programming, Braga, pages 28–115. Springer
Lect. Notes Comp. Sci. (1608), September 1998.

[BM87] R. S. Bird and L. Meertens. Two exercises found in a book on algo-
rithmics. In L. Meertens, editor, Program Specification and Trans-
formation, pages 451–458. North-Holland, 1987.

[BM97] R. Bird and O. Moor. The Algebra of Programming. Series in Com-
puter Science. Prentice-Hall International, 1997.

[BM07] J. K. F. Bowles and S. Moschoyiannis. Concurrent logic and au-
tomata combined: A semantics for components. In C. Canal and
M. Viroli, editors, Proc. of FOCLASA’06, volume 175 (2), pages
135–151. Elsevier, 2007.

[BMaSS96] Frank Buschmann, Regine Meunier, Hans Rohnert andPeter Som-
merlad, and Michael Stal. Pattern-Oriented Software Architecture.
John Wiley & Sons, 1996.

[BNP03] Rémi Bastide, David Navarre, and Philippe A. Palanque. A tool-
supported design framework for safety critical interactive systems.
Interacting with Computers, 15(3):309–328, 2003.

[BO02] L. S. Barbosa and J. N. Oliveira. Coinductive interpreters for pro-
cess calculi. In Proc. of FLOPS’02, pages 183–197, Aizu, Japan,
September 2002. Springer Lect. Notes Comp. Sci. (2441).

[BO03] L. S. Barbosa and J. N. Oliveira. State-based components made
generic. In H. Peter Gumm, editor, CMCS’03, Elect. Notes in Theor.
Comp. Sci., volume 82.1. Elsevier, 2003.

[BO06] L. S. Barbosa and J. N. Oliveira. Transposing partial compo-
nents: an exercise on coalgebraic refinement. Theor. Comp. Sci.,
365(1-2):2–22, 2006.

[BOS08] L. S. Barbosa, J. N. Oliveira, and A. M. Silva. Calculating invari-
ants as coreflexive bisimulations. In J. Meseguer and G. Rosu, edi-
tors, Algebraic Methodology and Software Technology, 12th Interna-
tional Conference, AMAST 2008, Urbana, IL, USA, July 28-31, 2008,
Proceedings, pages 83–99. Springer Lect. Notes Comp. Sci. (5140),
2008.

Bibliography 183

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide. Addison Wesley, 1999.

[BRS+00] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A For-
mal Model for Componentware. In Gary T. Leavens and Murali
Sitaraman, editors, Foundations of Component-Based Systems, pages
189–210. Cambridge University Press, 2000.

[BSAR06] C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten. Modeling com-
ponent connectors in reo by constraint automata. Science of Com-
puter Programming, 61(2):75–113, 2006.

[BTL05] A. R. Du Bois, P. Trinder, and H. Loidl. mHaskell: Mobile computa-
tion in a purely functional language. Journal of Universal Computer
Science, 11(7):1234–1254, 2005.

[BWW78] M. R. Barbacci, C. B. Weinstock, and J. M. Wing. Programming
at the processor–memory–switch level. In In Proceedings of the
10th International Conference on Software Engineering (Singapore),
pages 19–28. IEEE Computer Society Press, 1978.

[CBO05] A. Cruz, L. Barbosa, and J. Oliveira. From algebras to objects: Gen-
eration and composition. Journal of Universal Computer Science,
11(10):1580–1612, 2005.

[CCA07] D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchroni-
sation and context dependency. Science of Computer Programming,
66(3):205–225, 2007.

[CF92] R. Cockett and T. Fukushima. About Charity. Yellow Series Report
No. 92/480/18, Dep. Computer Science, University of Calgary, June
1992.

[CH96] Paolo Ciancarini and Chris Hankin, editors. Coordination Languages
and Models, First International Conference, COORDINATION ’96,
Cesena, Italy, April 15-17, 1996, Proceedings, volume 1061 of Lec-
ture Notes in Computer Science. Springer, 1996.

[CH01] J. C. Campos and M. D. Harrison. Model checking interactor speci-
fications. Automated Software Engineering, 8(3/4):275–310, August
2001. ISSN: 0928-8910.

184 Bibliography

[CH08] J. C. Campos and M. D. Harrison. Systematic analysis of control
panel interfaces using formal tools. In XVth International Work-
shop on the Design, Verification and Specification of Interactive Sys-
tems (DSV-IS 2008), pages 72–85. Springer Lect Notes in Comp. Sci.
(5136), July 2008.

[Cos10] D. Costa. Formal models for context dependent connectors for dis-
tributed software components and services (forthcoming PhD thesis).
PhD thesis, Vrije Universiteit Amsterdam, 2010.

[CR97] G. Costa and G. Reggio. Specification of abstract dynamic data types:
A temporal logic approach. Theor. Comp. Sci., 173(2), 1997.

[CS92] R. Cockett and D. Spencer. Strong categorical datatypes I. In R. A. G.
Seely, editor, Proceedings of Int. Summer Category Theory Meeting,
Montréal, Québec, 23–30 June 1991, pages 141–169. AMS, CMS
Conf. Proceedings 13, 1992.

[CS95] R. Cockett and D. Spencer. Strong categorical datatypes II: A term
logic for categorical programming. Theor. Comp. Sci., 139:69–113,
1995.

[DF05] Anke Dittmar and Peter Forbrig. A unified description formalism for
complex hci-systems. In SEFM ’05: Proc. 3rd IEEE Inter. Conf. on
Software Engineering and Formal Methods, pages 342–351. IEEE
Computer Society, 2005.

[DG90] N. Delisle and D. Garlan. Applying formal specification to industrial
problems: A specification of an oscilloscope. IEEE Software, 1990.

[DH93] David J. Duke and Michael D. Harrison. Abstract interaction objects.
Computer Graphics Forum, 12(3):25–36, 1993.

[DM98] H. Gomaa D.A. Menascè. On a language based method for soft-
ware performance engineering of client/server systems. Proc. of
WOSP’98, Santa Fe, New Mexico, USA, pages 63–69, 1998.

[dSDR98] Bruno d’Ausbourg, Christel Seguin, Guy Durrieu, and Pierre Roché.
Helping the automated validation process of user interfaces systems.
In ICSE ’98: Proc. 20th Inter. Conf. on Software Engineering, pages
219–228. IEEE Computer Society, 1998.

Bibliography 185

[Fia04] J. L. Fiadeiro. Software services: scientific challenge or industrial
hype? In K. Araki and Z. Liu, editors, Proc. First International Col-
loquim on Theoretical Aspects of Computing (ICTAC’04), Guiyang,
China, pages 1–13. Springer Lect. Notes Comp. Sci. (3407), 2004.

[Fok92a] M. M. Fokkinga. Calculate categorically! Formal Aspects of Com-
puting, 4(4):673–692, 1992.

[Fok92b] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Uni-
versity of Twente, Dept INF, Enschede, The Netherlands, 1992.

[FP90] G. Faconti and F. Paternò. An approach to the formal specification
of the components of an interaction. In C. Vandoni and D. Duce,
editors, Eurographics ’90, pages 481–494. North-Holland, 1990.

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch
or why it’s hard to build systems out of existing parts. In Proc.
17th Inter. Conf. on Software Enginneering, ACM SIGSOFT, pages
179–185, 1995.

[Gar03] D. Garlan. Formal modeling and analysis of software architecture:
Components, connectors and events. In M. Bernardo and P. Inver-
ardi, editors, Third International Summer School on Formal Methods
for the Design of Computer, Communication and Software Systems:
Software Architectures (SFM 2003). Springer Lect. Notes Comp. Sci,
Tutorial, (2804), Bertinoro, Italy, September 2003.

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and
their significance. Commun. ACM, 35(2):97–107, 1992.

[Gib97] J. Gibbons. Conditionals in distributive categories. CMS-TR-97-01,
School of Computing and Mathematical Sciences, Oxford Brookes
University, 1997.

[GM97] David Garlan and Daniel Le Métayer, editors. Coordination Lan-
guages and Models, Second International Conference, COORDINA-
TION ’97, Berlin, Germany, September 1-3, 1997, Proceedings, vol-
ume 1282 of Lecture Notes in Computer Science. Springer, 1997.

[GM00] J. Goguen and G. R. Malcolm. A hidden agenda. Theor. Comp. Sci.,
245(1):55–101, 2000.

186 Bibliography

[GS93] D. Garlan and M. Shaw. An introduction to software architecture.
In V. Ambriola and G. Tortora, editors, Advances in Software En-
gineering and Knowledge Engineering (volume I). World Scientific
Publishing Co., 1993.

[GS04] V. Gruhn and C. Schäfer. An architecture description language
for mobile distributed systems. In Ron Morrison Flavio Oquendo,
Brian Warboys, editor, Software Architecture - Proceedings of
the First European Workshop, EWSA 2004, pages 212–218.
Springer-Verlag, 2004.

[GUHR93] N. Götz, U U. Herzog, and M. Rettelbach. Multiprocessor and dis-
tributed system design: The integration of functional specification
and performance analysis using stochastic process algebra. In Proc.
of the 16th Int. Symp. on computer Performance Modelling, Mea-
surement and Evaluation (PERFORMANCE 1993), volume 729 of
Springer LNCS, pages 121–146, 1993.

[Hag87a] T. Hagino. Category Theoretic Approach to Data Types. Ph.D. the-
sis, tech. rep. ECS-LFCS-87-38, Laboratory for Foundations of Com-
puter Science, University of Edinburgh, UK, 1987.

[Hag87b] T. Hagino. A typed lambda calculus with categorical type construc-
tors. In D. H. Pitt, A. Poigné, and D. E. Rydeheard, editors, Category
Theory and Computer Science, pages 140–157. Springer Lect. Notes
Comp. Sci. (283), 1987.

[Hil96] J. Hillston. A Compositional Approach to Performance Modeling.
Cambridge University Press, 1996.

[HM85] M. C. Hennessy and A. J. R. G. Milner. Algebraic laws for non-de-
terminism and concurrency. Journal of ACM, 32(1):137–161, 1985.

[Hoa85] C. A. R Hoare. Communicating Sequential Processes. Series in Com-
puter Science. Prentice-Hall International, 1985.

[Hoe00] F. Hoeben. Using uml models for performance calculation.
WOSP2000, pages 77–82, 2000.

[HT90] M. Harrison and H. Thimbleby, editors. Formal Methods in Human-
Computer Interaction. Cambridge Series on Human-Computer Inter-
action. Cambridge University Press, 1990.

Bibliography 187

[IBM03] IBM. Web services architecture overview:
the next stage of evolution for e-business.
http://www.ibm.com/developerworks/web/library/w-ovr/,
2003.

[IW95] Paola Inverardi and Alexander L. Wolf. Formal specification and
analysis of software architectures using the chemical abstract ma-
chine model. IEEE Transactions on Software Engineering, 21(4),
1995.

[Jac96] B. Jacobs. Objects and classes, co-algebraically. In C. Lengauer
B. Freitag, C.B. Jones and H.-J. Schek, editors, Object-Orientation
with Parallelism and Persistence, pages 83–103. Kluwer Academic
Publishers, 1996.

[Jac99] B. Jacobs. The temporal logic of coalgebras via Galois algebras.
Techn. rep. CSI-R9906, Comp. Sci. Inst., University of Nijmegen,
1999.

[Jac02] Bart Jacobs. Exercises in coalgebraic specification. In R. Backhouse,
R. Crole, and J. Gibbons, editors, Algebraic and Coalgebraic Meth-
ods in the Mathematics of Program Construction, pages 237–280.
Springer Lect. Notes Comp. Sci. (2297), 2002.

[JGF96] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In
Proc. of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 295–308, St. Pe-
tersburg Beach, Florida, 21–24 1996.

[JMA96] Daniel Le Metayer Jean-Marc Andreoli, Chris Hankin. Coordina-
tion Programming: Mechanisms, Models, and Semantics. Imperial
College Press, 1996.

[JOT06] E. B. Johnsen, O. Owe, and A. B. Torjusen. Validating behavioural
component interfaces in rewriting logic. volume 159, pages 187–204.
Elsevier, 2006.

[JR97] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:222–159, 1997.

[Kah74] G. Kahn. The semantics of a simple language for parallel program-
ming. Information Processing, 1974.

188 Bibliography

[KCM06] David Kitchin, William R. Cook, and Jayadev Misra. A language for
task orchestration and its semantic properties. In Christel Baier and
Holger Hermanns, editors, Proc. 17th Inter. Conf. Concurrency The-
ory, CONCUR 2006, Bonn, Germany, August 27-30, pages 477–491.
Springer Lect. Notes Comp. Sci. (4137), 2006.

[Kie98a] R. B. Kieburtz. Codata and comonads in H. Unpublished
manuscript, 1998.

[Kie98b] R. B. Kieburtz. Reactive functional programming. In David Gries
and Willem-Paul de Roever, editors, Programming Concepts and
Methods (PROCOMET’98), pages 263–284. Chapman and Hall,
Junho 1998.

[Kir02] Zeliha Dilsun Kirli. Mobile Computation with Functions, volume 5
of Advances in Information Security. Springer, 2002.

[Koc72] A. Kock. Strong functors and monoidal monads. Archiv für Mathe-
matik, 23:113–120, 1972.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theor. Comp.
Sci., (27):333–354, 1983.

[LA00] N.A. Speirs L.B. Arief. A uml tool for an automatic generation of
simulation programs. WOSP2000, pages 71–76, 2000.

[LF02] A. Lopes and L. Fiadeiro. On how distribution and mobility interfere
with coordination. In Proc. of WADT, pages 343–358. Springer Lect.
Notes Comp. Sci (2755), 2002.

[Lum99] M. Lumpe. A π-calculus Based Approach to Software Composition.
PhD thesis, University of Bern, January 1999.

[LW98] C.U. Smith L.G. Williams. Performance evaluation of software ar-
chitectures. in Proc. of WOSP’98, Santa Fe, New Mexico, USA,
pages 164–177, 1998.

[MA86] G. Conte M. Ajmone, G. Balbo. Performance Models of Miltiproces-
sor Performance. MIT Press, 1986.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer
Verlag, 1971.

[Mal90] G. R. Malcolm. Data structures and program transformation. Science
of Computer Programming, 14(2–3):255–279, 1990.

Bibliography 189

[Mar95] P. Markopoulos. On the expression of interaction properties within
an interactor model. In In P. Palanque and R. Bastide (eds.), Design,
Specification and Verification of Interactive Systems’95, 1995.

[MB00] L. Donatiello M. Bernardo, P. Ciancarini. Aempa: A process alge-
braic description language for the performance analysis of software
architectures. WOSP2000, 2000.

[MB04] Sun Meng and L. S. Barbosa. On refinement of generic software com-
ponents. In C. Rettray, S. Maharaj, and C. Shankland, editors, 10th
Int. Conf. Algebraic Methods and Software Technology (AMAST),
pages 506–520, Stirling, 2004. Springer Lect. Notes Comp. Sci.
(3116). Best Student Co-authored Paper Award.

[MB05] Sun Meng and L. S. Barbosa. Components as coalgebras: The re-
finement dimension. Theor. Comp. Sci., 351:276–294, 2005.

[MBC+95] Marco Marsan, Gianfranco Balbo, Gianni Conte, S Donatelli, and
G Franceschinis. Modelling with Generalized Stochastic Petri Nets.
John Wiley and Sons, Chichester England, 1995.

[MC07] J. Misra and W. R. Cook. Computation orchestration: A basis for
wide-area computing. Software and System Modeling, 6(1):83–110,
2007.

[McC91] G. R. McClain. Open Systems Interconnection Handbook.
NY:Intertext Publications. McGraw–Hill Book Company, 1991.

[McL92] C. McLarty. Elementary Categories, Elementary Toposes, volume 21
of Oxford Logic Guides. Clarendon Press, 1992.

[Mee92] L. Meertens. Paramorphisms. Formal Aspects of Computing,
4(5):413–425, 1992.

[Men97] D.A. Menascè. A framework for software performance engineering
of client/server systems. Proc. of the 1997 Computer Measurement
Group Conference, Orlando, Florida, 1997.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In J. Hughes, ed-
itor, Proceedings of the 1991 ACM Conference on Functional Pro-
gramming Languages and Computer Architecture, pages 124–144.
Springer Lect. Notes Comp. Sci. (523), 1991.

190 Bibliography

[Mil89] R. Milner. Communication and Concurrency. Series in Computer
Science. Prentice-Hall International, 1989.

[Mil93] R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer,
W. Brauer, and H. Schwichtenberg, editors, Logic and Algebra of
Specification, pages 203–246. Springer-Verlag, 1993.

[Mil99] R. Milner. Communicating and Mobile Processes: the π-Calculus.
Cambridge University Press, 1999.

[MKG99] Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour
analysis of software architectures. In WICSA1: Proc. of the TC2
First Working IFIP Conf. on Software Architecture (WICSA1), pages
35–50. Kluwer, B.V., 1999.

[MLH+00] M. Miguel, T. Lambolais, M. Hannouz, S. Betgè-Brezetz, and
S. Piekarec. Uml extensions for the specification and evaluation of la-
tency constraints in architectural models. WOSP2000, pages 83–88,
2000.

[Mol82] M. K. Molloy. Performance analysis using stochastic petri nets. IEEE
Transactions on Software Engineering, 31:739–743, 1982.

[Mos99] L. Moss. Coalgebraic logic. Ann. Pure & Appl. Logic, 1999.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes
(parts I and II). Information and Computation, 100(1):1–77, 1992.

[MS96] F. Moller and P. Stevens. The edinburgh concurrency workbench
(version 7). User’s manual, LFCS, Edinburgh University, 1996.

[NA03] O. Nierstrasz and F. Achermann. A calculus for modeling software
components. In F. S. de Boer, M. Bonsangue, S. Graf, and W.-P.
de Roever, editors, Proc. First International Symposium on Formal
Methods for Components and Objects (FMCO’02), pages 339–360.
Springer Lect. Notes Comp. Sci. (2852), 2003.

[ND95] O. Nierstrasz and L. Dami. Component-oriented software tech-
nology. In O. Nierstrasz and D. Tsichritzis, editors, Object-Ori-
ented Software Composition, pages 3–28. Prentice-Hall International,
1995.

[NTdMS91] Oscar Nierstrasz, Dennis Tsichritzis, Vicki de Mey, and Marc Stadel-
mann. Objects + scripts = applications. In Proceedings, Esprit 1991

Bibliography 191

Conference, pages 534–552, Dordrecht, NL, 1991. Kluwer Academic
Publishers.

[Oqu04] F. Oquendo. π-adl: an architecture description language based on
the higher-order typed π-calculus for specifying dynamic and mo-
bile software architectures. SIGSOFT Softw. Eng. Notes, 29(3):1–14,
2004.

[OR04] J. N. Oliveira and C. J. Rodrigues. Transposing relations: From
Maybe functions to hash tables. In D. Kozen, editor, 7th Interna-
tional Conference on Mathematics of Program Construction, pages
334–356. Springer Lect. Notes Comp. Sci. (3125), July 2004.

[PA98] G. Papadopoulos and F. Arbab. Coordination models and languages.
In Advances in Computers — The Engineering of Large Systems, vol-
ume 46, pages 329–400. 1998.

[Par81] D. Park. Concurrency and automata on infinite sequences. pages
561–572. Springer Lect. Notes Comp. Sci. (104), 1981.

[Pat95] Fabio D. Paternò. A Method for Formal Specification and Verifica-
tion of Interactive Systems. PhD thesis, Department of Computer
Science, University of York, 1995. Available as Technical Report
YCST 96/03.

[Pet00] D: Petriu. Deriving performance models from uml models by graph
transformations. Tutorial in WOSP2000, 2000.

[PK99] R. Pooley P. King. Derivation of petri net performance models from
uml specifications of communication software. Proc. of XV UK Per-
formance Engineering Workshop, 1999.

[Poo99] R. Pooley. Using uml to derive stochastic process algebra models.
Proc. of XV UK Performance Engineering Workshop, 1999.

[PS01] A. Ponse and Scott A. Smolka, editors. Handbook of Process Alge-
bra. Elsevier Science Inc., New York, NY, USA, 2001.

[PV02] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for
software components. IEEE Trans. Softw. Eng., 28(11):1056–1076,
2002.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the
study of software architecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

192 Bibliography

[PW99] D. Petriu and X. Wang. From uml descriptions of high-level soft-
ware architectures to lqn performance models. Proc. of AGTIVE’99,
1779:47–62, 1999.

[RBB06] P. Ribeiro, M. A. Barbosa, and L. S. Barbosa. Generic process al-
gebra: A programming challenge. Journal of Universal Computer
Science, 12(7):922–937, 2006.

[RBW07] P. Ribeiro, P. Barbosa, and S. Wang. An exercise on transition sys-
tems. Electr. Notes Theor. Comput. Sci., 207:89–106, 2007.

[Rei81] H. Reichel. Behavioural equivalence — a unifying concept for ini-
tial and final specifications. In Third Hungarian Computer Science
Conference. Akademiai Kiado, Budapest, 1981.

[Rey83] J. C. Reynolds. Types, abstraction and parametric polymorphism.
Information Processing 83, pages 513–523, 1983.

[RFM91] Mark Ryan, José Fiadeiro, and Tom Maibaum. Sharing actions and
attributes in Modal Action Logic. In T. Ito and A. R. Meyer, editors,
Theoretical Aspects of Computer Software, pages 569–593. Springer
Lect. Notes Comp. Sci. (526), 1991.

[RP99] P. King R. Pooley. The unified modeling language and performance
engineering. In Proc. of IEE Software, 1999.

[RS95] J. A. Rolia and K. C. Sevcik. The method of layers. IEEE Transac-
tions on Software Engineering, 21(8):682–688, 1995.

[RT94] J. Rutten and D. Turi. Initial algebra and final co-algebra semantics
for concurrency. In Proc. REX School: A Decade of Concurrency,
pages 530–582. Springer Lect. Notes Comp. Sci. (803), 1994.

[Rut00] J. Rutten. Universal coalgebra: A theory of systems. Theor. Comp.
Sci., 249(1):3–80, 2000. (Revised version of CWI Techn. Rep.
CS-R9652, 1996).

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[Sim90] A. Simonič. Grupe operatorjev s pozitivnim spektrom. Master’s the-
sis, Univerza v Ljubljani, FNT, Oddelek za Matematiko, 1990.

[SN99] J.-G. Schneider and O. Nierstrasz. Components, scripts, glue. In
L. Barroca, J. Hall, and P. Hall, editors, Software Architectures - Ad-
vances and Applications, pages 13–25. Springer-Verlag, 1999.

Bibliography 193

[SW97] C. U. Smith and L. G. Williams. Performance engineering evaluation
of object oriented systems with spe•ed. 1245, 1997.

[Szy98] C. Szyperski. Component Software, Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1998.

[TP97] D. Turi and G.D. Plotkin. Towards a mathematical operational se-
mantics. In Proc. 12th LICS Conf., pages 280–291. IEEE, Computer
Society Press, 1997.

[Tur95] David Turner. The Polymorphic π-calculus: Theory and Implemen-
tation. PhD thesis, University of Edinburgh, 1995.

[Tur96] D. Turi. Functorial Operational Semantics and its Denotational
Dual. PhD thesis, Free University of Amsterdam, June 1996.

[VC00] R. Mirandola V. Cortellessa. Deriving a queueing network based
performance model from uml diagrams. WOSP2000, pages 58–70,
2000.

[VU97] V. Vene and T. Uustalu. Functional programming with apomorphisms
(corecursion). In Proc. 9th Nordic Workshop on Programming The-
ory, 1997.

[W2C05] W2C. Web Services Choreography Description Language (version
1.0). www.w3.org/TR/ws-cdl-10/, 2005.

[W2C07] W2C. Web Services Description Language (version 2.0).
www.w3.org/TR/wsdl20/, 2007.

[WF98] M. Wermelinger and J. Fiadeiro. Connectors for mobile programs.
IEEE Trans. on Software Eng., 24(5):331–341, 1998.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abram-
sky, D. M. Gabbay, and T. S. E. Gabbay, editors, Handbook of Logic
in Computer Science (vol. 4), pages 1–148. Oxford Science Publica-
tions, 1995.

[WNPM95] C. Woodside, J. Neilson, S. Petriu, and S. Mjumdar. The stochastic
rendezvous network model for performance of synchronous clien-
t-server-like distributed software. IEEE Transaction on Computer,
44:20–34, 1995.

194 Bibliography

[WS-07] Business Process Execution Lan-
guage for Web Services (version 1.1).
www.ibm.com/developerworks/library/specification/ws-bpel/,
2007.

[WW99] P. Wadler and K. Weihe. Component-based programming under dif-
ferent paradigms. Technical report, Dagstuhl Seminar 99081, Febru-
ary 1999.

[ZXCH07] Qui Zongyan, Zhao Xiangpeng, Cai Chao, and Yang Hongli. To-
wards the theoretical foundation of choreography. In P. Patel-Schnei-
der and P. Shenoy, editors, Proceedings of the 16th Int Conf. on World
Wide Web, pages 973–982. ACM, 2007.

	Marco António de Castro Barbosa.pdf
	Página 1
	Página 2
	Página 3
	Página 4

	TeseMarco.pdf

