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Summary 
 

Apical buds and nodal segments, from plants grown in Nature were used as primary 

explants to establish in vitro shoot cultures of Hypericum androsaemum and Hypericum 

undulatum, respectively. Hypericum perforatum shoot cultures were established from nodal 

segments of axenic seedlings grown from seeds germinated asseptically on MS medium devoid 

of growth regulators. Shoot multiplication was performed by subculturing nodal segments on 

MS medium devoid of growth regulators, in the cases of H. perforatum and H. undulatum, and 

on MS medium supplemented with IAA and KIN, in the case of H. androsaemum. A modified 

Mg medium was used in parallel with the MS medium both devoid of growth regulators, in the 

case of H. undulatum. After 60 days on MS basal medium, H. undulatum cultures were 

characterized by a higher number of shoots and roots, comparing with the cultures grown on 

Mg basal medium. 

Essential oils (EO) from in vivo plants and in vitro cultures of H. androsaemum, H. 

perforatum and H. undulatum were isolated by hydrodistillation in a Clevenger type apparatus 

and analyzed by Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry 

(GC-MS). 

More than 70 compounds were identified in EO from plants of H. androsaemum L. 

cultivated in two places (Arouca and Arcos de Valdevez) and harvested with intervals of 2 

months, over one year. Seasonal variations on the content of sesquiterpene hydrocarbons, the 

most represented group of compounds, were registered (42.8-72.7% in plants grown in Arouca 

and 43.4-78.5% in plants grown in Arcos de Valdevez). A high number of intermediate to long 

chain n-alkanes and 1-alkenes was recorded in EO of H. androsaemum plants grown in Arouca, 

in the month of February, as well as plants grown in Arcos de Valdevez, during the spring and 

in the end of winter. In most of the EO of this species, (Ε)-caryophyllene, β-gurjunene and γ-

elemene were the major compounds independently of the experimental field. Ripened seed 

capsules and stems were the H. androsaemum organs with the highest and the lowest EO 

contents, respectively. Sesquiterpene hydrocarbons dominated the EO of leaves and stems of H. 

androsaemum, while monoterpene hydrocarbons dominated the EO of the ripened seed 

capsules. From the five most represented compounds in the EO of H. androsaemum no one was 

common to all the three organs (leaves, stems and ripened seed capsules). Almost 80% of the 

total EO of in vitro shoots of H. androsaemum was represented by sesquiterpene hydrocarbons, 

with γ-elemene as the only major constituent common to EO from in vitro shoots and from in 

Nature cultivated plants. 
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Essential oils from aerial parts of H. perforatum plants of two cultivars (common 

cultivar and cv. ‘Topaz’), grown in two experimental fields and sampled over one year, 

revealed high levels of sesquiterpene hydrocarbons, and low levels of oxygenated compounds. 

Germacrene D, (E)-caryophyllene and β-selinene were the major compounds. The highest EO 

content was found in flowers (~12-17 mg/g of dry biomass), in which sesquiterpene 

hydrocarbons was the major compound group and 2-methyloctane the most represented 

compound (22-29%). Alkanes which represented no more than 9% of the total EO from in 

Nature cultivated plants, was the second major group in the EO of in vitro shoots, in which n-

nonane accounted for more than 24% of the total EO. 

Essential oils of plants and in vitro shoots of H. undulatum Schousboe ex Willd had n-

nonane as the major constituent, accounting for more than 40% in most of them. This 

compound was that most contributed for the high level of n-alkanes group in the EO of the 

different plant organs, notwithstanding sesquiterpene hydrocarbons constituted the dominant 

group. The highest yield of H. undulatum EO was obtained from leaves, followed by ripened 

seed capsules, flowers and stems. The EO contents observed in in vitro H. undulatum shoots 

(4.9-10.5 mg/g of dry weight, for MS basal medium and 4.1-9.5 mg/g of dry weight, for Mg 

basal medium) were higher than those observed in aerial parts of in Nature growing plants. 

Although variations in the composition of the EO from shoots grown on two different basal 

media had been registered, over the 60 days of culture, the group of alkanes was the major one 

independently of the culture conditions. The highest contents of n-nonane were recorded in the 

EO from shoots grown on Mg basal medium.  

In order to get hairy root cultures of H. androsaemum, H. perforatum and H. undulatum, 

the influence of several factors (effect of explant pre-culture, bacterial density, explant 

wounding, addition of acetosyringone to the bacterial suspension and co-culture medium, as 

well as co-culture period) were evaluated, using the A. rhizogenes-mediated transformation as 

the main approach. Notwithstanding the several assays performed, hairy roots production was 

not achieved in any of the tested explants (leaves, internodal segments and roots). 
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Resumo 
 

No âmbito do presente trabalho, foram estabelecidas culturas in vitro de Hypericum 

androsaemum, Hypericum perforatum e Hypericum undulatum. As culturas in vitro de H. 

androsaemum e H. undulatum foram obtidas, respectivamente, a partir de gemas apicais e 

segmentos nodais de plantas desenvolvidas na Natureza. Os explantes primários de H. 

perforatum foram obtidos de plântulas desenvolvidas a partir de sementes germinadas em 

condições de assépsia em meio de cultura MS sem fitorreguladores. Segmentos nodais foram 

utilizados na multiplicação de rebentos caulinares em meio MS suplementado com IAA e KIN, 

no caso de H. androsaemum, meio base MS, no caso de H. perforatum e meios base MS e Mg, 

no caso de H. undulatum. Após 60 dias de cultura, as plântulas de H. undulatum desenvolvidas 

em meio MS apresentavam maior número de rebentos e raízes, do que as plântulas obtidas em 

meio Mg. 

Os óleos essenciais (OE) de plantas in vivo e culturas in vitro de H. androsaemum, H. 

perforatum e H. undulatum foram isolados por hidrodestilação em aparelho tipo Clevenger e 

analisados por Cromatografia Gasosa (CG) e Cromatografia Gasosa acoplada a Espectrometria 

de Massa (CG-EM). 

Mais de 70 compostos foram identificados nos OE de plantas de H. androsaemum L., 

cultivadas em dois locais distintos (Arouca e Arcos de Valdevez), e colhidas com a 

periodicidade de 2 meses. Ao longo do ano, foram registadas variações de composição 

traduzidas em variações dos teores percentuais dos grupos de compostos, designadamente dos 

hidrocarbonetos sesquiterpénicos, grupo maioritário cuja expressão variou entre 42.8% e 72.7% 

nos OE de plantas desenvolvidas em Arouca e entre 43.4% e 78.5% nos OE de plantas 

desenvolvidas em Arcos de Valdevez. Nos OE de plantas desenvolvidas em Arcos de Valdevez, 

durante a Primavera e no final do Inverno foi registada a acumulação de um número superior de 

n-alcanos, de cadeia intermédia a longa e, de 1-alcenos, ao passo que nos OE de plantas 

desenvolvidas em Arouca a maior diversidade de n-alcanos de cadeia intermédia a longa e 1-

alcenos foi registada em Fevereiro. (Ε)-Cariofileno, β-gurjuneno e γ-elemeno foram os 

compostos maioritários na maioria das amostras de OE desta espécie, em ambos os campos 

experimentais. Os teores de OE mais elevados foram registados nos frutos e os mais baixos nos 

caules desta espécie. Nos OE das folhas e dos caules predominaram os hidrocarbonetos 

sesquiterpénicos, ao passo que nos OE dos frutos predominaram os hidrocarbonetos 

monoterpénicos. Dos cinco compostos maioritários dos OE de cada um dos órgãos em estudo, 
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nenhum era comum aos três, reflectindo a dissemelhança entre eles. Cerca de 80% do total dos 

OE das culturas in vitro de H. androsaemum era constituído por hidrocarbonetos 

sesquiterpénicos, sendo o γ-elemeno o único composto deste grupo maioritário nos OE dos 

rebentos caulinares e das plantas cultivadas.  

Os OE da parte aérea de plantas das cultivares comum e ‘Topaz’ de H. perforatum, 

cultivadas em dois campos experimentais distintos revelaram teores elevados de 

hidrocarbonetos sesquiterpénicos e teores baixos de compostos oxigenados. Os compostos 

maioritários dos OE de ambas as cultivares foram o germacreno D, o (E)-cariofileno e o β-

elemeno. Os OE de flores proporcionaram rendimentos superiores (~12-17 mg/g de biomassa 

seca) aos das partes aéreas das plantas. A sua composição era maioritariamente constituída por 

hidrocarbonetos sesquiterpénicos embora o composto maioritário fosse um alcano, o 2-

metiloctano cujo teor variou de 22% a 29%. O constituinte maioritário dos rebentos caulinares 

foi o n-nonano (24% do OE), sendo os alcanos o segundo grupo de compostos maioritário neste 

tipo de culturas in vitro de H. perforatum. 

Nos OE de plantas e rebentos caulinares de H. undulatum Schousboe ex Willd., o n-

nonano foi o composto maioritário, constituindo mais de 40% do seu total na maioria das 

amostras analisadas. De facto, este composto foi o responsável pela elevada expressão 

percentual do grupo dos n-alcanos nos diferentes órgãos de H. undulatum. Nas folhas, porém, 

os hidrocarbonetos sesquiterpénicos foram o grupo predominante. Os teores mais elevados de 

OE foram registados nas folhas, seguindo-se os frutos, flores e caules. Os rendimentos em OE 

dos rebentos caulinares variaram de 4,9 a 10,5 mg/g de biomassa seca nas culturas mantidas em 

meio base MS e de 4,1 a 9,5 mg/g de biomassa seca nos rebentos caulinares desenvolvidos em 

meio base Mg, sendo superiores aos registados para os OE das partes aéreas das plantas. 

Embora se tenham verificado variações na composição dos OE de rebentos caulinares mantidos 

nos dois meios de cultura, o grupo dos n-alcanos foi o maioritário em ambos os casos. Os teores 

mais elevados de n-nonano, composto maioritário, foram registados nos rebentos caulinares 

desenvolvidos em meio base Mg. 

Na tentativa de se induzir a formação de hairy roots de H. androsaemum, H. perforatum 

e H. undulatum foi testada a influência de diversos factores (pré-cultura dos explantes, 

densidade bacteriana, ferimento dos explantes, adição de acetoseringona à suspensão bacteriana 

e ao meio de co-cultura, e período de co-cultura) na transformação das referidas espécies 

mediada por A. rhizogenes A4. Apesar dos diversos ensaios realizados, não se verificou a 

produção de hairy roots em nenhum dos explantes utilizados (folhas, segmentos internodais e 

raízes). 
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3 

1.1- Medicinal plants and their uses in a Historical perspective 
 

From the plant species living on Earth (250.000 to 500.000) only 1 to 10% are used as 

sources of nutrients in animal and human diets (Cowan, 1999; Rao et al., 2002). However, it is 

possible that more are used for medicinal purposes (Cowan, 1999). The use of medicinal and 

aromatic plants is reported since ancient times, as evidenced by archaeological records from 

Chinese, Egyptian, Mesopotamian, Greek and Roman origins. First civilizations had already 

cured people with plants about 5000 years ago (i.e. 3000 years BC). Thus, either for 

alimentation, therapeutic or welfare uses, plants exploitation is as old as mankind (Margaris et 

al., 1982). However, with the development of science and technology, the use of plants as 

medicines declined, becoming mostly restricted to the culinary and cosmetics industry 

(Margaris et al., 1982). Nowadays however, the interest regarding plants’ curative properties is 

re-emerging, motivated by (i) the cost of complex pharmaceuticals synthesis and (ii) the 

consumers´ concern regarding the impact of synthetic chemicals on health and environment 

(Marasco et al., 2007). As a consequence, about 60% of anti-tumour and anti-infectious drugs, 

currently on the market or yet under clinical trials, are from natural origin. Furthermore, 11% of 

the 252 drugs considered as basic and essential by the World Health Organisation (WHO) are 

exclusively of plant origin. On the other hand a significant number of synthetic drugs are 

obtained from natural precursors, through semi-synthesis (Rates, 2001). Several important 

healing drugs, currently used, are directly extracted from plants, such as digoxin from Digitalis 

spp., quinine and quinidine from Cinchona spp., vincristine and viblastine from Catharanthus 

roseus, atropine from Atropa belladonna, morphine and codeine from Papaver somniferum 

(Rates, 2001). In the past decade the market for herbal remedies rose at a rate of about 4-10% a 

year in North America and Europe (Saxena et al., 2007). According to some authors, however, 

the use of natural products might be unauthorised by legal authorities dealing with efficacy and 

safety procedures, due to a lack of quality in production, trade and prescription of 

phytomedicinal products (Rates, 2001). To overcome this issue, many countries such as Canada 

and USA are introducing legislation to improve safety and efficacy of these products (Saxena et 

al., 2007). Therefore, in the last years there has been an increase in the studies concerning this 

subject, involving a multi-disciplinary research. Different sciences, such as Botany, Agronomy, 

Phytochemistry, Pharmacognosy, and Pharmaceutical Technology play an important role in the 

medicinal plant research and allow the development of new drugs (Briskin, 2000; Rates, 2001). 

Most of the medicinal plant species used is still harvested in the wild, which can be problematic 

due to biodiversity loss, variation in plant quality, and misleading uses as a consequence of 
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improper plant identification. Thus, contribution of Plant Physiology and Biotechnology is 

essential for providing new approaches for the safe production of plant secondary metabolites. 

In the last years there has been an increasing interest in nutraceuticals or functional foods, in 

which phytochemical constituents can have long-term health promoting or medicinal qualities 

(Briskin, 2000). According to the OPS (Organizaciõn Panamericana de La Salud), medicinal 

plant is any plant used in order to relieve, prevent or cure a disease or to alter physiological and 

pathological process. Medicinal plant can, also, be any plant employed as a source of drugs or 

their precursors (Arias, 1999). Medicinal effects might be exerted without the plant having any 

nutritional role in the human diet. In contrast, nutraceuticals have an important nutritional role 

in the diet and the benefits to health only arise after a long-term use as food (Briskin, 2000). In 

addition, a phytopharmaceutical preparation or herbal medicine is defined as any manufactured 

medicine obtained exclusively from plants, such as aerial and non-aerial parts, juices, resins and 

oils, either in the crude state or as a pharmaceutical formulation (Rates, 2001). Plants are not 

only exclusively sources of potential therapeutic and/or pharmacological metabolites, as they 

are also a valuable source of a wide range of compounds used as agrochemicals, flavours, 

fragrances, colours, biopesticides and food additives (Rao et al., 2002). 

 

 

1.2- Secondary Plant Metabolism 
 

Plants produce a broad range of bioactive chemical compounds that can be classified as 

primary metabolites and secondary metabolites, depending on its biosynthetic origin, 

biochemical role and general occurrence. Primary metabolic routes produce primary 

metabolites, which are essential for all life forms. These compounds include carbohydrates, 

lipids, proteins, chlorophyll and nucleic acids, being involved in plant cells structure and 

building processes as well as maintenance and survival (Briskin, 2000). 

Secondary metabolites were firstly mentioned by Kossel in 1891, who defined that type 

of compounds as opposed to primary metabolites (Bougard et al., 2001). Thirty years later, 

Czapek (1921) reported that secondary metabolites could be produced by “secondary 

modifications” such as deamination, from the nitrogen metabolism (Bougard et al., 2001). In 

the middle of the 20th century, with the advances of analytical techniques, such as 

chromatography, more compounds were identified, giving origin to Phytochemistry as a new 

discipline. Although some of the compounds were demonstrated to be pigments, others display 

important roles in plant life, still unknown however at the begin of the 3rd millenium (Bougard 
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et al., 2001). Two schools of thought regarding their function emerged in the 1970s: for the first 

one, secondary metabolites, such as cardiac glycosides, cannabinoids, anthocyanins and 

pyrrolizidine alkaloids, displayed important ecological roles, whereas for the second one, “no 

special physiological meaning” should be attributed to metabolites such as alkaloids (Kutchan, 

2001). In fact, secondary metabolites were first considered as “waste products” apparently 

useless to the plant. According to some authors secondary metabolites are “intermediates or 

products found in restricted taxonomic groups that are synthesized from general metabolites by 

a wider variety of pathways, but with no essential role for growth and life of the producing 

organism” (Bennett et al., 1989). Advances of biochemical techniques and the rise of molecular 

biology showed, however, that those metabolites play a major role in the adaptation of plants to 

their environment. Indeed, secondary metabolites largely contribute to plant fitness by 

interacting with the ecosystems. For instance, they play an important role in the plants defence 

against pathogens, insects and even other plants. This protecting effect is mainly related to their 

antibiotic, antifungal and antiviral properties, as well as their antigerminative or toxic activity 

against other plants (Bougard et al., 2001). Additionally, they also participate in the responses 

to abiotic stresses such as changes in temperature, water status, light levels and UV radiation 

exposure. Some of them also allow the attraction of beneficial organisms such as pollinators or 

symbionts (Briskin, 2000). 

Maybe the following definition of secondary metabolites, is more appropriated, taking 

into consideration the state of the art of the matter in the beginning of the 3rd millenium 

(Verpoorte, 2000):  

 

“Secondary metabolites are compounds with a restricted occurrence in taxonomic 

groups, that are not necessary for a cell (organism) to live, but play a role in the interaction of 

the cell (organism) with its environment, ensuring the survival of the organism in its 

ecosystem” 

 

Besides the secondary metabolites have various functions in plants, it is likely that some 

of them may be pharmacologically active on humans and useful as medicines (Briskin, 2000). 

Recently, some of those molecules were shown to act by resembling endogenous metabolites, 

ligands, hormones, signal transduction molecules, or neurotransmitters. In fact, plant secondary 

metabolites have beneficial medicinal effects on humans because of their similarities in their 

target sites (Briskin, 2000). Therefore, these metabolites are valued therapeutics, such as (i) 

salicin, an analgesic and antipyretic compound isolated from Salix species and used as a 
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template for the synthesis of acetylsalicylic acid (aspirin); (ii) the anticancer drug taxol 

(paclitaxel) isolated from Taxus brevifolia; and (iii) the strongly analgesic, narcotic, and 

addictive compound morphine, isolated from opium. Nevertheless, these beneficial effects are 

not usually attributed to one single metabolite but are the result from combinations of secondary 

molecules produced by the plant. Moreover, some secondary metabolites extracted and purified 

from plants have other commercial applications, such as drugs, dyes, flavours, fragrances and 

insecticides among others (Verpoorte et al., 2002).  

Plant secondary metabolites are usually grouped in three large molecule classes based 

on their biosynthetic pathways: (i) terpenoids, (ii) phenolics and (iii) alkaloids. Some of the 

compounds of the first two groups are present in all plants while others, like some specific 

alkaloids are only found in certain species of plant families. This narrow distribution of 

secondary plant metabolites makes them important taxonomical markers, being the basis for 

Chemotaxonomy and Chemical Ecology (Briskin, 2000; Bougard et al., 2001). Terpenoids and 

alkaloids are the largest groups of secondary compounds. In 1998, more than 88.000 

compounds were registered in the NAPRALERT database (Natural Products Alert Database), 

from which 33.000 were terpenoids and 16.000 were alkaloids (Verpoorte, 2000). Surprisingly, 

only 3 biosynthetic pathways generate most of such abundant and diverse compounds: (i) 

isoprenoid pathway, (ii) shikimate pathway and (iii) polyketide pathway. In fact, plants produce 

similar basic structures that undergo modifications, resulting in specific molecules. Such 

modifications involve introduction of substituents, like hydroxyl, methoxy, aldehyde and 

carboxyl groups; oxidative reactions resulting in loss of certain fragments of the molecule, or 

even, rearrangements leading to new molecules (Verpoorte, 2000). This chemical diversity 

found within plants is consistent with the idea that such molecules represent adaptive characters 

that have been under natural selection during evolution (Theis et al., 2003; Wink, 2003). 

Because of their myriad of functions, secondary metabolites have been used for 

centuries in traditional medicine. However, if most of these molecules are already identified, 

many of their relevant biosynthetic steps are still to elucidate. Indeed, the enzymes involved in 

the most of the several pathways are not fully characterised, and/or the corresponding genes are 

not identified. Furthermore, many of the regulatory processes are still unknown, even for the 

well-characterised pathways. The total length and corresponding number of genes of these 

pathways is an additional constraint in this field of investigation (Peters et al., 2004). In the past 

15 years, enormous efforts have been made to better understand the molecular mechanisms 

which regulate secondary metabolites production and accumulation leading to a considerable 

improvement of our knowledge. These advances, together with the concomitant development of 
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Metabolic Engineering (improvement of cellular activities by manipulation of enzymatic, 

transport and regulatory functions of the cell with the use of recombinant DNA technology), 

have allowed to prevail over the limiting steps (e.g. limiting enzyme activities) (Bougard et al., 

2001; DellaPenna, 2001; Dixon, 2005). Another promising approach is the exploitation of 

transcription factors that turn on or off the whole secondary pathways (DellaPenna, 2001; 

Canter et al., 2005). Plant metabolic engineering is nowadays being successfully applied to 

improve the production of constitutively produced secondary metabolites, which are of interest 

for human health. It is also seen as a way to considerably modify secondary metabolites 

patterns, by modulation of enzymes located downstream to the synthesis (Bougard et al., 2001). 

In the next years, new genomic approaches and efficient gene isolation methods will 

undoubtedly expand the range and precision of manipulations via transgenesis, providing 

potentially superior material for the breeder. Advances in genetic engineering will also make 

possible the use of crops such as corn and tobacco as drug factories. Plants used as bioreactors 

(biopharming) may soon represent one of the most important developments in the US 

agriculture, as pharmaceutical and chemical industries use field crops to produce therapeutic 

proteins, drugs, and vaccines (e.g. Cholera vaccine in tobacco plants by Chlorogen, Inc.) 

(Elbehri, 2005). According to(Anon, 2002) “plant-based biopharming is a uniquely powerful 

tool for the mass production of biotechnology-derived pharmaceuticals and biologics and is 

expected to become prevalent and established in years to come” (Joshi et al., 2005). 

 

 

1.3- Essential oils 
 

Since ancient times medicinal and aromatic plants have been highly valued for both 

their fragrances and/or their medicinal and culinary uses. Essential oils (EO) are aromatic oily 

extracts obtained from different parts of the plant, such as flowers, buds, seeds, leaves, twigs, 

bark, herbs, wood, fruits and roots. The extraction methods used can be expression, 

fermentation, enfleurage or extraction. Steam distillation is the most commonly method of 

extraction for commercial production of EO (Dimandja et al., 2000; Chan, 2001; Burt, 2004). It 

is believed that the concept of essential oil derive from the name coined in the 16th century by 

Paracelsus von Hohenheim, the Swiss reformer of medicine (Burt, 2004). As they are volatile, 

once extracted, EO need to be stored in airtight containers, in the dark, to prevent compositional 

changes. EO are miscible in organic solvents but not in water. Generally, its composition is 

complex. The overall olfactive character of the oil is often determined by a subtle interplay 
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between numerous components. In nature, EO play an important role in the protection of the 

producing plants as antibacterials, antivirals, antifungals, insecticides and also against 

herbivores by reducing their appetite for such plants. They also may attract some insects to 

favour the dispersion of pollens and seeds, or repel undesirable others (Cowan, 1999; Burt, 

2004; Bakkali et al., 2008). Because of its specific characteristics, aromatic plants and its EO 

have been used since early times in a variety of activities, from religious ceremonies and 

adornments, to remedies and personal use (Sangwan et al., 2001). Nowadays, about 300 out of 

3000 EO commercially known prevail, mainly on the flavours and fragrances markets (Burt, 

2004). The public’s desire for the natural flavourings and fragrances favour their use instead of 

synthetic chemicals. Natural aromas are also economically preferred since naturally occurring 

aroma chemicals often exist in an enantiomerically pure form that is more expensive to obtain 

synthetically (McCaskill et al., 1997). Additionally, specific components of EO can be used as 

chiral auxiliaries in synthetic organic chemistry and microbial transformations of common 

structures, to give compounds of enhanced economical value (Sangwan et al., 2001). This 

preference of consumers for natural products as well as the wider spectrum of applications of 

these extracts in different industries will be responsible for the expected continuous expansion 

of world trade in EO. 

 

 

1.3.1- Local of Production 
 

Plant volatiles are mostly synthesized, accumulated and released to the environment by 

a variety of epidermal or mesophyll structures, whose morphology tends to be characteristic of 

the taxonomic group. Such highly-specialized anatomical structures are usually present in 

leaves, roots, stem, floral part and fruits (Sangwan et al., 2001). The uniqueness of essential oil 

bearing plants relies in the differentiation of specialised structures (e.g. epidermal hairs or 

trichomes) of synthesis and secretion of these metabolites. Among them, glandular trichomes, 

the best studied, morphologically vary between species but several types can occur on a single 

leaf (Sangwan et al., 2001). Glandular tissues are capable of devoting great amounts of carbon 

and energy to the production of secondary metabolites. Considering the source of carbon and 

energy in the secretory tissues, a distinction should be made between nonphotosynthetic and 

photosynthetic glands. Many essential oil producing glandular tissues are nonphotosynthetic, 

being dependent on the carbon imported from the underlying leaf cells to support metabolism 

(Haudenschild et al., 1998; McCaskill et al., 1999). For example, nonphotosynthetically 
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secretory cells isolated from glandular trichomes of peppermint showed to be capable of 

converting sucrose into mono- and sesquiterpenes, characteristic compounds of its EO 

(McCaskill et al., 1992). Such cells seemed to express the genes encoding several enzymes 

needed to the monoterpene production. On the other hand, there are other species in which the 

trichomes are photosynthetic and then able to fix carbon dioxide for the production of 

secondary metabolites (McCaskill et al., 1999).  

EO are not however, exclusively produced and stored in glandular trichomes. Other 

secretory structures such as microhairs, glandular hairs, secretory cavities and specialised 

internal cells have also been described in several species (Haudenschild et al., 1998; Sangwan 

et al., 2001). Apparently, these specialised structures evolved in order to allow the production 

and storage of high amounts of toxic compounds that should be kept apart from the mainstream 

of plant metabolism due to their properties. This type of anatomical organization also places EO 

production at the most appropriate location for emission or for “first contact” by herbivores and 

pathogens, since they have an important role in attracting pollinators and in plant defence 

mechanisms (Haudenschild et al., 1998; Theis et al., 2003). 

 

 

1.3.2- Chemical Composition 
 

The production of EO widely occurs across the Plant Kingdom, without being restricted 

to any specific taxonomic group (Sangwan et al., 2001). Thus, apart from the great diversity of 

EO produced, they are mostly composed by (i) terpenoids of low molecular weight, such as 

monoterpenoids and sesquiterpenoids, (ii) phenylpropanoids, (iii) benzoids, (iv) fatty-acid 

derivatives and (v) non-terpene aliphatics (including nitrogen- and sulphur-containing 

compounds) (Dudareva et al., 2005; Tholl et al., 2006). 

 

 

1.3.2.1- Terpenes 
 

Terpenes are lipophilic compounds whose carbon skeleton derives from a fundamental 

five-carbon building block, isoprene. They are highly variable in structure, ranging from simple 

linear hydrocarbon chains to highly complex derived polycyclic molecules (Hallahan, 2000; 

Lucker et al., 2007). Classification of this family of compounds is based on the number of 

isoprene units in the structure. The smallest terpenes are called hemiterpenes and contain a 



Essential oils from plants and in vitro shoot cultures of Hypericum androsaemum L., 
H. perforatum L. and H. undulatum Schousboe ex. Willd.  A. P. Guedes 

10 

single isoprene unit. Isoprene, an alkene released from actively photosynthesising tissues of C3 

plants, is the best known hemiterpene. Terpenes with two isoprene units (ten carbon atoms) are 

called monoterpenes, which often provide major sensory notes in flavours and fragrances 

derived from plant essential oil (Peters et al., 2004). A huge variety of plant monoterpenoids are 

elaborated from basic skeletons (acyclic monoterpenoids, cyclohexanoid and cyclopentanoid 

monoterpenoids) through oxidation, reduction, isomerisation and ring-cleavage reactions. Some 

38 distinct skeletons can be identified within these monoterpenoids (Hallahan, 2000). 

Sesquiterpenes, diterpenes and triterpenes are molecules with three, four and six isoprene units, 

respectively. All of these compounds often play an important role in plant defence as 

phytoalexins, a group of de novo synthesized molecules as a response to pathogenic attack 

(Peters et al., 2004; Lucker et al., 2007). Phytoalexins are not a constitutive part of the plant’s 

chemical composition, but are induced upon tissue damage with an extremely localized 

response (e.g. oryzalexins in rice; capsidiol from tobacco and green pepper) (Peters, 2006; 

Araceli et al., 2007; Macías et al., 2007). Terpenes containing eight isoprene units are known as 

tetraterpenes, while terpenes with more than eight isoprene units are called polyterpenes. In this 

later class are included the very long polymers of natural rubber (Peters et al., 2004). In 

addition to the role in plant defence mechanism, terpenoids are also involved in central 

processes of the plant metabolism, such as photosynthesis (the phytol side chain of chlorophyll 

and carotenoid pigments), electron transport (ubiquinone and plastoquinone), cell membrane 

architecture (phytosterols) and regulation of cellular development (gibberellins, abcisic acid, 

brassinosteroids) (McCaskill et al., 1998; Trapp et al., 2001). By acting as attractants of 

pollinators and seed-dispersing animals, terpenoids are important in plant reproduction 

(Pichersky et al., 2002). Apart from their ecological functions, mono-, sesqui- and more rarely 

diterpenoids or their derivatives are frequently used as flavour and fragrance compounds, 

nutraceuticals, pharmaceuticals and as industrial raw materials. 

 

 

1.3.2.2- Terpenes Biosynthesis 
 

In the early nineties a major advance in the terpenoids chemistry was achieved when 

Wallach (1914) formulated the “isoprene rule”. According to this principle, terpenoids could be 

assembled by a repetitive joining of isoprene units. It provided the first unified concept for a 

common structural relationship among terpenoid natural products (McGarvey et al., 1995). 

Later on, this concept was refined by Ruzicka (1953), who hypothesised the “biogenetic 
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isoprene rule”, which ignores the precise character of the biological precursors, assuming that 

they are “isoprenoid” in structure (Barkovich et al., 2001). This rule states that terpenes are 

formed by the repetitive joining of isoprene units linked “head to tail”. However, some groups 

of compounds, such as steroids and related compounds, violated this rule showing that the 

“head to tail” principle could be modified and the original skeleton cleaved or rearranged 

(Barkovich et al., 2001). These additional modifications to the isoprenoid backbones are 

responsible for the structural diversity in the terpenoid class. Notwithstanding this great 

diversity of structures, terpenoid compounds seem to have a common biosynthetic origin. All 

terpenoids are synthesized through the condensation of isopentenyl diphosphate -IPP and its 

allylic isomer dimethylallyl diphosphate (DMAPP). Nowadays, two independent pathways are 

responsible for the biosynthesis of IPP and DMAPP, the classical acetate mevalonate (MVA) 

pathway and the non-mevalonate pathway, also called the 1-deoxy-D-xylulose-5-phosphate 

(DXP) or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway as can be seen in Figure 1 

(McCaskill et al., 1997; Eisenreich et al., 1998; Tholl et al., 2004).  
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Figure 1– Two metabolic pathways  (MVA and MEP pathways) leading to the general terpenoid precursors IPP 

and DMAPP (Lucker, 2002). 

 

The initial steps of mevalonate pathway involve the condensation of three molecules of 

acetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which is subsequently 

reduced to mevalonic acid by HMG-CoA reductase. Two sequential kinases then, form the 

mevalonate pyrophosphate, and IPP is finally produced by decarboxylative elimination. HMG-

CoA reductase is highly regulated and is an important regulatory step in the IPP synthesis 

(McGarvey et al., 1995; McCaskill et al., 1997). For many years, it was generally assumed that 
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all terpenoids were synthesized via the MVA pathway because radioactive 14C-mevalonate was 

shown to be incorporated in all kinds of terpenoids (McGarvey et al., 1995; Verpoorte, 2000). 

However, in many cases the incorporation of mevalonate was low or preferentially incorporated 

in one group of terpenoids and not in others. Additionally, the biosynthesis of certain terpenoids 

was shown to be insensitive to inhibitors of the mevalonate pathway enzymes (Hallahan, 2000). 

Such evidences were clearly inconsistent with the MVA pathway suggesting the possible 

presence of an alternative route for the formation of some terpenoids. Indeed, in 1999, Rohmer 

reported a MVA-independent pathway operating in bacteria, algae and higher plants. After 

being elucidated in prokaryotes, the presence of this alternative pathway was demonstrated in 

phototrophic eukaryotes by performing incorporation experiments with 13C labeled glucose 

isotopomers in Ginkgo biloba embryos in order to understand the biosynthesis of diterpenoids 

from the ginkgolide and bilobalide series (Rohmer, 1999). This experimental protocol opened 

the way to a whole array of new investigations. In the MEP pathway a transketolase-like 

decarboxylation from pyruvate and glyceraldehyde-3-phosphate, catalyzed by the 1-deoxy-D-

xylulose-5-phosphate synthase, produces the five carbon intermediate, 1-deoxy-D-xylulose-5-

phosphate. Subsequent rearrangement and reduction of the intermediate DXP, catalyzed by the 

1-deoxy-D-xylulose-5-phosphate reductoisomerase, yields 2-C-methyl-D-erythritol-4-

phosphate. Further transformations, probably involving redox and dehydration reactions, as 

well as an additional phosphorylation, result in the formation of IPP and DMAPP (Eisenreich et 

al., 1998; Lange et al., 1998; McCaskill et al., 1998). DXP synthase and DXP reductoisomerase 

seem to be important because overexpression of their corresponding genes altered the levels of 

several terpenoids on different plant species (Mahmoud et al., 2001; Rodriguez-Concepcion et 

al., 2002). These two biosynthetic pathways (MVA and MEP) both operate in plant cells for the 

formation of terpenoids, although they are located in distinct sub-cellular compartments 

(Rodriguez-Concepcion et al., 2002). MVA pathway operates in the cytosol producing 

sesquiterpenes, triterpenes and polyterpenes. On the other hand all the enzymes cloned from 

plants that are involved in MEP pathway have plastid targeting signals, demonstrating that this 

pathway occurs in the plastids. In these organelles, the MEP pathway provides precursors for 

the production of isoprene, monoterpenes, diterpenes and tetraterpenes (Eisenreich et al., 2001; 

Bick et al., 2003; Lucker et al., 2007). Many experimental data based on labelled precursor flux 

studies and terpenoids engineered plants, indicate an exchange of precursors and intermediates 

between the cytosol and the choloroplast, corroborating the idea of cooperation of both 

pathways in terpenoids biosynthesis (McCaskill et al., 1998; Eisenreich et al., 2001; Rodriguez-

Concepcion et al., 2002; Bick et al., 2003; Dudareva et al., 2004). This crosstalk explains in 
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part why the alternative pathway went undetected for several decades despite numerous studies 

using mevalonate as a precursor (Eisenreich et al., 2001). 

After the production of IPP, regardless the original synthetic pathway, chain elongation 

is needed in order that terpenoids can be produced. IPP is isomerized to DMAPP by the enzyme 

isopentenyl pyrophosphate isomerase (Barkovich et al., 2001). The head to tail condensation of 

one molecule of IPP with one molecule of DMAPP yields the C10 compound geranyl 

diphosphate (GPP), which is the immediate precursor of the monoterpenes (Figure 2). The 

addition of another IPP unit to GPP generates farnesyl diphosphate (FPP), the precursor of 

sesquiterpenes, triterpenes and sterols (Figure 2). The latter two groups both require the initial 

condensation of two units of FPP to form the squalene molecule. Addition of IPP to FPP 

provides geranyl geranyl diphosphate (GGPP), the precursor of diterpenes and tetraterpenes, 

consisting of two units of GGPP formed via phytoene (McCaskill et al., 1997; Verpoorte, 2000; 

Tholl et al., 2004). 

 
Figure 2– Overview of isoprenoid biosynthesis. IPP- isopentenyl diphosphate; DMAPP- dimethylallyl 

diphosphate; GPP- geranyl diphosphate; FPP- farnesyl diphosphate ; GGPP- geranyl geranyl diphosphate 

(Mahmoud et al., 2002). 

 

The electrophilic condensation reactions are catalysed by prenyltransferases, being 

GPP-synthase, FPP-synthase and GGPP-synthase, according to the corresponding end products, 

responsible for the major terpene classes (Gershenzon et al., 1993; McCaskill et al., 1997). The 
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reactions catalysed by these prenyltransferases are believed to be multi-step and sequential in 

which intermediate elongation products are not released from the enzyme surface in appreciable 

amounts. Plant prenyltransferases appear to be similar in size, requiring only a divalent metal 

ion for catalysis and sharing common primary structural elements including an aspartate-rich 

motif involved in substrate binding (Chen et al., 1994). Terpenoid synthases or cyclases use the 

prenyl diphosphates precursors to generate the enormous diversity of carbon skeletons 

characteristic for terpenoids. These hydrocarbon structures can be either acyclic, cyclic or 

consist of multiple ring systems. After terpene synthases originate the primary terpene skeletons 

from the prenyl diphosphate substrates, a variety of other enzymes can modify these molecules 

(e.g. hydroxylases, dehydrogenases, reductases and glycosyl, methyl and acyl transferases). 

Terpene synthases may be involved in the regulation of the pathway flux since they function at 

the metabolic branch points and catalyse the first step leading to the various terpene classes 

(Gershenzon et al., 1993). The terpene synthases possess quite similar properties, and operate 

with electrophilic reaction mechanisms just like the prenyltransferases (Trapp et al., 2001). 

 

1.3.3- Biological effects 
 

EO or their isolated constituents have proven antimicrobial, antiviral, antiparasitic and 

insecticidal properties (Burt, 2004; Bakkali et al., 2008). Antimicrobial activities of EO have 

been demonstrated against a wide variety of microorganisms. Several studies attribute this 

action to a number of specific terpenoids, although, additive, antagonistic, and synergistic 

effects have been observed between components of EO (Panizi et al., 1993; Helander et al., 

1998; Chao et al., 2000; Burt, 2004). Given that EO comprise a large number of components, it 

is most likely that their antibacterial activity is not due to one specific mode of action but 

involves several targets in the bacterial cell (Chao et al., 2000; Skandamis et al., 2001; Burt, 

2004). It is believed that most EO exert their antimicrobial activities by interacting with 

processes associated with the bacterial cell membrane, including electron transport, ion 

gradients, protein translocation, phosphorylation, and other enzyme-dependent reactions 

(Cowan, 1999; Ultee et al., 1999; Dorman et al., 2000). EO have a high affinity for lipids of 

bacterial cell membranes due to their hydrophobic nature, and their antibacterial properties are 

evidently associated with their lipophilic character. Burt (2004) suggested that Gram-positive 

bacteria appear to be more susceptible to the antibacterial properties of plant EO compounds 

than Gram-negative bacteria. This may be expected as Gram-negative bacteria have an outer 

layer surrounding their cell wall that acts as a permeability barrier, limiting the access of 
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hydrophobic compounds. However, some reports also showed that the small molecular weight 

of the EO components can allow them to penetrate the inner membrane of some Gram-negative 

bacteria (Nikaido, 1994; Dorman et al., 2000). Other biological effects are attributed to EO, 

such as phototoxicity, since some of them contain photoactive molecules (like furocoumarins) 

and carcinogenicity, because some EO or rather some of their constituents may be considered 

as secondary carcinogens after metabolic activation (e.g. estrogen secretions induced by Salvia 

sclarea EO can lead to estrogen-dependent cancers). Anti-mutagenic and antioxidant properties 

have also been attributed to EO (Bakkali et al., 2008). The above mentioned EO cytotoxic 

capacity, based on a pro-oxidant activity, can make them excellent antiseptic and antimicrobial 

agents for personal use (internal use via oral consumption), and insecticidal products useful for 

the preservation of crops and food stocks. Thus, EO present a great potential to make their way 

from the traditional into the modern medical domain (Bakkali et al., 2008). 

 

1.3.4- Factors affecting Essential Oils production 
 

Several factors affect EO production and accumulation. Some of them are inherent to 

the plant development and physiology, while others are extrinsic to the plant. One of the most 

important characteristics of oil accumulation is its dependence on the developmental stage of 

the plant as well as the organ in which they are produced. Indeed, it was shown a close co-

ordination between leaf, flower and fruit ontogeny and EO accumulation for many aromatic 

plants. Organ maturation is often associated to an increase in the yield of the volatiles, as well 

as in differences in their EO composition. EO composition and yield is also organ dependent 

(Sangwan et al., 2001; Figueiredo et al., 2008). The type of secretory structure might also 

influence the EO yield and composition. For instance, plants with external secretory structures 

can release secretions while the organ is developing because of trichome cuticle disruption. On 

the other hand, plants with internal secretory structures more often maintain a more stable yield 

and composition (Figueiredo et al., 2008). Other factors such as pollinator activity cycle, 

mechanical and chemical injuries, genetic factors and evolution are known to influence EO 

production (Figueiredo et al., 2008). Geographical and seasonal variations also affect the EO 

production. The knowledge of how these two factors influence yields and composition is very 

important since the right time of harvest may be of major importance from an agronomic and 

economic point of view. EO are also very dependent on environmental conditions like climate, 

pollution, edaphic factors, pests and diseases (Figueiredo et al., 2008). The method used to 

extract EO may also affect its chemical profile (Bakkali et al., 2008). Nowadays, EO 
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production has also been negatively affected by political instability and insufficient capacity for 

investment in production and quality, leading to a big difference in prices of raw materials of 

different origins (Figueiredo et al., 2008). 

 

1.4- In vitro cultures 
 

Despite the remarkable progress in synthetic organic chemistry of the twentieth century, 

over 25% of prescribed medicines in the industrialised countries derive direct or indirectly from 

plants. This is mainly because of their complex structural features which make them difficult to 

synthesize (Hostettmann et al., 2002). Nowadays, the rapid disappearance of tropical forests 

and other important areas of vegetation as well as the increasing consumption of herbal 

medicines is causing habitat destruction and a rapid loss of medicinal plant wealth 

(Hostettmann et al., 2002; Canter et al., 2005). On the other hand, the increase of world 

population is pressuring on the available cultivable land to produce food and fulfil the needs. 

Therefore, for production of pharmaceuticals and chemicals from plants, the available land 

should be used efficiently (Rao et al., 2002). In fact, some valuable medicinal plants are already 

under the threat of extinction (Rout et al., 2000). Misidentification, genetic and phenotypic 

variability as well as contaminants are also problems inherent to harvesting from the wild 

(Canter et al., 2005). Thus, modern technologies must be developed to avoid a possible loss of 

genetic diversity. Advances in Plant Biotechnology showed that cultivation of plant tissue in 

synthetic media offers an alternative way to produce metabolites of interest. Actually, plant 

tissue culture is being widely used for the commercial propagation of a large number of plant 

species, including many medicinal plants (Rout et al., 2000). This technology is based in the 

potential capacity of cells to regenerate the entire organism, expressing its totipotency. The 

main advantages of secondary metabolites production through in vitro plant culture over 

conventional agricultural practices include: 

- reliability of the production, since plant growth is simpler, more predictable as it is 

independent from environmental factors like climate, pests, geographical and seasonal 

constraints; 

- potential for fast growth rates with the possibility for large-scale cultivation of cells, organs 

and even entire plants in bioreactors for easier and higher product recoveries; 

- efficiency of the phytochemical extraction and isolation, as compared to extraction from 

complex whole plants; 
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- possibility to produce novel compounds in vitro, which are absent in the in vivo parent plant 

material; 

- in vitro cultures can be used as a source of useful precursors from which novel compounds 

can be produced; 

- it offers a defined production system, which ensures the continuous and homogenous supply 

of products, uniform quality and yield, being possible to avoid interfering compounds that 

occur in the field-grown plant; 

- use of improvement strategies for better yields and cost-benefit ratios by growth medium, 

microenvironment manipulations and by using metabolic engineering at the cellular level (Zafar 

et al., 1992; Rao et al., 2002; Lila, 2005). 
 

The production of secondary metabolites from undifferentiated plant cells and callus 

cultures has been studied intensively since the 1960’s. Indeed, successful protocols of cell 

suspension cultures can offer a repeatable method to produce secondary metabolites from elite 

mother plants with easily controlled conditions and with a continuous supply of material 

(Tisserat et al., 2005). In a few cases, cell cultures showed to produce higher levels of 

secondary metabolites than the differentiated mother plant itself (Bougard et al., 2001). 

However, cell lines instability, low yields, slow growth, cell clumps formation and scale-up 

problems may occur, affecting the correct production (Zafar et al., 1992; Bougard et al., 2001; 

Verpoorte et al., 2002). Additionally, in some cases secondary metabolites production is 

controlled in a tissue-specific manner, and the undifferentiated cell culture is not a good 

alternative for the high capacity production of the compound (Bougard et al., 2001; Verpoorte 

et al., 2002). This situation often occurs when secondary metabolites are produced in 

specialized plant tissues or glands (Lila, 2005). Therefore other approaches such as the 

induction of root, shoot and embryo cultures have been developed. Rout and co-workers (2000), 

referred three broad categories in which experimental approaches for medicinal plant 

propagation can be divided. The most common one, known as micropropagation, consist in the 

isolation of organised meristems like shoot tips or axillary buds and their culture to regenerate 

complete plants. Another approach consists in differentiation of adventitious shoots on leaf, 

root and stem segments or on callus derived from those organs. According to some authors, 

theoretically, the most efficient approach consists in inducing somatic embryogenesis from cells 

and callus cultures (Rout et al., 2000). However, by this way high ratios of somaclonal 
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variation are expected. In vitro plant technology was also thought to be applied in the industrial 

field between 1976 and 1986. However, since that time, this technology has led to only a few 

applications for the production of commercial compounds, mainly attributed to several 

bottlenecks such as the economic feasibility of plant cell and organ cultures (Bougard et al., 

2001). Indeed, this technology involves high-cost bioreactors associated with aseptic conditions 

that are expensive to maintain. Therefore, in the last decades several attempts have been made 

to address the problem. Automation of micropropagation via organogenesis or somatic 

embryogenesis in modified bioreactors has been advanced as a possible way of reducing costs 

and it is a promising technology for industrial plant propagation (Paek et al., 2005). Another 

constraint of the application of this technology in secondary metabolites production is related 

with the insufficient knowledge of biosynthetic routes and enzymology, since secondary 

metabolites are produced following long biosynthetic pathways that can involve dozens of 

enzymes (Bougard et al., 2001). Despite a number of advantages listed above, plant cell and 

tissue culture technologies suffer from some drawbacks such as the possibility of culture 

conditions may trigger new pathways producing novel but useless products and the inability to 

predict yields of secondary metabolites in vitro beforehand. In fact, often the compounds of 

interest are not produced in vitro or if so they may be present in extremely low quantities. On 

the other hand, some methods developed for cell cultures of a particular plant species cannot be 

extrapolated to a wide range of plants and culture systems (Zafar et al., 1992). To overcome 

such problems associated with in vitro plant cultures, different strategies have been adopted for 

enhancing secondary metabolites production in these systems. Some of them are described in 

Table 1 (Rao et al., 2002). 
 

Table 1- Strategies to enhance production of secondary metabolites in plant cell cultures (Rao et al., 2002). 

1. Obtaining efficient cell lines for growth 

2. Screening of high-growth cell line to produce metabolites of interest 

a. Mutation of cells 

b. Amenability to media alterations for higher yields 

3. Immobilization of cells to enhance yields of extracellular metabolites and to facilitate 

biotransformations 

4. Use of elicitors to enhance productivity in a short period of time 

5. Permeation of metabolites to facilitate downstream processing 

6. Adsorption of the metabolites to partition the products from the medium and to overcome 

feedback inhibition 

7. Scale-up of cell cultures in suitable bioreactors 
 



Essential oils from plants and in vitro shoot cultures of Hypericum androsaemum L., 
H. perforatum L. and H. undulatum Schousboe ex. Willd.  A. P. Guedes 

20 

1.5- Hairy root cultures  
 

1.5.1- Agrobacterium sp. in Plant Genetic Engineering 

Thirty-two years ago the landmark paper written by Mary-Chilton and co-workers 

reported the presence of a small piece of bacterial plasmid DNA in the DNA isolated from 

crown gall tumors (Chilton et al., 1977). This finding caused an important impact on plant 

biology, agriculture and biotechnology. Indeed, this discovery brought a major revolution in 

agricultural practice and crop production as it motivated the study and manipulation of the 

mechanisms of the genetic transfer mediated by Agrobacterium sp., what became the best tool 

for genetic plant transformation. Genetically engineered crops with improved agronomic traits 

have made the transition from laboratory benches and greenhouses to fields all over the world. 

Genetic engineering technologies have evolved as a science and continue to provide the tools 

for making the crops of tomorrow (Moeller et al., 2008). Nowadays, genetic techniques are also 

applied to medicinal and aromatic plants in order to improve the efficiency of secondary 

metabolites biosynthesis. Advances in the cloning of genes involved in relevant pathways, 

genomic tools and resources, and the recognition of a higher order of regulation of secondary 

plant metabolism operating at the whole plant level are important in definition of strategies for 

the effective manipulation of secondary products in plants (Gómez-Galera et al., 2007). Early 

genetic transformation experiments applied to medicinal plants were carried out using 

Agrobacterium rhizogenes or Agrobacterium tumefaciens (Gómez-Galera et al., 2007). 

Agrobacterium-mediated transformation is an indirect method to transfer gene. However DNA 

can be directly introduced in plant cells by microinjection into the nucleus, or fusion of 

protoplasts with lipossomes carrying DNA, or particle bombardment (Lindsey et al., 1995; 

Vasil, 2008). Nevertheless, plant transformation mediated by Agrobacterium, a soil 

phytopathogenic bacterium, has become the main technology used to introduce a foreign gene 

into a plant host, due to the simplicity of the process and the correct targeting of the transgene 

(Veluthambi et al., 2003). The authors also enumerate another set of advantages that 

Agrobacterium-based DNA transfer system offers comparing to other methods, such as a linked 

transfer of genes of interest along with the transformation marker; a higher frequency of stable 

transformation with many single copy insertions; reasonably low incidence of transgene 

silencing; and the ability to transfer long stretches of T-DNA (>150kb). The inability of 

Agrobacterium to transfer DNA to monocotyledonous plants was considered, for a long time, 

the major limitation of the technique. However, with effective modifications in Ti plasmid 
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vectors and finer modifications of transformation conditions, a number of monocots like rice 

(Hiei et al., 1997; Tyagi et al., 2000), wheat (Supartana et al., 2006) and barley (Tingay et al., 

1997; Shrawat et al., 2007) have been successfully transformed. Nowadays, Agrobacterium T-

DNA transfer is viewed as “universal” since it has been successfully used in the transformation 

of non-plant eukaryotic organisms, such as yeast (Piers et al., 1996), filamentous fungi (Zhang 

et al., 2008) and human cells (Lacroix et al., 2006). 

1.5.2- Mechanism of genetic transfer mediated by Agrobacterium sp. 

Transfer of DNA mediated by Agrobacterium sp. is usually done using two species of 

the genus, Agrobacterium rhizogenes and Agrobacterium tumefaciens. Both species infect 

wounded plant tissues; A. rhizogenes induces the production of roots with a characteristic 

phenotype, “hairy roots”, while A. tumefaciens induces the formation of crown gall tumours 

(Lindsey et al., 1995; Caboni et al., 1996; Zupan et al., 1996; Spencer et al., 1997). Evidences 

suggest that the mechanism of action of both bacteria in plant cell infection is similar (Tepfer et 

al., 1987). The interaction between Agrobacterium species and plants involves a complex series 

of chemical signals communicated between the pathogen and the host. These signals include 

neutral and acidic sugars, phenolic compounds, opines, virulence proteins (Vir) and the T-DNA 

that is transferred from the bacterium to the plant cell (Gelvin, 2000). The process of gene 

transfer from Agrobacterium to plant cells implies several essential steps: bacterial 

colonization; induction of bacterial virulence system by specific host signals; generation of T-

DNA transfer complex; T-DNA transfer and integration into plant genome (Riva et al., 1998; 

Tzfira et al., 2006). The infection mechanism is initiated with the attraction of the bacteria to 

the wounded tissues of the host plant followed by its attachment to the plant cell surface. This is 

an essential step in the process since a loss of tumour-inducing capacity was observed in non-

attaching Agrobacterium mutants (Riva et al., 1998). The attraction phenomenon is mediated 

by chemoattractive metabolites, mainly small phenolic compounds involved in phytoalexin and 

lignin biosynthesis, that are released from wounded plants (e.g. acetosyringone). Thus, 

Agrobacterium subverts part of the plant’s defence mechanism and uses these compounds to 

signal the presence of a potentially susceptible plant. Signal metabolites are recognized by a 

sensor protein, VirA protein, triggering the expression of a subset of Agrobacterium virulence 

genes (vir) located on the bacterial Ti (tumour inducing) plasmid and leading to the excision of 

a single-stranded copy of T-DNA. T-DNA contains two types of genes: the oncogenic genes, 

encoding for the enzymes involved in the synthesis of auxins and cytokinins and responsible for 

tumour formation; and the genes encoding for the synthesis of opines. Opines, produced by 
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condensation between amino acids and sugars, are synthesised and excreted by the gall cells 

and consumed by Agrobacterium as carbon and nitrogen sources. Outside the T-DNA are 

located the genes for opine catabolism, the genes involved in the process of T-DNA transfer 

from the bacterium to the plant cell and the genes involved in bacterium-bacterium plasmid 

conjugative transfer (Riva et al., 1998). Figure 3 shows the major molecular events of the 

transformation process mediated by Agrobacterium from the recognition and attachment of the 

bacterium to the host cell until T-DNA integration in the plant genome. 

 
Figure 3 - Schematic diagram of the major molecular events and structures for the Agrobacterium-mediated 

genetic transformation (extracted from Citovsky et al., 2007). 

 

Activated VirA protein has the ability to transfer its phosphate to the cytoplasmic DNA 

binding protein VirG, resulting in the activation of vir gene transcription. Most of the induced 

Vir proteins are directly involved in T-DNA processing from the Ti-plasmid and the subsequent 

transfer of T-DNA from the bacterium to the plant (Lindsey et al., 1995; Rossi et al., 1996; 

Nester et al., 1997; Riva et al., 1998; Gelvin, 2000; Gelvin, 2003). Any DNA placed between 

the T-DNA borders will be transferred to the plant cell as single strand DNA (ssDNA). T-DNA 

border sequences are 25 bp in length and highly homologous in sequence, that delimits T-

region in a directly repeated orientation. Border sequences are recognized by VirD1 and VirD2 

proteins, which are able of nicking the Ti-plasmid by endonucleotidic cleavage. The nick sites 

are assumed as the initiation and termination sites for T-strand recovery. Following nicking, 
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VirD2 remains covalently attached to the 5’-end of the resulting DNA molecule, serving as a 

pilot protein to guide the T-strand from the bacterium into the plant cell. So, T-DNA enters the 

plant cell as a protein/nucleic acid complex composed of a single VirD2 molecule attached to 

the ssT-DNA. This complex has to pass through three membranes, the plant cell wall and 

cellular spaces. The protein/nucleic acid transfer seems to take place through a pilus, composed 

of numerous proteins encoded by the virB operon, and VirD4. T-pilus may not only serve as a 

hook to bring the bacterium and plant cell into close proximity, but it is likely that it interacts 

directly with the plant cell (Riva et al., 1998; Gelvin, 2000; Zupan et al., 2000; Gelvin, 2003). 

According to the most accepted model, the ssT-DNA/virD2 complex is coated by VirE2 

protein, a DNA binding protein that cooperatively associates with any ssDNA sequence. VirE2 

is believed to prevent the attack of nucleases and, additionally, extends the ssT-DNA strand 

reducing the complex diameter to approximately 2nm, making the translocation through 

membrane channels easier. Although, this is the model of T-DNA transfer most accepted, 

recent researches suggest that the ssT-strand/VirD2 complex may be transferred from the 

bacterium to the plant cell separate from VirE2 protein. An alternative model, in which a naked 

ssT-DNA/VirD2 complex is transferred from the bacterium and once inside the plant cell, is 

coated by VirE2 has been proposed (Riva et al., 1998). However, it has already been 

demonstrated that in the export of VirE2 to the plant cell is essential another protein, VirE1. 

VirF also seems to be exported to the plant cell. Nevertheless, experimental data suggest that 

this protein functions in the plant rather than in the bacterium, by stimulating the plant cell 

division, and becoming more susceptible to transformation (Gelvin, 2000). Once inside the 

plant cell, the ssT-DNA/VirD2 complex is targeted to the nucleus, being VirD2 and VirE2 

responsible for mediating the complex uptake to this organelle. This is so because VirE2 

contains two plant nuclear location signals (NLS) and VirD2 one. The nuclear import is 

probably mediated also by specific NLS-binding proteins, which are present in the cytoplasm 

(Riva et al., 1998; Zupan et al., 2000; Tzfira et al., 2006). Indeed, the first physical barrier on 

the nuclear import of the T-DNA complex is the nuclear pore, which the bacterium overcomes 

by using a host protein, which interacts directly with the bacterial VirD2 protein, that leads to 

directed translocation of the T-DNA complex through this pore (Ballas et al., 1997). The final 

step of T-DNA transfer is its integration into the plant genome although the molecular 

mechanism involved is still under debate. Generally, however, it is accepted that T-DNA 

integration relies on the ability of the host DNA repair machinery to convert the T-strand 

molecule into double-stranded T-DNA (dsT-DNA) integration intermediates, to recognize these 

molecules as broken DNA, and to incorporate them into the host genome (Tzfira et al., 2006). 
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Once, inside the nucleus, the T-DNA complex needs to travel to its point of integration and be 

stripped of its escorting proteins before integration into the host genome. This seems to happen 

due to the interaction of T-DNA complex with the host transcription machinery that guides the 

T-DNA complex to the site of integration in the host chromatin. Furthermore, biological 

evidences indicate that Agrobacterium harnesses the plant-targeted proteolysis machinery to 

uncoat the T-strand of its cognate proteins (Citovsky et al., 2007; Dafny-Yelin et al., 2008). 

VirE2, which has also been reported as essential for nuclear import of the T-complex, does not 

interact directly with the host nuclear-import machinery. It does, however, interact with VirE2-

interacting protein 1 (VIP1), a putative transcription factor whose cellular function remains 

largely unknown, but that functions as an adaptor between the host nuclear-import machinery 

and the host-cell chromatin and VirE2. Recent data suggest a possible mechanism by which 

Agrobacterium induces and uses the defence signalling of the plant cell to deliver its T-DNA 

complex into the host-cell nucleus. Agrobacterium also uses the host transcription and 

translation machineries that are responsible for expression of opines (Citovsky et al., 2007; 

Dafny-Yelin et al., 2008). 

 

 

1.5.3- Hairy roots applications in production of secondary metabolites 
 

Transformation is currently used for genetic manipulation of more than 120 species of at 

least 35 families, including the major economic crops, vegetables, ornamental, medicinal, fruit, 

tree and pasture plants, using Agrobacterium-mediated or direct transformation methods (Riva 

et al., 1998). However, efficient methodologies of Agrobacterium-mediated gene transfer are 

sometimes difficult to achieve. The optimization of Agrobacterium-plant interaction is probably 

the most important aspect to be considered. For instance, the synthesis of phenolic vir gene 

inducers by the plant, bacterial attachment, T-DNA transfer into the plant cytoplasm, T-DNA 

nuclear translocation, and T-DNA integration can limit the transformation efficiency of a 

particular plant. The type of explant must also suits for regeneration allowing the recovery of 

whole transgenic plants (Riva et al., 1998; Gelvin, 2000). 

The production of secondary metabolites can be enhanced, thanks to genetic 

transformation methods, namely those mediated by Agrobacterium sp.. Indeed, the genetic 

manipulation of terpenoids has already been reported. In Mentha piperita, the over-expression 

of genes involved in the increase of (-)-menthol pathway flux, a major monoterpene of this 

plant species, resulted into the increase in monoterpene yield and profile. Other strategy used to 
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enhance the quality of the peppermint EO was the reduction of undesirable monoterpenes 

production (e.g. molecules which are intermediates in the (-)-menthol biosynthesis pathway) 

(Lange et al., 1999; Mahmoud et al., 2002). In the same way, the production of a sesquiterpene, 

artemisinin, was improved by over-expression of its biosynthesis key enzymes-related genes 

(e.g. farnesyl diphosphate synthase (FPS), amorpha-4,11-diene synthase (AMS)) in Artemisia 

annua (Matsushita et al., 1996; Mercke et al., 2000; Han et al., 2005). Transformation of 

tissues or plants with A. rhizogenes, as well as transformation with rol genes, may produce, in 

addition to hairy roots, alterations in the plants’ secondary metabolism. Hairy roots have been 

found to be suitable for the production of secondary metabolites because of their stable and 

high productivity in hormone-free culture conditions (Tripathi et al., 2003). Nowadays, many 

medicinal plants have been successfully transformed with A. rhizogenes with higher yields of 

secondary metabolites. Transformed hairy roots have been shown interesting in in vitro systems 

in production of some type of secondary metabolites, including some of terpenic origin. Indeed, 

transformed roots of Artemisia annua produced higher yields of the sesquiterpene, artemisinin, 

than the whole plants (Souret et al., 2002) while in the hairy roots of Tripterygium wilfordii var. 

regelii, two new compounds were isolated (an abietane diterpenoid and a sesquiterpenoid) 

(Nakano et al., 1998). On the other hand, in some cases the profile of EO produced by the hairy 

roots may be different from the EO profile found in roots of non-transformed in Nature growing 

plants, with the potential for production of new compounds. Such differences were observed in 

the EO isolated from hairy roots and non-transformed roots of cultivated plants from Achillea 

millefolium (Lourenço et al., 1999). The variation in the density of secretory structures is also 

an alternative or additional approach to modulate the EO yields, as suggested by the 

identification of genes that regulate the differentiation of non-glandular trichomes in 

Arabidopsis thaliana (Veronese et al., 2001). However, it is of upmost importance to better 

understand the impact of the introduced genes to the whole production pathways in order to 

evaluate the potential risks of side-effects of these methods. Investigation must continue to 

improve the production of valuable molecules in a sustainable and cost effective way (Gómez-

Galera et al., 2007). 
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1.6- Aims of this Work 
 

In our country, H. androsaemum (Hipericão do Gerês), H. perforatum and H. undulatum 

are used in folk medicine for the therapeutic properties of their extracts. H. perforatum is the 

most characterized species of this genus in phytochemical terms. Most of the phytochemical 

studies on this genus are related to phenolic compounds, lacking data in the literature on its EO. 

However, these volatile mixtures constitute a pool of potential pharmaceutical substances with 

medical and commercial value, requiring a detailed identification of its constituents as well as 

the understanding of the factors (physiological, environmental) that might influence their 

relative concentration. On the other hand, excepting for H. perforatum, in vitro cultures of the 

other two species have not been explored, yet. 

In this context, the objectives of this work for each Hypericum species were: 

- characterize the essential oils profiles isolated from in vivo plants; 

- establish and maintain shoot in vitro cultures; 

- characterize the essential oils profiles produced by in vitro shoot cultures; 

- “optimize” an Agrobacterium rhizogenes-mediated transformation protocol. 
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2.1- Chapter overview 
 

Phytochemical characterization of several species of Hypericum genus has been studied 

for a long time. Several reviews, most of them on H. perforatum, have already been published 

concerning the characterization of alcoholic and water extracts as well as their biological 

activities (Bombardelli et al., 1995; Nahrstedt et al., 1997; Hölzl et al., 2003). Studies on the 

essential oils of H. perforatum and other species of this genus have already been published, 

some of them reporting the positive biological activities of these essential oils. Additionally, 

variations on the essential oils of Hypericum species induced by seasonal variation, geographic 

distribution, phenological cycle and type of the organ in which essential oils are produced 

and/or accumulated have also been reported. However, so far, no review paper has been 

published gathering all the reported data on essential oils of plants of this genus. Thus in this 

chapter we intended to collect and summarize as many information as possible concerning 

composition and biological activities of essential oils of Hypericum species. This chapter was 

written by invitation of a book series editor to be a chapter of the book entitled Advances in 

Medicinal and Aromatic Plant Research. 
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2.2- Manuscript 
 

 

This chapter comprises the following manuscript: 

 

 

Ana P. Guedes, G. Franklin and Manuel Fernandes-Ferreira. Hypericum sp.: Essential oil 

composition and biological activities. In: Advances in Medicinal and Aromatic Plant 

Research (em edição), Devarajan Thangadurai D., Fernandes-Ferreira M. (Eds.). Regency 

Publications, New Delhi; Bioscience Publications, India; and ABD Publishers, Jaipur 
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Hypericum sp.: Essential oil composition and biological activities 
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CITAB- Centro de Investigação e de Tecnologias Agro-Alimentares e Biológicas, Department of Biology, University of Minho, 

Campus de Gualtar, 4720-057 Braga, Portugal 

 

1- Introduction 
 

Hypericum is an important genus of the family Clusiaceae (Guttiferae), which includes 

about 450 species of trees, shrubs and herbs. Some of the general morphological characteristics 

of this genus are: (i) opposite simple entire exstipulated leaves; (ii) (4-)5-merous flowers 

consisting of green sepals and free yellow petals (occasionally, the sepals as well as the petals 

can be red-tinged); (iii) free of more or less united ovary and; (iv) stamens organized in 5 

fascicles. The main feature of some of the important species is the presence of translucent and 

often black or red schizogenous hypericin glands. Although, these glands are present in the 

plant parts like stem, flowers and leaves, their distribution differ between species. Hypericin 

was first identified in Hypericum species and serves as a chemotaxonomic marker of the 

genera. For more details about the taxonomy and distribution of this genus, refer Robson (2006) 

(Robson, 2006). 

Many species of the Hypericum genus have a long traditional value as medicinal plants. 

Ancient Greeks knew about the medicinal properties of this genus. Greek herbalist Dioscorides 

recommends four species of Hypericum (Upericon, Askuron, Androsaimon, and Koris) for 

sciatica and burns. He referred that H. crispum and H. barbatum have antidiuretic and 

antimalarial properties. Theophrastus recommends H. lanuginosum for external application, 

while Pliny says it should be taken in wine against poisonous reptiles. H. coris, another Greek 

species, was mentioned by Hippocrates and Pliny. Yet another species, H. perforatum (St. 

John’s wort) has been appreciated for its medicinal value since at least as early as the 1st 

century A.D. and was known by Hippocrates, Pliny, and Dioscorides who included it in the De 

materia medica (Bombardelli et al., 1995; Upton, 1997) 

Currently, several species of this genus has been used in ailments as knowledge-based 

medicine in many countries. In Portuguese folk medicine, some Hypericum species are used the 

major of them being H. androsaemum, H. perforatum, and H. undulatum. H. androsaemum 

(Hipericão do Gerês) is known for its diuretic effect and infusions are used for kidney and 
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bladder ailments, whereas H. undulatum extract is used for liver problems. Flowers decoction 

of H. undulatum is also traditionally used for migraine, bladder ailments; and as renal 

antispasmodic and hepatic protector (Ferreira et al., 2006). Moreover, decoctions of the 

flowering aerial parts of H. perforatum have been used to treat liver troubles (Camejo-

Rodrigues et al., 2003), depression, liver disorders and rheumatism (Nogueira et al., 1998). In 

the Canary Islands (Spain), infusions prepared from the flowers, leaves and fruits of various 

species of the genus Hypericum have been used as a vermifuge, diuretic, as well as a wound 

healing, sedative, antihysterical and antidepressive agent (Prado et al., 2002; Rabanal et al., 

2002). In Italy, leaves and stems of H. hircinum have been widely used against cough (Pieroni 

et al., 2004). H. perforatum, a well-known species of this genus, has been included in the 

traditional pharmacopeia of many countries. For instance, in the 1997 German List of 

Prescription Drugs described more than 50 preparations from H. perforatum. In the German 

Drug Prescription Report 1996, about 131 million of daily doses of products prepared from this 

species were prescribed. In Serbia, aerial parts of H. perforatum were cited to be used internally 

and externally for all ailments (Jaric et al., 2007). Different parts of the plant and different 

preparations are externally applied or orally administrated for several ailments, including 

digestive, urinary, respiratory and cardiac diseases in Turkey (Kültür, 2007). In Bulgarian 

phytotherapy, aerial parts of H. perforatum have been recommended for treatment of gastric 

and duodenal ulcer; as regenerative and anti-inflammatory agent in digestive tract diseases and 

as epithelotonic agent (Ivanova et al., 2005). In Italy, leaves and stems of H. hircinum have 

been widely used against cough (Pieroni et al., 2004). 

In the last decade, several pharmacological studies have been performed using crude 

extracts to evaluate the traditional knowledge. Results of those studies have revealed that 

extract of Hypericum exert several pharmacological properties including antidepressant, 

antimicrobial and wound healing effects (Ishiguro et al., 1990; Decosterd et al., 1991; 

Jayasuriyab et al., 1991; Rocha et al., 1995; Öztürk et al., 1996; Sokmen et al., 1999; Daudt et 

al., 2000; Mukherjee et al., 2000; Pistelli et al., 2000; Avato et al., 2004). 

Plants produce and accumulate different types of compounds. Molecules with an 

important role in basic life functions such as cell division, growth, respiration, storage, and 

reproduction were described as primary metabolites (Bougard et al., 2001). Several other 

compounds which are not essential for the above functions are known as secondary metabolites. 

For a long time, secondary metabolites have been considered as waste by-products of plant 

metabolism. Recent improvement of biochemical techniques and the rise of molecular biology 

have shown that these molecules play a major role in the adaptation of plants to their 
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environment including biotic and abiotic challenges. They also act on animals (anti-feeding 

properties), pathogens (phytoalexins) and other plants (allelopathy) (Bougard et al., 2001). 

Plant secondary metabolites include a vast array of compounds that to date sum up to more than 

200,000 defined structures. 

Studies on medicinal plants are rapidly increasing because of the search for new active 

molecules, and for the improvement in the production of plants or molecules for the herbal 

pharmaceutical industries (Poutaraud et al., 2005). As a genus with several medicinal plant 

species, Hypericum has recently drawn the attention of phytochemists and pharmacologists. 

However, it is clear from the literature that H. perforatum is the only most characterized species 

of this genus in terms of phytochemistry and pharmacology. Under the stimulus of great 

scientific interest and economic value acquired by H. perforatum, studies with other plants of 

Hypericum genus have also been carried out revealing their antidepressant, analgesic, anti-

inflammatory, antioxidant, antimicrobial and wound healing properties (Öztürk et al., 1996; 

Apaydin et al., 1999; Daudt et al., 2000; Mukherjee et al., 2001; Trovato et al., 2001; Öztürk et 

al., 2002; Prado et al., 2002; Rabanal et al., 2002; Sánchez-Mateo et al., 2002; Cakir et al., 

2003; Couladis et al., 2003; Heilmann et al., 2003; Rabanal et al., 2005). 

Phytochemical characterisation of several species of this genus have revealed the 

presence of a variety of compounds, but not limited to phenylpropanes, flavonol derivatives, 

biflavones, proanthocyanidines, xanthones, phloroglucinols and naphtodianthrones [for review 

see (Bombardelli et al., 1995; Nahrstedt et al., 1997; Hölzl et al., 2003)] and essential oils. In 

spite of the large size of Hypericum genus, the composition of volatile compounds is known in 

only a small number of species, the most studied of which is H. perforatum (Saroglou et al., 

2007). The present review summarizes information available on the chemical composition of 

essential oils isolated from Hypericum genus. Additionally, the biological activities of this 

genus with special emphasis on essential oil composition are also discussed. 

 

2- Chemical Composition of Hypericum Essential Oils 
 

Interest in essential oils has revived in recent decades, with the popularity of 

aromatherapy, a branch of alternative medicine which claims that the specific aromas carried by 

essential oils have curative effects. Oils are volatilized or diluted in a carrier oil and used in 

massage or burned as incense. About 300 essential oils out of 3000 known are commercially 

important mainly for their flavours and fragrances (Burt, 2004).  
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Essential oils are aromatic oily extracts obtained from the plants. Composition of 

essential oils can differ between different parts of the plants. Steam distillation is the most 

commonly used method of extraction for commercial production of essential oils (Burt, 2004), 

although other extraction methods such as expression, fermentation, enfleurage or extraction 

are also in practice. In the steam distillation, the water is heated and the steam passes through 

the plant material, thus vaporizing the volatile compounds. The vapors flow through a coil 

where they condense back to liquid, which is then collected in the receiving vessel. Because of 

the mode of extraction, mostly by distillation from aromatic plants, the extract contains a 

variety of volatile molecules such as terpenes and terpenoids, phenol-derived aromatic 

components and aliphatic components (Bakkali et al., 2008).  

Essential oils are very complex natural mixtures which can contain about 20–60 

components at quite different concentrations. Hence, they are generally characterized by two or 

three major components at fairly high concentrations compared to other components that are 

present in trace amount (Bakkali et al., 2008).  

Characterization of essential oils from species of Hypericum genus revealed the 

presence of monoterpenoid and sesquiterpenoid compounds, as well as alkanes and aldehydes 

as the main compounds in the most of them (Mathis et al., 1964a; Mathis et al., 1964b; Mathis 

et al., 1964c). 

(E)-Caryophyllene was one of the most represented compounds in most of the studied 

Hypericum essential oils. Germacrene D was another major sesquiterpene hydrocarbon 

common to several species. Caryophyllene oxide, spathulenol and globulol, are the oxygenated-

sesquiterpenes present in the top three most represented compounds of some Hypericum 

species. Likewise, α-pinene and β-pinene were the two mostly represented monoterpene 

hydrocarbons in essential oils from Hypericum. Interestingly, in H. barbatum the three most 

represented compounds are monoterpene hydrocarbons (α-pinene, β-pinene and limonene) 

(Saroglou et al., 2007). In the essential oils of H. ericoides, α-curcumene, α-pinene, γ-

muurolene and δ-cadinene were the most represented compounds (Cardona et al., 1983). n-

Alkanes were found as the major compounds in few species of the genus. In H. foliosium, H. 

hirsutum, H. myrianthum, H. richeri and H. triquetrifolium, n-nonane is among the three most 

represented compounds. Some of these species also had high proportions of n-undecane (Santos 

et al., 1999; Bertoli et al., 2003; Ferraz et al., 2005; Ferretti et al., 2005; Saroglou et al., 2007). 

The main essential oil constituents identified in Hypericum species are summarised in Table 1. 
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Table 1 - Main essential oil constituents of Hypericum species. 

Species Origin Main constituents Reference 

H. alpinum Serbia β-Pinene (13.3%) 

γ-Terpinene (7.7%) 

(-)-(E)-Caryophyllene (6.5%) 

(Saroglou et al., 
2007) 

H. acmosepalum China β-Selinene (16.3%) 

ar-Curcumene (12.6%) 

(Demirci et al., 
2005) 

H. aegypticum 
ssp. aegypticum 

Libya Ishwarane (14.4%) 

Eudesm-11-en-4-ol stereoisomer 
(9.6%) 

Eudesm-11-en-4-ol stereoisomer 
(10.7%) 

(Crockett et al., 
2007) 

H. aegypticum 
ssp. marrocanum 

Northwestern 

Africa 
Caryophyllene oxide (29.2%) 

β-Caryophyllene (15.1%) 

Caryophylladienol-II (9.7%) 

(Crockett et al., 
2007) 

Portugal C15H24 (27.6%) 

Germacrene D (12.3%) 

β-Caryophyllene (14.0%) 

(Nogueira et al., 
1998) 

Portugal (E)-Caryophyllene (9.4-15.1%) 

γ-Elemene (8.0-17.9%) 

β-Gurjunene (6.1-15.5%) 

(Guedes et al., 
2003) 

H. androsaemum 

Portugal (E)-Caryophyllene (9.0-17.0%) 

γ-Elemene (9.3-17.3%) 

β-Gurjunene (7.9-14.8%) 

(Guedes et al., 
2004) 

H. balearicum Balearic 
Islands 

α-Pinene (28.5%) 

β-Pinene (20.4%) 

β-Eudesmol (11.2%) 

(Crockett et al., 
2007) 

 

H. barbatum Serbia (-)-α-Pinene (17.1%) 

(-)-β-Pinene (17.0%) 

(-)-Limonene (6.0%) 

(Saroglou et al., 
2007) 

H. beanii China Caryophyllene oxide (18.7%) 

β-Selinene (16.3%) 

γ-Muurolene (11.3%) 

(Demirci et al., 
2005) 
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Species Origin Main constituents Reference 

H. brasiliense Brazil β-Caryophyllene (29.5%) 

α-Humulene (12.7%) 

Caryophyllene oxide (9.9%) 

(Abreu et al., 
2004) 

H. bupleuroides Turkey β-Sesquiphellandrene (33.2%) 

β-Caryophyllene (20.2%) 

Selina-3,7(11)-diene (7.0%) 

(Demirci et al., 
2006) 

H. calcynum China β-Pinene (29.2%) 

α-Terpineol (11.5%) 

(Demirci et al., 
2005) 

H. carinatum Brazil β-Caryophyllene (21.0%) 

α-trans-Bergamotene (10.0%) 

Caryophyllene oxide (9.5%) 

(Ferraz et al., 
2005) 

H. choisyanum China cis-Eudesma-6,11-diene (11.4%) (Demirci et al., 
2005) 

H. connatum Brazil Caryophyllene oxide (40.1%) 

β-Caryophyllene (13.1%) 

Humulene oxide II (10.5%) 

(Ferraz et al., 
2005) 

H. coris France α-Curcumene (40.1%) 

γ-Cadinene (14.7%) 

δ-Cadinene (6.6%) 

(Schwob et al., 
2002) 

H. delphicum Arabian 
penninsula 

Caryophyllene oxide (31.5%) 

β-Caryophyllene (18.2%) 

n-Undecane (17.5%) 

(Crockett et al., 
2007) 

H. foliosum 

 

Portugal 

 

n-Nonane (28.7-72.6%) 

Limonene (6.9-45.8%) 

Terpinolene (0.5-18.8%) 

β-Caryophyllene (1.1-6.9%) 

(Santos et al., 
1999) 

H. forrestii China Caryophyllene oxide (12.7%) 

α-Pinene (10.4%) 

(Demirci et al., 
2005) 

H. heterophyllum Turkey Isocaryophyllene (17.1%) 

α-Pinene (11.6%) 

δ-Cadinene (9.5%) 

(Cakir et al., 
2004) 
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Species Origin Main constituents Reference 

Serbia n-Nonane (24.8%) 

Undecane (13.3%) 

(-)-(E)-Caryophyllene (5.4%) 

(Saroglou et al., 
2007) 

H. hirsutum 

 

Serbia n-Undecane (32.2%) 

Patchoulene (11.8%) 

Caryophyllene oxide (9.3%) 

(Gudžic et al., 
2007) 

Portugal α-Pinene (80.6%) 

β-Pinene (4.7%) 

Germacrene D (2.1%) 

(Nogueira et al., 
1998) 

H. humifusum 

Portugal α-Pinene (44.7-77.2%) 

β-Pinene (4.7-7.7%) 

β-Caryophyllene (1.2-9.3%) 

Germacrene D (1.9-6.1%) 

(Nogueira et al., 
2008) 

H. kouytchense China cis-β-Guaiene (10.7%) 

γ-Muurolene (12.4%) 

(Demirci et al., 
2005) 

H. lancasteri China β-Selinene (11.4%) 

Eudesmadienone (10.8%) 

(Demirci et al., 
2005) 

H. leschenaultii China Cuparene (24.8%) 

γ-Muurolene (16.8%) 

(Demirci et al., 
2005) 

Portugal α-Pinene (31.1%) 

β-Caryophyllene (11.6%) 

n-Undecane (7.0%) 

(Nogueira et al., 
1998) 

H. linarifolium 

Portugal α-Pinene (19.9-31.2%) 

β-Pinene (5.0-11.0%) 

β-Caryophyllene (6.6-11.6%) 

(Nogueira et al., 
2008) 

H. linarioides Turkey δ-Cadinene (6.9%) 

γ-Muurolene (5.5%) 

(Z)-β-Farnesene (5.2%) 

(Cakir et al., 
2005) 

H. lysimachioides South eastern 
Anatolia 

Caryophyllene oxide (30.8%) 

α-Longifolene (6.4%) 

β-Selinene (6.7%) 

(Toker et al., 
2006) 



Essential oils from plants and in vitro shoot cultures of Hypericum androsaemum L., 
H. perforatum L. and H. undulatum Schousboe ex. Willd.  A. P. Guedes 

42 

Species Origin Main constituents Reference 

H. maculatum Serbia Spathulenol (6.8%) 

Globulol (10.2%) 

n-Nonane (5.5%) 

(Saroglou et al., 
2007) 

H. monogynum China n-Tricosane (13.3%) 

Myrcene (10.4%) 

(Demirci et al., 
2005) 

H. myrianthum Brazil n-Undecane (20.7%) 

n-Nonane (17.5%) 

Dehydro-aromadendrene (8.6%) 

(Ferraz et al., 
2005) 

Serbia (E)-Anethole (30.7%) 

β- Farnesene (12.4%) 

δ-Cadinene (8.7%) 

(Gudžić et al., 
2001) 

H. olympicum 

Greece Germacrene D (16.0%) 

(E)-Caryophyllene (7.4%) 

Spathulenol (6.7%) 

(Pavlović et al., 
2006) 

H. patulum China β-selinene (14.7%) (Demirci et al., 
2005) 

H. polyanthemum Brazil HP1 Benzopyrans (26.7%) 

HP2 Benzopyrans (13.2%) 

n-Undecane (7.9%) 

(Ferraz et al., 
2005) 

H. pseudohenryi China β-Selinene (18.5%) (Demirci et al., 
2005) 

Portugal α-Pinene (35.7-49.8%) 

β-Pinene (9.0-12.5%) 

Germacrene D (2.4-5.4%) 

(Nogueira et al., 
1998) 

H. pulchrum 

Portugal α-Pinene (49.8%) 

β-Pinene (12.5%) 

Germacrene D (5.4%) 

(Nogueira et al., 
2008) 

H. richeri Italy (Z)-β-Ocimene (19.5%) 

n-Nonane (13.8%) 

β-Bisabolene (8.7%) 

(Ferretti et al., 
2005) 

H. roeperanum East Africa γ-Curcumene (15.6%) (Crockett et al., 
2007) 
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Species Origin Main constituents Reference 

(2E,6E)-Farnesol (7.8%) 

ar-Curcumene (7.7%) 

H. scabrum Uzbekistan α-Pinene (11.2%) 

Spathulenol (7.2%) 

p-Cymene (6.1%) 

(Baser et al., 
2002) 

H. ternum Brazil β-Caryophyllene (12.0%) 

Bicyclogermacrene (10.0%) 

β-Cadinene (5.0%) 

(Ferraz et al., 
2005) 

H. tetrapterum Greece α-Copaene (11.3%) 

α-Longipinene (9.7%) 

Caryophyllene oxide (8.9%) 

(Pavlović et al., 
2006) 

H. tomentosum Portugal β-Caryophyllene (12.6%) 

n-Undecane (7.5%) 

α-Humulene (5.2%) 

(Nogueira et al., 
1998) 

H. xmoserianum China γ-Muurolene (10.7%) 

δ-Cadinene (10.2%) 

(Demirci et al., 
2005) 

H. tomentosum Tunisia Menthone (17.0%) 

n-Octane (9.9%) 

β-Caryophyllene (5.3%) 

α-Pinene (5.2%) 

(Hosni et al., 
2008) 

 

H. triquetrifolium Italy α-Humulene 

cis-Calamene 

δ-Cadinene 

α-Pinene (10.33%) 

Caryophyllene oxide (1.38%) 

(Karim et al., 
2007) 

 

Essential oils content and composition can be greatly affected by several parameters 

including seasonal variation (Guedes et al., 2004), phenological cycle (Schwob et al., 2004) and 

geographic distribution. We have summarised the most represented compounds of the essential 

oils of H. perforatum, H. perfoliatum and H hyssopifolium based on their geographical 

distribution in Table 2. 

 



Essential oils from plants and in vitro shoot cultures of Hypericum androsaemum L., 
H. perforatum L. and H. undulatum Schousboe ex. Willd.  A. P. Guedes 

44 

Table 2 - Variation in the essential oil composition of a few Hypericum species based on their geographical 

distribution 

Species Origin Main constituents of essential oil Reference 

Serbia cis-Caryophyllene (48.5%) 

β- Farnesene (12.1%) 

2-Methyl-dodecane (5.7%) 

(Gudžić et al., 
1997) 

Serbia β-Caryophyllene (14.2%) 

2-Methyl-octane (13.1%) 

2-Methyl-decane (7.9%) 

(Gudžić et al., 
2001) 

Serbia α-Pinene (8.6%) 

(Z)-β- Farnesene (6.6%) 

Germacrene D (6.8%) 

(Saroglou et al., 
2007) 

Portugal Germacrene D (20.0%) 

β-Caryophyllene (10.9%) 

2-Methyl-octane (9.7%) 

(Nogueira et al., 
1998) 

Uzbekistan β-Caryophyllene (11.7%) 

Caryophyllene oxide (6.3%) 

Spathulenol (6.0%) 

(Baser et al., 
2002) 

Lithuania Caryophyllene oxide (6.1-35.8%) 

Germacrene D (4.5- 31.5%) 

β-Caryophyllene (5.1-19.1%) 

(Mockutė et al., 
2003) 

Italy 2-Methyl-octane (21.1%) 

Germacrene D (17.6%) 

α-Pinene (15.8%) 

(Pintore et al., 
2005) 

Greece α-Pinene (21.0%) 

2-Methyl-octane (12.6%) 

γ-Muurolene (6.9%) 

(Pavlović et al., 
2006) 

H. perforatum 

India Ishwarane   

α-cuprenene 

(Weyerstahl et 
al., 1995) 

H. perfoliatum Portugal α-Pinene (50.0%) 

n-Nonane (16.8%) 

n-Undecane (8.8%) 

(Nogueira et al., 
1998) 
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Species Origin Main constituents of essential oil Reference 

Portugal α-Pinene (39.4-64.3%) 

n-Nonane (11.9-23.8%) 

β-Pinene(1.9-3.2%) 

(Nogueira et al., 
2008) 

Algeria Thymol (22.1%) 

τ-Cadinol (18.5%) 

4,5-Dimethyl-2-ethylphenol 
(13.0%) 

(Touafek et al., 
2005) 

Greece α-Pinene (48.6%) 

n-Nonane (8.5%) 

δ-Cadinene (4.6%) 

(Couladis et al., 
2001) 

Greece α-Pinene (34.2%) 

β-Pinene (9.2%) 

δ-Cadinene (8.1%) 

(Couladis et al., 
2001) 

Greece α-Pinene (41.3%) 

β-Pinene (6.5%) 

δ-Cadinene (6.2%) 

n-Nonane (6.1%) 

(Petrakis et al., 
2005) 

H. perfoliatum 
(cont.) 

Tunisia α-Pinene (13.1%) 

allo-Aromadendrene (11.4%) 

Germacrene-D (10.6%) 

(Hosni et al., 
2008) 

South eastern 
Anatolia 

Caryophyllene oxide (20.4%) 

Spathulenol (13.4%) 

Caryophyllene alcool (9.0%) 

(Toker et al., 
2006) 

Turkey α-Pinene (57.3%) 

β-Pinene (9.0%) 

Limonene (6.2%) 

(Cakir et al., 
2004) 

H. hyssopifolium 

 

France Spathulenol (19.5 %) 

Tetradecanol (10.2%) 

Dodecanol (9.3%) 

(Schwob et al., 
2006) 
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(E)-Caryophyllene and germacrene D were abundant in essential oils of H. perforatum 

from Portugal and Lithuania, but not in H. perforatum growing wild in Greece. Gudžić and co-

workers (1997; 2001) reported (E)-caryophyllene as the most represented compound in 

essential oils of H. perforatum from Rujan mountain and Vlasina, both in Serbia (Gudžić et al., 

1997; Gudžić et al., 2001). However this sesquiterpene did not take part of the three major 

compounds in the essential oils of this species in Barelic, another region of Serbia (Saroglou et 

al., 2007). α-Pinene predominance was registered in the essential oils from H. perforatum 

plants cultivated in Italy, Greece and Serbia (Barelic). Essential oils from H. perforatum 

growing wild in Lithuania and Uzbekistan were the only ones in which oxygenated-

sesquiterpenes were the major compounds, caryophyllene oxide and spathulenol in those from 

Uzbekistan and caryophyllene oxide in those from Lithuania. In the essential oils of H. 

perforatum L. from North Indian, ishwarane and α-cuprenene were identified (Weyerstahl et 

al., 1995). In essential oils of H. perfoliatum from Portugal, Greece and Tunisia some 

homogeneity was found in the major compounds. In all of them α-pinene was one of the major 

compounds, with n-nonane and β-pinene common to some of them. However, data on essential 

oils from plants cultivated in Algeria show a different composition regarding the three most 

represented compounds, without any mono- or sesquiterpene hydrocarbon between them. 

Essential oils of H. hyssopifolium from south eastern Anatolia and France shared the 

predominance of the oxygenated-sesquiterpene spathulenol. However, in Turkey the three most 

represented compounds in this species were monoterpene hydrocarbons, with α-pinene as the 

main constituent. Differences in the essential oils profile of plants cultivated in different 

locations can be attributed to different climatic and pedological conditions. 

As shown in Table 3 Hypericum essential oil profile could also be dependent on the 

plant organs from which they are extracted. For example, essential oils extracted from flowers 

and leaves of H. triquetrifolium vary greatly in their composition. Flowers have a high 

representation of monoterpene hydrocarbons, whereas they are absent in the essential oils of 

leaves. On the other hand, although the essential oils composition of leaves and flowers were 

similar, the main constituent, caryophyllene oxide, varied in the concentration in both H. 

androsaemum and H. perforatum. Similarly, leaves and flowers of H. caprifoliatum varied in 

the nonane and (E)-caryophyllene concentrations. 
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Table 3 - Organ dependent variation in the essential oil composition in some Hypericum species. 

Main constituents of the essential oils 
Species 

Leaves/ vegetative part Flowers/ flowering top 
Reference 

H. androsaemum 

 

Caryophyllene oxide (35.8%) 

Ishwarane (30.5%) 

Humulene epoxide II (5.6%) 

α-Guaiene (40.2%) 

Caryophyllene oxide (28.0%) 

Khusinol (4.2%) 

(Morteza-Semnani et al., 

2005) 

H. caprifoliatum Nonane (44.6%) 

β-Caryophyllene (11.2%) 

Bicyclogermacrene (5.6%) 

Nonane (55.8%) 

β-Caryophyllene (5.9%) 

Undecane (5.0%) 

(Ferraz et al., 2005) 

H. perforatum Caryophyllene oxide (9.3-

25.9%) 

Spathulenol (6.4-15.7%) 

Tetradecanol (1.1-24.5%) 

Caryophyllene oxide (7.7-34%) 

β-caryophyllene (4.2-14.2%) 

Viridiflorol (4.5-11%) 

(Radusiene et al., 2005) 

H. triquetrifolium Nonane (14.7%) 

Germacrene D (12.7%) 

β-caryophyllene (10.9%) 

Myrcene (16.4%) 

α-Pinene (13.3%) 

Sabinene (13.1%) 

(Bertoli et al., 2003) 

 

 

3- Biological Activities of Hypericum Essential Oils  
 

Since the middle ages, essential oils have been widely used for bactericidal, virucidal, 

fungicidal, antiparasitical, insecticidal, medicinal and cosmetic applications (Bakkali et al., 

2008). Nowadays, essential oils are used in pharmaceutical, sanitary, cosmetic, agricultural and 

food industries (Burt, 2004). 

Although Hypericum extracts have been studied in terms of their biological activities, 

very few studies have so far been performed with essential oils. Antimicrobial activities have 

been the most reported biological activities for the essential oils of Hypericum species. 
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3.1- Antibacterial activity 
 

Essential oils extracted from the flowers of H. perforatum grown in the Vlasina region, 

Serbia had antibacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus 

subtilis, Sarcina lutea, Bacillus subtilis 841, Salmonella enteritidis and Klebsiella pneumoniae 

(Gudžić et al., 1997). However, no activity was found against Pseudomonas aeruginosa. The 

volatile fraction of H. coris aerial parts, consisting mainly of α-curcumene showed moderate 

antibacterial activity against Staphylococcus aureus whereas, no activity was found against 

Escherichia coli and Enterococcus hirae (Schwob et al., 2002). On the other hand, moderate 

growth inhibitory activity was found in the essential oils of H. hyssopifolium against E. hirae 

and S. aureus, while no activity was detected against E. coli (Schwob et al., 2006). Essential 

oils of H. lysimachioides and H. hyssopifolium were highly effective in growth inhibition of 

nine microorganisms (Escherichia coli K12, E. coli PBR 322, E. coli PUC 9, Bacillus brevis 

ATCC, B. cereus DMC65, Streptococcus pyogenes DMC41, Pseudomonas aeruginosa DMC66, 

and Staphylococcus aureus DMC70) at a concentration of 60 to 80 µg (Toker et al., 2006). 

Essential oil isolated from the aerial parts of H. rumeliacum exhibited moderate activities 

against all the tested bacteria (S. aureus, S. epidermidis, E. coli, Enterobacter cloacae, 

Klebsiella pneumoniae, Pseudomonas aeruginosa), with a minimal inhibitory concentration 

(MIC) of 3.80–17.20 mg/ml (Couladis et al., 2003). The H. rumeliacum essential oil showed its 

highest activity against a Gram-negative strain of E. coli, while E. cloaceae appeared to be the 

most resistant. According to the authors, the antibacterial properties of H. rumeliacum oil could 

be associated with the high percentage of α-pinene and β-pinene. 

In a recent study, essential oils of six Hypericum species (H. alpinum, H. barbatum, H. 

rumeliacum, H. hirsutum, H. maculatum and H. perforatum) were tested against several 

bacteria (Escherichia coli strain ATCC 35218, Proteus mirabilis, Agrobacterium tumefaciens, 

Pseudomonas aeruginosa, Pseudomonas tolaasii, Salmonella enteritidis strain ATCC 13076, 

Staphylococcus aureus strain ATCC 6538, Micrococcus luteus, Sarcina lutea strain ATCC 

9341 and Bacillus cereus) (Saroglou et al., 2007). They found that H. barbatum essential oil 

was proved to be the most active, while the essential oils of H. alpinum and H. hirsutum were 

inactive against the clinical species of P. mirabilis and P. aeruginosa. 
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3.2- Antifungal activity 
 

Essential oil of H. perforatum flowers was found to be effective against the fungus 

Aspergillus niger, but not against Candida albicans (Gudžić et al., 1997). Similarly, H. coris 

essential oil consisting mainly of α-curcumene did not show any antimicrobial activity against 

Candida albicans, whereas antimicrobial activity was found against Saccharomyces cerevisiae 

(Schwob et al., 2002). Couladis and co-workers tested the activity of essential oil isolated from 

the aerial parts of H. rumeliacum against three fungi (Candida albicans, C. tropicalis, and C. 

glabrata) reporting a MIC value of 4.75–6.34 mg/ml (Couladis et al., 2003). Essential oils of 

six Hypericum species were also tested against Candida albicans (Saroglou et al., 2007). 

Among them, H. barbatum, H. rumeliacum, H. maculatum and H. perforatum essential oils 

were effective. The MIC for H. barbatum and H. rumeliacum was 25 µg/ml whereas, H. 

maculatum and H. perforatum showed an MIC of 50 µg/ml, whereas H. alpinum and H. 

hirsutum essential oils were inactive (Saroglou et al., 2007). 

Cakir and co-workers tested the essential oils of three species of Hypericum against 

several phytopathogenic fungi using agar diffusion method for the possible use in agricultural 

pest and disease control. A moderate antifungal activity of H. hyssopifolium and H. 

heterophyllum was found against Fusarium acuminatum, and Rhizoctonia solani (strains AG-5 

and AG-11) (Cakir et al., 2004). H. linarioides essential oils was active against Rhizoctonia 

solani strain AG-9 and Verticillium albo-atrum (Cakir et al., 2005). 

Although the antimicrobial activity of essential oils from many plant species has been 

extensively surveyed, their accurate mechanism of action has not been reported in great details. 

However, it is thought that it might involve membrane disruption by lipophilic compounds, 

such as terpenoids (Cowan, 1999). It has been demonstrated that α-pinene and β-pinene are 

able to destroy cellular integrity, and thereby, inhibit respiration and ion transport processes, 

and they can also increase the membrane permeability in yeast cells and isolated mitochondria 

(Andrews et al., 1980; Uribe et al., 1985). Some authors postulated a relative inactivity of 

hydrocarbons, which is correlated to their limited hydrogen capacity and water solubility 

(Griffin et al., 1999). On the other hand, besides being active, ketones, aldehydes and alcohols 

have different specificity and activity levels. These facts seem to be associated to the functional 

group and with hydrogen-bonding parameters. Indeed, it seems that there is a relationship 

between the compounds’ chemical structure and the antimicrobial activities they exert (Griffin 

et al., 1999). Several data suggest that a great antimicrobial potential could be ascribed to the 

oxygenated terpenes (Panizi et al., 1993; Adam et al., 1998; Saroglou et al., 2007). A summary 

of antimicrobial activities of the essential oils of some Hypericum species is shown in Table 4.



Essential oils from plants and in vitro shoot cultures of Hypericum androsaemum L., 
H. perforatum L. and H. undulatum Schousboe ex. Willd.  A. P. Guedes 

50 

Table 4a - Antimicrobial activities of Hypericum essential oils, determined in different in vitro assays as the 

Minimum Inhibitory Concentration (MIC), performed on standard microorganisms 

Hypericum sps Test organism  Antimicrobial 
activity (MIC) Reference 

H. alpinum 

 

Escherichia coli 

Proteus mirabilis 

Agrobacterium tumefaciens 

Pseudomonas aeruginosa 

Pseudomonas tolaasii 

Salmonella enteritidis 

Staphylococcus aureus 

Micrococcus luteus 

Sarcina lutea 

Bacillus cereus 

Candida albicans 

50.0 µg/ml 

no activity 

25.0 µg/ml 

no activity 

50.0 µg/ml 

50.0 µg/ml 

12.5 µg/ml 

12.5 µg/ml 

12.5 µg/ml 

12.5 µg/ml 

no activity 

(Saroglou et al., 
2007) 

H. barbatum 

 

Escherichia coli 

Proteus mirabilis 

Agrobacterium tumefaciens 

Pseudomonas aeruginosa 

Pseudomonas tolaasii 

Salmonella enteritidis 

Staphylococcus aureus 

Micrococcus luteus 

Sarcina lutea 

Bacillus cereus 

Candida albicans 

25.0 µg/ml 

50.0 µg/ml 

25.0 µg/ml 

50.0 µg/ml 

25.0 µg/ml 

25.0 µg/ml 

6.25 µg/ml 

6.25 µg/ml 

6.25 µg/ml 

6.25 µg/ml 

25.0 µg/ml 

(Saroglou et al., 
2007) 

H. canariense 

 

Bacillus cereus var. mycoides 

Micrococcus luteus 

0.05 mg/ml 

0.05 mg/ml 

(Rabanal et al., 
2005) 
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Hypericum sps Test organism  Antimicrobial 
activity (MIC) Reference 

H. canariense 

(cont) 

Staphylococcus aureus 

Staphylococcus epidermis 

Bordetella bronchiseptica 

0.05 mg/ml 

0.11 mg/ml 

0.11mg/ml 
H. coris Escherichia coli 

Enterococcus hirae 

Staphylococcus aureus 

Candida albicans 

Saccharomyces cerevisiae  

no activity 

no activity 

CI 100µg/ml 

no activity 

CI 100µg/ml 

(Schwob et al., 
2002) 

H. glandulosum Bacillus cereus var. mycoides 

Micrococcus luteus 

Staphylococcus aureus 

Staphylococcus epidermis 

Bordetella bronchiseptica 

0.22 mg/ml 

0.15 mg/ml 

0.09 mg/ml 

0.22 mg/ml 

0.11mg/ml 

(Rabanal et al., 
2005) 

H. grandifolium Bacillus cereus var. mycoides 

Micrococcus luteus 

Staphylococcus aureus 

Staphylococcus epidermis 

Bordetella bronchiseptica 

0.05 mg/ml 

0.11 mg/ml 

0.09 mg/ml 

0.15 mg/ml 

0.18 mg/ml 

(Rabanal et al., 
2005) 

H. hirsutum 

 

 

 

 

 

 

 

Escherichia coli 

Proteus mirabilis 

Agrobacterium tumefaciens 

Pseudomonas aeruginosa 

Pseudomonas tolaasii 

Salmonella enteritidis 

Staphylococcus aureus 

Micrococcus luteus 

50.0 µg/ml 

no activity 

50.0 µg/ml 

no activity 

50.0 µg/ml 

50.0 µg/ml 

25.0 µg/ml 

25.0 µg/ml 

(Saroglou et al., 
2007) 
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Hypericum sps Test organism  Antimicrobial 
activity (MIC) Reference 

H. hirsutum 

(cont.) 

 

Sarcina lutea 

Bacillus cereus 

Candida albicans 

12.5 µg/ml 

12.5 µg/ml 

 no activity 
H. maculatum Escherichia coli 

Proteus mirabilis 

Agrobacterium tumefaciens 

Pseudomonas aeruginosa 

Pseudomonas tolaasii 

Salmonella enteritidis 

Staphylococcus aureus 

Micrococcus luteus 

Sarcina lutea 

Bacillus cereus 

Candida albicans 

25.0 µg/ml 

50.0 µg/ml 

25.0 µg/ml 

25.0 µg/ml 

25.0 µg/ml 

25.0 µg/ml 

12.5 µg/ml 

12.5 µg/ml 

12.5 µg/ml 

12.5 µg/ml 

50.0 µg/ml 

(Saroglou et al., 
2007) 

Escherichia coli 

Proteus mirabilis 

Agrobacterium tumefaciens 

Pseudomonas aeruginosa 

Pseudomonas tolaasii 

Salmonella enteritidis 

Staphylococcus aureus 

Micrococcus luteus 

Sarcina lutea 

Bacillus cereus 

Candida albicans 

25.0 µg/ml 

50.0 µg/ml 

25.0 µg/ml 

50.0 µg/ml 

25.0 µg/ml 

25.0 µg/ml 

12.5 µg/ml 

12.5 µg/ml 

12.5 µg/ml 

12.5 µg/ml 

50.0 µg/ml 

(Saroglou et al., 
2007) 

H. perforatum 

 

 

 

 

 

 

 

 

 

 
Aspergillus niger 15.0 µg/ml (Rančcić et al., 

2005) 
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Hypericum sps Test organism  Antimicrobial 
activity (MIC) Reference 

H. perforatum 

(cont.) 

Aspergillus flavus 

Cladosporium cladosporioides 

Penicillium funiculosum 

Trichoderma viride 

15.0 µg/ml 

15.0 µg/ml 

15.0 µg/ml 

15.0 µg/ml 
Staphylococcus aureus 

Staphylococcus epidermidis 

Escherichia coli 

Enterobacter cloacae 

Klebsiella pneumoniae 

Pseudomonas aeruginosa 

Candida albicans 

C. tropicalis 

C. glabrata 

7.83 mg/ml 

11.2 mg/ml 

3.8 mg/ml 

17.2 mg/ml 

9.3 mg/ml 

7.35 mg/ml 

6.34 mg/ml 

5.25 mg/ml 

4.75 mg/ml 

(Couladis et al., 
2003) 

H. rumeliacum  

Escherichia coli 

Proteus mirabilis 

Agrobacterium tumefaciens 

Pseudomonas aeruginosa 

Pseudomonas tolaasii 

Salmonella enteritidis 

Staphylococcus aureus 

Micrococcus luteus 

Sarcina lutea 

Bacillus cereus 

Candida albicans 

25.0 µg/ml 

50.0 µg/ml 

25.0 µg/ml 

25.0 µg/ml 

25.0 µg/ml 

25.0 µg/ml 

6.25 µg/ml 

12.5 µg/ml 

6.25 µg/ml 

12.5 µg/ml 

25.0 µg/ml 

(Saroglou et al., 
2007) 
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Table 4b - Antimicrobial activities of Hypericum essential oils on standard microorganisms in different in 

vitro assays evaluated by the zone of inhibition (mm). 

Hypericum sps Test organism  Antimicrobial 
activity (mm) Reference 

H. perforatum Candida albicans  

Escherichia coli  

Micrococcus luteus  

Pseudomonas tolaasii  

Salmonella enteritidis 

Salmonella typhimurium 

Staphylococcus aureus 

Staphylococcus epidermidis 

5 mm (2.5µl) 

7 mm (1µl) 

6 mm (1µl) 

3 mm (1µl) 

4 mm (1µl) 

4 mm (1µl) 

5 mm (1µl) 

4 mm (1µl) 

(Rančcić et al., 
2005) 

H. scabrum Escherichia coli K12 

Escherichia coli PBR322 

Escherichia coli PUC9 

Bacillus brevis ATCC 

Bacillus cereus DM65 

Streptococcus pyogenes DM41 

Pseudomonas aeruginosa DMC66 

Staphylococcus aureus DMC70 

Candida albicans DM31 

18 mm (40µg/disc) 

10 mm (40µg/disc) 

14 mm (60µg/disc) 

10 mm (40µg/disc) 

14 mm (60µg/disc) 

10 mm (60µg/disc) 

16 mm (40µg/disc) 

16 mm (40µg/disc) 

18 mm (60µg/disc) 

(Kızıl et al., 
2004) 

H. scabroides 

 

 

 

 

 

 

Escherichia coli K12 

Escherichia coli PBR322 

Escherichia coli PUC9 

Bacillus brevis ATCC 

Bacillus cereus DM65 

Streptococcus pyogenes DM41 

Pseudomonas aeruginosa DMC66 

16 mm (40µg/disc) 

16 mm (40µg/disc) 

20 mm (40µg/disc) 

12 mm (40µg/disc) 

10 mm (60µg/disc) 

10 mm (40µg/disc) 

14 mm (40µg/disc) 

(Kızıl et al., 
2004) 
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Hypericum sps Test organism  Antimicrobial 
activity (mm) Reference 

H. scabroides 

(cont.) 

Staphylococcus aureus DMC70 

Candida albicans DM31 

10 mm (40µg/disc) 

16 mm (40µg/disc) 
H. triquetrifolium Escherichia coli K12 

Escherichia coli PBR322 

Escherichia coli PUC9 

Bacillus brevis ATCC 

Bacillus cereus DM65 

Streptococcus pyogenes DM41 

Pseudomonas aeruginosa DMC66 

Staphylococcus aureus DMC70 

Candida albicans DM31 

12 mm (60µg/disc) 

10 mm (40µg/disc) 

10 mm (40µg/disc) 

10 mm (40µg/disc) 

12 mm (40µg/disc) 

12 mm (60µg/disc) 

12 mm (40µg/disc) 

16 mm (40µg/disc) 

12 mm (40µg/disc) 

(Kızıl et al., 
2004) 

H. hyssopifolium 
var. 
microcalcynum 

Escherichia coli K12 

Escherichia coli PBR322 

Escherichia coli PUC9 

Bacillus brevis ATCC 

Bacillus cereus DM65 

Streptococcus pyogenes DM41 

Pseudomonas aeruginosa DMC66 

Staphylococcus aureus DMC70 

Candida albicans DM31 

14 mm (40µg/disc) 

10 mm (40µg/disc) 

8 mm (40µg/disc) 

16 mm (60µg/disc) 

10 mm (40µg/disc) 

14 mm (60µg/disc) 

12 mm (40µg/disc) 

12 mm (40µg/disc) 

12 mm (40µg/disc) 

(Toker et al., 
2006) 
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Table 4c - Antimicrobial activities of Hypericum essential oils on standard microorganisms in different in 

vitro assays evaluated by % of inhibition 

Hypericum sps Test organism  Antimicrobial 
activity (% Inhibition) Reference 

H. linarioides Alternaria solani 

Fusarium acuminatum 

Fusarium culmorum 

Fusarium equiseti 

Fusarium oxysporum 

Fusarium sambucinum 

Fusarium solani 

Verticillium albo-atrum 

Rhizoctonia solani AG-5 

Rhizoctonia solani AG-9 

Rhizoctonia solani AG-11 

1% (2.5 mg/ml) 

0% (5 mg/ml) 

13.6% (5 mg/ml) 

0% (5 mg/ml) 

0% (5 mg/ml) 

9.6% (5 mg/ml) 

0% (5 mg/ml) 

36.0% (5 mg/ml) 

4.8% (2.5 mg/ml) 

87.5% (5 mg/ml) 

11.3% (2.5 mg/ml) 

(Cakir et al., 
2005) 

H. heterophyllum Rhizoctonia solani AG-3 

Rhizoctonia solani AG-4 

Rhizoctonia solani AG-5 

Rhizoctonia solani AG-9 

Rhizoctonia solani AG-11 

Fusarium oxysporum 

Fusarium culmorum 

Fusarium sambucinum 

Fusarium solani 

Fusarium acuminatum 

0% (5 mg/ml) 

29% (1 mg/ml) 

32% (2.5 mg/ml) 

12% (5 mg/ml) 

64% (2.5 mg/ml) 

0% (5 mg/ml) 

17% (1 mg/ml) 

4% (1 mg/ml) 

7% (0.5 mg/ml) 

33% (0.5 mg/ml) 

(Cakir et al., 
2004) 

H. hyssopifolium 

 

 

Rhizoctonia solani AG-3 

Rhizoctonia solani AG-4 

Rhizoctonia solani AG-5 

0% (5 mg/ml) 

11% (0.5 mg/ml) 

38% (2.5 mg/ml) 

(Cakir et al., 
2004) 
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Hypericum sps Test organism  Antimicrobial 
activity (% Inhibition) Reference 

H. hyssopifolium 

(cont.) 

Rhizoctonia solani AG-9 

Rhizoctonia solani AG-11 

Fusarium oxysporum 

Fusarium culmorum 

Fusarium sambucinum 

Fusarium solani 

Fusarium acuminatum 

6% (5 mg/ml) 

46% (5 mg/ml) 

6% (5 mg/ml) 

15% (0.5 mg/ml) 

0% (5 mg/ml) 

4% (0.5 mg/ml) 

39% (1 mg/ml) 
 

It is likely that the antimicrobial properties of the Hypericum essential oils are due in a 

great part to the presence of α-pinene, β-pinene and (E)-caryophyllene, as these compounds are 

known for their antimicrobial effects (Aligiannis et al., 2001; Mourey et al., 2002; Cakir et al., 

2004; Costa et al., 2008). As these compounds are widely found in the essential oils of 

Hypericum, it is not surprising to see many reports on antimicrobial activities of species of this 

genus (Gudžić et al., 1997; Schwob et al., 2002; Couladis et al., 2003; Cakir et al., 2004; Cakir 

et al., 2005; Schwob et al., 2006; Toker et al., 2006; Saroglou et al., 2007). Anti-inflammatory 

and anticarcinogenic activities have been attributed to (E)-caryophyllene (Zheng et al., 1992; 

Martin et al., 1993; Kubo et al., 1996; Tambe et al., 1996). The monoterpene hydrocarbon, α-

pinene have also shown to exert anti-inflammatory activity in rats (Martin et al., 1993).  

 

 

3.3- Antiangiogenetic effect 
 

Recently, antiangiogenetic activity of essential oil of Hypericum perforatum has been 

demonstrated using the chicken chorio allantoic membrane (CAM) assay (Demirci et al., 2008). 

The essential oils at various concentrations (5-50 microgram/pellet) remarkably prevented new 

blood vessel growth in the in vivo chicken embryo compared to standards. Antiangiogenic 

effect of H. perforatum has also been attributed to hyperforin, a phenolic type compound that 

does not take part of the essential oil (Martínez-Poveda B et al., 2005). This compound has 

shown to inhibit angiogenesis both in vitro and in vivo. Thus, hyperforin and essential oil may 
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have potential use in cancer and metastasis inhibition, as well as in treatment of angiogenesis-

related pathologies. 

 

 

3.4- Antioxidant activity 
 

Antioxidant and inhibitory activity of acetylcholinesterase were shown in assays 

performed with essential oils of Hypericum undulatum (Ferreira et al., 2006). According to the 

authors, further investigations should be done with this essential oils to evaluate its potential 

use in preventing or alleviating patients suffering from Alzheimer’s Disease (Ferreira et al., 

2006).  

 

4- Biological Activities of Hypericum Extracts 

The most of the pharmacological properties described in the previous section related 

with Hypericum essential oils coincides well with biological activities reported to Hypericum 

crude extracts. Hence, we speculate that at least some of the biological activities exhibited by 

the crude extract should also be present in the essential oils. Here we summarize some of the 

important biological activities of Hypericum crude extract, which have not so far been 

demonstrated with essential oils, but it would be worth to be done. 

 

4.1- Antitumor activity 
 

Hartwell (1970) reported 14 entries referring to Hypericum as a folk remedy for various 

neoplastic conditions in a survey on the use of plants for the treatment of cancer (Hartwell, 

1970). Thus, in the last years, Hypericum extracts have been investigated for their potential use 

as antitumor agent. Antiproliferative activity of crude methanolic extracts of H. caprifoliatum 

Cham. & Schlecht., H. carinatum Griseb., H. connatum Lam., H. myrianthum Cham. & 

Schlecht., H. polyanthemum Klotzsch ex Reichardt and H. ternum A. St. Hil. were tested 

against two cell lines (HT-29 human colon carcinoma cells and H-460 non-small cell lung 

carcinoma). The most active crude methanolic extracts were those from H. caprifoliatum, H. 

myrianthum and, to a lesser extent, from H. connatum (Ferraz et al., 2005a). H. perforatum 

extracts (commercially available St. John’s wort preparations) showed potential 

anticarcinogenic effect, since they functioned as potent inhibitors of the major human 
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procarcinogen-activating enzyme, the isoform CYP1A1 (Schwarz et al., 2003). These extracts 

should be also evaluated for cancer chemopreventive potential. Different antiproliferative 

effects of Hypericum methanolic extracts on leukemia cell lines (K562 and U937), human colon 

carcinoma cells (HT-29) and non-small cell lung carcinoma (H-460) were also reported 

(Hostanska et al., 2003a; Ferraz et al., 2005a). 

 

4.2- Antioxidant activity 
 

The actual knowledge that reactive oxygen species are involved in the genesis of several 

diseases, such as arteriosclerosis, rheumatism, some cancers and ageing has prompted the 

search for new antioxidants (Heilmann et al., 2003). Thus, there is an increasing demand for 

phytochemicals with antioxidative activity, not only plant extracts but also isolated compounds. 

The high amount of phenolic compounds produced by Hypericum species makes their extracts 

very interesting in terms of potential antioxidant activity. H. barbatum Jacq., H. hirsutum L., H. 

linarioides Bosse, H. maculatum Crantz, H. olympicum L., H. perforatum L., H. richeri Vill., 

H. rumeliacum Boiss. and H. tetrapterum Fries crude methanolic extracts have been tested for 

their antioxidant activity (Radulovic et al., 2007). According to the authors, all the extracts of 

the Hypericum species studied possess a significant antioxidant activity; however it was 

particularly high in the crude methanolic extracts of H. perforatum flowers, followed closely by 

aerial parts of H. barbatum. The antioxidant activity of ethanolic extracts of H. perforatum has 

also been demonstrated (Silva et al., 2005). Methanolic extracts of Hypericum rumeliacum 

Boiss. also revealed antioxidant activity (Galati et al., 2008). 

H. triquetrifolium, is another species of the genus, whose water and methanol extracts 

had significant antioxidant activities (Conforti et al., 2002; Tawaha et al., 2007). Ethanol and 

water extracts of the flowers of H. venustum showed a strong reducing power, free radicals and 

hydrogen peroxide scavenging activity (Spiteller et al., 2008). Amongst 21 species of medicinal 

plants widely used in Bulgaria, extracts of H. perforatum prepared as infusions with water, 

showed considerable antioxidant activity (Ivanova et al., 2005). Various extracts from H. 

undulatum, such as essential oils, decoctions and ethanolic extracts showed inhibitory activity 

of acetylcholinesterase and antioxidant activity, demonstrating that it may help to prevent or 

alleviate patients suffering from Alzheimer’s Disease (Ferreira et al., 2006). Water and 

methanol extracts of H. triquetrifolium, from Jordania, revealed high antioxidant activities, 

concomitant with high amounts of phenolic compounds. Significant antioxidant activity has 

also been attributed to methanolic extracts of H. triquetrifolium (Conforti et al., 2002). 
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4.3- Antiviral activity 
 

Schmitt and co-workers (2001) tested aqueous and methanolic extracts of H. connatum, 

H. caprifoliatum and H. polyanthemum for their antiviral activity against feline 

immunodeficiency virus (FIV). Feline immunodeficiency virus (FIV) is a causative agent of 

acquired immunodeficiency syndrome (AIDS)-like disease in cats. The fact that FIV has 

similarity to HIV-1 in many molecular and biochemical properties, and the pathogenesis of FIV 

infection is thought to be similar to that of HIV infection makes it an attractive model for AIDS 

research. From the three plants studied only H. connatum, used in traditional medicine, showed 

activity against FIV (Schmitt et al., 2001). Antiviral activity against herpes simplex viruses 

(HSV) was also shown in crude methanolic extracts of H. connatum (Fritz et al., 2007). 

 

4.4- Wound-healing and anti-inflammatory activities 
 

Besides the above mentioned, several other biological activities have been attributed to 

the Hypericum extracts. Wound-healing activity of H. perforatum was recently shown, when 

their alcoholic extracts were incubated with chicken embryonic fibroblasts from fertilized eggs 

(Öztürk et al., 2007). The authors found that the mechanism of action of these extracts was 

similar to that of titrated extract of Centella asiatica, which is used in Europe in wound healing 

drugs (Maquart et al., 1999). Indeed, both extracts seemed to stimulate collagen synthesis in 

fibroblast cultures and increase the tensile strength of tissues. 

Analgesic and topical anti-inflammatory activities in mice were also reported for 

methanol extracts of three other Hypericum species, H. reflexum, H. canariense L, and H. 

glandulosum Ait. (Rabanal et al., 2005; Sánchez-Mateo et al., 2006). Furthermore, the 

methanol extracts of H. perforatum, H. empetrifolium, H. triquetrifolium and H. rumeliacum 

have been shown to exhibit anti-inflammatory activity (Apaydin et al., 1999; Öztürk et al., 

2002; Galati et al., 2008). Analgesic activity was also attributed to the H. empetrifolium extracts 

(Trovato et al., 2001). 
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5- Biotechnology in Hypericum Essential Oil Improvement 
 

The composition of essential oils depends on climatic and pedological conditions, plant 

organ and vegetative cycle stage. Thus, it is of uppermost importance to characterize the 

essential oils composition as well as the influence of the referred parameters on its quality, in 

order to obtain essential oils of constant composition. According to Bakkali (2008), this could 

only be possible if essential oils are extracted under the same conditions from the same organ of 

the plant which has been growing on the same soil, under the same climate and has been picked 

in the same season. 

However, one possible alternative to conventional agriculture practices for the 

production of essential oils could be the use of in vitro cultures (Rao et al., 2002; Lila, 2005). 

This technology mostly offers the possibility of having a controlled system of production, 

ensuring a continuous supply of products with uniform quality and yield (Lila, 2005). To the 

best of our knowledge, essential oils composition upon in vitro cultures has been reported only 

in H. androsaemum (Guedes et al., 2003). In the essential oils isolated from shoots of H. 

androsaemum, sesquiterpene hydrocarbons was the major group of compounds, representing 

more than 80% of the total essential oil. Its major constituent was γ-muurolene (15% of the total 

essential oil) (Guedes et al., 2003). 

Genetic transformation methods can also be used to improve the essential oils content. 

Transformation is currently used for genetic manipulation of major economic crops, vegetables, 

ornamental, medicinal, fruit, tree and pasture plants, using Agrobacterium-mediated or direct 

transformation methods (Riva et al., 1998). Genetic transformation on species of Hypericum 

has only been performed in H. perforatum. A successful protocol of particle bombardment-

mediated transformation for H. perforatum L. has been reported (Franklin et al., 2007). 

According to the authors, this species remains highly recalcitrant towards Agrobacterium-

mediated transformation. Further data have shown a reduction of Agrobacterium-viability when 

in contact with H. perforatum cells. Possibly, this can be due to the activation of defence 

mechanisms of the plant cells against the bacteria (Franklin et al., 2008). The establishment of 

successful transformation procedures and the knowledge of biosynthetic pathways of useful 

secondary metabolites can make possible the modulation of its production. In the last decades, 

great progress has been made in the elucidation of plant terpenoids biosynthetic pathways at the 

gene and enzyme levels. Indeed, Metabolic Engineering is seen as a powerful tool to improve 

secondary metabolites production. For Hypericum essential oils, the knowledge of the enzymes 

involved in the production of its compounds as well as their regulatory mechanisms can 
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possibly lead to the increase in the production of essential oils with higher amount of the 

desirable compounds. For instance, (E)-caryophyllene, one of the major constituents of 

essential oils of some Hypericum species, should be an interesting molecule to increase 

production due to its abovementioned pharmacological activities. Moreover, the enzyme 

responsible for its synthesis, (E)-caryophyllene synthase, has already been isolated and 

characterized in several species (Artemisia annua (Cai et al., 2002), Arabidopsis thaliana (Chen 

et al., 2003) and Cucumis sativus (Mercke et al., 2004). Different approaches can be used in 

order to modulate its production, such as over-expression of genes involved in the production of 

the desirable compounds, manipulation of transcription factors controlling the expression of 

cascades of genes, or even the identification of tissue/organ-specific promoters (Lange et al., 

1999; Mahmoud et al., 2002). 

 

 

6- Conclusion 
 

Hypericum is an important genus containing a vast array of secondary metabolites 

distributed by water, alcoholic extracts and essential oils. Although essential oil composition of 

several Hypericum species has been reported, its pharmacological studies are scarce. 
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3.1- Chapter overview 
 

In Portugal, wild Hypericum androsaemum L. plants are air dried and commercialized 

to be taken as infusion, being widely used in folk medicine. Because of the intensive harvesting, 

this population is in risk of disappearing, namely in the Peneda-Gerês National Park. In order to 

meet the needs of the consumers, this species was included in a Portuguese programme of 

integrated research and exploitation of medicinal plants, including the establishment of four 

pilot plants at different sites of the northern region of Portugal. Additionally, we have coming 

to perform the respective micropropagation, for helping in the restock of the species population, 

and the respective essential oils characterization for a better knowledge of this species and for 

quality control. 

From the few phytochemical studies performed in plants of this species most of them 

concerned the composition of its phenolic extracts (Nielsen et al., 1979; Seabra et al., 1989; 

Seabra et al., 1990; Kitanov et al., 1998; Dias et al., 1999), being scarce the ones related to 

essential oils production (Mathis et al., 1964a; Mathis et al., 1964b; Carnduff et al., 1966; 

Nogueira et al., 1998). Phytochemical analysis of in vitro cultures have already been reported, 

but only regarding the phenolic component of calli and cell suspensions (Dias et al., 1999; Dias 

et al., 2000). 

In order to characterize the essential oils of the species and to understand the influence 

of different factors on its composition, we analyzed, by GC-MS and GC (i) essential oils 

accumulated in the aerial part of in vivo H. androsaemum plants, cultivated at two different 

places, over a year, with interval of 2 months; (ii) essential oils isolated from different organs of 

the plant (leaves, stems and ripened seed capsules) and; (iii) essential oils produced by in vitro 

shoots. 

Our results showed that stems were the organ with the lowest essential oil yield and 

narrowest range of compounds while the essential oil from leaves was the most complex. The 

essential oil yield from in vitro shoots was identical to the minimum one registered in the aerial 

parts of the plant; while the highest yield was registered in the essential oils of ripened seed 

capsules. Most of the compounds of the essential oils were identified resulting in extensive lists 

of essential oils composition. Apart from ripened seed capsules, in which monoterpene 

hydrocarbons was the major group of compounds, all the studied essential oils of this species 

were characterized by high levels of sesquiterpene hydrocarbons. Essential oils from plants 

collected during the winter, in the two experimental fields, had the highest accumulation of 
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sesquiterpene hydrocarbons, as well as the highest number of long chain n-alkanes and 1-

alkenes. Differences were found in the major constituents of the essential oils studied. 

(Ε)−Caryophyllene, β-gurjunene, γ-muurolene, (E)-γ-bisabolene and γ-elemene were the main 

compounds responsible for the variations of the sesquiterpene hydrocarbons contents over the 

year in the essential oils of plants of H. androsaemum. The essential oils of the aerial parts and 

leaves shared (Ε)−caryophyllene as one of their major compounds; γ-elemene was common to 

essential oils of in vitro shoots, stems and aerial parts, and α-pinene, β-pinene and limonene 

were the major ones in the ripened seed capsules. 

The work herein reported shows that the complex essential oils composition from H. 

androsaemum is season- and organ-dependent, being also influenced by in vivo or in vitro 
growth conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 
Figure 1 – a) Cultivated plants of Hypericum androsaemum L. b) and c) In vitro plantlets of Hypericum 

androsaemum grown on MS medium supplemented with 0.8 mg/L IAA and 0.5 mg/L KIN. 
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Abstract 
 

The amount and composition of the essential oil from leaves of Hypericum 

androsaemum L. cultivated in Arouca (Portugal) were determined in six samples harvested 

during 1 year at intervals of 2 months. The seasonally dependent essential oil content ranged 

from 0.7 mg/g biomass dry weight in September to 3.4 mg/g in February. The oil contained 

more than 80 compounds, 70 of which (constituting 88–93% of the total oil) were identified by 

GC and GC-MS. An approximation of the absolute quantification of each compound and 

compound class was performed using a GC method with an internal standard. The relative and 

the absolute content of each compound and compound class changed during the year. At the end 

of the winter and in the spring, the essential oil was dominated by sesquiterpene hydrocarbons 

and accumulated a high number of intermediate to long chain n-alkanes and 1-alkenes. In 

September, the essential oil contained the lowest levels of sesquiterpene hydrocarbons (43%) 

and the highest levels of 1-octene and 2-hexenal (38%). In February, the essential oil had the 

highest level of sesquiterpene hydrocarbons (73%) and the highest diversity of intermediate to 

long chain n-alkanes and 1-alkenes. Copyright © 2004 John Wiley & Sons, Ltd. 

 

Keywords: Hypericum androsaemum, essential oils, sesquiterpenes, n-alkanes 

 

Introduction 
 

Hypericum androsaemum L. has been widely used in Portugal in folk medicine as 

cholagogue, a hepatoprotector and a diuretic and also in kidney failure (Costa, 1987; Seabra et 

al., 1992). In Portugal, H. androsaemum grows in the wild in shady sites, and especially in the 
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National Park of Peneda-Gerês where the native population is in danger of extinction owing to 

intensive harvesting. After harvesting, the wild plants are typically air dried and commercialised 

as an infusion. In order to meet the needs of consumers, this species was included in a 

Portuguese programme of integrated research and exploitation of medicinal plants which 

involved the establishment of four pilot plants at different sites in the northern region of 

Portugal. 

The chemical characterisation of H. androsaemum is of crucial importance since the 

quality control of the commercialised biomass is intended to be based on the analysis of the most 

significant constituents of the essential oil and of the phenolic fraction of the plant. However, to 

our knowledge there are no conclusive data indicating which compounds are responsible for the 

putative medicinal properties ascribed to this species. Most of the recent phytochemical reports 

about H. androsaemum concern the composition of phenolic extracts. Phenolic acids and 

flavonoids (Seabra et al., 1989; Seabra et al., 1990; Seabra et al., 1992; Dias et al., 1999) as 

well as xanthones (Nielsen et al., 1979) and xanthone C-glucosides (Kitanov et al., 1998) have 

been identified in H. androsaemum. Phenolic acids, flavonoid compounds (Dias et al., 1999) 

and xanthones (Dias et al., 2000) were also identified in in vitro cultures of callus and 

suspended cells of this species. The essential oils of H. androsaemum has been less well 

studied. Nonane, α-pinene, β-pinene, myrcene, limonene, undecane (Mathis et al., 1964a), 

geraniol and α-terpineol (Mathis et al., 1964b) have been reported to be the main constituents 

of the oil, whilst five monoterpene and eight sesquiterpene compounds, along with nonane and 

undecane, were identified in the essential oil by Nogueira et al. (1998). α-Terpineol and 

hydrocarbon waxes (C19H40 C21H44 C23H48), were found in unripe seed capsules (Carnduff et 

al., 1966). However, the available data are somewhat insufficient for the characterisation of the 

essential oil composition of H. androsaemum. 

In this paper we report on the qualitative and quantitative composition of the essential 

oil from aerial parts of cultivated plants of H. androsaemum sampled six times during 1 year at 

intervals of about 2 months. 

 

Experimental 
 

Plant material 

H. androsaemum plants were cultivated during March 1998 at an experimental farm of 

the Direcção Regional de Entre Douro e Minho (DRAEDM), in Arouca (northern Portugal), by 

planting strips of about 15 cm lenght obtained from wild plants growing near Ponte de Lima 
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(Facha, Portugal). A voucher specimen (reference H.a.-A1998) is maintained in the herbarium 

at ERCA/DRAEDM. 

 

Sampling and hydrodistillation of essential oils. 

In order to study the essential oil composition and its possible seasonal variation, 

cultivated plants were randomly pruned in July, September and November 1999, and in 

February, April and June 2000. Subsamples of fresh leaves (ca. 10 g) taken from the biomass 

removed during pruning were subjected to hydrodistillation with 500 mL of boiling water for 1 h 

in a Clevenger type apparatus using 1.0 mL of n-hexane, containing 5 α-cholestane (1 mg/mL), 

to retain the hydrodistilled components. Previous experiments had shown that 1 h was sufficient 

to remove all of the essential oil from 10 g of fresh leaves of H. androsaemum using this 

protocol. 

 

GC analysis. 

The essential oil samples were analysed by GC using a Perkin Elmer (Boston, MA, 

USA) Autosystem chromatograph equipped with a fused silica DB-5 (J & W Scientific, Folsom, 

CA, USA) column (30 m × 0.25 i.d.; 0.25 µm film thickness; 50% phenyl methylpolysiloxane as 

stationary phase). The oven temperature was increased at a rate of 3°C/min from 60–285°C; the 

injector was maintained at 300°C and the flame ionisation detector (FID) was at 320°C. 

Hydrogen was used as carrier gas at a flow rate of 1.49 mL/min under a column head pressure of 

12.5 psi. Injections were performed in the split mode (1:13 split ratio). Three replicates of each 

sample were analysed and the percentage values of the listed compounds correspond to the 

values given in the GC report without correction factors. Percentage deviations for each sample 

were ≤10%, even for the most volatile components such as 1-octene and n-nonane. 

Following the procedure reported earlier for Salvia officinalis (Santos-Gomes and 

Fernandes-Ferreira, 2001), 5α−cholestane was used as an internal standard for estimation of the 

specific content of each essential oil component. The use of the internal standard allowed for the 

differential responses of the FID and for discrimination of the essential oil components at the 

column inlet owing to the injector split ratio. Considering that the determination of individual 

correction factors is impracticable because of the large number of compounds present and the 

non-availability of commercial standards of many of them, compounds belonging to each of four 

classes of terpenoids, i.e. monoterpene hydrocarbons (MH), oxygenated monoterpenes (MO), 

sesquiterpene hydrocarbons (SH) and oxygenated sesquiterpenes (SO), were assumed to have 
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the same quantitative GC correction factor. Three replicates of mixtures with equal amounts of 5 

α-cholestane and limonene (MH), camphor (MO), (E)-caryophyllene (SH) and (E,E)-farnesol 

(SO) were prepared and each was analysed in triplicate. The respective average correction 

values, adjusted for the known level of purity of each reference compound, namely, limonene 

0.74, camphor 1.01, (E)-caryophyllene 0.75 and (E,E)-farnesol 1.02, were used as GC correction 

factors for each of the compounds in the corresponding class. A correction factor of 1 was 

assumed for compounds that did not belong to any of these classes such as the n-alkanes and 1-

alkenes. Using the generalised response factors for compounds within the five classes, the 

derived quantitative data expressed in mg/g dry weight may be considered as an approximation 

of the absolute quantification. The sum of the specific contents of all individual essential oil 

compounds was taken as a parameter for the estimation of the total specific essential oil yield. 

 

GC-MS analysis and identification of the compounds. 

The essential oils from all samples were analysed by GC-MS using a Perkin-Elmer 8500 

gas chromatograph equipped with a fused silica DB-5 column with a stationary phase similar to 

that described above and connected to a Finnigan MAT (San Jose, CA, USA) ion trap detector 

(ITD) running the manufacturer’s software (version 4.1) and operating in EI mode at 70eV. 

Injector, interface and ion-source temperatures were 300, 260 and 220º C, respectively, whilst 

the oven temperature program and the injection conditions were as described above for GC. 

Helium was used as the carrier gas with a column head pressure of 12.5 psi. The identification 

of the compounds was performed with the help of MS libraries and confirmed by at least two 

alternative methods according to the recommendations of the International Organization of the 

Flavour Industry (1991). For compounds available as commercial standards (from Sigma, St. 

Louis, MO, USA), confirmation of identity was made by comparison of GC and GC-MS and 

retention times, and of the respective MS with those of reference compounds. The identities of 

those compounds not commercially available (indicated by an asterisk in Table 1) were 

confirmed using the terpene library incorporated into the computer data base by the GC-MS 

manufacturer, which allowed the comparison of MS from ITD and retention times on a DB-5 

column, and by comparison with the published values (Adams, 1989; Adams, 2001) of the 

retention times and retention indices of compounds analysed under similar conditions on a DB-

5 column. 
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Results and Discussion 
 

The essential oil content of leaves of H. androsaemum plants cultivated at Arouca 

(Portugal) rose from a minimum of 0.7 mg/g dry weight in September 1999, to a maximum of 

3.4 mg/g dry weight in February 2000 (Fig. 1), these yields are comparable with those (0.6-1.4 

mg/g dry weight) reported by Mathis and Ourisson (1964c). The decrease in the essential oil 

content over the spring and summer period coincided with the highest growth of biomass 

(results not shown). 

 

 

 

 

 

 

 

 

 
Figure 1 - Total essential oil content (mg/g dry weight) of leaves of Hypericum androsaemum plants cultivated at Arouca 

(Portugal) and harvested at different times during one year. 

 

The composition of the essential oil obtained by hydrodistillation included more than 80 

compounds, 70 of which (corresponding to 88–93% of the total oil) were identified (Table 1). 

The unidentified compounds included five sesquiterpene hydrocarbons and three oxygen-

containing sesquiterpenes. The majority of the compounds could be assigned to six different 

classes: monoterpene hydrocarbons (MH), oxygen-containing monoterpenes (MO), 

sesquiterpene hydrocarbons (SH), oxygen-containing sesquiterpenes (SO), and n-alkenes/1-

alkenes. The percentage of each of these classes present in the oil varied from one sample to 

another (Table 1), although SH constituted the main component class accounting for more than 

50% of the oil content in five of the six samples (Table 1). Sesquiterpenes have already been 

considered to be the main components of the essential oil of this species (Nogueira et al., 1998) 

and, despite the fact that the identities of most of them were unknown, responsible for its 

specific aroma (Nogueira et al., 1999). 
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Table 1 - Composition (%) of the essential oils from plants of Hypericum androsaemum L. cultivated at Arouca, 

Portugal. 

Compound RI July 99 Sept. 99 Nov. 99 Feb. 00 April 00 June 00

1-Octene 792 2.0 19.1 1.8 2.2 3.6 8.6 

(E)-2-Hexenal 854 8.6 19.3 7.0 5.4 7.2 6.4 

n-Hexanol 869 0.4 0.3 0.2 0.1 0.2 0.2 

n-Nonane 900 9.1 2.4 4.0 0.6 5.2 6.0 

α-Thujene 931 0.4 0.2 0.1 0.1 tr 0.2 

α-Pinene 939 0.3 0.4 0.4 0.3 0.4 0.8 

2,6-Dimethyloctaned 970 1.3 0.3 0.4 0.2 0.2 0.3 

β-Pinene 980 2.2 2.1 1.9 1.7 2.5 3.6 

Myrcene 991 0.2 0.3 0.4 0.2 0.2 0.4 

Limonene 1030 1.6 2.3 2.4 1.6 2.0 4.0 

1,8-Cineole 1033 0.0 tr 0.1 0.1 - - 

E-β-Ocimene 1051 0.2 0.7 1.0 0.2 0.4 0.8 

γ-Terpinene 1060 tr 0.2 0.2 0.1 0.1 0.2 

Terpinolene 1090 0.2 1.4 1.9 0.5 0.6 1.7 

Undecane 1100 1.6 0.2 0.5 0.1 0.2 1.0 

α-Thujone 1104 1.7 tr 0.6 0.4 0.2 1.0 

β-Thujone 1115 - - 0.1 0.1 - - 

Camphor 1146 tr tr 0.1 0.1 - - 

δ-Elemene* 1337 0.2 0.3 1.4 0.3 0.4 0.3 

α-Terpinyl acetate* 1350 0.1 0.3 0.2 0.1 0.1 0.2 

α-Ylangene* 1374 tr - - 0.1 tr tr 

α-Copaene 1378 0.1 tr 0.1 0.1 0.1 tr 

β-Bourbonene* 1387 0.1 tr 0.1 0.2 0.1 0.2 

C15H24 1388 0.2 tr 0.1 0.4 0.2 0.2 

β-Elemene* 1391 1.6 1.0 1.3 2.8 2.5 1.9 

(Ε)-Caryophyllene 1419 13.7 9.0 17.0 13.5 13.4 11.4 

cis-Thujopsene 1430 0.4 0.3 0.3 0.5 0.5 0.3 

β-Gurjunene 1432 13.2 7.9 10.6 14.7 14.8 11.2 

α-trans-Bergamotene* 1435 0.1 - 0.1 0.1 tr 0.1 

α-Guaiene* + β-Humulene 1440 + 1439 0.1 tr 0.2 0.1 0.1 tr 

C15H24 1447 3.2 2.6 3.9 2.9 3.0 2.9 

α-Humulene 1454 0.1 tr 0.1 0.2 0.1 0.1 

Allo-Aromadendrene 1459 tr - tr 0.1 tr tr 

Germacrene D isomer (?)e 1462 tr - - 0.2 - - 

β-Chamigrene 1478 tr tr tr tr tr tr 
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Compound RI July 99 Sept. 99 Nov. 99 Feb. 00 April 00 June 00

γ-Muurolene* 1481 2.5 1.9 3.0 3.7 3.2 2.9 

Germacrene D* + γ-Curcumene* 1485 + 1484 9.0 5.0 8.2 7.6 7.7 4.3 

β-Selinene* 1488 0.8 0.3 0.8 0.9 0.6 0.9 

α-Selinene* 1497 0.2 0.6 0.1 0.1 0.1 0.1 

Germacrene B (?)f 1498 0.8 0.5 0.9 1.1 0.5 0.7 

α-Zingiberene* 1499 0.6 0.4 0.5 0.6 0.5 0.4 

C15H24 1500 0.7 tr 0.1 0.2 0.2 0.2 

α-Muurolene* 1502 0.2 tr 0.1 0.1 0.1 tr 

α-(E,E)-Farnesene* 1505 0.1 0.2 1.6 0.2 0.1 0.1 

Z-γ-Bisabolene* 1515 0.1 0.2 0.2 0.5 0.2 0.6 

δ-Cadinene 1523 0.4 0.3 0.5 0.4 0.2 0.4 

E-γ-Bisabolene* 1530 0.9 1.1 1.3 1.8 0.9 2.1 

C15H24 1534 0.4 0.5 0.8 0.5 0.4 0.8 

C15H24 1536 0.9 1.1 1.4 1.8 0.9 2.2 

γ-Elemene (?)f 1554 14.4 9.8 14.2 17.3 17.0 9.3 

Caryophyllene oxide 1581 tr 0.3 0.2 0.3 0.1 0.2 

C15H24O 1601 0.1 0.3 0.2 0.1 0.1 0.2 

C15H24O 1618 0.2 0.4 0.4 0.7 0.5 1.2 

epi-α-Cadinol* 1639 0.2 0.4 0.4 0.9 0.2 0.4 

epi-α-Muurolol* 1642 0.6 1.2 1.0 0.6 0.4 0.5 

δ-Cadinol* 1644 0.8 - - 0.9 0.1 0.2 

C15H24O 1646 0.8 1.3 1.3 0.9 0.7 1.2 

α-Eudesmol* 1652 0.2 - 0.1 0.2 - - 

α-Cadinol* 1655 0.2 0.5 0.5 0.4 0.4 0.8 

epi-α-Bisabolol* 1677 tr tr 0.1 0.2 tr 0.2 

8-Cedrane-13-al (?)d 1691 0.1 tr 0.1 0.3 0.1 0.2 

n-Eicosane 2000 - - - 0.1 - tr 

1-Heneicosene 2095 - - - tr - - 

n-Heneicosane 2100 - - - 0.1 tr tr 

1-Docosene 2194 - - - 0.1 - - 

n-Docosane 2200 - - - 0.2 0.1 0.2 

1-Tricosene 2295 - - - 0.1 - tr 

n-Tricosane 2300 tr - 0.4 0.7 0.4 0.3 

1-Tetracosene 2395 - - - 0.6 0.1 0.1 

n-Tetracosane 2400 tr - - 0.4 0.1 0.3 

1-Pentacosene 2495 - tr - 0.1 - tr 

n-Pentacosane 2500 tr tr - 1.5 1.3 1.0 
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Compound RI July 99 Sept. 99 Nov. 99 Feb. 00 April 00 June 00

1-Hexacosene 2596 - - - 0.2 0.1 0.1 

n-Hexacosane 2600 - - - 0.2 0.1 0.3 

n-Heptacosane 2700 tr 0.3 - 0.8 1.5 1.0 

1-Octacosene 2797 - 0.9 - 0.1 tr 0.1 

n-Octacosane 2800 - - - 0.1 0.1 - 

n-Nonacosane 2900 tr tr - 0.2 0.6 0.9 

Grouped components        

Monoterpene hydrocarbons  5.2 7.6 8.2 4.7 6.2 11.5 

Oxygen-containing monoterpenes  1.7 tr 0.9 0.7 0.2 1.0 

Sesquiterpene hydrocarbons  65.2 42.8 68.6 72.7 67.6 52.8 

Oxygen-containing sesquiterpenes  3.3 4.3 4.2 5.5 2.8 4.9 

n-Alkanes  10.7 2.9 4.9 4.9 9.6 10.8 

1-Alkenes  2.0 20.1 1.8 3.3 3.9 8.9 

Others  10.5 20.0 7.4 5.8 7.8 7.0 

Unknowns  1.4 2.3 4.0 2.4 1.9 3.1 
a Identifications were confirmed using authentic standards except for compounds marked with an asterisk, whose identifications 
were confirmed by comparison of the respective MS and retention times with those of a terpene library and by comparison with 
retention times and retention indices on a DB-5 column as reported by Adams (1989, 2001). 
b RI, retention index as determined on a DB-5 column using the homologous series of n-alkanes. 
c tr, trace amounts. 
d Tentative identification based on MS only. 
e Identification suggested by the terpene library but not confirmed by other sources. 
f Both MS and retention times match with the corresponding compounds from the terpene library and the respective retention 
times coincide with the corresponding compounds described in Adams (1989). However, according to Adams (2001), the 
retention indexes on a DB-5 column would be higher for germacrene B and lower for γ-elemene. 

 

With the exception of plant sample harvested in September 1999 and June 2000, the four 

main sesquiterpenes, namely (E)-caryophyllene (9.0–17.0%), β-gurjunene (7.9–14.8%), 

curcumene (4.3–9.0%), and the putative γ-elemene (9.3–17.3%), were responsible for more than 

50% of the total essential oil. 1-Octene and 2-hexenal were also present in high amounts, 

especially in samples harvested in September 1999 where these two were the major components 

(Table 1). In samples harvested in spring and in the beginning of summer, n-nonane was also 

among the major constituents of the essential oil. 

With the exception of linalool, α-(E,E)-farnesene and bicyclogermacrene, the 

compounds identified in the present study include those previously reported by Nogueira et al. 

(1998), and six previously identified by Mathis and Ourisson (1964a). However, geraniol and α- 

terpineol, previously reported by Mathis and Ourisson (1964b) as being constituents of the 

essential oil of this species, were not found in our samples. One of the most striking features of 

the essential oil was the accumulation of n-alkanes and 1-alkenes particularly in samples 
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harvested in February, April and June 2000. n-Nonadecane, n-heneicosane, and n-tricosane have 

previously been identified in unripe seed capsules of H. androsaemum (Carnduff et al., 1966), 

and the presence of a complete series of n-alkanes from C16H34 to C29H60 in dried leaf material 

of this species has been reported (Brondz et al., 1983). However, to our knowledge, the presence 

of an almost complete series of n-alkanes, from C20H42 to C29H60, and 1-alkenes within the same 

range, in the essential oil of H. androsaemum has not been reported before. 

The variation in the percentage of total SH in the essential oil of H. androsaemum 

coincided with the variation in the specific content (mg/g) of total SH and the oil as obtained by 

hydrodistillation of the plant material (Fig. 2). 

 

 
Figure 2 - Specific content (mg/g dry weight) and respective percentages of the major classes present in the essential oil 

isolated from leaves of Hypericum androsaemum plants cultivated at Arouca (Portugal) and harvested at different times during 

one year. 

 

In a previous study performed on S. officinalis cultivated at the same experimental site in 

Arouca (Portugal), a similar variation in the SH content of the oil was recorded, although the 

maximum percentage and the maximum specific content were attained in April rather than in 

February (Santos-Gomes et al., 2001). The percentage values of the total MH varied in a manner 

opposite to those of SH, particularly between February and June 2000 during which period the 

percentage were very similar to those of the total amount of n-alkanes and of 1-alkenes (Fig. 2). 

The variations in the specific contents of SH and MH were consistent with the variations of the 
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total essential oil content, while that of the n-alkanes diverged from February to April 2000 and 

that of the 1-alkenes diverged from July to September 1999 (Figs. 1 and 2). The divergence in 

the n-alkanes is mainly explained by the differential accumulation of n-nonane which was 

relatively high in April and low in February 2000 (Fig. 3), whilst the divergence in the 1-alkenes 

was primarily due to the high accumulation of 1-octene in September 1999 (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 - Specific content (mg/g dry weight) of the main representative compounds in the classes (A) monoterpene 

hydrocarbons, (B) sesquiterpene hydrocarbons, and (C) n-alkanes, and 1-alkenes in the essential oil isolated from leaves of 

Hypericum androsaemum plants cultivated at Arouca (Portugal) and harvested at different times during one year. 
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elemene, respectively (Fig. 3). 

According to Quer (1995) plant material of H. androsaemum for herbal use is typically 

harvested in June at which time the five major components of the essential oil of plants 

cultivated at Arouca were, in order of decreasing amount, three sesquiterpenes, namely, (E)-

caryophyllene, β-gurjunene and the putative γ-elemene, together with 1-octene and (E)-2-

hexenal. With respect to the ranking of these five components, the most divergent composition 

was found in the essential oil from samples harvested in September where (E)-2-hexenal and 1-

octene were the first and the second major components followed by the three SH. Additionally 

the essential oil isolated in September showed a very low diversity of intermediate to long chain 

n-alkanes and 1-alkenes in contrast with the oil isolated in June whose diversity with respect to 

these types of compounds was amongst the highest. 

 

In conclusion, it is demonstrated that the composition of the essential oil from H. 

androsaemum changes over the year and is dominated by sesquiterpene hydrocarbons together 

with a high number of intermediate to long chain n-alkanes and 1-alkenes which accumulate at 

the end of winter and during spring. Therefore, the composition of the essential oil of this 

medicinal plant depends largely on the harvest time: in September the essential oil shows a lower 

level of SH (43%) and the highest level of 1-octene and 2-hexenal (38%), whilst in February the 

essential oil contains the highest level of SH (73%) and the highest diversity of intermediate to 

long chain n-alkanes and 1-alkenes. 
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Abstract 
 

The essential oil yields obtained by hydrodistillation of the aerial parts of Hypericum 

androsaemum cultivated plants varied from 0.94 to 4.09 mg/g of biomass dry weight, 

depending of the harvest time. The respective analyses performed by gas chromatography and 

gas chromatography-mass spectrometry revealed more than 80 compounds, 72 of which were 

identified. Most of the compounds were sesquiterpene hydrocarbons, which, depending of the 

harvest time, corresponded to 43-78% of the total essential oil. The other compounds were 

distributed as monoterpene hydrocarbons, oxygen-containing sesquiterpenes, n-alkanes, 1-

alkenes, and oxygen-containing monoterpenes, these being a minor group. In H. androsaemum 

in vitro shoots, sesquiterpene hydrocarbons represented >80% of the respective essential oil. 

Differences in the essential oil composition were found depending on the harvest time and 

origin, in vivo versus in vitro, of the plant material. The essential oil sampled in November was 

characterized by the highest levels of sesquiterpene hydrocarbons and a high number of n-

alkanes and 1-alkenes, from C18 to C28, whereas that sampled in June of the following year 

showed the highest levels of n-nonane and 1-octene as well as monoterpene hydrocarbons, the 

second most representative group. 

 

Keywords: Hypericum androsaemum; in vitro shoots; essential oils; sesquiterpenes 
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Introduction 
 

Hypericum androsaemum L. grows wild in shadowy sites, namely, in the northern 

region of Portugal where it is widely used as a medicinal herb. According to some authors this 

species is used in popular medicinal preparations as a cholagogue, hepatoprotector, and diuretic 

and in kidney failure (1, 2). Usually, in northern Portugal, wild-growing H. androsaemum 

plants are harvested, air-dried, and sold by the local people to tourists, who use it to prepare the 

tea called “hipericão do Gerês”. However, due to intensive harvesting, the local wild 

populations of this species are in risk of disappearing. 

To meet the needs of the consumers, we established four small H. androsaemum 

experimental fields in northern Portugal where the species is being propagated. The respective 

chemical characterization is also one of the objectives of an integrated research and 

development program, which has as its goal to restock the local H. androsaemum populations 

and increase the overall knowledge on this species as well as to support its commercial and 

industrial exploitation. 

Most of the few recent reports on the chemical characterization of this species concern 

the composition of phenolic extracts. Phenolic acids and flavonoids (2-5); as well as xanthones 

(6) and xanthone C-glucosides (7) have been identified in H. androsaemum plants. The 

essential oil of this species has been less studied. Nonane, α-pinene, β-pinene, myrcene, 

limonene, undecane (8) as well as geraniol and α-terpineol (9) were identified as constituents of 

the H. androsaemum essential oil. The presence of α-terpineol and hydrocarbon waxes (C19H40, 

C21H44, and C23H48), in the H. androsaemum unriped seed capsules, was also reported (10). Five 

monoterpene and eight sesquiterpene compounds as well as the n-alkanes nonane and undecane 

were identified in the essential oils of this species (11). However, the available data for 

chemical characterization of the H. androsaemum essential oil are scanty. Less is known on 

metabolites produced by in vitro cultures of this species. Phenolic acids and flavonoid 

compounds (5) and xanthones (12) were identified in in vitro cultures of calli and suspended 

cells of this species. Up to now, however, we have found no studies on essential oils produced 

by in vitro cultures of H. androsaemum. 

In recent years we have performed the micropropagation of H. androsaemum with the 

aim of helping to restock this species. Parallelly with the characterization of the essential oils of 

the H. androsaemum in vivo plants we consider that the capacity of the in vitro shoot cultures 

of this species in producing essential oils would deserve to be evaluated and the respective 

composition determined. In this paper we report the yields and composition of essential oils 
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accumulated in the aerial part of in vivo H. androsaemum plants, cultivated at Arcos de 

Valdevez, as well as the yield and composition of the essential oil accumulated in the respective 

in vitro shoots. 

 

Material and Methods 
 

In Vivo Cultivated Plants and Establishment of in Vitro shoot cultures. 

H. androsaemum L. plant cultures were established in March 1998 at a DRAEDM 

experimental farm located at Arcos de Valdevez (northern Portugal). The cultivation was 

performed by planting ±15 cm long slips obtained from wild H. androsaemum plants growing 

near Ponte de Lima (Facha). A voucher specimen (herbarium voucher ref. H.a.-AV1998) is 

maintained in ERCA/DRAEDM. 

In vitro shoot cultures of H. androsaemum were established on chemically defined 

medium containing the macronutrients of Margara N30K medium (13) and the micronutrients 

and organic constituents of the Murashige and Skoog (MS) medium (14) with the exception for 

thiamin, which was used at 0.8 mg/L. Ascorbic acid at 3 mg/L, with 30g/L sucrose, 0.5 mg/L 

benzylaminopurine (BAP), 0.05 mg/L α-naphthaleneacetic acid (NAA), and 0.05 mg/L 

gibberellin (GA3), was added to the medium before pH adjustment at 5.7. Agar at 8 g/L was 

added to solidify the medium before autoclaving at 120 ºC for 20 min. Apical buds from wild 

plants growing in Facha were excised, surface sterilized with a solution of 2% formaldehyde in 

70% ethanol, during 10 min, and used as primary explants in the establishment of the cultures. 

The MS medium supplemented with 0.8 mg/L indol-3-acetic acid (IAA) and 0.5 mg/L kinetin 

(KIN) was used in multiplication of the shoot cultures. Cultures were maintained in a growth 

room at 24±2ºC and 60-65% humidity with a photoperiod of 16h of light/8h of darkness. 

Illumination was supplied by cool white fluorescent tubes with a light intensity of 52µmol·m-2·s-1. 

The cultures were subcultivated on the multiplication MS medium with the interval of 2 

months. 

 

Hydrodistillation and Analysis of the Essential Oils. 

For the study of the essential oil composition, some cultivated plants were randomly 

pruned in July and November 1999 and in June 2000, and subsamples of ~10 g of fresh 

biomass of the pruned branches were subjected to hydrodistillation in a Clevenger-type 

apparatus over 1 h, using volumes of 1.0 mL of n-hexane, containing 5-α-cholestane 

(1mg/mL), for retention of the hydrodistillate components. The humidity percentage from fresh 
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biomass of the samples submitted to hydrodistillation and harvested in July and November 

1999 and June 2000 were 79.6, 81.6, and 74.4%, respectively. The dry weight of the plant 

material was determined after the respective drying at 60 ºC in a drying stove during 72 h. The 

same procedure was followed in the hydrodistillation of 6-month-old in vitro fresh shoots 

(91.9% of humidity) maintained by subculturing, on the multiplication MS medium, during ~2 

years. 

The hydrodistillates from all samples were analyzed by gas chromatography (GC) and 

gas chromatography-mass spectrometry (GC- MS). GC analyses were performed using a 

Perkin-Elmer Autosystem gas chromatograph equipped with a fused silica DB-5 column 

(30m long × 0.25 i.d., 0.25 µm film thickness composed by 5% phenyl methylpolysiloxane, 

J&W Scientific). The temperature program was as follows: 60-285ºC at 3ºC min-1 for the 

column, 300ºC for the injector, and 300ºC for the flame ionization detector (FID). H2 was used 

as carrier gas with a flow rate of 1.49 mL/min under a column head pressure of 12.5 psi. 

Injections were performed in a split/splitless injector with the splitter opened at a 1:13 split 

ratio. Three replicates of each sample were processed in the same way. Percentage values from 

the listed compounds correspond to the values given in the GC report without correction 

factors. 

Following the procedure reported before for Salvia officinalis (15), 5α-cholestane was 

used as an internal standard for estimation of the specific content of each essential oil 

compound. This internal standard accounted for the differential responses of the FID and for the 

column inlet discrimination of the essential oil compounds due to the injector split ratio. 

Considering that the determination of individual correction factors is impractical, due to either 

the high number of compounds or their absence in the market, compounds of a given group 

(monoterpene hydrocarbons, oxygen-containing monoterpenes, sesquiterpene hydro- carbons, 

and oxygen-containing sesquiterpenes) were assumed to have the same GC response factor. 

Three replicates of mixtures at equal amounts of 5α-cholestane and limonene (monoterpene 

hydrocarbon), camphor (oxygen-containing monoterpene), (E)-caryophyllene (sesquiterpene 

hydrocarbon), and (E,E)-farnesol (oxygen-containing sesquiterpene) were prepared and injected 

three times each. The respective average correction values, corrected for the purity grade of 

each reference compound, were 0.741 (limonene), 1.014 (camphor), 0.747 [(E)-caryophyllene], 

and 1.018 [(E,E)-farnesol]. These values were used as GC response factors of the compounds of 

the corresponding group from H. androsaemum essential oil. A correction factor of 1 was 

assumed for compounds that did not belong to any of these groups, as they are the cases of n-

alkanes and 1-alkenes. The sum of the specific contents of all individual essential oil 
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compounds was assumed as a parameter for the determination of the total specific essential oil 

yield. Given the generalization of each response factor to all compounds from the same group, 

all of the quantitative data expressed in micrograms of the compound per gram of biomass dry 

weight may be considered as a tentative of approximation to the absolute quantification. 

GC-MS analyses were performed with a Perkin-Elmer 8500 gas chromatograph 

equipped with a fused silica DB-5 column, as that of GC, connected with a Finnigan MAT ion 

trap detector (ITD; software version 4.1) operating in EI mode at 70 eV. Injector, interface, and 

ion source temperature were 300, 260, and 220ºC, respectively. The oven temperature program 

and injection conditions were as above-described for GC. Helium was used as carrier gas with a 

column head pressure of 12.5 psi. The identification of the compounds was performed with the 

help of mass spectral libraries. The compounds were considered to be identified when the 

respective identity was confirmed by at least two methods according to recommendations of the 

International Organization of the Flavour Industry (16). The identification of some compounds 

(those not denoted in Table 1) was confirmed by using authentic standards (all of them from 

the Sigma-Aldrich group). In the confirmation of the identity of compounds, not available in the 

market, a terpene library incorporated in the computer database by the GC-MS supplier was 

used, which allows the comparison of mass spectra from ITD and retention times on DB-5. The 

coherence of the retention times of the analyzed compounds with the retention times obtained in 

similar conditions with a DB-5 column and published in the literature, namely, in refs 17 and 

18, constituted an additional criterion in the confirmation of the respective identity. (17, 18) 

 

Results and Discussion 
 

Multiplication and Maintenance of in Vitro Shoot Cultures. 

The new shoots formed from the apical buds cultivated on the establishment medium 

were visible 2-3 weeks after the beginning of the culture. The subculture of nodal shoot 

segments to the MS medium supplemented with 0.8 mg/L IAA and 0.5 mg/L KIN allowed the 

multiplication of the cultures by a factor of ~5, with intervals of 2 months. However, due to 

slow growth, shoots could be maintained in the same vessel, without subculture, during several 

(6-8) months. Two years after the establishment of the H. androsaemum in vitro cultures, either 

the shape or the multiplication rate of the shoots was maintained without apparent change. 

Micropropagation was accomplished by transferring the shoots to half-strength MS medium 
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without growth regulators, for their elongation, followed by auxin shock for rhizogenesis 

induction (results not shown). 

 

Yields and Composition of Essential Oils Produced by in Vivo Cultivated Plants. 

The essential oil yield obtained in the hydrodistillation of aerial parts of H. 

androsaemum cultivated plants ranged from 0.9 to 4.1 mg/g of biomass dry weight depending 

of the harvested time (Figure 1). Variations in the essential oil content of H. androsaemum, 

from 0.6 to 1.4 mg/g, had already been reported by other authors (19). Drastic variations in the 

essential oil contens of plants from another species (S. officinalis), cultivated at the same site 

during the same time period, had already been reported (15).  
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Figure 1 - Essential oil contents in in vitro shoots of H. androsaemum and in the respective in vivo plants, 

cultivated at Arcos de Valdevez and harvested in the months of July and November 1999 and June 2000. 

 

More than 80 compounds were detected in the hydrodistillates from H. androsaemum in 

vivo plants, 72 of which were identified, with 4 of them remaining doubtful (Table 1). 

Depending on the harvest time, the identified compounds correspond to 80-90% of the total 

essential oil specific amount. With the exceptions of linalool, trans-β-farnesene, and 

bicyclogermacrene, the compounds previously reported by Nogueira et al. (11) were found in 

our samples as well as all six of the ones identified by other authors (8). Geraniol and α-

terpineol previously reported as constituents of the essential oil of this species (9), were not 

found in our samples. The unidentified compounds include 7 sesquiterpene hydrocarbons and 3 

oxygen-containing sesquiterpenes.  

For plants harvested in July 1999 and June 2000, 69 and 71 compounds, respectively, 

were detected in the essential oils (Table 1). 
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Table 1 - Specific Compound Contents and Percentage Composition of the Essential Oils from In Vivo Plants 

Cultivated at Arcos de Valdevez, Northern Portugal, and from in vitro shoots of Hypericum androsaemum L.  

 In vivo cultivated plants  In vitro shoots

July 99 Nov. 99 June 00   Compound 

Ret. 

Time 

(s)  µg/g dw %  µg/g dw %  µg/g dw %   µg/g dw % 

1-Octene 142   10.7 0.9   81.4 1.6 249.0 7.3      1.0 0.2

2-Hexenal 176   31.1 2.4 275.1 5.3 271.9 7.9      2.3 0.3

n-Hexanol 185     1.4 tr     5.2 0.1     4.5 0.1      1.0 0.2

n-Nonane 214   36.5 2.9   69.8 1.3 121.8 3.6      3.8 0.3

α-Thujene 249     1.6 tr     4.3 0.1     3.3 0.1      0.5 tr 

α-Pinene 258     5.6 0.5   13.4 0.3   81.3 3.2  − − 

2,6-Dimethyloctane 303     5.2 0.5     8.2 0.2     7.2 0.2      3.1 0.3

β-Pinene 314   38.2 4.2   85.2 2.2 163.5 6.4    14.8 2.1

Myrcene 334     9.2 0.9   10.9 0.3   34.4 1.3      1.2 0.2

Limonene 397   52.0 5.9   82.7 2.1 393.1  15.4      9.2 1.3

1,8-Cineol 401     1.6 tr     3.8 0.1 −  −   − −  

E-β-Ocimene 433   12.7 1.4   24.6 0.7   16.0 0.6      1.0 0.2

γ-Terpinene 453     3.0 0.5     3.8 0.1     4.7 0.2      0.5 tr 

Terpinolene 512   36.3 3.9   55.0 1.4   39.0 1.5      4.2 0.6

Undecane 536     7.2 0.6     5.8 0.1   28.6 0.9    36.0 3.8

α-Thujone 549     5.8 0.5   14.1 0.3   14.3 0.5  − −  

β-Thujone 574     1.0 tr     0.6 tr     1.6 tr  − − 

Camphor 633     1.5 tr     0.7 tr  −  −  − −  

δ-Elemene 1116     3.9 0.6   15.5 0.4     5.1 0.2      0.4 tr 

α-Terpinenyl acetate 1152     3.0 0.5     6.1 0.1     6.1 0.2      1.4 0.2

α-Ylangene 1201     0.6 tr     0.8 tr     0.8 tr      2.3 0.3

α-Copaene 1213     0.8 tr     3.5 0.1     2.0 0.1  − −  

β-Bourbonene 1234     0.8 tr     8.5 0.2     2.0 0.1      0.8 0.2

C15H24 1241     1.1 tr     9.1 0.2     2.7 0.1      0.4 tr 

β-Elemene 1257     9.8 1.1 104.2 2.7   30.1 1.2      6.8 1.0

β-Caryophyllene 1325 115.1  12.5  585.0  15.1  243.1 9.4    36.1 5.0

Thujopsene 1344     1.7 tr   20.0 0.5     5.9 0.2      2.2 0.3

β-Gurjunene 1348   54.9 6.1 601.1  15.5  192.3 7.6    61.2 8.6

(Z)-trans-α-Bergamotene 1360     1.0 tr     2.6 0.1     1.0 tr      1.1 0.2

α-Guaiene + β-Humulene 1370   12.4 3.4     2.7 0.1     2.1 0.1    12.5 1.8

C15H24 1390   18.7 3.4 127.6 4.9   64.5 2.5      8.3 1.2

α-Himachalene 1399     0.6 tr − − − −  − − 

α-Humulene 1411     0.3 tr     5.0 0.1     1.2 0.1      4.3 0.7
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  In vivo cultivated plants  In vitro shoots

 July 99 Nov. 99 June 00   Compound 

Ret. 

Time 

(s)   µg/g dw %  µg/g dw %  µg/g dw %   µg/g dw % 

Allo-Aromadendrene 1427   −  −     2.1 0.1     0.8 tr      0.8 0.2

Germacrene D isomer #1 1435      6.5 0.5 − − − −  − − 

Unknown 1464      5.0 0.5   21.9 0.4   14.0 0.4    21.4 2.2

β-Chamigrene 1468      tr tr − − − −  − − 

Germacrene D isomer #3 1470    21.9 1.9 − − − −  − − 

γ-Muurolene 1479    36.1 3.8 170.1 4.4   54.4 2.1  108.8  15.3

Germacrene D + γ-Curcumene 1487    43.0 5.0 298.6 7.7 149.3 5.8    30.7 4.3

β-Selinene 1493      5.6 0.8   36.6 0.9   17.0 0.6  − −  

α-Selinene 1514      4.3 0.5     4.9 0.1     1.6 0.1      1.5 0.2

Germacrene B 1517      2.9 0.5   40.7 1.1   11.7 0.4    28.6 3.9

α-Zingiberene 1524      2.0 0.5   28.5 0.7     9.1 0.3      6.0 0.8

α-Longipinene 1527      1.0 tr   14.0 0.4     1.9 0.1  − −  

C15H24 (α-Muurolene) (?) 1540      2.4 0.5     4.6 0.1     1.7 0.1      1.4 0.2

α-Farnesene 1554      4.2 0.7     4.0 0.1     2.9 0.1    10.9 1.5

cis-γ-Bisabolene 1573      2.6 0.5   19.5 0.5     8.5 0.4    11.5 1.6

δ-Cadinene 1585      5.9 0.6   15.6 0.4     8.5 0.3      7.7 1.1

trans-γ-Bisabolene 1610      8.0 0.9   65.1 1.7   36.1 1.4    77.1  10.8

C15H24 1620      6.8 0.6   19.7 0.5   14.4 0.5    13.3 1.9

C15H24 1626    54.5 5.2   72.3 1.9   38.3 1.5    78.2  11.0

γ-Elemene 1662    73.5 8.5 699.1  17.9  212.1 8.0    69.4 9.8

Caryophyllene oxide 1722      3.3 0.5     9.5 0.2     8.2 0.2      1.0 0.2

C15H24O 1773      3.6 0.5     7.0 0.1     3.8 0.1  − −  

C15H24O 1816      6.9 0.5   38.9 0.7   22.4 0.6      4.8 0.5

tau-Cadinol 1869      8.4 0.6   17.9 0.3   15.0 0.4      2.6 0.3

tau-Muurol 1876    14.2 1.1   20.0 0.4   24.6 0.7  − −  

δ-Cadinol 1781      tr tr   12.2 0.2   −       8.5 0.9

C15H24O 1889    16.3 1.4   41.6 0.8   47.5 0.9  − −  

α-Eudesmol 1896      8.7 0.5 −  −     1.7 tr  − −  

α-Cadinol 1904      5.4 0.5   28.4 0.5   22.3 0.6    10.6 1.2

Unknown 1918    39.4 2.9     6.9 0.1     3.8 0.1      2.4 0.2

Unknown 1922    52.5 6.9   75.0 1.4   74.4 2.1    26.5 2.7

epi-α-Bisabolol (?) 1989      1.7 0.5     3.8 0.1     2.5 0.1      2.3 0.2

8-Cedrane-13-al (?) 2021      2.8 0.5     8.2 0.2     4.4 0.1  − − 

n-Octadecane 2631  − −       tr  tr − −   − − 

1-Nonadecene 2811  − −      tr tr  −  −  − − 



Chapter 3  Essential oils of Hypericum androsaemum L. 

93 

 In vivo cultivated plants  In vitro shoots

July 99 Nov. 99 June 00   Compound 

Ret. 

Time 

(s)  µg/g dw %  µg/g dw %  µg/g dw %   µg/g dw % 

n-Nonadecane 2822 − −     1.3 tr     0.9 tr  − − 

1-Heneicosene 2995 − −     0.7 tr − −  − − 

n-Heneicosane 3007 − −     2.1 0.1     1.3 tr  − − 

1-Docosene 3173     1.5 tr − − − −  − − 

n-Docosane 3183 − −     5.6 0.1     3.3 0.1  − − 

1-Tricosene 3344 − −     4.7 0.1     0.3 tr  − − 

n-Tricosane 3353 − −     3.7 0.1     3.3 0.1  − − 

1-Tetracosene 3507 − − tr tr − −  − − 

n-Tetracosane 3517     0.6 tr   18.5 0.4 6.4 0.3  − − 

1-Pentacosene 3665 − −     2.3 0.1 − −  − − 

n-Pentacosane 3673 − −     2.3 0.1 2.7 0.1  − − 

Unknown 3724 − −     2.0 0.1 − −  − − 

n-Hexacosane 3829 − −   17.1 0.3     3.2 0.2      1.1 0.2

Unknown 3882     1.5 tr     0.9 tr − −  − − 

1-Heptacosene 3973 − −     0.9 tr − −  − − 

n-Heptacosane 3979 − −     0.9 tr − −  − − 

n-Octacosane 4116 − −     5.2 0.1     1.8 0.2  − − 

Unknown 4315  − −     0.8 tr      0.9 0.1   − − 

dw – biomass dry weight;  tr – trace amounts    
a Identification of the compounds was confirmed with authentic standards. Both mass spectra and retention times 

of the compounds marked with an asterisk match with those of the corresponding compounds from the terpene 

library of the computer database, and the respective retention times match with the corresponding compounds 

described in the literature (17, 18). dw, biomass dry weight; tr, trace amounts; (MS), tentative identification based 

on the mass spectra. b Both mass spectra and retention times match with the corresponding compounds from the 

terpene library of the computer database, and the respective retention times match with the corresponding 

compounds described in ref 17. However, according to ref 18, the retention times on DB-5 would be higher for 

germacrene B and lower for γ-elemene. 
 

 

The highest number of compounds (82) was found in the essential oil from plants 

harvested in November 1999. The excess compounds detected in the essential oils from samples 

harvested in November 1999 were mainly due to the presence of an almost complete series of 

n-alkanes and 1-alkenes, from C18 to C28 (Table 1). To our knowledge, the presence of these n-

alkanes and 1-alkenes in the essential oils of H. androsaemum, had not yet been reported. 

However, n-nonadecane, n-heneicosane, and n-tricosane had already been identified in 
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unripened seed capsules of H. androsaemum (10). The presence of a complete series of n-

alkanes from C16H34 to C29H60, in dried leaf material of H. perforatum has also been reported 

(20). (21) 

Notwithstanding the high number of constituents, almost 50% of the total essential oil 

from H. androsaemum plants harvested in November 1999 was composed by three 

sesquiterpenes: (E)-caryophyllene (15.1%), β-gurjunene (15.5%), and the putative γ-elemene 

(17.9%). These compounds were among the five major constituents of the essential oils of 

plants harvested in July and June (Table 1). However, instead of a sesquiterpene, the major 

compound in the essential oil sample of June 2000 was a monoterpene (limonene, 15.4%). 

Undoubtedly, either the content or the composition of the essential oil from H. androsaemum 

plants changes with the time of harvest. Variations in essential oil composition could be 

induced by different physiological or environmental factors, the variation of which during the 

vegetative cycle may influence compound turnover. The effects of physiological factors, such 

as the relative development and maturation of the plant organs, and environmental factors, such 

as soil mineral fertilization, light intensity, climate conditions, and season, on the composition 

of essential oils of other plant species are well documented (15 and references cited therein). 

The attack of the cultivated plants by some organisms constitutes another type of factor that 

contingently can influence the essential oil composition (21 and references cited therein). 

Frequently H. androsaemum plants growing wild in several regions of northern Portugal appear 

to be contaminated by a rust fungus. On the studied cultivated plants, we identified two 

contaminant organisms: a rust fungus - Uromyces sp. - and an aphis - Aphis gossypii Glover. 

The populations of these contaminants appeared in April 1999 and rose during the following 

spring and summer months. However, any interpretation inherent to the respective effects on 

the essential oil composition is speculative, because no type of control of either physiological or 

environmental factors was made. 

Most of the compounds from the essential oils of H. androsaemum can be distributed in 

five groups: monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygen-containing 

sesquiterpenes, n-alkanes, and 1-alkenes. Figure 2 shows the specific and the relative amounts 

of each one of these compound groups in the studied H. androsaemum essential oils. 

Independently of the harvest time, the sesquiterpene hydrocarbons constituted the major 

compound group, accounting for >40-78% of the total essential oil (Figure 2). Sesquiterpenes 

had already been considered to be the main compounds from the essential oils of this species 

(11), and despite the fact that the identity of the most of them was unknown, they were 

considered responsible for the specific essential oil olfactroscopic pattern of H. androsaemum 
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L. (22). Oxygen-containing monoterpenes are often the main compound group in the essential 

oils from other species. In the essential oils here studied, this group represented no more than 

0.2-1.0%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 - Specific and relative contents of the main compound groups in the essential oils from H. androsaemum 

in vitro shoots and respective in vivo plants cultivated at Arcos de Valdevez and harvested in the months of July 

and November 1999 and June 2000. 

 

The main compounds that accounted for most of the percentage variations in each group 

were β-pinene, limonene, α-pinene, and terpinolene, in monoterpene hydrocarbons; (Ε)-

caryophyllene, β-gurjunene, γ-muurolene, (E)-γ-bisabolene, and the putative γ-elemene, in 

sesquiterpene hydrocarbons; epi-α-muurolol, in oxygen-containing sesquiterpenes; n-nonane 

and n-undecane, in n-alkanes; and 1-octene, in 1-alkenes (Table 1). 

 

Yield and Composition of the Essential Oil Produced by in Vitro Shoots. 

The essential oil yield obtained by hydrodistillation of in vitro H. androsaemum shoots 

(0.74 mg/g of biomass dry weight) was lower than the minimum value obtained from the in 

vivo cultivated plants (Figure 1). Either the different conditions of growth or the immaturity of 

the in vitro shoots compared to those of in vivo plants may be responsible for the respective low 

content of essential oil. Analyses by GC and GC-MS revealed the presence of 52 constituents, 
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all of them common to the essential oils of in vivo plants (Table 1). Sesquiterpene 

hydrocarbons were the major compound group, representing >80% of the total essential oil, a 

value higher than that of the same group from the essential oil of in vivo plants harvested in 

November 1999 (Figure 2). The major compound of the in vitro shoots essential oil (γ- 

muurolene, 15.3%) was not among the five most represented constituents of the essential oils 

from in vivo plants. The same was true for the second and third most represented compounds 

(Table 1). On the other hand, from the series of n-alkanes and 1-alkenes identified in in vivo 

plants, only n-hexacosane, at 0.2%, was found. Differences in the turnover of the compounds 

due to the immaturity of the shoots and/or the absence of elicitor factors on shoots, namely, 

contaminant organisms such as the rust fungus Uromyces sp. and/or the aphis A. gossypii 

referred to above, would eventually explain the differences in the essential oil composition 

between the in vitro shoots and the in vivo plants of H. androsaemum. Detailed studies are 

needed, however, to confirm these hypotheses. 

The utility of the in vitro shoot cultures in studies on the production of essential oils has 

not been sufficiently explored. In the case under study, the shoot cultures constitute a stage of 

the micropropagation process of this species, a specific goal from the practical point of view, 

and the search on the respective essential oils was performed with the aim to compare its 

composition with that of in vivo plants. However, as the development and the environment of 

this type of culture can be maintained under strict control, lowering the sources of variability 

affecting the composition of the essential oils, we consider that in vitro shoots could be 

advantageously used as a tool, for example, in the determination of chemotypes based on the 

respective essential oil composition. On the other hand, in our view, in vitro shoots or plantlets 

are the most suitable in vitro system models for studies on the metabolism of terpene 

compounds because they resemble more closely the in vivo plants. 

In conclusion, the work here reported showed that composition of the essential oils from 

H. androsaemum is complex having a variable number of compounds which depending from 

the time of harvest and from the origin of biomass, being dominated by sesquiterpene 

hydrocarbons and accumulating, some times, high number of intermediate to long chain n-

alkanes and 1-alkenes. 
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3.3 Supplementary data 
 

Essential oils profiles from leaves, stems and ripened seed capsules of Hypericum 

androsaemum L. 

Several environmental and physiological factors are known to affect the production and 

accumulation of essential oils (EO). Therefore, apart from the EO analysis of aerial parts of 

cultivated plants of Hypericum androsaemum and in vitro shoots, EO isolated from leaves, 

stems and ripened seed capsules were also studied, in order to determine the respective EO 

profiles. 

Aerial parts from 6-8 plants of H. androsaemum were randomly collected in an 

experimental field located in Covide, near Braga (northern Portugal) on July, and the respective 

leaves, stems and ripened seed capsules were separated and processed independently in the 

hydrodistillation and EO analysis. Subsamples of fresh leaves (10g), stems (10g) and ripened 

seed capsules (10g) of H. androsaemum were submitted to hydrodistillation with 500 ml of 

boiling water in a Clevenger type apparatus over 1h, using volumes of 1.0 mL of n-hexane, 

containing 5-α-cholestane (1mg/mL), for retention of the hydrodistillate components. The dry 

weight of the plant material was determined after drying (60ºC, 72h) in a drying stove. Further 

analyses of the hydrodistillates were performed by gas chromatography (GC) and gas 

chromatography-mass spectrometry (GC/MS) as previously described (Guedes et al., 2003). 

Different EO yields were obtained from the hydrodistillation of leaves, ripened seed 

capsules and stems of H. androsaemum plants (Figure 1). The highest one was obtained for 

ripened seed capsules (7.95 mg of EO per g of biomass dry weight) while the lowest one was 

registered in the stems (0.17 mg/g of biomass dry weight). The EO yield of leaves was 0.85 

mg/g of biomass dry weight distributed in 103 compounds, 82% of which were identified.  

 

 

 

 

 

 

 

 
Figure 1 - Essential oil contents (mg/g dry weight) from leaves, stems and ripened seed capsules of Hypericum 

androsaemum plants growing in Covide (Portugal) and harvested in July. 
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From the 92 compounds detected in the EO of ripened seed capsules, 96% were 

identified. The EO from stems had a narrower range of compounds (63 compounds identified) 

compared to leaves and ripened seed capsules. Variations in the EO content of this species had 

already been reported. Indeed, EO yields of aerial parts of cultivated plants of H. androsaemum 

ranged from 0.9 to 4.1 mg/g of biomass dry weight, while in the leaves it ranged from 0.7 to 3.4 

mg/g dry weight (Guedes et al., 2003; Guedes et al., 2004). Smaller variations in the EO yields 

of this species were observed by Mathis and Ourisson (1964) (0.6 to 1.4 mg/g of biomass dry 

weight). EO hydrodistillated from H. androsaemum in vitro shoots had a yield of 0.74 mg/g of 

biomass dry weight distributed in about 52 detected compounds (Guedes et al., 2003). Thus, the 

EO content from ripened seed capsules and stems were, respectively, the highest and the lowest 

ones from the EO contents reported so far for H. androsaemum.  

The composition of leaves, ripened seed capsules and stems EO of H. androsaemum are 

shown in Table 1.  
 

Table 1- Composition of the essential oils from leaves, stems and ripened seed capsules of Hypericum 

androsaemum plants growing in Covide (Portugal) and harvested in July. 

Leaves Stems Rip seed caps 

Compound KI µg/g 
dry 

weight 
% 

µg/g 
dry 

weight 
% 

µg/g 
dry 

weight 
% 

1-Octene 792 5.7 0.5 3.8 2.1 5.4 0.1 
(E)-2-Hexenal 854 15.6 1.6 0.3 tr 3.4 tr 
n-Hexanol 869 0.2 tr 0.3 tr 3.5 tr 
n-Nonane 900 6.5 0.7 44.0 23.9 9.8 0.1 
α-Thujene 930     9.4 0.2 
α-Pinene 939 1.4 0.2 0.9 0.5 1123.2 18.8 
Camphene 950     15.3 0.3 
Dimethyl-biciclo-(3,1)-hepta-2(8),3-diene 956     6.7 0.1 
2,6-Dimethyl-octane 972 0.4 tr 0.6 0.5 2.2 tr 
Sabinene 976     5.0 0.1 
β-Pinene 979 2.8 0.4 3.2 2.3 1666.1 27.8 
6-Methyl-5-Hepten-2-one 988 7.2 0.7 1.2 0.5 26.7 0.3 
Myrcene 991 1.2 0.1 0.3 0.2 81.6 1.4 
n-Decane 1000 2.8 0.3 0.2 tr 5.5 0.1 
α-Terpinene 1017 0.5 0.1   3.2 tr 
p-Cymene 1026 0.2 tr   17.3 0.3 
Limonene 1030 4.2 0.5 0.9 0.7 2061.8 34.4 
1,8-Cineole 1033 1.7 0.1     
Z-β-Ocimene 1040 0.1 tr 0.3 0.2 1.4 tr 
Benzene acetaldehyde 1043     1.2 tr 
E-β-Ocimene 1050 0.5 0.1     
γ-Terpinene 1060 0.8 0.1   4.3 0.1 
trans-Linalool Oxide (furanoid) 1073 1.3 0.1   26.6 0.3 
Terpinolene 1089 1.2 0.1   21.8 0.4 
Linalool 1097 3.2 0.3 15.4 8.2 141.2 1.7 
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Leaves Stems Rip seed caps 

Compound KI µg/g 
dry 

weight 
% 

µg/g 
dry 

weight 
% 

µg/g 
dry 

weight 
% 

trans-Sabinene hydrate 1098 3.9 0.4     
Nonanal 1104 1.7 0.2   3.7 tr 
cis-limonene oxide 1115     2.4 tr 
trans-limonene oxide 1119     12.0 0.1 
cis-Verbenol 1125     3.3 tr 
trans-Verbenol 1135     11.5 0.1 
Camphor 1146 5.3 0.5 0.9 0.5 0.8 tr 
Camphene Hydrate 1147     5.7 0.1 
trans-3-Pinanone  1161     11.3 0.1 
Pinocarvone 1165     21.6 0.3 
cis-3-Pinanone 1175 3.5 0.3   58.9 0.7 
Terpinen-4-ol 1177 18.0 1.7 1.2 0.5 70.9 0.9 
α-Terpineol 1190 0.8 0.1 0.2 tr 71.0 0.9 
cis-Dihydrocarvone 1193     12.8 0.2 
trans-3-Dihydrocarvone 1197     26.4 0.3 
Verbenone 1204     33.1 0.4 
n-Decanal 1205 0.6 0.1     
trans-Carveol 1217 1.5 0.1   17.5 0.2 
Carvone 1242     9.0 0.1 
Linalyl acetate 1257 0.8 0.1   3.5 tr 
Perilla aldehyde 1271     3.3 tr 
Thymol 1290 2.4 0.2   1.4 tr 
n-Tridecane 1300     0.5 tr 
δ-Elemene 1337 0.3 tr     
α-Cubebene 1348 7.0 0.9   0.9 tr 
α-Ylangene 1374 0.6 0.1   2.1 tr 
α-Copaene 1376 2.3 0.3   2.5 tr 
Geranyl acetate 1381 0.3 tr     
β-Bourbonene 1383 0.4 0.1   0.9 tr 
β-Cubebene 1388 0.3 tr     
β-Elemene 1391 3.9 0.5 1.2 0.9 5.0 0.1 
iso-Italicene 1395 2.3 0.3     
Italicene 1405 4.6 0.6   1.3 tr 
α-Cedrene 1409 1.0 0.1     
(E)-Caryophyllene 1417 78.3 10.3 3.4 2.5 55.2 0.9 
cis-Thujopsene 1430 1.3 0.2   0.1 tr 
α-Guaiene 1440 25.0 3.3 6.8 5.0 22.2 0.4 
Aromadendrene 1443 2.2 0.3 0.3 tr 1.9 tr 
α-Himachalene 1451 4.9 0.6 0.8 0.5 11.5 0.2 
α-Humulene 1453 17.4 2.3 0.8 0.5 11.9 0.2 
(E)-β-Farnesene 1455 2.0 0.3     
allo-Aromadendrene 1459 55.7 7.3 5.6 4.1 60.7 1.0 
α-Acoradiene 1468 0.8 0.1   0.9 tr 
β-Chamigrene 1478 9.9 1.3 0.7 0.5   
γ-Muurolene 1481 31.1 4.1 5.2 3.7 10.3 0.2 
Curcumene 1485 58.9 7.7 2.1 1.4 48.0 0.8 
β-Selinene 1486 28.5 3.7 1.7 1.2 16.1 0.3 
α-Selinene 1495 6.0 0.8 0.1 tr 4.1 0.1 
(E,E)-α-Farnesene 1505 9.8 1.3   6.3 0.1 
γ-Cadinene 1512 0.7 0.1 0.4 0.3 0.6 tr 
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Leaves Stems Rip seed caps 

Compound KI µg/g 
dry 

weight 
% 

µg/g 
dry 

weight 
% 

µg/g 
dry 

weight 
% 

(Z)-γ-Bisabolene 1515 4.9 0.7 0.4 0.2 6.2 0.1 
SH 1519 4.8 0.7     
Calamenene (?) 1521 7.9 1.1   1.2 tr 
δ-Cadinene 1523 6.1 0.8 0.6 0.5 8.2 0.1 
SH 1530 0.6 0.1     
α-Cadinene 1534 42.3 5.6 1.3 1.1 11.9 0.2 
SH 1540 2.6 0.3 0.1 tr   
α-Calacorene 1542 38.6 5.1 1.5 1.1 2.1 tr 
SH  1543     11.1 0.2 
γ-Elemene (?) 1556 35.9 4.7 9.6 6.9 29.9 0.5 
E-Nerolidol 1564 2.1 0.2   1.4 tr 
Spathulenol 1574 0.5 tr   0.1 tr 
cis-3-Hexenyl benzoate 1577 0.3 tr   0.2 tr 
Caryophyllene Oxide 1582 33.7 3.3 3.6 2.0 100.2 1.2 
Globulol 1587 4.5 0.4 0.7 0.5 2.9 tr 
Viridiflorol 1594 2.3 0.3 0.8 0.5 3.5 tr 
Humulene Epoxide II 1607 7.4 0.7 1.0 0.5   
β-Oplopenone 1612 4.3 0.4 1.3 0.5   
SO 1617 6.8 0.7     
10-epi-γ-Eudesmol 1621 3.5 0.3 2.9 1.6   
γ-Eudesmol 1626 9.1 0.9 0.9 0.5 0.5 tr 
epi-α-Cubenol 1632 9.5 0.9 1.1 0.5 12.8 0.2 
epi-α-Cadinol 1639 1.4 0.1 1.6 0.9   
epi-α-Muurolol 1643 11.1 1.1 1.6 0.9 3.3 tr 
α-Eudesmol 1651 13.9 1.3 1.2 0.5 10.6 0.1 
α-Cadinol 1654 14.1 1.3 2.1 1.1 9.6 0.1 
epi-α-Bisabolool 1678 19.9 1.9 4.7 2.5 17.5 0.2 
(Z)-α-trans-Bergamotol 1694 23.8 2.3 2.8 1.6 4.4 tr 
n-Nonadecane 1900     3.1 tr 
n-Eicosane 2000     0.2 tr 
n-Heneicosane 2100     3.7 0.1 
n-Docosane 2200 0.2 tr     
n-Tricosane 2300 0.7 0.1 0.1 tr   
n-Tetracosane 2400 0.5 tr 0.1 tr   
n-Pentacosane 2500 0.4 tr 0.7 0.5   
n-Hexacosane 2600   0.2 tr   
n-Heptacosane 2700   1.9 1.1   
n-Octacosane 2800   0.3 0.2   
n-Nonacosane 2900   1.5 0.9    
Monoterpene Hydrocarbons  11.6 1.5 5.7 3.9 5010.3 83.7 
Oxygenated monoterpenes  40.4 3.8 17.7 9.3 536.0 6.5 
Monoterpene Esters  1.2 0.2   3.5 tr 
Sesquiterpene Hydrocarbons  498.7 65.8 42.4 30.5 334.2 5.6 
Oxygenated sesquiterpenes  167.9 16.2 21.1 11.6 166.8 2.0 
1-Alkenes  5.7 0.5 3.8 2.1 5.4 0.1 
n-Alkanes  11.1 1.1 48.9 26.5 22.9 0.3 
Others   111.5 10.9 30.3 16.1 151.6 1.8 
KI- Kovats retention index on a DB-5 column; tr- trace amounts 
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The majority of the compounds detected could be grouped in monoterpene 

hydrocarbons (MH), oxygenated monoterpenes (MO), monoterpene esters (ME), sesquiterpene 

hydrocarbons (SH), oxygenated sesquiterpenes (SO), n-alkanes and 1-alkenes, excepting for 

stems in which no monoterpene ester was identified. However, as can be seen in Figure 2, the 

distribution of the identified compounds in the referred groups was greatly different in the three 

organs studied. 
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Figure 2 - Essential oil specific contents (%) of the major group of compounds from leaves, stems and ripened 

seed capsules of Hypericum androsaemum plants growing in Covide (Portugal) and harvested in July. 

 

EO from leaves was characterized by its richness in sesquiterpenoids, with 

sesquiterpene hydrocarbons accounting for 66% and oxygenated sesquiterpenes, 16%. 

Sesquiterpenoids represented also more than 42% of the total EO of stems, with 31 compounds 

common to stems and leaves. Leaves and flowers EO of H. androsaemum from Iran were also 

rich in these compounds, representing almost 99% and 98% of the total EO, respectively 

(Morteza-Semnani et al., 2005). The predominance of sesquiterpene hydrocarbons in EO of H. 

androsaemum had already been reported by several authors (Nogueira et al., 1998; Guedes et 

al., 2003; Guedes et al., 2004). Monoterpene hydrocarbons (84%) made up the highest 

contribution in the EO of ripened seed capsules, while oxygenated monoterpenes and 

sesquiterpene hydrocarbons represented only ~7% and ~6%, respectively. The results show a 

pattern of production and/or accumulation of the EO constituents in ripened seed capsules 

clearly different of those of the other organs of the plant, such as stems and leaves. Thus, apart 

from the ripened seed capsules, the EO of H. androsaemum can be characterized by a high 

amount of sesquiterpenoids. The EO of H. hircinum, a species that belong to the same section 
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of H. androsaemum (Section Androsaemum, (Mathis et al., 1964), was also dominated by the 

sesquiterpene hydrocarbons (82%). However, this high level of sesquiterpene hydrocarbons can 

not be considered specific of the section, since EO of H. hircinum collected in Italy were richer 

in monoterpenes, being the sesquiterpenes content lower than 13% (Bertoli et al., 2000). 

Sesquiterpenes were also abundant in EO of other species of Hypericum genus, such as H. 

olympicum (Pavlović et al., 2006; Smelcerovic et al., 2007), H. perforatum (Schwob et al., 

2002; Pavlović et al., 2006), H. richeri (Smelcerovic et al., 2007) and H. tetrapterum (Pavlović 

et al., 2006). 

The distribution of n-alkanes in the EO from leaves, stems and ripened seed capsules of 

H. androsaemum was uneven (Figure 2). In the EO from stems, this group represented 27%, 

while in leaves and ripened seed capsules it represented less than 1%. In EO of H. undulatum, 

we have found a similar predominance of n-alkanes in stems, comparing to leaves, ripened seed 

capsules and flowers (Guedes, unpublished data). In the EO of H. androsaemum stems, n-

nonane was the compound that most contributed to the high amount of n-alkanes, representing 

24% of the total EO. Four long chain n-alkanes (n-hexacosane, n-heptacosane, n-octacosane 

and n-nonacosane) were only detected in EO of this organ. The presence of long chain n-

alkanes in EO of H. androsaemum and H. perforatum has been previously reported (Brondz et 

al., 1983; Guedes et al., 2003; Guedes et al., 2004). The number of n-alkanes in the EO of H. 

androsaemum aerial parts and leaves, as well as in flowers is usually very low, sometimes 

being represented by only two compounds (Nogueira, 2002; Morteza-Semnani et al., 2005). 

Linalyl acetate was the only monoterpene ester identified in the EO of ripened seed capsules of 

this species while in its leaves, this compound was accompanied by geranyl acetate and in the 

EO of its stems no monoterpene ester has been found (Mathis et al., 1964; Nogueira, 2002; 

Guedes et al., 2003; Guedes et al., 2004). On the other hand, another monoterpene ester, 

terpeninyl acetate, was not identified in the present study but it was detected in aerial parts and 

in vitro shoots of H. androsaemum (Guedes et al., 2003; Guedes et al., 2004). 1-Alkenes were 

represented by only one compound common to all samples, 1-octene, whose highest amount 

occurred in the stems (2%). In aerial parts of plants of H. androsaemum harvested in later 

summer in Portugal, this compound represented almost 20% of the total EO, being among the 5 

most represented compounds (Guedes et al., 2004). Besides 1-octene, the presence of an almost 

complete series of 1-alkenes, from C21H42 to C28H56 in EO of fresh leaves of H. androsaemum, 

harvested between February and June 2000, was reported (Guedes et al., 2004). 

The EO from leaves and stems of H. androsaemum differed in its major constituents. 

All of the 5 major compounds from leaves were sesquiterpene hydrocarbons [(E)-
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caryophyllene, curcumene, allo-aromadendrene, α-cadinene and α-calacorene], whereas in the 

stems they were 1 n-alkane (n-nonane), 1 oxygenated monoterpene (linalool), 2 sesquiterpene 

hydrocarbons (γ-elemene and α-guaiene) and 1 not yet identified compound. (E)-

Caryophyllene, curcumene and allo-aromadendrene represented, respectively 10%, 8% and 7% 

of the total EO H. androsaemum from leaves. Although being dominant in the leaves EO, (E)-

caryophyllene was among the less represented compounds in the stems and ripened seed 

capsules. Similar results were achieved in the study of the H. undulatum EO composition whose 

leaves showed the highest content of (E)-caryophyllene contrarily to what occurred with the 

stems and ripened seed capsules where this compound was less represented (Guedes, 

unpublished data). (E)-Caryophyllene had already been reported as one of the major 

constituents in the EO from H. androsaemum (Guedes et al., 2003; Guedes et al., 2004), H. 

perforatum (Baser et al., 2002), and H. carinatum and H. ternum (Ferraz et al., 2005). Even 

though, allo-aromadendrene has been present in the EO of the three organs of H. androsaemum 

analysed, it was not detected in the H. androsaemum EO (Nogueira et al., 1998) or it was only 

present in trace amounts (Guedes et al., 2003; Guedes et al., 2004). Five of all the sesquiterpene 

hydrocarbons identified were exclusively detected in the leaves (δ-elemene, β-cubebene, iso-

italicene, α-cedrene and (E)-β-farnesene) and excepting for δ-elemene, none of these referred 

compounds were identified in EO of this species in previous studies (Mathis et al., 1964; 

Nogueira et al., 1998; Guedes et al., 2003; Guedes et al., 2004). In EO isolated from dried 

leaves of H. androsaemum cultivated in Iran the major compounds were caryophyllene oxide 

and ishwarane (Morteza-Semnani et al., 2005). Ishwarane was not identified in this study 

neither in other studies on the EO composition of H. androsaemum (Mathis et al., 1964; 

Nogueira et al., 1998; Guedes et al., 2003; Guedes et al., 2004). Caryophyllene oxide was the 

major oxygen-containing sesquiterpene in the three organs here studied. Nevertheless, its higher 

contribution to the total EO occurred in the leaves, in which it represented 3% of the total EO. 

Limonene was the major monoterpene hydrocarbon detected in the EO from leaves (0.5%). 

This compound was considered the major one in the EO isolated from aerial parts, flowers and 

“fruits” of H. androsaemum, and the second major in the leaves of the same species (Mathis et 

al., 1964). E-β-Ocimene, 1,8-cineole and trans-sabinene hydrate were exclusively detected in 

leaves. 

Stems were the organs in which the oxygenated monoterpenes were present in highest 

percentage (9%). This group was represented by linalool, camphor, terpinen-4-ol and α-

terpineol. Nevertheless, the predominance of oxygenated monoterpenes was due to linalool, 
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which accounted for 8% of the total EO. Linalool was also identified by Nogueira and co-

workers (1998) in H. androsaemum EO, but in lower amounts. Such accumulation of linalool in 

stems was coincident with the absence of their derivatives, linalool oxide and linalyl acetate. 

These two monoterpenoids were identified in both leaves and ripened seed capsules, even 

though in lower amounts. Linalool oxide is known to be produced through an oxidative 

modification of linalool (Pichersky et al., 1994). Three monoterpene hydrocarbons accounted 

for more than 80% of the total EO content in the ripened seed capsules (α-pinene; β-pinene and 

limonene). Previous works reported also the presence of these three monoterpene hydrocarbons 

in cultivated plants of H. androsaemum, however in much lower amounts (Nogueira et al., 

1998; Guedes et al., 2003; Guedes et al., 2004) while in shoots α-pinene was not identified 

(Guedes et al., 2003). The other monoterpene hydrocarbons, α-thujene, camphene and sabinene 

were exclusively detected in the EO of ripened seed capsules.  

 

 

Concluding remarks 

 

Several factors had already been reported to affect the EO composition of H. 

androsaemum, namely harvesting time and growth conditions (in vivo or in vitro) (Guedes et 

al., 2003; Guedes et al., 2004). The work here reported showed different EO composition 

profiles in leaves, stems and ripened seed capsules of H. androsaemum. Sesquiterpene 

hydrocarbons constituted the main fraction in EO from leaves and stems. However, in stems EO 

n-alkanes were also abundant, being n-nonane its major compound. The ripened seed capsules 

contained high levels of monoterpene hydrocarbons, mainly due to limonene, β-pinene and α-

pinene contents. 
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4.1- Chapter overview 
 

Hypericum perforatum (St. John’s wort), the most studied species of the genus, has been 

used as a medicinal plant for centuries because of its anti-inflammatory, sedative, analgesic, 

diuretic, anti-malarial, and wound healing properties (Zobayed et al., 2004). This species is also 

a natural herbal alternative used mainly for the treatment of depression in cases where standard 

antidepressants, such as Prozac, Paxil, and Zoloft may be prescribed. This species was also 

shown to have potential as a novel anticancer drug (Schempp et al., 2002). Biological activities 

of H. perforatum are mainly attributed to compounds of phenolic extracts (Kitanov, 2001). 

Therefore, standardization of natural health of H. perforatum, one of the five top selling 

phytopharmaceuticals in North America (Zobayed et al., 2004), are based mainly on the 

quantification of hypericin, pseudohypericin, and hyperforin (Orth et al., 1999). Other set of 

secondary metabolites, essential oils, have already been reported for plants of this species 

grown in different countries, however in a less extent (Nogueira et al., 1998; Pintore et al., 

2005; Pavlović et al., 2006; Saroglou et al., 2007). To date, commercial production of H. 

perforatum is generally based on field grown plant material but the quality of these products 

may be affected by different environmental conditions, pollutants, microorganisms, viruses, and 

insects which can alter the concentration of its medicinal metabolites (Zobayed 2004). Indeed, 

even though a significant number of studies on the essential oils composition of H. perforatum 

have been published, literature on the factors that might influence its production and 

accumulation is scarce. 

As part of the phytochemical investigation in species of the Hypericum genus in our 

laboratory, we analyzed the chemical composition of (i) essential oils from two different 

cultivars of Hypericum perforatum (H. perforatum common cultivar and H. perforatum cv. 

Topaz) cultivated in two different sites (Arcos de Valdevez and Merelim) over a year, with 2 

months of interval; (ii) essential oils isolated from flowers; and (iii) essential oils produced by 

in vitro shoot cultures established and maintained in the scope of this work. 

Highly complex essential oils were obtained from H. perforatum plants. The highest 

essential oils yields of H. perforatum were obtained in the flowers. In the two experimental 

fields the maximum values of essential oils yields were obtained in plants of H. perforatum cv. 

‘Topaz’. Most of the essential oils of plants of the two cultivars were characterized by the 

predominance of the sesquiterpene hydrocarbons, as the major group of compounds. Only 

flowers of H. perforatum common cultivar, cultivated in Merelim did not follow this tendency, 
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having the monoterpene hydrocarbons as the most represented group of compounds. Over the 

most part of the year, an inverse correlation in the variation of the sesquiterpene hydrocarbons 

and monoterpene hydrocarbons was recorded in the essential oils of H. perforatum and H. 

perforatum ‘Topaz’. 

Variations in the content of the main constituents of the essential oils were registered in 

the two cultivars, in both experimental fields. Germacrene D, (E)-caryophyllene, and β-selinene 

were the compounds that most contributed to the high amount of sesquiterpene hydrocarbons in 

the essential oils of the vegetative aerial parts. Essential oils from flowers were characterized by 

its high content of 2-methyl-octane, which was the second most represented compound in some 

of the essential oils isolated from vegetative aerial parts of plants cultivated in the two sites. 

Sesquiterpene hydrocarbons was also the major group of compounds in the essential oils 

of in vitro shoots. However, the major compound in those essential oils, n-nonane, was not 

among the most represented ones in the cultivated plants. 

Differences in the composition of the essential oils over the year, herein reported, can be 

attributed to seasonal variation, which influences the development stage of the plants. 

Additionally, the present results show that other factors, such as plant organ and growth 

conditions (in vivo or in vitro) affect also the essential oils composition of H. perforatum. 

 

 

 

 

 

 

 

 

 

 
 

Figure 1- a) Hypericum perforatum flowers b) In vitro plantlets of Hypericum perforatum cv. Topaz grown on MS 

basal medium without plant growth regulators after 50 days of culture. 
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4.2- Manuscripts 
 

 

This chapter comprises the following manuscripts: 

 

 

Guedes, AP, Vicente, AM & Fernandes-Ferreira, M. Essential Oils from vegetative aerial parts 

and flowers of Hypericum perforatum. 

 

 

Guedes, AP, Vicente, AM & Fernandes-Ferreira, M. Essential Oils from Cultivated Plants and 

In vitro Shoots of Hypericum perforatum ‘Topaz’. 
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Abstract 
 

The composition of the essential oils (EO) from aerial parts of H. perforatum plants was 

characterized after hydrodistillation of plant branches harvested during one year at intervals of 

2-3 months, in two experimental fields located in northern Portugal (Arcos de Valdevez and 

Merelim). In both experimental fields the highest and the lowest EO yields were registered in 

June and December, respectively. The analysis of the EO by GC-MS revealed the presence of 

more than 110 compounds, the most of which were identified, including germacrene D, 2-

methyl-octane, (Ε)-caryophyllene and β-selinene as the major ones. Variations in the specific 

contents of the main compound classes, over the year were registered. The sesquiterpene 

hydrocarbons constituted the major group in all samples harvested over the year in the two 

experimental fields, whose maximum percentage content was reached in the winter decreasing 

afterwards. Over the most part of the year, the percentage content of this group of compounds 

varied in an opposite manner to that of monoterpene hydrocarbons. The EO of the vegetative 

aerial parts showed, over the year, a poor fraction of monoterpene hydrocarbons. Flowers 

harvested in June gave the highest essential oils yields from all the plant samples studied, as 

well as the highest amounts of 2-methyl-octane, the main EO constituent. In flowers from 

plants growing in Arcos de Valdevez the sesquiterpene hydrocarbons constituted the main 

group of compounds followed by alkanes, monoterpene hydrocarbons, oxygenated 

sesquiterpenes and oxygenated monoterpenes. In flowers from plants growing in Merelim the 

major compound group was that of monoterpene hydrocarbons, followed by alkanes and 

oxygenated monoterpenes. 
 

Keywords: Hypericum perforatum, essential oils, flowers, sesquiterpene hydrocarbons, 2-methyl-octane 
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1- Introduction 
 

The genus Hypericum belongs to the Clusiaceae family and encompasses about 460 

species accommodated in 36 sections (Robson, 2006). In Portugal, there are 17 species arranged 

in nine sections of the genus (Nogueira et al., 2008). 

Hypericum perforatum (St. John’s wort) is the most studied species of the genus being 

its extracts widely used as antiviral, wound healing, antioxidant, antimicrobial, antifungal, 

anxiolytic and anticonvulsant, as well as in depressive disorders (Vandenbogaerde et al., 2000; 

Barnes et al., 2001; Bilia et al., 2002; Butterweck et al., 2003; Avato et al., 2004; Hosseinzadeh 

et al., 2005). Infusions prepared from the flowers, leaves and fruits of various Hypericum 

species have been used as a vermifuge, diuretic, as well as a wound healing, sedative, 

antihysterical and antidepressive agent (Prado et al., 2002; Rabanal et al., 2002). Decoctions of 

H. perforatum flowering aerial parts have been used to treat liver troubles (Camejo-Rodrigues 

et al., 2003), as well as depression and rheumatism (Nogueira et al., 1998). 

The aforementioned activities are mainly attributed to flavonoids, xanthones, tannins, 

phloroglucinols (hyperforin and adhyperforin) and naphtodianthrones (hypericin, 

protopseudohypericin, pseudohypericin and protohypericin) (Kitanov, 2001). The biological 

activities from H. perforatum essential oils (EO) have been less studied than those from the 

phenolic components. However, its antimicrobial activity has already been demonstrated 

against several Gram-positive and Gram-negative bacteria and fungus, as Candida albicans 

(Gudžić et al., 1997; Saroglou et al., 2007). 

Several reports describing the EO composition of H. perforatum grown in different 

countries have shown the sesquiterpene hydrocarbons, (E)-caryophyllene, germacrene D, β-

farnesene, and the alkanes, 2-methyl-octane, 2-methyl-decane and 2-methyl-dodecane as the 

compounds present with the highest frequency (Gudžić et al., 1997; Nogueira et al., 1998; 

Gudžić et al., 2001; Baser et al., 2002; Mockutė et al., 2003; Pintore et al., 2005; Pavlović et 

al., 2006; Saroglou et al., 2007). EO isolated from H. perforatum plants cultivated in Italy, 

Greece and Serbia were characterized by the high contents of α-pinene (Pintore et al., 2005; 

Pavlović et al., 2006; Saroglou et al., 2007). On the other hand, EO of H. perforatum from 

Uzbekistan showed high contents of oxygenated sesquiterpenes, such as caryophyllene oxide 

and spathulenol (Baser et al., 2002; Mockutė et al., 2003). A different composition was found 

in the EO of H. perforatum from India, in which the two major compounds were ishawarane 

and α-cuprenene (Weyerstahl et al., 1995). The EO yields and composition are known to be 
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affected by several biotic and abiotic factors (Figueiredo et al., 2008). Indeed, variations in EO 

composition of several species of the Hypericum genus were previously reported, depending on 

genetic factors (Petrakis et al., 2005), geographical distribution and environmental factors 

(Couladis et al., 2001; Smelcerovic et al., 2007), ontogeny (Schwob et al., 2004; Nogueira et 

al., 2008), and plant organ (Bertoli et al., 2003). 

Despite the great scientific interest in the phenolic fraction of H. perforatum, the high 

potential therapeutic properties of its volatile fraction make also imperative studies on its EO 

profiles. Even though a significant number of studies on the chemical characterization of H. 

perforatum have been published, literature on the variation profiles of its EO is scarce. Thus, as 

part of the phytochemical investigation in species of the Hypericum genus, we determined and 

report here the variation profiles of the EO of H. perforatum (common cultivar) growing in two 

different sites of the Northern of Portugal (Arcos de Valdevez and Merelim) and harvested with 

intervals of 2-3 months over one year, as well as the EO composition of their flowers. 

 

2- Material and Methods 
 

2.1- Plant material 

Plants of Hypericum perforatum L. common cultivar were grown in two experimental 

farms from the Direcção Regional de Agricultura e Pescas do Norte (DRAPN), located at Arcos 

de Valdevez and Merelim (Northern region of Portugal) kept under the responsibility of 

DRAPN. Voucher specimens are maintained in an active bank in DRAPN. Aerial parts from 6-

8 cultivated plants were randomly collected in accessions made in the months of January, April, 

June, September and December. 

Flowers were separated from one subsample of plant material randomly collected in 

June, and processed independently in the hydrodistillation and EO analysis. As anthesis 

occurred from May to July, in an asynchronous way, the flower sample included flowers of 

different ages within that time interval. 

 

2.2- Essential oils isolation 

Subsamples of fresh vegetative aerial parts (10g) and fresh flowers (10g) were 

submitted to hydrodistillation with 500 ml of boiling water in a Clevenger type apparatus over 

1h, using volumes of 1.0 mL of n-hexane, containing 5-α-cholestane (1mg/mL), for retention of 

the hydrodistillate components. The dry weight of the plant material was determined after 
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drying (60ºC, 72h) in a drying stove. Further analyses of the hydrodistillates were performed by 

gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). 

 

2.3- Analysis 

GC-MS analysis was performed with a Perkin-Elmer 8500 gas chromatograph equipped 

with a fused silica DB5 column (30 m long x  0.25 ID, 0.25 µm film thickness composed by 

5%-phenyl methylpolysiloxane, J & W Scientific), connected with a Finnigan MAT Ion Trap 

Detector (ITD; software version 4.1) operating in EI mode at 70eV. GC-MS analysis was also 

performed with a Thermo Trace GC Ultra gas chromatograph equipped with a fused silica TR-

5 (5% phenyl methylpolysiloxane) connected to a Thermo-Finnigan Polaris Q ion trap detector, 

operating in EI FullScan mode in the range 40-400 m/z. Analysis conditions were the same for 

the two equipments. Injector, interface and ion-source temperatures were 300ºC, 260ºC and 

220ºC respectively. The oven temperature program included a ramp from 60ºC (0.00 min) to 

285 °C at 3°C min-1. Helium (He) was used as carrier gas with a column head pressure of 12.5 

psi for Perkin Elmer equipment; while for the Thermo-Finnigan, He was used as carrier gas 

with an even flow rate of 1.5 mL.min-1. The injections of the samples (0.5 µl) were made in 

splitless mode with the split valve opening at the end of 0.1 second after the injection.  

The identification of the compounds was performed according to recommendations of 

the International Organization of the Flavor Industry (1991). Mass spectra libraries, namely 

NIST and a terpene library containing mass spectra, retention times and retention indices on 

DB-5 and other similar columns, were used in the identification of all compounds as well as the 

comparison with published data, namely retention times and retention indices of EO 

compounds on DB-5 column (Adams, 1989; Adams, 2001). The retention indices of the EO 

constituents were determined relative to n-alkanes of a complete series, from n-octane to n-

tetratriacontane, eluted in the same conditions as the EO samples, as well as co-eluted with the 

EO samples. 

GC analyses were performed using a Perkin Elmer Autosystem gas chromatograph 

equipped with a fused silica DB5 column as that of GC-MS. The temperature oven was 

increased at a rate of 3°C min-1 from 60ºC to 285ºC; the injector was kept at 300ºC and the 

flame ionisation detector (FID) at 320ºC. Hydrogen was used as carrier gas at flow rate of 1.49 

mL/min under a column head pressure of 12.5 psi. Injections were performed in a split/splitless 

injector with the splitter opened at the 1:13 split ratio. Three replicates of each sample were 

processed in the same way. Percentage values from the listed compounds correspond to the 

values given in the GC report without correction factors. Following the procedure reported 
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before (Guedes et al., 2004), 5-α-cholestane was used as an internal standard for estimation of 

the specific content of each essential oil compound. Considering that the determination of 

individual correction factors is impracticable, due to either the high number of compounds or 

their absence in the market, compounds of a given group (monoterpene hydrocarbons, oxygen-

containing monoterpenes, sesquiterpene hydrocarbons, and oxygen-containing sesquiterpenes) 

were assumed to have the same GC response factor. The values used as GC response factors of 

each compound were those previously reported for each group of compounds (Guedes et al., 

2004). Given the generalised response factors attributed to the compounds belonging to the 

same group, the derived quantitative data expressed in mg/g of biomass dry weight may be 

considered as an approximation of the absolute quantification. The sum of the specific contents 

of all individual EO compounds was taken as a parameter for the estimation of the total specific 

EO yield. 

 

 

3- Results and Discussion 
 

3.1- Yields and composition of essential oils produced by aerial parts of cultivated plants 

 

The sum of the values given by the absolute quantification of all the compounds showed 

EO contents in flowers significantly higher than in the vegetative aerial parts, independently of 

the grown site (Figure 1).  

0

2

4

6

8

10

12

14

16

m
g/

g 
dr

y 
w

ei
gh

t

January April June September December

HpA-VAp HpM-VAp HpA-Fl HpM-Fl

 
Figure 1- Total essential oil contents from aerial parts of Hypericum perforatum plants cultivated in Arcos de 

Valdevez (HpA) and Merelim (HpM) experimental fields and harvested at different times during the year. VAp- 

Vegetative aerial parts; Fl- Flowers. 
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The EO contents ranged from 1.6-5.8 mg/g of dry weight in Arcos de Valdevez (HpA-

VAp) and from 1.5-4.1 mg/g of dry weight in Merelim (HpM-VAp). As can be seen, in Figure 

1, the EO contents in the vegetative aerial parts started rising from their lowest levels in 

December (1.5-1.6 mg/g dry weight) up to their highest levels in the summer. In the winter, EO 

contents of H. perforatum were similar in HpA and HpM. However in June, as well as in 

September, HpA-VAp showed higher EO contents than HpM-VAp, in contrast to what 

occurred in April. The EO contents in the flowers were almost four fold higher than in the 

vegetative aerial parts (14.6 mg/g of dry weight in HpA-Fl and 15.9 mg/g of dry weight in 

HpM-Fl). Similar results were reported by Schowb and co-workers (2004). The observed 

variations in the EO contents between both H. perforatum plant populations grown in the two 

fields could be attributed to pedologic and climatic factors. In fact, low yields of EO in the 

winter should be related with the climacteric conditions typical of this season, such as low 

temperatures. Usually, in this period, plants of H. perforatum loose their vegetative aerial parts. 

In December a substantial reduction in the growth of the aerial parts of the plants was registered 

in the two sites (data not shown). Influence of environmental factors in the EO contents have 

been already reported for several species, including some of the Hypericum genus (Couladis et 

al., 2001; Schwob et al., 2002; Mockutė et al., 2003; Mockute et al., 2008). Flowers of H. 

perforatum possess translucent glands and type B cannals structures which accumulate EO 

(Ciccarelli et al., 2001; Maffi et al., 2005). The higher amounts of EO obtained in flowers 

might be related to the type and density of secretory structures differentiated in this organ.  

About 100 compounds were identified in the EO of both populations (HpA and HpM) of 

H. perforatum (Table 1). Most of the compounds were distributed mainly by monoterpenes 

(hydrocarbons - MH, and oxygenated - MO), sesquiterpenes (hydrocarbons - SH, and 

oxygenated - SO) and alkanes (Table 1) and in both cases the EO were dominated by the 

hydrocarbon compounds, either sesquiterpenes or monoterpenes.  
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Table 1- Composition of the essential oils from aerial parts and flowers of Hypericum perforatum plants, 

cultivated in Arcos de Valdevez (HpA) and Merelim (HpM) experimental fields and harvested at different times 

during the year. 

January April June September December 

Compound KI HpA
VAp
(%) 

HpM
VAp
(%) 

HpA
VAp
(%) 

HpM
VAp
(%) 

HpA
VAp
(%) 

HpA
Fl 

(%) 

HpM 
VAp
(%) 

HpM 
Fl 

(%) 

HpA 
VAp 
(%) 

HpM
VAp
(%) 

HpA
VAp
(%) 

HpM
VAp
(%) 

1-Octene 793 0.5 0.3 0.2 0.2 0.5 0.1 0.3 0.1 0.3 0.3 0.4 0,4 
(E)-2-Hexenal 854   0.3 0.5 0.5 1.2  1.0   0.6 0.6 0.5 0,1 
2-methyl-octane 864 10.5 11.2 7.3 9.8 13.1 24.3 14.8 28.8 12.0 11.4 8.7 5,6 
n-Nonane 900 2.3 3.0 6.8 2.1 2.5 1.0 1.7 1.1 3.8 3.8 2.1 1,4 
α-Thujene 929 0.8 tr 0.3 0.2 1.5 0.3 1.2 0.3 0.1 0.9 0.6 0,4 
α-Pinene 936 4.5 2.2 6.1 2.5 4.9 3.6 3.1 9.8 2.7 6.0 4.4 2,7 
2,6-Dimethyl-octane 972 0.9 1.3 0.9 0.7 1.0 0.5 1.1 0.6 1.3 0.7 0.6 0,4 
Sabinene 975 0.9 0.3 1.5 1.2 3.2 0.9 1.6 0.4 0.4 1.5 1.2 1,1 
β-Pinene 978 1.4 0.3 1.4 0.9 3.3 2.7 2.1 12.2 0.5 2.3 1.4 1,3 
6-Methyl-5-Hepten-2-one 988       tr  tr tr       
Myrcene 986 0.5 0.3 0.8 0.6 1.4 0.7 0.8 0.8 0.3 1.2 0.8 0,6 
n-Decane 1000       tr tr tr tr tr tr tr  
Hexyl acetate 1005     0.5 0.3 0.1  tr tr 0.1 0.3   
α-Terpinene 1018     0.1 0.1 0.5 0.1 0.3 0.1 tr 0.4 0.1 tr 
p-Cymene 1026       0.1 tr 0.1 tr   tr   
Limonene 1031 0.5 tr 0.3 0.3 0.8 0.4 0.5 0.5 0.1 0.6 0.3 0,4 
Z-β-Ocimene 1041 1.4 0.6 1.5 1.2 0.8 1.2 0.5 0.9 0.5 1.3 1.1 1,4 
E-β-Ocimene 1052 8.6 5.9 8.7 9.2 4.6 11.6 2.3 8.9 3.3 6.7 7.3 10,5 
γ-Terpinene 1061 tr   0.2 0.2 0.9 0.3 0.5 0.2 0.1 0.6 0.3 0,1 
Methyl decane 1069   0.3 tr 0.1 0.5 1.3 0.4 1.0 0.1 0.1 0.1  
trans-Linalool oxide (furanoid) 1073          tr         
Terpinolene 1090     0.1 0.1 0.2 0.1 0.1 0.1 tr 0.2 0.1  
Linalool 1099       0.2  0.1 tr       
n-Undecane 1100 tr 0.3 0.2 0.2 0.3 0.4 0.4 0.3 0.2 tr 0.2 tr 
n-Nonanal 1104 tr 0.3 0.1 0.1 tr tr 0.1 0.1 tr 0.1 0.2 0,1 
α.Campholenal 1121 tr tr 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.2 0,1 
Camphor 1145       tr  tr tr       
n-Nonanol 1170     0.3 0.2 0.1 0.4 0.1 0.3 0.2 0.4 0.3 1,0 
Terpinen-4-ol 1176 0.5 0.5 0.2 0.2 0.6 0.3 0.2 0.2 0.1 0.5 0.3 tr 
α-Terpineol 1189 tr 0.2 tr tr 0.1 0.1 tr 0.2 tr 0.1   
n-Decanal 1205 0.5 0.8 1.1 0.9 0.2  0.1 tr 0.4 0.7 0.7 1,7 
trans-Carveol 1217       tr           
Methyl dodecane 1265       tr 0.2 tr 0.2       
n-Decanol 1273     0.1 0.2 tr  tr   0.1 0.1 0.2 0,3 
n-Tridecane 1300       tr tr tr 0.1       
SH 1327 tr tr 0.1 0.1 0.1 0.1 0.1   0.1 0.1 0.1 tr 
δ-Elemene 1337 1.1 1.0 0.9 0.9 0.5 0.4 0.7 0.2 0.8 0.7 0.8 1,1 
α-Cubebene 1348     0.1 tr tr 0.1 tr 0.1 0.1 0.1   
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January April June September December 

Compound KI HpA 
VAp 
(%) 

HpM
VAp
(%) 

HpA
VAp
(%) 

HpM
VAp
(%) 

HpA
VAp
(%) 

HpA
Fl 

(%) 

HpM
VAp
(%) 

HpM 
Fl 

(%) 

HpA 
VAp 
(%) 

HpM 
VAp 
(%) 

HpA
VAp
(%) 

HpM
VAp
(%) 

α−Ylangene 1370     tr 0.1 tr tr tr 0.1 tr tr   
α-Copaene 1374   tr 0.1  0.3 0.3 0.1 0.1 tr 0.1 0.1 tr 
β-Bourbonene 1382 0.5 0.3 0.1 0.1 0.2 0.1 0.3 0.1 0.1 0.2 0.1 0,4 
β-Cubebene 1388   0.5       0.1   tr   
β-Elemene 1390 0.9 0.3 0.2 0.5 0.6 0.3 0.6 0.1 0.8 0.7 0.8 0,8 
Dodecanal 1406 tr     tr  tr tr tr     
α-Cedrene 1412 0.3 0.3 0.7 0.3 0.4 0.3 0.5 0.2 0.7 0.6 0.3 0,4 
SH 1415     0.1        0.1 tr   
(Ε)-Caryophyllene 1417 7.3 6.2 5.5 7.7 10.8 17.8 12.5 10.2 11.3 10.2 5.5 5,2 
β-Gurjunene 1427 0.5 0.6 0.3 0.4 0.2 0.3 0.3 0.1 0.4 0.3 0.3 0,6 
α-Guaiene 1439       0.1 0.1 0.1 0.1 tr tr   
Aromadendrene 1440     0.2 0.1 0.7 0.2 0.4 0.1 tr 0.1 0.3 0,4 
(Z)-β-Farnesene 1442 0.2 0.3  0.2 0.1 0.1 0.2 0.1 0.2 0.2   
SH 1446     tr  tr 0.1 tr tr 0.1 tr   
α-Himachalene 1450 0.9 0.7 0.7 0.8 0.9 0.9 1.0 0.5 1.0 0.9 0.8 0,8 
α-Humulene 1453     tr     tr     tr   
E-β-Farnesene 1455       tr tr 0.2 tr tr     
allo-aromadendrene 1459 0.5 1.0 1.1 0.8 0.4 2.7 0.4 1.2 1.6 0.7 0.5 0,4 
α-acoradiene 1468     0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 tr  
Dodecanol 1474         tr          
γ-Gurjunene 1475  4.9 0.1 5.2 3.5 0.2 3.3   3.5 2.4 9.1 9,9 
γ-Muurolene 1478  tr  tr 0.1 tr tr tr tr tr tr tr   
Germacrene D 1481 41.7 39.5 29.6 35.7 14.1 11.0 21.8 9.0 30.2 21.3 32.4 32,7 
Curcumene 1483     1.3  tr  0.1         
SH 1487     tr tr tr 0.1 0.1 0.1 tr tr   
β-Selinene 1488 7.3 6.0 5.8 6.0 3.2 3.1 4.6 1.8 5.3 4.9 5.3 5,9 
α-Selinene 1494     0.8 0.2         0.3   
α-Muurolene 1497 0.3 0.3 0.2 0.1 0.1 0.2 0.2 0.1 0.4 0.2 0.2 0,1 
n-Pentadecane 1500     tr 0.1 0.1  0.1   0.2 0.1 0.1 tr 
(E,E)-α-Farnesene 1503   0.1 0.1 0.1 tr 0.1 0.1 tr 0.1 0.1 tr  
γ-Cadinene 1508 0.5 0.5 0.7 0.5 0.4 0.9 0.6 0.3 1.0 0.6 0.3 0,4 
Z-γ-Bisabolene 1510     0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.2   
δ-Cadinene 1521 0.9 0.6 1.2 0.8 0.6 0.9 0.9 0.5 0.9 1.0 0.8 0,8 
SH 1527       tr  tr     tr   
E-γ-Bisabolene 1530     0.1 0.1 tr 0.1 0.1 tr 0.1 tr   
α-Cadinene 1534     0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 tr  
SH 1540       tr  tr         
α-Calacorene 1543     0.1 tr tr tr tr tr 0.1 0.1   
SO (?) 1549     0.1  0.4 tr 0.3 0.1   0.1   
γ-Elemene (?) 1551       0.1  tr   tr     
E-Nerolidol 1564 0.1 0.5 0.8 0.8 0.8 0.6 0.6 0.4 0.8 1.0 0.9 1,1 
Spathulenol 1574 0.5    0.6 0.2 0.2 0.2 0.1   0.1 0.5  
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January April June September December 

Compound KI HpA
VAp
(%) 

HpM
VAp
(%) 

HpA
VAp
(%) 

HpM
VAp
(%) 

HpA
VAp
(%) 

HpA
Fl 

(%) 

HpM 
VAp
(%) 

HpM 
Fl 

(%) 

HpA 
VAp 
(%) 

HpM
VAp
(%) 

HpA
VAp
(%) 

HpM
VAp
(%) 

cis-3-Hexenyl benzoate 1577   0.3 0.6 0.1 2.9 0.1 2.0 0.2 0.4 0.4  0,8 
Caryophyllene Oxide 1580 0.3 0.3 0.2 0.3 5.0 0.9 3.8 2.1 0.3 0.1 0.5 0,4 
Globulol 1585      0.1 0.1 tr tr tr 0.1 0.1 tr tr 
Viridiflorol 1592 tr 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.2 0.4 0.3 tr 
Guaiol 1593     0.2  0.1 0.1 tr 0.1 0.1 tr   
β-Copaen-4-α-ol 1597 tr 0.2 1.2 0.3 0.1 0.1 0.1 0.1 0.2 0.4 0.3 0,3 
Humulene Epoxide II 1603       0.2  0.2       tr  
β-Oplopenone 1610       0.1 tr 0.1 tr 0.1 tr   
SO 1612   tr  0.2 0.1  0.1   0.2 0.3 0.3 tr 
10-epi−γ-Eudesmol 1619 tr 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.3 0,1 
γ-Eudesmol 1624   0.3 0.1 0.1 tr 0.1 0.1 tr tr 0.1 0.1 tr 
epi-α-Cubenol 1633 1.5 1.8 0.1 0.5 0.4 0.1 0.3 0.1 1.0 0.9 1.9 2,8 
epi-α−Cadinol 1640   0.6 1.0 0.8 1.7 2.5 0.5 1.2 0.7 1.0 1.0 0,8 
epi-α-Muurolol 1642   0.2 0.3 0.3 0.2 0.1 1.0 0.1 0.3 0.4 0.3 0,4 
SO 1646       0.1  0.1         
α-Cadinol 1654 0.9 1.2 1.6 1.2 0.7 0.7 0.8 0.4 1.2 1.4 1.8 1,7 
β-Bisabolol 1673     0.1 tr 0.2 tr 0.1 tr tr 0.8 0.2  
epi-α-Bisabolol 1677     0.1  1.9 0.7 1.9 0.2 1.6 0.5 0.6  
n-Tetradecanol 1681   0.6 0.2 0.4 0.3  0.3   0.4     
Benzyl benzoate 1738       tr tr tr         
n-Hexadecanol 1881       0.2 0.1 0.3 tr 0.1 0.1   
Nonadecane 1900         0.1  0.2       
n-Eicosane 2000         tr tr 0.1       
n-Heneicosane 2100         0.2 tr 0.3 tr tr    
Nonadecanal 2111     0.3 0.1 0.3 0.1 1.0 tr 4.1 2.6 0.1  
n-Docosane 2200     tr    tr tr tr tr tr 0.3  
n-Tricosane 2300 0.5 0.5 0.5 0.2 tr 0.1 0.1 0.1 0.1 0.1  0,4 
n-Tetracosane 2400   tr 0.1 tr tr tr tr tr tr tr 0.1 tr 
n-Pentacosane 2500 0.1 0.7 0.7 0.2 0.1 0.1 0.1 tr 0.3 0.2 0.4 0,4 
n-Hexacosane 2600         tr  tr tr tr   
n-Heptacosane 2700   tr 0.1 tr 0.1 0.1 0.1 0.1 0.2 0.2 0.1 tr 
n-Octacosane 2800         tr  tr tr tr   
n-Nonacosane 2900     tr  0.1 0.3 0.2 0.2 0.1 0.3   

Monoterpene Hydrocarbons 18.5 9.7 21.2 16.5 22.2 21.9 13.1 34.2 8.0 21.6 17.5 18.5 
Oxygenated Monoterpenes 0.5 0.7 0.2 0.2 0.9 0.3 0.3 0.4 0.1 0.6 0.3 0.0 
Sesquiterpene Hydrocarbons 62.6 63.2 50.8 61.0 37.9 40.7 49.6 25.5 59.3 46.3 57.6 60.2 
Oxygenated Sesquiterpenes 3.3 5.4 6.2 5.5 12.6 6.3 10.4 5.1 6.8 7.7 8.9 7.8 
Alkanes 14.2 17.4 16.6 13.0 17.9 28.8 18.5 33.0 18.4 16.9 12.7 8.3 
Others 0.9 3.6 5.0 3.8 8.6 2.0 8.0 1.8 7.5 6.8 3.0 5.2 

VAp- Vegetative aerial parts; Fl- Flowers; KI- Kovats retention index on a DB-5 column; tr- trace amounts 
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Regardless the cultivation site and time of harvest, sesquiterpene hydrocarbons 

constituted the major group of compounds in the EO of the vegetative aerial parts of plants of 

this species. However, different variation profiles of their specific contents were registered over 

the year depending of the experimental field where the plants were growing (Figures 2a and 

2b). 

 
 

 
Figure 2- Relative contents of the major groups of compounds of the essential oils from vegetative aerial parts of 

Hypericum perforatum plants cultivated in (a) Arcos de Valdevez (HpA-VAp), and (b) Merelim (HpM-VAp) 
experimental fields and harvested at different times over the year. MH- Monoterpene Hydrocarbons; MO- 

Oxygenated Monoterpenes; SH- Sesquiterpene Hydrocarbons; SO- Oxygenated Sesquiterpenes. 

 

As it can be seen in Figure 2a, a drastic decrease in the EO sesquiterpene hydrocarbons 

content was registered in HpA-VAp from January (62.6%) to June (37.9%). In HpM-VAp 
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(Figure 2b). An increase in the content of sesquiterpene hydrocarbons was then observed from 

June to September, in HpA-VAp and from September to December, in HpM-VAp. An inverse 

variation in the relative content of the monoterpene hydrocarbons group occurred in HpA-VAp, 

which decreased from 22.2%, in June, to 8.0%, in September. In both sites the variation in the 

contents of the total monoterpene hydrocarbons was inversely correlated with that of the 

sesquiterpene hydrocarbons, with exception for HpM-VAp between April and June. 

Biosynthesis of the compounds from these groups follows different pathways in different cell 

compartments, with monoterpenes synthesised in the plastids and sesquiterpenes synthesised in 

the cytosol (Davis et al., 2000). Variations of these two groups of compounds can reflect 

different overall development of both subcellular compartments in the different times of the 

year. Alkanes were the second most represented group of compounds in HpA-VAp samples 

harvested in September and in HpM-VAp samples harvested in January and June. 

Different compositions of the H. perforatum EO have been reported. Our results are 

consistent with those reported for plants grown in Italy (Pintore et al., 2005), France (Schwob et 

al., 2002), Serbia (Gudžić et al., 1997; Gudžić et al., 2001) and Lithuania (Mockutė et al., 

2003), whose total sesquiterpene hydrocarbons constituted also the major group of compounds. 

However, plants of H. perforatum growing in some different regions of Lithuania were 

characterized by their high levels of oxygenated sesquiterpenes (Radusiene et al., 2005). On the 

other hand, some authors have found low contents of oxygenated monoterpenes in the EO of H. 

perforatum (Mockutė et al., 2003; Pintore et al., 2005; Radusiene et al., 2005; Pavlović et al., 

2006; Smelcerovic et al., 2007). 

Germacrene D, the major compound in H. perforatum EO, was the one that most 

contributed for the variation of the sesquiterpene hydrocarbons group in HpA-VAp and HpM-

VAp, excepting between September and December, in the case of HpA-VAp. (E)-

Caryophyllene and β-selinene were the second and third major sesquiterpene hydrocarbons in 

both HpA-VAp and HpM-VAp EO. However, the variation of these two compounds did not 

follow the pattern of the variation of the sesquiterpene hydrocarbons group (Table 1). The HpA 

and HpM EO composition herein reported was similar to the EO composition of H. perforatum 

plants growing in Southern France, in what respect the high sesquiterpene specific amounts, 

and especially those of germacrene D (Schwob et al., 2002). Germacrene D and (E)-

caryophyllene were also two of the major components in EO of H. perforatum plants growing 

in Lithuania (Mockutė et al., 2003). However, in the EO of plants from this species growing in 

the South-East of France the most represented sesquiterpene hydrocarbons were (E)-
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caryophyllene, γ-muurolene, (E)-β-farnesene and β-funebrene (Schwob et al., 2004), the last 

one of which was not identified in our H. perforatum plants. 

2-Methyl-octane was the second major constituent of the EO in HpA-VAp and HpM-

VAp. In HpA-VAp it ranged from 7.3% in April to 13.1% in June. In HpM-VAp this 

compound reached its maximum in June (14.8%) decreasing then until 5.6%, in December. 

High levels of this alkane were also found in the EO of H. perforatum by other authors 

(Nogueira et al., 1998; Gudžić et al., 2001; Pintore et al., 2005; Pavlović et al., 2006). In this 

work, the alkanes group includes 2-methyl-octane together with other branched and n-alkanes. 

In plant samples harvested in September in both experimental fields, a complete series of n-

alkanes from C21 to C29 was identified. The presence of an almost complete series of n-alkanes, 

from C18H38 to C28H58 was also found in the EO of another species of this genus, Hypericum 

androsaemum (Guedes et al., 2003). In dried leaf of H. perforatum a higher series of n-alkanes, 

from C16H34 to C29H60, had already been reported (Brondz et al., 1983). 

Little variations in the contents of the oxygenated sesquiterpenes were registered in 

plants grown in both fields although a slight increase had occurred from April to June, when the 

respective maxima were reached (HpA- 12.6% and HpM- 10.4%). In contrast, the oxygenated 

sesquiterpenes group was the dominant fraction in the EO of vegetative parts of H. perforatum 

plants grown in France (Schwob et al., 2004). Maximum levels of oxygenated sesquiterpenes 

coincided with maximum amounts of caryophyllene oxide (HpA-VAp, 5.0% and HpM-VAp, 

3.8%). From April to June, not only the increase in caryophyllene oxide contents but also the 

increase of epi-α-bisabolol (1.9%), contributed to the increase of the percentage of the total 

oxygenated sesquiterpenes in the EO of both HpA-VAp and HpM-VAp. In previous studies, 

caryophyllene oxide was reported as one of the most important volatile constituents of the EO 

of H. perforatum plants growing in France (Schwob et al., 2004) and Lithuania (Mockutė et al., 

2003). The main constituents of monoterpene hydrocarbons were α-pinene and E-β-ocimene. 

The accentuated decrease in the contents of the total monoterpene hydrocarbons, from June to 

September, in HpA-VAp, could be explained by the decrease in specific contents of these two 

compounds as well as those of sabinene and β-pinene. In HpM, the most represented 

monoterpene hydrocarbons were E-β-ocimene and α-pinene, which ranged from 2.3% to 10.5% 

and 2.2% to 6.0%, over the year, respectively. 
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3.2- Essential oils from H. perforatum flowers 

 

The contents of the main groups of compounds detected in EO of H. perforatum flowers 

harvested in June are shown in Figure 3 (HpA-Fl and HpM-Fl). 

 

0

10

20

30

40

50

%

HpA-Fl HpM-Fl HpA-VAp HpM-VAp

MH MO SH SO Alkanes

 
Figure 3- Relative contents of major groups of compounds of the essential oils from flowers and vegetative aerial 

parts of Hypericum perforatum plants cultivated in Arcos de Valdevez (HpA) and Merelim (HpM) experimental 

fields and harvested in June. Fl- Flowers; VAp- Vegetative aerial parts; MH- Monoterpene Hydrocarbons; MO- 

Oxygenated Monoterpenes; SH- Sesquiterpene Hydrocarbons; SO- Oxygenated Sesquiterpenes 

 

Sesquiterpene hydrocarbons constituted the major group of compounds in HpA-Fl 

(40.7%) while in HpM-Fl the major group was that of monoterpene hydrocarbons (34.2%). 

Alkanes constituted the second most represented group (HpA-Fl – 28.8% and HpM-Fl – 

33.0%). In both cases (HpA and HpM), the percentage contents of alkanes were higher in 

flowers than in the vegetative aerial parts (Figure 3). The percentage content of the 

monoterpene hydrocarbons group in HpM-Fl was twice higher than that of HpM-VAp in 

inverse correlation with oxygenated sesquiterpenes group that was around twice lower than 

those of HpM-VAp. The differences in the composition between the EO from HpM-Fl and 

those of the corresponding vegetative aerial parts (HpM-VAp) were greater than those shown 

between HpA-FL and HpA-VAp (Figure 3). In flowers EO from H. perforatum plants growing 

in France, sesquiterpene hydrocarbons were the dominant fraction (Schwob et al., 2004). On 

the other hand, in EO from flowers from H. perforatum growing in Lithuania, oxygenated 

sesquiterpenes constituted the main group of compounds (Radusiene et al., 2005). The group of 

the oxygenated sesquiterpenes represented no more than 6.3% in HpA-Fl and 5.1% in HpM-Fl. 
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The most represented compound in EO from HpA-Fl and HpM-Fl was 2-methyl-octane, 

representing 24.3% and 28.8%, respectively, almost twice higher than in the EO of the 

respective vegetative aerial parts. In contrast to our results, this alkane was present in low 

amounts in flowers from H. perforatum plants growing in Lithuania (Radusiene et al., 2005) 

and was not detected in flowers from H. perforatum growing in France (Schwob et al., 2004). 

In EO from both HpA-Fl and HpM-Fl, a complete series of n-alkanes from C19 to C29 was 

detected. From this series, C19, C26 and C28 were not detected in the EO from HpM-VAp, while 

HpA-VAp only shared C23, C24, C25, C27, C29 with the EO from its respective flowers. n-

Eicosane was the only n-alkane from this series common to that of H. perforatum EO studied 

by Radusiene and co-workers (2005) whereas n-heptadecane, not detected in our work, was the 

only one found in flowers from H. perforatum growing in France (Schwob et al., 2004). (E)-

Caryophyllene (17.8% in HpA-Fl and 10.2% in HpM-Fl) and germacrene D (11.0% in HpA-Fl 

and 9.0% in HpM-Fl) were the two main constituents of the sesquiterpene hydrocarbons group 

and two of the most represented in the total EO of H. perforatum flowers. High levels of (E)-

caryophyllene in EO from flowers of this species had already been reported (Schwob et al., 

2004; Radusiene et al., 2005). On the other hand, regarding germacrene D, our results are 

somewhat contradictory with those reported by other authors, who detected minor amounts of 

this compound in EO from flowers of H. perforatum (Schwob et al., 2004; Radusiene et al., 

2005). 

E-β-Ocimene was the major monoterpene hydrocarbon in the EO of HpA-Fl (11.6%) 

and the third one in the EO of HpM-Fl (8.9%). The most represented monoterpene hydrocarbon 

in the EO of HpM-Fl was β-pinene (12.2%) followed by α-pinene (9.8%). α-Pinene accounted 

for only 3.6% of the total EO of HpA-Fl. Low amounts of α-pinene were previously reported in 

EO from flowers of H. perforatum (Schwob et al., 2004; Radusiene et al., 2005) while β-pinene 

was not identified in EO from H. perforatum growing in Lithuania (Radusiene et al., 2005). 

In conclusion, sesquiterpene hydrocarbons constituted the major group of compounds in 

vegetative aerial parts of H. perforatum plants, being also the dominant group in EO of flowers 

from H. perforatum plants cultivated in Arcos de Valdevez. The EO of flowers from plants 

growing in Merelim, had however, monoterpene hydrocarbons and alkanes as the dominant 

groups. The EO of vegetative aerial parts of H. perforatum were characterized by a high content 

of germacrene D, the most represented compound over the year. 2-Methyl-octane was the main 

constituent in the EO of H. perforatum flowers in both cultivation sites, and the second one in 

its respective vegetative aerial parts. 
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Abstract 
The seasonal variation of the essential oils (EO) from vegetative aerial parts of 

Hypericum perforatum ‘Topaz’ growing at two different sites in Northern of Portugal were 

determined, as well as the composition of the EO from the respective flowers and in vitro 

shoots. The EO contents in flowers from plants harvested in June were four times higher than 

those of the respective vegetative aerial parts. The sesquiterpene hydrocarbons (SH) constituted 

the main fraction of the EO independently of the growing site, season or growth conditions (in 

vivo or in vitro). The EO content gradually decreased from January to September in the 

vegetative aerial parts of plants grown in Arcos de Valdevez. A more drastic reduction was 

observed between April and June in the vegetative aerial parts of plants growing in Merelim. 

The decrease of sesquiterpene hydrocarbons (SH) in both fields was compensated with the 

increase of the other groups of compounds, namely monoterpene hydrocarbons (MH), 

oxygenated sesquiterpenes (SO) and alkanes. The compounds that mostly accounted for the EO 

seasonal variations were α-pinene and E-β-ocimene (MH); germacrene D, (E)-caryophyllene 

and β-selinene (SH); caryophyllene oxide (SO); and 2-methyl-octane (alkanes). In flowers EO, 

the most represented compounds were 2-methyl-octane followed by (E)-caryophyllene. In vitro 

shoots maintained on Murashige & Skoog basal medium without any hormonal 

supplementation had an EO content of 2.8 mg/g of biomass dry weight, with sesquiterpene 

hydrocarbons as major group (40.3%) and n-nonane as major compound (24.2%). 

 

Keywords: Hypericum perforatum, cultivated plants, in vitro shoots, essential oils, sesquiterpenes 
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1- Introduction 
 

Hypericum perforatum L., the most studied species of the genus has been, since ancient 

times, used in traditional medicine for the treatment of skin wounds, eczema and burns. Since 

the last years of the XX century it has been widely used in the treatment of mild depression due 

to its antidepressant activities (Barnes et al., 2001; Sánchez-Mateo et al., 2002). Extracts of H. 

perforatum have revealed other biological activities such as antimicrobial, anti-inflammatory, 

and analgesic (Barnes et al., 2001; Medina et al., 2006) being also considered a potential source 

of novel anticancer compounds (Schempp et al., 2002). 

Nowadays, the demand of secondary metabolites believed to be responsible for some of 

the properties of the plants is becoming acute because of their non-availability, as a 

consequence of misuse, overexploitation, adverse climatic conditions, and political instability in 

cropping areas (Canter et al., 2005). On the other hand some authors have shown that the 

composition of the H. perforatum essential oils (EO) are strongly dependent of the geographical 

distribution (Couladis et al., 2001), and of their phenological cycle (Schwob et al., 2004). An 

alternative seems to be in vitro micropropagation. This vegetative propagation technique allows 

the production of a large number of genetically uniform and pathogen-free plants in a limited 

time and space in which environment and nutritional factors can be easily controlled (Rout et 

al., 2000). Besides their importance in facilitating plant propagation, in vitro techniques can 

also afford system models to study the production, accumulation, and metabolism of important 

metabolites. Protocols of in vitro micropropagation of H. perforatum have already been 

reported through shoot regeneration from leaves (Pretto et al., 2000), hypocotyls (Murch et al., 

2000), shoot cuttings (Cellarova et al., 1995), stamens (Kirakosyan et al., 2000) and roots 

(Zobayed et al., 2003). Phenolic acids and flavonoid compounds (Dias et al., 1998; Dias et al., 

1999), as well as xanthones (Dias et al., 2001) were identified in in vitro cultures of calli and 

suspended cells of this species. However, to our knowledge, the capacity of H. perforatum in 

vitro shoots in the production and accumulation of EO compounds has not been reported yet. In 

this paper we report the yields and composition of EO accumulated in the vegetative aerial parts 

and flowers of H. perforatum ‘Topaz’ plants cultivated in two different sites of the Northern 

region of Portugal [Arcos de Valdevez (HpTA) and Merelim (HpTM)], as well as those 

produced by in vitro shoots of the same Topaz cultivar. 
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2- Material and Methods 
 

2.1- Essential oils 

Plants of Hypericum perforatum L. ‘Topaz’ were cultivated in two experimental farms 

of the Direcção Regional de Agricultura e Pescas do Norte (DRAPN), located at Arcos de 

Valdevez and Merelim (northern region of Portugal). Voucher specimens are maintained in an 

active bank in DRAPN. To study the EO composition, 6-8 cultivated plants were randomly 

collected in January, April, June, September and December and their aerial parts were 

subjected to hydrodistillation and analysis following the methodology used in the study of the 

EO from H. perforatum common cultivar (pages 118-119). 

 

2.2- In vitro shoot cultures 

Seeds obtained from wild plants of H. perforatum cv. Topaz were dipped in ethanol 

(70%) for 2 minutes, before surface sterilization by immersion in 5% sodium hypochlorite 

solution for 15 minutes. To remove traces of chlorine, the seeds were washed three times with 

sterile distilled water and then placed on Murashige and Skoog (Murashige et al., 1962) basal 

medium (MS) supplemented with 2% sucrose, without any growth regulators. The medium was 

solidified with 0.8% agar and its pH was adjusted to 5.7 prior to autoclaving at 15 psi for 20 

min at 121ºC. Sterile seeds, plated in Petri dishes, were incubated at 25±2ºC. Around 200 sterile 

seeds were incubated under a photoperiod 16h light/8h dark or in the darkness each. 

Germination percentage was measured after 20 days of culture. The seeds showing radicle 

emergence were recorded as germinated. Nodal segments (~10mm) obtained from 4 week-old 

aseptic seedlings were used as primary explants in the establishment of the shoot cultures. Each 

plant tissue culture vessel containing 25 mL of hormone free MS basal medium solidified with 

0.8% agar and covered with Magenta B-cap was inoculated with three primary explants. 

Cultures were maintained in a growth room at 25±2ºC with a photoperiod of 16 h light/8 h dark. 

Illumination was supplied by cool white fluorescent tubes with a light intensity of 52µmol m-2s-1. 

Shoots were subcultured to the same medium conditions with intervals of about 8 weeks. At the 

end of 6th subculture period, shoots from about 10 flasks were submitted to hydrodistillation for 

EO recovery. 
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3- Results and Discussion 
 

3.1- In vitro shoot cultures 

The germination of the first seeds of H. perforatum ‘Topaz’ started 5 days after their 

contact with the MS medium devoid of growth regulators under 16h light photoperiod. The 

seeds kept in darkness on the same medium conditions, started to germinate later (Table 1). MS 

basal medium had already been used for germination of H. perforatum seeds by other authors 

(Smith et al., 2002; Walker et al., 2002) as well as half strength MS medium (Pasqua et al., 

2003) while other authors have preferred the water solidified with agar (Murch et al., 2000; 

Murch et al., 2002; Zobayed et al., 2004). 

 
Table 1- Germination rates of seeds from H. perforatum cv. Topaz on MS basal medium free of plant growth 

regulators 

Surface-sterilized method Germination (%) Days 

Ethanol 70% (2 min) 

 

Sodium Hypochlorite 5% (15 min) 

 

3 washes with sterile distilled water 

Darkness 

 

 

16h light photoperiod 

65 

 

 

80 

Darkness 

 

 

16h light photoperiod 

10-12 

 

 

5-7 

 

The light is required for seed germination of some seeds (Baskin et al., 2004), which 

seems to be the case of H. perforatum ‘Topaz’, whose seeds in presence of light germinated 

faster and in higher percentage (80%) than in darkness (65%). Positive effects of light on seeds 

germination was observed earlier in H. perforatum (Campbell, 1985; Willis et al., 1997; Faron 

et al., 2004; Çirak et al., 2007). It was found that 18h light photoperiod was the most effective 

to meet light requirement for germination of H. perforatum seeds (Çirak et al., 2004). Light is 

required to stimulate seed germination of several species which, according to some authors, is 

related with seed germination in their natural habitat (Milberg et al., 2000; Baskin et al., 2004). 

Indeed, seeds of some species have an initial light requirement for germination, while seeds of 

other ones seem to acquire the light requirement only after burial in the soil. Seedlings from 

large seeds can emerge successfully from greater depth than light can penetrate. The small ones 

are incapable to breach ground layers and to reach the surface given the small amount of 

reserve material that they possess. Consequently, small seeds are expected to have a light 

requirement for germination, while germination of large seeds might be expected to be 

indifferent to light. This hypothesis was confirmed by Milberg and co-workers (2000), who 
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tested the relationship between seed mass and light requirement among 54 species. The authors 

observed that light as a germination cue becomes less important in species with relatively large 

seeds. Once H. perforatum has very small seeds, this requirement for light to increase 

germination, might explain the results herein reported.  

Nodal and internodal segments, from 4 weeks old seedlings when transferred to MS 

medium without any hormonal supplementation showed different responses. From the two 

primary explants, nodal segments showed to be the best one for the establishment of shoot 

cultures (100% of shoot development), while most of the internodal segments oxidised without 

plantlets’ formation. The formation of shoots from the axillary meristems in the nodal segments 

appeared visible 1-2 weeks after the beginning of the culture. Thus, micropropagation was 

accomplished and maintained by routine transfer of nodal segments to hormone free MS basal 

medium. H. perforatum in vitro cultures established by this way maintained the shape of the 

shoots without apparent change. 

 

3.2- Essential oils yield from in vivo plants and in vitro shoots 
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Figure 1- Total essential oil contents from vegetative aerial parts (VAp) and flowers (Fl) of in vivo plants of 

Hypericum perforatum ‘Topaz’ (HpT) grown in Arcos de Valdevez (HpTA-VAp and HpTA-FL) and Merelim 

(HpTM-VAp and HpTM-Fl) experimental fields and from in vitro shoots maintained on MS basal medium. 

 

The EO yields obtained by hydrodistillation of vegetative aerial parts of this species 

cultivated in Arcos de Valdevez (HpTA-VAp) varied from 1.3 mg/g of biomass dry weight in 

December to 6.5 mg/g of biomass dry weight in April. In the vegetative aerial parts of plants 

grown in Merelim (HpTM-VAp) the lowest yield was registered in December (0.6 mg/g of 
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biomass dry weight) and the highest in June (5.0 mg/g of biomass dry weight). In the plants 

grown in both fields the EO contents was lower in the winter, under conditions of lower 

temperatures and short days. The EO yield of flowers was 16.8 mg/g of biomass dry weight in 

HpTA-Fl and 12.0 mg/g of biomass dry weight, in HpTM-Fl, that is around four and three fold 

higher than those obtained from the respective vegetative aerial parts. The EO yield recorded 

for in vitro shoots of H. perforatum ‘Topaz’ (2.8 mg/g of biomass dry weight) was similar to 

those recorded for the vegetative aerial parts harvested in April from plants grown in Merelim 

(Figure 1). In both cases the vegetative growth was at their higher rates. Lower essential oil 

yields of in vitro cultures are usually associated to the faster growth characteristic of this type 

of cultures. 

 

3.3- Essential oils composition 

The EO revealed a complex composition with 57 to 96 identified compounds depending of 

the sampled material (Table 2). EO from plants harvested in June showed the highest number 

of compounds, 91 and 96 of which were identified in HpTA-VAp and HpTM-VAp, 

respectively. In HpTA-Fl and HpTM-Fl 95 and 98 compounds were identified, respectively. 

The lowest EO yields and lowest number of compounds were recorded in December, in both 

experimental fields. From the 70 compounds identified in the EO of in vitro shoots, only two n-

alkanes (n-heptadecane and n-octadecane), the sesquiterpene hydrocarbon, germacrene D 

isomer, and the oxygenated sesquiterpene, δ-cadinol, were not detected in the essential oils 

from cultivated plants (aerial parts or flowers). 

 
Table 2 - Composition of the essential oils from vegetative aerial parts and flowers of plants of Hypericum 

perforatum ‘Topaz’ grown in Arcos de Valdevez (HpTA-VAp and HPTA-Fl) and Merelim (HpTM-VAp and 

HpTM-Fl) experimental fields and in vitro shoots maintained on MS basal medium. 

 

January April June September December 

Compound KI 
Hp 

TA 

VAp 

(%) 

Hp 

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TA

Fl 

(%) 

Hp

TM 

VAp

(%) 

Hp

TM

Fl 

(%) 

Hp 

TA 

VAp 

(%) 

Hp 

TM 

VAp 

(%) 

Hp 

TA 

VAp 

(%) 

Hp

TM 

VAp

(%) 

In vitro

shoots 

(%) 

1-Octene 793 0.3 0.3 0.1 0.2 0.3 0.1 0.4 0.1 0.3 0.2 0.5 0.6 6.9 

(E)-2-Hexenal 853   0.2 0.2 0.4 0.8  1.3   0.2 0.6   tr 0.1 

2-methyl-octane 864 6.2 3.8 10.2 7.1 9.0 23.9 12.8 22.2 8.2 3.8 4.4 1.3  

n-Nonane 900 5.9 3.4 1.9 5.9 5.2 3.2 6.7 3.2 7.8 6.0 5.1 1.3 24.2 

α-Thujene 929 0.2 0.2 0.3 0.3 0.9 0.2 2.0 0.3 0.6 0.2 0.5 tr  
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January April June September December 

Compound KI 
Hp 

TA 

VAp 

(%) 

Hp

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TA

Fl 

(%) 

Hp

TM 

VAp

(%) 

Hp

TM 

Fl 

(%) 

Hp 

TA 

VAp 

(%) 

Hp 

TM 

VAp 

(%) 

Hp

TA 

VAp

(%) 

Hp

TM 

VAp

(%) 

In vitro

shoots 

(%) 

α-Pinene 936 6.2 5.8 2.0 4.7 3.1 9.5 4.9 9.2 5.5 4.0 9.5 4.4 9.2 

2,6-Dimethyl-octane 972 1.3 1.0 0.9 1.0 1.7 2.3 1.8 2.2 0.9 0.7 0.4 tr 1.4 

Sabinene 975 0.7 0.7 1.4 1.3 1.8 0.3 2.4 0.6 1.8 0.5 2.3 2.3 tr 

β-Pinene 978 0.9 1.0 1.0 1.1 2.2 2.0 3.2 3.3 1.9 1.0 2.2 1.5 0.8 

6-Methyl-5-Hepten-2-one 988        tr tr 0.1 tr        

Myrcene 986 0.5 0.4 0.7 0.6 1.1 0.6 1.5 0.8 1.3 0.5 1.2 0.6 0.3 

n-Decane 1000     tr tr tr tr 0.1 tr tr      tr 

Hexyl acetate 1005 0.1   0.2 0.1 0.1 tr 0.1 0.1 0.3 0.4      

α-Terpinene 1018 0.1 0.1 0.2 0.1 0.3 0.1 0.5 0.1 0.3 tr 0.1 tr  

p-Cymene 1026 0.1   tr  0.1 tr 0.2 tr tr       

Limonene 1031 0.2 0.3 0.4 0.3 0.6 0.2 0.9 0.4 0.7 0.2 0.5 0.6 tr 

Z-β-Ocimene 1041 0.7 0.9 0.9 1.4 1.2 0.9 1.0 1.1 1.8 0.9 2.2 3.0 0.3 

E-β-Ocimene 1052 3.1 4.1 6.9 7.5 5.1 9.9 3.8 10.1 7.9 5.2 9.2 14.4 1.6 

γ-Terpinene 1061 0.1 0.2 0.3 0.2 0.6 0.2 1.0 0.3 0.6 0.2 0.3 tr  

Methyl decane 1069 tr 0.2 0.1 tr 0.3 1.4 0.3 1.2 0.1 tr     0.3 

Terpinolene 1090 tr 0.2 0.1 0.1 0.1 tr 0.2 0.1 0.2 tr 0.1    

Linalool 1099   0.2 0.2  tr  0.1 tr        

n-Undecane 1100 0.4 0.1 0.2 0.2 0.7 0.7 0.8 0.6 0.3 0.3 0.1 tr 3.8 

n-Nonanal 1104 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.3 tr 0.5    

α-Campholenal 1121 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.2 tr 0.1 tr  

allo-Ocimene 1126          0.1 0.1     tr tr 

Camphor 1145     0.1  tr tr tr tr        

n-Nonanol 1170 0.3   0.1 0.4 0.1 0.2 0.1 0.2 0.2 0.5 0.5 2.1 1.1 

Terpinen-4-ol 1176   0.8 0.3 0.1 0.2 0.1 0.3 0.2 0.5 0.2 0.1 0.6  

α-Terpineol 1189   0.3 0.1 tr tr 0.1 0.1 0.1 tr tr      

n-Decanal 1205 0.1 0.9 0.4 1.1 0.1 tr 0.1 tr 0.8 1.6 1.1 6.1 1.4 

trans-Carveol 1217          tr          

Methyl dodecane 1265 tr     tr 0.3           

Decanol 1273 tr   0.1 0.2 tr  tr 0.2 0.1 0.4   2.1 0.8 

Tridecane 1300 tr   tr  0.1 0.1 0.1 0.1 tr       

SH 1327 0.2 0.3 0.1 0.1 0.1 tr 0.1 tr tr tr 0.2 tr  

δ-Elemene 1337 1.0 1.1 1.0 0.7 0.7 0.2 0.4 0.2 0.8 0.7 0.9 0.6 tr 

α-Cubebene 1348     0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1    tr 

α−Ylangene 1370 0.1   tr tr 0.1 0.1 0.1 0.1 0.1 tr     tr 

α-Copaene 1374 0.4 0.7 0.1 0.3 0.3 0.3 0.2 0.3 0.2 0.2  0.1 tr tr 

β-Bourbonene 1382 0.2 0.3 tr 0.1 0.1 tr 0.2 tr 0.1 0.2 0.1 tr 0.3 

β-Cubebene 1388 0.4 0.3     tr 0.1 tr  0.1      

β-Elemene 1390 0.2 0.3 0.4 0.2 0.1 tr 0.1 0.1 0.2 0.2 0.8 tr 0.3 
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January April June September December 

Compound KI 
Hp 

TA 

VAp 

(%) 

Hp 

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TA

Fl 

(%) 

Hp

TM 

VAp

(%) 

Hp

TM

Fl 

(%) 

Hp 

TA 

VAp 

(%) 

Hp 

TM 

VAp 

(%) 

Hp 

TA 

VAp 

(%) 

Hp

TM 

VAp

(%) 

In vitro

shoots 

(%) 

Dodecanal 1406       tr tr tr tr        

α-Cedrene 1412 1.2 1.0 0.3 1.0 0.8 0.4 0.9 0.3 1.1 1.6 0.1 0.6 1.2 

SH 1415 0.4 0.4 0.1 0.1        0.1      

(Ε)-Caryophyllene 1417 7.4 6.4 6.8 8.1 13.8 16.6 12.2 15.6 9.4 10.9 5.6 4.4 7.7 

β-Gurjunene 1427 0.6 0.8 0.4 0.4 0.4 0.1 0.2 0.1 0.4 0.3 0.4 0.2 0.3 

α-Guaiene 1439 0.1   0.1 0.1 0.1 0.1 0.1 0.1 0.1      0.3 

Aromadendrene 1440 0.3 0.3 0.1 0.3 0.3 0.1 0.1 tr 0.2      0.3 

Z-β-Farnesene 1442     0.2 tr tr tr 0.2 tr tr 0.3 0.3 tr  

SH2 1446       0.1 0.2 0.1 0.1 0.1 0.1      

α-Himachalene 1450 0.9 1.1 0.9 0.7 0.9 0.6 0.9 0.6 0.9 0.8 0.8 0.6  

α-Humulene 1453     0.1 tr tr tr 0.1   0.1 tr     0.5 

E-β-Farnesene 1455       0.3   tr        

allo-Aromadendrene 1459 1.7 1.5 1.0 1.4 1.0 2.1 0.7 1.6 1.2 1.5 1.0 0.6 0.3 

Germacrene D Isomer 1462                   3.0 

SH 1465                   0.3 

α-Acoradiene 1468 0.3 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.1 tr  

n-Dodecanol 1474         tr  tr       0.3 

γ-Gurjunene 1475   0.3 tr 0.1   tr  tr  tr      

γ-Muurolene 1478 0.3 0.7 5.1 0.3   0.5 tr 0.4 tr 0.2 0.3 9.1 0.7 

Germacrene D 1481 38.4 35.7 37.6 32.5 27.5 11.9 10.0 12.8 21.4 26.8 29.0 17.5 16.5 

Curcumene 1483 2.6 2.9 0.1 1.8 tr 0.1 tr   tr 5.4 3.1 0.6  

SH 1487 0.1 0.3 0.1 0.1 0.1  tr 0.1 0.1       

β-Selinene 1488 5.8 6.0 6.2 4.7 5.6 1.8 2.3 1.8 6.8 4.4 5.4 5.7 1.6 

α-Selinene 1494     0.2     0.2    0.8   0.2 0.8 

α-Muurolene 1497   0.3 0.2 1.3 0.2  0.1 tr 0.3  0.4   0.5 

n-Pentadecane 1500     0.1  tr tr tr   tr       

(E,E)-α-Farnesene 1503 0.4 0.3 0.1 0.1 0.1 0.1 tr 0.1 0.1 tr     0.1 

γ-Cadinene 1508 0.9 1.2 0.7 0.8 1.3 1.0 0.4 1.0 0.9 0.8 0.3 0.2 3.8 

Z-γ-Bisabolene 1510 0.2   0.2 0.3 0.3 0.3 0.2 0.2 0.3 0.1 0.1 0.6 0.3 

SH 1516                   0.3 

δ-Cadinene 1521 1.7 1.6 0.9 1.2 0.9 0.6 0.6 0.5 1.6 1.0 1.2 1.9 0.8 

SH 1527     0.1  tr  tr          

E-γ-Bisabolene 1530 0.2   0.1 0.1 tr tr tr tr 0.1 tr     0.2 

α-Cadinene 1534 0.2   0.1 0.1 0.1 0.1 0.1 0.1 0.1 tr     0.1 

SH 1540      0.1 0.1 tr tr          

α-Calacorene 1543     0.1  0.1 tr 0.1 tr 0.1 0.2 0.1 0.6 0.2 

SO? 1549      0.1    0.6 0.1 tr      0.1 

γ-Elemene (?) 1551 0.1   tr  tr  0.1   tr       
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January April June September December 

Compound KI 
Hp 

TA 

VAp 

(%) 

Hp

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TA

Fl 

(%) 

Hp

TM 

VAp

(%) 

Hp

TM 

Fl 

(%) 

Hp 

TA 

VAp 

(%) 

Hp 

TM 

VAp 

(%) 

Hp

TA 

VAp

(%) 

Hp

TM 

VAp

(%) 

In vitro

shoots 

(%) 

E-Nerolidol 1564 0.1 0.4 0.7 0.7 0.7 0.5 0.9 0.5 0.9 0.8 0.7 1.7 tr 

Spathulenol 1574 0.2   0.1 0.5 0.2 0.1 0.2 0.1 0.2  0.7    

cis-3-Hexenyl benzoate 1577 0.3 0.9 0.5 0.1 0.9 0.1 3.7 0.1 0.3 0.5 0.4 1.3  

Caryophyllene Oxide 1580 0.3 0.3 0.3 0.3 0.8 0.5 7.6 0.9 0.1 0.3   0.2  

Globulol 1585 0.2   0.1 0.1 tr tr tr tr 0.5 tr tr tr  

Viridiflorol 1592 0.1 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.1 tr  

Guaiol 1593 0.1   0.1 0.1 tr tr 0.1 0.2 0.2 tr     0.1 

β-Copaen-4-α-ol 1597 0.7 1.2 0.3 1.0 0.6 0.2 0.7 0.1  0.8 1.2 3.2 0.1 

Humulene Epoxide II 1603     0.1  tr tr 0.3   tr       

β-Oplopenone 1610     tr  tr tr 0.1 tr       tr 

SO 1612 0.1 0.3 0.2 0.3 0.1  0.1         0.3 

10-epi−γ-Eudesmol 1619   0.3 0.1 0.1 tr 0.1 0.1 0.1 0.9 0.2      

γ-Eudesmol 1624 0.1 0.3 0.1 0.1 tr tr 0.1 tr 0.1  0.1 tr  

epi-α-Cubenol 1633   0.1 0.2 0.9 0.2 0.1 0.2 0.1 tr 0.1 1.1 1.9 tr 

epi-α−Cadinol 1640 0.9 0.8 0.8 0.3 0.1 1.6 0.3 1.5 1.3 0.8   0.6 0.9 

epi-α-Muurolol 1642 0.4 0.6 0.3 0.1 0.1 tr 0.3 0.1 0.5 0.4 0.4 2.7 0.3 

δ-Cadinol 1644                  0.3 

SO 1646       tr     0.2       

α-Cadinol 1654 1.0 1.4 1.2 1.3 0.6 0.3 0.5 0.4 1.4 1.3 1.6   0.3 

β-Bisabolol 1673 tr   0.1 0.1 0.3 0.5 0.2 tr 0.1 0.4 0.1 tr 1.8 

epi-α-Bisabolol 1677 tr   0.6 0.1 0.2 0.2 0.4 0.4 0.4 1.1 0.3 0.6 1.1 

n-Tetradecanol 1681   0.3 0.3 0.2 0.1  0.3   0.2  0.2 tr 

Benzyl benzoate 1738       tr tr tr tr        

n-Heptadecane 1700                   0.1 

n-Octadecane 1800                   tr 

n-Hexadecanol 1881       tr tr 0.1 tr 0.1 tr     0.4 

n-Nonadecane 1900         0.1  0.1        

n-Eicosane 2000         tr  tr        

n-Heneicosane 2100     tr tr tr 0.2 tr 0.1        

Nonadecanal 2111   0.2 0.9 2.4 0.1 1.4 0.2 0.6 6.4   0.6 

n-Docosane 2200   tr tr  tr tr tr tr   tr  

n-Tricosane 2300 0.2 0.5 0.2 0.4 tr 0.1 tr tr 0.1 0.2 0.4 0.6 tr 

n-Tetracosane 2400  0.1 0.1 0.1 tr tr tr tr tr tr 0.1 tr tr 

n-Pentacosane 2500 0.3 0.4 0.3 0.5 0.1 tr 0.1 tr 0.2 0.3 0.4 0.6 0.3 

n-Hexacosane 2600        tr      

n-Heptacosane 2700  0.3 0.1 0.2 tr 0.1 tr 0.1 0.1 0.2 0.1 0.2 0.4 

n-Octacosane 2800           tr       tr 

n-Nonacosane 2900 tr     0.1 0.1 0.1 0.2 0.2 0.3     0.5 
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January April June September December 

Compound KI 
Hp 

TA 

VAp 

(%) 

Hp 

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TM 

VAp

(%) 

Hp

TA 

VAp

(%) 

Hp

TA

Fl 

(%) 

Hp

TM 

VAp

(%) 

Hp

TM

Fl 

(%) 

Hp 

TA 

VAp 

(%) 

Hp 

TM 

VAp 

(%) 

Hp 

TA 

VAp 

(%) 

Hp

TM 

VAp

(%) 

In vitro

shoots 

(%) 

Monoterpene Hydrocarbons 12.8 13.9 14.2 17.5 17.0 24.0 21.7 26.4 22.7 12.7 28.0 26.8 12.3 

Oxygenated monoterpenes   1.3 0.6 0.1 0.3 0.2 0.6 0.3 0.5 0.2 0.1 0.6  

Sesquiterpene Hydrocarbons 67.0 64.1 63.0 57.0 55.7 37.7 31.2 36.7 46.8 57.2 50.3 43.8 40.3 

Oxygenated sesquiterpenes 4.3 6.1 5.4 6.1 4.2 4.2 16.4 4.4 6.9 6.9 6.3 12.3 5.1 

Alkanes 14.3 9.9 14.0 15.3 17.3 32.5 22.8 30.2 17.8 11.8 11.1 4.0 30.5 

Others 1.6 4.6 2.8 4.0 5.6 1.4 7.3 1.9 5.3 11.2 4.3 12.5 11.9 

VAp- Vegetative aerial parts; Fl- Flowers 

KI- Kovats retention index on a DB-5 column; tr- trace amounts 

 

The relative contents of the main groups of compounds from the EO of vegetative aerial 

parts harvested in the two sites varied over the year. However, as shown in Figures 2a and 2b, 

the variation profiles were different. Independently, of the harvest time, sesquiterpene 

hydrocarbons constituted the major group of compounds in both experimental fields. 
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Figure 2- Contents of major groups of compounds in vegetative aerial parts of plants of Hypericum perforatum 

‘Topaz’ grown in (a) Arcos de Valdevez (HpA-VAp), and (b) Merelim (HpM-VAp) experimental fields and 

harvested at different times over the year. MH- Monoterpene Hydrocarbons; MO- Oxygenated Monoterpenes; 

SH- Sesquiterpene Hydrocarbons; SO- Oxygenated Sesquiterpenes 
 

Sesquiterpene hydrocarbons (SH) ranged from 46.8% to 67% and from 31.2% to 64.1% 

in the EO of HpTA-VAp and HpTM-VAp, respectively. In the HpTA-VAp EO there was a 

gradual decrease in the SH content from January (67.0%) to September (46.8%), increasing 

then ~4% until December. A drastic SH reduction was observed in the HpTM-VAp EO 

between April (57.0%) and June (31.2%), followed by an increase in September (57.2%). In 

Merelim, the variation profile of the SH content was inversely correlated with the variation 

profiles of the monoterpene hydrocarbons (MH) and oxygenated sesquiterpenes (SO) (Figure 

2b). In this experimental field, the content of alkanes rose from January to June, decreasing 

HpTA-VAp

0

10

20

30

40

50

60

70

80

January April June September December

%

MH MO SH SO Alkanes

a 

HpTM-VAp

0

10

20

30

40

50

60

70

80

January April June September December

%

MH MO SH SO Alkanes

b 



Essential oils from plants and in vitro shoot cultures of Hypericum androsaemum L., 
H. perforatum L. and H. undulatum Schousboe ex. Willd.  A. P. Guedes 

142 

thereafter up to December. However, in Arcos de Valdevez the variation profile of SH was 

inversely correlated with the profile of the alkanes over all the year and inversely correlated 

with the profiles of MH only from January to September. In this case, the MH content 

increased almost evenly from around 12.8% in January to 28% in December, while SO 

variation was not significant. The compounds that most contributed to the variations in the 

contents of alkanes and SO were, 2-methyl-octane and caryophyllene oxide, respectively, 

whereas in the SH it was mainly germacrene D, and in a lesser extent, β-selinene. In HpTA-

VAp EO, with exception of September, germacrene D, (E)-caryophyllene and β-selinene, were 

responsible for more than 40% of the total EO. In HpTM-VAp EO, germacrene D decreased 

from 32.5% in April to 10% in June and in the same period the percentage content of (E)-

caryophyllene, the second major sesquiterpene hydrocarbon rose from 8.1% to 12.2%. The 

same pattern of variation was recorded in HpTA-VAp for these two sesquiterpene 

hydrocarbons. Recently, Mockute and co-workers (2008) reported the predominance of 

germacrene D in EO of H. perforatum wild plants collected at full flowering time (Mockute et 

al., 2008). Germacrene D was also identified as the main constituent in EO of H. perforatum 

plants grown wild in Portugal (Nogueira et al., 1998), southeast France (Schwob et al., 2002) 

and north of Greece (Chatzopoulou et al., 2006). (E)-Caryophyllene, was the most represented 

compound in EO of this species from different locations in Serbia (Gudžić et al., 1997; Gudžić 

et al., 2001) and Uzbekistan (Baser et al., 2002). 

In HpTM-VAp EO, the content of the MH group decreased between June and 

September, increasing afterwards in December. This group was the second most represented in 

the EO of HpTA-VAp and HpTM-VAp harvested in April, September and December, mainly 

due to the percentage contributions of α-pinene and E-β-ocimene. H. perforatum plants 

growing in Serbia (Saroglou et al., 2007), Greece (Pavlović et al., 2006) and Italy (Maggi et 

al., 2008) had α-pinene, as the main EO constituent. In HpTA-VAp, SO varied from 4.2% in 

June to 6.9% September, while MO were present in very low amounts (0.1%-0.6%). No MO 

compound was detected in January. Higher amounts of SO were found in plants cultivated in 

Merelim (6.1% to 16.4% of the total EO). 

Pathways involved in the biosynthesis of MH and SH seem to be inversely related and 

affected by the stages of plant development. Monoterpenes were reported to be produced in the 

plastids via the mevalonate-independent pathway while sesquiterpenes production was shown 

to be held in the cytosol via acetate-mevalonate pathway (Davis et al., 2000). Thus, the 

variation profiles of SH and MH over the year may reflect different overall stages of 
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maturation of those subcellular compartments with an increasing of efficiency of plastid 

terpene (namely MH) pathways and decreasing of the efficiency of cytosolic terpene (namely 

SH) pathways during the spring and summer. 

As can be seen in Table 2 and Figure 3, differences of EO composition were observed 

between flowers and the respective vegetative aerial parts harvested in June. Several 

compounds were restricted to the EO of vegetative aerial parts and other restricted to the EO 

from flowers. n-Dodecanol, n-nonadecane and n-eicosane were compounds only found in EO 

of flowers. 

Figure 3 shows the contents of the main groups of compounds in EO isolated from the 

vegetative aerial parts and flowers of H. perforatum ‘Topaz’ harvested in June in Arcos de 

Valdevez (HpTA-VAp and HpTA-Fl) and Merelim (HpTM-VAp and HpTM-Fl), as well as in 

EO from in vitro shoots of the same cultivar. In flowers of H. perforatum ‘Topaz’, 

sesquiterpene hydrocarbons constituted also the main group of compounds, accounting for 

more than 35% of the EO, followed by alkanes with 33% and 30% in HpTA-Fl and HpTM-Fl, 

respectively. The alkane contents in the flowers EO were higher than those in vegetative aerial 

parts due mainly to the amount of 2-methyl-octane, which represented 24%, in HpTA-Fl and 

22% in HpTM-Fl. 
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Figure 3- Content of the major group of compounds in flowers and vegetative aerial parts of in vivo plants of 

Hypericum perforatum ‘Topaz’ grown in Arcos de Valdevez (HpTA-Fl and HpTA-VAp) and Merelim (HpTM-Fl 

and HpTM-VAp) experimental fields, harvested in June, and in vitro shoots maintained on MS basal medium. 

MH- Monoterpene Hydrocarbons; MO- Oxygenated Monoterpenes; SH- Sesquiterpene Hydrocarbons; SO- 

Oxygenated Sesquiterpenes. 
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The SH content in the EO of flowers from plants grown in Merelim, was higher than in 

EO of the respective vegetative aerial parts. (E)-caryophyllene was the most represented SH in 

EO of flowers in both sites, accounting for 16.6%, in HpTA-Fl, and 15.6%, in HpTM-Fl. 

Germacrene D represented 11.9% and 12.8% of the total EO of HpTA-Fl and HpTM-Fl, 

respectively, while α-pinene and E-β-ocimene were the compounds that most contributed to 

the high percentage of the MH. The most complete series of n-alkanes from C19 to C29 was 

detected in HpTM-Fl. In HpTA-Fl, n-hexacosane and n-octacosane were not detected. Some of 

the n-alkanes of this series were not identified in the EO from the vegetative aerial parts of in 

vivo plants and in vitro shoots. On can say that the EO from plants of H. perforatum ‘Topaz’ 

grown in the two sites of the Northern of Portugal are characterized by high levels of 

hydrocarbon compounds and low levels of oxygenated constituents. Other authors had already 

mentioned the hydrocarbon compounds, namely the sesquiterpene ones, as the most 

represented compounds in the EO of this species (Schwob et al., 2002; Schwob et al., 2004; 

Chatzopoulou et al., 2006; Saroglou et al., 2007). 

The SH (40%) predominated also over the MH (12%) in EO of in vitro shoots of H. 

perforatum ‘Topaz’. Likewise it occurred with EO of HpTA-VAp, in January, no MO was 

found in EO of in vitro shoots. On the other hand, EO from in vitro shoots was less complex, 

than those found in in vivo plants, what may be associated with the lack of a high degree of 

differentiation of structures implied in the EO accumulation. In H. perforatum plants, the EO is 

accumulated in both translucent glands and type B cannals structures (Ciccarelli et al., 2001; 

Maffi et al., 2005). These authors found both type of structures in leaves and flowers of H. 

perforatum plants but in stems only type B cannals were detected. In in vitro culture conditions 

these structures might not achieve high levels of differentiation and/or maturation since shoots 

are at a very early stage of growth. Indeed, histological studies performed in Salvia officinalis 

showed that the number of glands seemed to be related to the physiological stage of growth, 

increasing with the age, for both plants in Nature and in vitro shoots. In the EO of in vitro 

shoots of this species, the authors found also a narrow range of compounds and a pattern of 

metabolites that discloses a very early part of the biosynthetic pathway (Avato et al., 2005). 

Excepting for HpTA-Fl the EO from shoots had the highest content of alkanes (Table 

2). The most represented compound of this group was n-nonane, which accounted for 24.2% of 

the shoots EO, a value significantly higher than those found either in flowers or vegetative 

aerial parts of the in vivo plants. 2-Methyl-octane, the most represented compound in flowers 

and one of the major in the vegetative aerial parts was not detected in the shoots. Petroleum 

ether extracts of H. perforatum revealed the predominance of odd carbon n-alkanes, namely n-
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nonacosane, as well as n-heptacosane, and n-hentriacontane (Stojanovic et al., 2003). Our 

results are coherent with these ones, as a predominance of odd carbon n-alkanes in the range of 

C25-C29 was recorded in the EO of both in vivo and in vitro shoots of H. perforatum ‘Topaz’ 

here studied. The 2nd and the 3rd most represented compounds in the shoots were germacrene D 

(16.5%) and α-pinene (9.2%), respectively, while (E)-caryophyllene was found in the 4th 

position with 7.7% of the total EO. 1-Octene was less represented in the EO from cultivated 

plants but was the 5th most represented compound in the shoots (6.9%). 

 

As final remarks, the study here reported demonstrated that micropropagation of H. 

perforatum ‘Topaz’ can be easily obtained at a high frequency by in vitro seed germination 

followed by nodal subculturing. Considering the EO produced by this cultivar, regardless the 

time of harvest and the in vivo or in vitro biomass growth conditions, the SH constituted the 

major group of compounds. However, the most represented compounds in the EO were 

different depending of the organ and growth conditions. In the EO of in vivo plants the major 

compounds were germacrene D, (E)-caryophyllene and β-selinene in vegetative aerial parts of 

the plants and 2-methyl-octane, (E)-caryophyllene and germacrene D in flowers, while in the 

EO of in vitro shoots n-nonane, germacrene D and α-pinene were the major ones. The study 

here reported showed also that the absolute content of the EO as well as the relative contents of 

their main compound groups vary according to season and organ as well as the biomass growth 

conditions. 
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4.3 Supplementary data 
An approximation of the absolute quantification of all the essential oils (EO) constituents from 

aerial parts and flowers of Hypericum perforatum plants (common variety), cultivated in Arcos 

de Valdevez (HpA) and Merelim (HpM) experimental fields over a year is shown in Table S1. 

 
Table S1- Specific content (µg/g of biomass dry weight) of essential oils from vegetative aerial parts (VAp) and 

flowers (Fl) of Hypericum perforatum plants, cultivated in Arcos de Valdevez (HpA) and Merelim (HpM) 

experimental fields and harvested at different times during the year 

January April June September December 

Compound KI 
HpA 
VAp 
(µg/g 
dw) 

HpM
VAp
(µg/g
dw) 

HpA
VAp
(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

HpA
VAp
(µg/g 
dw) 

HpA
Fl 

(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

HpM 
Fl 

 (µg/g 
dw) 

HpA 
VAp 
(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

HpA
VAp
(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

1-Octene 793 8.1 9.3 5.9 8.3 31.0 12.9 12.7 17.8 20.1 11.6 8.3 8.1 
(E)-2-Hexenal 854   5.2 12.9 28.0 85.7  46.2   34.0 24.3 10.2 4.5 
2-methyl-octane 864 244.0 271.1 184.2 483.1 898.4 3531.0 714.8 4578.9 728.0 440.5 170.9 107.2
n-Nonane 900 48.4 72.0 171.9 102.3 174.6 142.3 84.2 180.1 234.3 145.9 41.9 27.4 
α-Thujene 929 12.0 2.3 5.4 7.0 76.6 39.1 41.5 44.8 6.6 25.0 8.1 5.6 
α-Pinene 936 81.5 38.4 114.6 91.6 247.0 519.2 109.6 1562.0 120.7 170.2 64.2 35.9 
2,6-Dimethyl-octane 972 16.3 29.9 22.2 35.3 67.2 70.6 50.9 99.1 78.5 26.2 13.3 6.8 
Sabinene 975 14.9 5.1 29.2 44.6 160.4 129.3 57.4 65.2 15.9 42.3 16.9 15.1 
β-Pinene 978 23.2 7.9 25.8 30.5 167.3 396.9 76.9 1941.5 24.7 64.6 19.5 15.3 
6-Methyl-5-Hepten-2-one 988     1.7  1.0 2.0     
Myrcene 986 10.2 6.2 15.3 21.7 72.7 101.3 30.1 123.4 14.0 33.0 10.6 8.3 
n-Decane 1000       2.1 2.5 0.2 2.8 0.8 0.6 0.5  
Hexyl acetate 1005     10.8 15.0 4.5  1.7 3.5 4.0 11.4   
α-Terpinene 1018     2.3 4.0 24.3 21.5 9.7 17.7 1.6 9.8 2.1 1.4 
p-Cymene 1026       6.8 1.7 4.6 3.7   0.9   
Limonene 1031 4.6 1.4 6.7 10.4 41.3 51.3 17.2 79.2 6.0 17.5 5.0 4.0 
Z-β-Ocimene 1041 21.9 13.7 28.0 45.4 39.3 178.6 17.4 142.9 23.7 36.7 16.4 19.7 
E-β-Ocimene 1052 152.5 104.3 164.0 339.2 236.4 1685.4 83.3 1405.4 152.8 193.1 107.7 145.2
γ-Terpinene 1061 3.0   4.2 6.7 46.4 38.8 19.5 34.7 5.0 17.9 3.8 2.8 
Methyl decane 1069   4.3 0.7 3.5 36.3 196.9 21.1 152.7 7.2 2.6 1.8  
trans-Linalool Oxide 1073          0.3         
Terpinolene 1090     1.5 2.2 11.2 12.3 4.7 16.0 1.5 5.2 1.1  
Linalool 1099       19.5  2.7 1.8       
n-Undecane 1100 1.3 9.0 3.7 9.9 15.9 57.7 18.9 40.1 12.2 2.8 3.0 1.9 
n-Nonanal 1104 4.1 6.5 1.6 3.5 1.2 5.3 2.9 8.4 2.9 3.9 3.3 3.3 
α-Campholenal 1121 4.2 3.2 2.6 6.8 3.2  3.3 6.7 4.0 4.8 3.4 3.8 
Camphor 1145       2.1  0.4 1.6       
n-Nonanol 1170     7.1 11.2 8.6 64.3 3.8 43.6 12.0 14.2 6.8 20.1 
Terpinen-4-ol 1176 7.9 12.2 5.6 12.0 38.9 39.1 11.4 28.5 6.5 21.2 4.5 3.4 
α-Terpineol 1189 3.1 4.0 1.1 1.8 3.9 8.1 1.6 26.6 1.1 3.3   
n-Decanal 1205 11.3 18.7 26.4 43.1 10.8  4.5 3.2 27.6 28.7 13.8 31.3 
trans-Carveol 1217       1.7           
Methyl dodecane 1265       2.6 26.2 1.3 29.3       
n-Decanol 1273     3.9 8.0 0.7  0.3   4.5 4.8 2.8 4.2 
n-Tridecane 1300       1.7 5.1 1.0 7.6       
SH 1327 1.9 1.6 1.5 3.2 4.5 7.0 3.0   3.5 2.1 1.1 1.5 
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January April June September December 

Compound KI 
HpA 
VAp 
(µg/g 
dw) 

HpM 
VAp 
(µg/g 
dw) 

HpA
VAp
(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

HpA
VAp
(µg/g 
dw) 

HpA
Fl 

(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

HpM 
Fl 

 (µg/g 
dw) 

HpA 
VAp 
(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

HpA
VAp
(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

δ-Elemene 1337 19.8 17.3 16.2 34.2 25.3 57.8 24.2 37.4 36.2 21.1 12.1 16.2 
α-Cubebene 1348     1.8 0.9 1.6 10.0 1.7 8.0 2.3 1.5   
α−Ylangene 1370     0.5 3.7 0.7 6.8 1.0 20.9 0.9 0.5   
α-Copaene 1374   2.2 2.4  12.8 52.2 4.8 11.4 1.2 2.9 1.4 2.3 
β-Bourbonene 1382 5.5 6.8 1.3 2.9 9.0 13.6 12.0 16.5 4.9 4.6 2.1 3.8 
β-Cubebene 1388  9.9       21.1   1.2   
β-Elemene 1390 13.7 3.6 3.4 18.3 31.6 38.7 20.5 7.4 36.0 20.1 10.8 10.2 
Dodecanal 1406 3.3     0.9  0.5 2.6 2.9     
α-Cedrene 1412 3.9 4.1 12.4 11.5 21.2 46.9 18.1 30.0 33.4 17.8 4.0 4.6 
SH 1415     2.1        3.7 1.3   
(Ε)-Caryophyllene 1417 125.8 113.0 105.5 280.7 553.1 2594.0 451.3 1609.9 516.1 296.7 81.6 72.5 
β-Gurjunene 1427 9.4 9.5 6.7 13.8 10.9 37.5 12.2 23.2 18.1 9.3 5.2 6.8 
α-Guaiene 1439       4.1 19.9 2.2 19.2 1.0 0.8   
Aromadendrene 1440     3.3 5.8 36.3 31.3 14.4 8.4 0.8 1.9 3.5 4.6 
Z-β-Farnesene 1442 3.8 4.9  4.5 6.4 19.8 5.7 11.4 11.9 5.0   
SH 1446     0.9  1.2 8.0 0.8 4.8 2.3 0.7   
α-Himachalene 1450 17.0 14.7 13.3 29.8 43.3 127.6 34.8 81.2 42.8 25.1 10.7 11.1 
α-Humulene 1453     0.6     0.8     0.7   
E-β-Farnesene 1455      1.0 2.0 5.6 1.7 1.0     
allo-Aromadendrene 1459 10.7 18.7 20.3 27.9 19.3 399.1 14.8 195.3 73.6 21.0 6.5 6.9 
α-acoradiene 1468     2.4 2.2 6.9 11.6 7.5 30.4 8.2 4.2 0.8  
Dodecanol 1474         5.4          
γ-Gurjunene 1475  86.5  2.4 188.3 180.7 25.0 117.3  152.5 69.3 135.0 132.0
γ-Muurolene 1478 3.0  2.8 1.1 1.5 0.4 1.6 0.6 2.6 1.0 0.7   
Germacrene D 1481 733.2 720.2 555.7 1314.2 722.8 1597.9 790.0 1420.5 1324.3 621.6 479.2 463.9
Curcumene 1483     25.0  2.0  3.1         
SH 1487     0.6 1.0 1.9 7.2 2.0 9.3 1.5 1.3   
β-Selinene 1488 127.3 108.5 108.7 221.4 161.7 451.8 165.4 281.4 242.0 141.8 78.6 81.3 
α-Selinene 1494     15.3 5.7         9.6   
α-Muurolene 1497 4.6 5.1 3.6 4.8 6.9 23.2 7.5 14.4 18.6 5.0 2.9 2.7 
n-Pentadecane 1500     0.3 3.5 3.6  2.5   9.8 2.1 1.3 1.4 
(E,E)-α-Farnesene 1503   2.4 1.3 1.8 1.4 12.0 1.8 6.3 3.1 1.8 0.7  
 γ-Cadinene 1508 9.3 9.3 13.2 18.1 19.3 127.2 19.9 52.0 43.9 17.6 3.9 3.4 
cis-γ-Bisabolene 1510     6.1 7.1 10.2 50.3 9.8 31.6 8.3 5.1   
δ-Cadinene 1521 17.5 11.0 22.7 29.4 31.0 127.9 30.7 79.0 42.3 30.2 12.1 13.0 
SH 1527       1.0  0.5     1.1   
E-γ-Bisabolene 1530     1.0 2.6 1.8 8.8 1.8 4.9 2.2 1.1   
α-Cadinene 1534     1.2 1.7 3.3 15.1 3.1 9.2 2.3 1.8 0.3  
SH 1540       0.2  0.5         
α-Calacorene 1543     1.2 1.2 2.0 2.8 1.5 1.4 2.2 1.6   
SO? 1549     1.5  28.1 5.8 14.8 10.8   1.0   
γ-Elemene (?) 1551       2.7  1.5   1.8     
E-Nerolidol 1564 4.1 12.6 19.6 38.1 55.4 93.8 28.1 59.0 48.0 40.9 18.9 20.5 
Spathulenol 1574 11.9    29.5 17.1 22.7 7.9 24.0   2.5 10.7  
cis-3-Hexenyl benzoate 1577  10.0 13.4 2.4 193.1 20.3 98.6 34.6 23.0 14.6  16.1 
Caryophyllene Oxide 1580 10.3 10.6 5.5 14.3 347.5 130.9 185.4 325.3 18.2 4.7 9.7 7.4 
Globulol 1585      3.7 3.0 6.3 2.4 3.8 3.6 3.2 1.2 1.1 
Viridiflorol 1592 5.2 3.8 3.8 15.7 4.9 18.5 6.2 11.7 10.9 13.5 4.5 2.6 
Guaiol 1593     3.6  5.3 11.3 2.0 10.1 3.6 1.7   
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January April June September December 

Compound KI 
HpA 
VAp 
(µg/g 
dw) 

HpM
VAp
(µg/g
dw) 

HpA
VAp
(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

HpA
VAp
(µg/g 
dw) 

HpA
Fl 

(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

HpM 
Fl 

 (µg/g 
dw) 

HpA 
VAp 
(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

HpA
VAp
(µg/g 
dw) 

HpM
VAp
(µg/g 
dw) 

β-Copaen-4-α-ol 1597 4.2 4.2 30.4 12.9 9.2 9.5 5.3 20.9 14.2 15.2 4.3 4.1 
Humulene Epoxide II 1603       14.3  8.6       0.8  
β-Oplopenone 1610       7.6 2.7 3.2 5.3 3.1 1.8   
SO 1612   0.5  11.6 6.7  5.7   10.3 10.9 4.5 2.4 
10-epi−γ-Eudesmol 1619 4.4 3.9 5.8 6.8 11.8 22.3 10.8 12.5 13.4 8.9 5.7 3.2 
γ-Eudesmol 1624   5.0 2.3 2.7 3.2 8.2 2.7 5.9 3.0 2.9 3.0 2.1 
epi-α-Cubenol 1633 37.2 45.2 1.7 23.8 26.3 14.0 14.1 13.9 59.8 36.0 39.1 51.6 
epi-α−Cadinol 1640   18.2 26.7 39.6 114.9 368.9 24.5 184.1 40.7 38.4 20.4 16.1 
epi-α-Muurolol 1642   5.2 7.6 11.1 14.2 9.6 49.1 9.5 19.0 15.6 7.5 5.8 
SO 1646       8.1  2.9         
α-Cadinol 1654 25.5 29.9 42.0 61.6 49.7 96.0 38.8 63.1 68.8 54.0 37.8 30.5 
β-Bisabolol 1673     1.4 1.1 10.9 5.8 6.2 5.6 2.9 31.9 0.5  
epi-α-Bisabolool 1677     2.4  131.7 105.9 94.8 32.4 93.6 20.6 14.3  
n-Tetradecanol 1681   14.0  5.0 16.3 21.8   13.0         
Benzyl benzoate 1738       1.4 2.0 1.3         
n-Hexadecanol 1881       14.6 9.7 14.9 2.6 7.4 2.8   
n-Nonadecane 1900         11.3  30.2       
n-Eicosane 2000         5.8 0.1 8.0       
n-Heneicosane 2100         34.8 0.4 48.3 0.1 0.1   
Nonadecanal 2111     8.3 2.9 21.8 19.8 49.4 5.7 231.2 97.5 2.0  
n-Docosane 2200     1.1    3.2 0.3 4.5 0.1 0.4 7.3  
n-Tricosane 2300 20.2 12.5 12.1 6.9 3.1 14.4 2.4 14.0 7.5 4.0  7.5 
n-Tetracosane 2400   2.2 3.0 0.8 0.8 1.5 1.0 1.0 2.2 1.3 1.9 1.1 
n-Pentacosane 2500 7.2 16.7 17.4 4.7 6.0 10.5 5.6 4.7 15.4 8.0 8.0 7.1 
n-Hexacosane 2600         0.8  0.3 0.6 0.7   
n-Heptacosane 2700   1.0 2.7 0.7 3.6 14.1 3.9 9.3 7.3 6.4 2.8 1.7 
n-Octacosane 2800         2.6  2.2 0.1 0.5   
n-Nonacosane 2900     1.2   5.4 39.5 9.5 26.5 5.0 8.7     
Monoterpene Hydrocarbons 325.0 179.3 397.0 603.3 1129.6 3175.5 471.9 5436.4 372.4 616.2 255.5 253.5
Oxygenated Monoterpenes 11.0 16.2 6.7 13.8 66.1 47.2 16.5 58.4 7.6 24.5 4.5 3.4 
Sesquiterpene Hydrocarbons 1087.7 1152.2 953.9 2238.0 1938.4 5934.5 1792.5 4050.7 2643.9 1348.2 852.6 838.1
Oxygenated Sesquiterpenes 101.6 139.0 154.2 272.5 870.1 932.1 513.6 797.8 413.3 303.6 183.2 147.5
Alkanes 336.0 418.7 420.5 640.8 1216.6 4172.7 897.8 5239.5 1109.1 650.3 252.6 160.7
Others 42.8 85.8 121.4 183.9 582.9 286.6 385.5 281.8 435.5 263.0 61.3 104.0

VAp- Vegetative aerial parts; Fl- Flowers; KI- Kovats retention index on a DB-5 column 

 

The highest accumulation of sesquiterpene hydrocarbons occurred in September, in HpA-VAp 

(2.6 mg/g of biomass dry weight), and in April, in HpM-VAp (2.2 mg/g of biomass dry 

weight). The contents of sesquiterpene hydrocarbons, monoterpene hydrocarbons and n-alkanes 

in flowers were higher than in the respective vegetative aerial parts independently of the site of 

the plant growth. Proportionally, the flowers of the plants from Arcos de Valdevez were richer 

in SH (5.9 mg/g of biomass dry weight) than the flowers from HpM population and these ones 
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were richer in MH (5.4 mg/g of biomass dry weight) and alkanes (5.2 mg/g of biomass dry 

weight), than the former ones. 

 

Table S2 shows the approximation of the absolute quantification of all the EO constituents from 

vegetative aerial parts and flowers of in vivo plants of Hypericum perforatum ‘Topaz’ growing 

in Arcos de Valdevez (HpTA-VAp and HPTA-Fl) and Merelim (HpTM-VAp and HpTM-Fl) 

experimental fields and in vitro shoots maintained in MS basal medium. 

 
Table S2- Specific content (µg/g of biomass dry weight) of essential oils from vegetative aerial parts (VAp) and 

flowers (Fl) of in vivo plants of Hypericum perforatum ‘Topaz’ grown in Arcos de Valdevez (HpTA-VAp and 

HPTA-Fl) and Merelim (HpTM-VAp and HpTM-Fl) experimental fields and in vitro shoots maintained on MS 

basal medium. 

January April June September December 

Compound KI 
Hp 

TA 

VAp 

Hp 

TM 

VAp 

Hp 

TA 

VAp 

Hp 

TM 

VAp 

Hp 

TA 

VAp 

Hp 

TA 

Fl 

Hp 

TM 

VAp 

Hp 

TM

Fl 

Hp 

TA 

VAp 

Hp 

TM 

VAp 

Hp

TA 

VAp

Hp

TM 

VAp

In 
Vitro

shoots

1-Octene 793 15.9 6.3 4.9 6.2 14.8 19.7 22.9 17.5 20.4 4.2 9.4 2.8 188.5 
(E)-2-Hexanal 853   3.7 13.8 14.0 44.6  75.1  16.2 8.9  1.9 3.7 
2-methyl-octane 864 316.6 92.7 832.1 255.9 494.1 4021.4 736.7 2660.1 582.5 62.8 73.0 7.1   
n-Nonane 900 297.1 84.7 151.7 211.5 286.3 530.4 383.9 388.7 553.5 98.0 82.3 7.2 661.1 
α-Thujene 929 11.5 5.6 17.6 6.3 36.0 26.7 87.6 33.4 34.1 1.4 6.4 1.3   
α-Pinene 936 234.9 107.3 120.9 125.8 129.1 1594.3 207.9 1105.9 288.3 48.4 114.0 21.7 251.8 
2,6-Dimethyl-octane 972 67.2 23.5 72.0 35.7 92.1 385.0 103.7 267.2 60.5 10.6 6.9 1.0 37.8 
Sabinene 975 25.8 12.6 87.3 34.9 72.4 57.5 103.9 71.5 96.0 5.5 27.2 10.9 0.9 
β-Pinene 978 34.2 19.0 60.0 29.3 89.1 339.1 136.7 396.3 100.8 12.3 25.6 7.7 22.7 
6-Methyl-5-Hepten-2-one 988     0.4 1.4 4.0 1.6      
Myrcene 986 21.0 8.4 41.1 17.1 44.6 108.5 63.8 100.6 66.7 5.6 13.3 4.0 10.5 
n-Decane 1000     0.4 0.3 1.6 2.8 4.3 4.9 2.6     2.1 
Hexyl acetate 1005 4.0   17.5 3.0 3.2 4.6 4.0 10.9 21.8 6.1     
α-Terpinene 1018 3.2 2.1 8.6 2.2 12.1 13.9 20.7 17.1 18.3 0.7 1.6 0.4   
p-Cymene 1026 2.9   0.5   2.4 1.8 8.8 1.8 1.4       
Limonene 1031 9.2 5.6 22.0 7.3 25.6 39.9 37.7 43.5 35.7 2.1 6.4 2.1 2.2 
Z-β-Ocimene 1041 26.5 17.2 56.4 38.6 48.7 157.5 43.1 134.8 94.6 11.9 25.6 14.1 6.0 
E-β-Ocimene 1052 116.3 75.8 417.9 199.5 208.1 1670.5 161.5 1206.7 416.0 63.3 110.7 69.9 46.9 
γ-Terpinene 1061 4.3 3.0 15.2 4.1 23.5 25.7 41.6 31.6 33.5 1.7 3.0 0.9   
Methyl decane 1069 0.8 5.6 11.6 1.4 14.1 233.5 20.0 139.6 4.5 0.8   7.2 
Terpinolene 1090 3.3 3.1 4.8 1.5 5.8 6.3 9.5 10.8 9.5 0.6 1.0    
Linalool 1099   4.4 11.2   2.0  6.0 1.4         
n-Undecane 1100 17.0 1.6 16.3 6.9 39.8 112.9 46.7 70.6 19.1 4.5 1.7 1.1 102.3 
n-Nonanal 1104 6.3 8.7 8.5 1.8 3.2 9.4 6.1 7.7 19.8 0.8 8.8    
α-Campholenal 1121 10.6 6.1 11.3 4.5 5.6 9.6 3.9 7.7 10.5 1.3 3.1 1.6   
allo-ocimene 1126           3.0 6.7      0.8 1.4 
Camphor 1145     6.1   0.5 0.7 1.8 1.5         
n-Nonanol 1170 13.1   8.4 13.6 5.0 37.8 6.9 22.3 10.4 7.6 7.6 14.4 31.5 
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January April June September December 

Compound KI 
Hp 

TA 

VAp 

Hp 

TM 

VAp 

Hp 

TA 

VAp 

Hp 

TM 

VAp 

Hp 

TA 

VAp 

Hp 

TA 

Fl 

Hp 

TM 

VAp 

Hp 

TM 

Fl 

Hp 

TA 

VAp 

Hp

TM 

VAp 

Hp

TA 

VAp

Hp

TM 

VAp

In 
Vitro

shoots

Terpinen-4-ol 1176   17.7 24.4 4.8 10.9 20.2 20.5 25.6 34.0 3.3 3.2 2.7   
α-Terpineol 1189   4.8 4.6 0.9 1.9 9.4 2.6 9.5 3.6 1.2     
n-Decanal 1205 10.7 21.0 30.6 40.8 3.9 3.4 8.9 3.3 52.5 26.7 17.0 39.6 39.2 
trans-Carveol 1217           1.9          
Methyl dodecane 1265 3.5       1.3 50.8           
n-Decanol 1273 3.6   7.3 6.7 0.2  1.9 30.1 8.6 5.4  14.9 22.6 
n-Tridecane 1300 3.6   1.2   3.6 17.3 4.2 11.4 0.9       
SH 1327 5.8 3.7 5.4 1.8 3.8 3.2 3.4 3.6 2.5 0.9 2.0 0.4   
δ-Elemene 1337 39.6 21.4 58.8 19.6 28.3 27.4 16.1 22.1 42.7 8.5 10.6 4.5 2.8 
α-Cubebene 1348     4.2 2.4 4.3 29.1 4.8 18.4 5.1 1.3   3.1 
α-Ylangene 1370 5.7   0.8 1.1 2.6 16.4 3.4 11.1 2.9 0.5   2.7 
α-Copaene 1374 13.3 12.8 4.0 6.5 10.7 54.5 8.0 39.8 8.3 2.0 1.7 1.1 2.1 
β-Bourbonene 1382 9.3 8.2 0.4 3.1 5.4 6.9 6.7 5.6 4.9 1.5 1.6 0.8 6.0 
β-Cubebene 1388 10.6 4.4      2.1 4.7 4.1   1.3     
β-Elemene 1390 7.3 4.3 24.3 4.4 5.0 6.2 6.4 6.1 10.0 2.4 9.7 1.0 6.4 
Dodecanal 1406         0.2 1.9 0.7 2.2         
α-Cedrene 1412 42.3 17.4 18.5 25.3 34.3 73.8 36.8 40.9 58.6 19.6 1.8 3.9 32.6 
SH 1415 12.2 8.1 1.8 3.2       1.7     
(Ε)-Caryophyllene 1417 277.6 119.1 410.3 218.8 568.2 2777.8 526.1 1866.9 497.5 132.4 66.4 21.2 212.8 
β-Gurjunene 1427 24.5 13.9 27.3 10.0 15.6 23.1 8.5 15.8 21.8 3.6 4.2 1.6 4.6 
α-Guaiene 1439 4.9   3.8 1.2 3.0 12.8 2.8 10.4 3.3     7.2 
Aromadendrene 1440 11.3 7.0 5.5 6.6 10.7 8.1 4.2 5.6 13.5     6.3 
Z-β-Farnesene 1442     12.9 0.7 1.7 6.2 7.5 4.8 2.3 3.9 2.7 1.4   
SH2 1446         2.3 28.3 2.8 17.6 3.6 1.3     
α-Himachalene 1450 34.0 20.1 53.1 19.5 37.2 104.0 37.0 76.5 46.4 10.2 8.5 3.2   
α-Humulene 1453     1.9 0.8 1.5 3.5 2.1  2.7 0.7   11.0 
E-β-Farnesene 1455         13.5   2.1         
allo-Aromadendrene 1459 64.3 27.4 58.0 37.7 39.8 355.8 30.6 186.2 62.3 17.3 12.3 2.7 7.0 
Germacrene D Isomer 1462             81.7 
SH 1465                   10.4 
α-Acoradiene 1468 11.9 6.1 3.1 4.7 8.6 38.0 10.1 24.3 14.5 4.5 2.5 0.8   
Dodecanol 1475          2.7  3.8       7.9 
γ-Gurjunene 1475   4.7 1.5 0.8  7.0  3.0   0.5     
γ-Muurolene 1478 10.4 11.4 312.5 7.3  78.8 0.9 43.8 2.1 3.4 2.8 50.4 19.3 
Germacrene D 1481 1454.8 668.3 2285.8 877.9 1148.7 1993.6 437.6 1533.1 1145.6 326.7 350.0 82.8 451.3 
Curcumene 1483 101.1 55.5 4.3 51.1 1.8 9.3 1.8  0.7 64.8 38.0 3.0   
SH 1487 1.3 7.2 3.2 1.6 2.5  0.7 7.2 3.6       
β-Selinene 1488 220.1 114.4 375.2 127.3 232.4 302.7 100.5 214.6 359.2 53.2 66.4 28.0 47.7 
α-Selinene 1494     13.3     10.7    9.4  1.0 25.4 
α-Muurolene 1497   6.9 11.7 33.6 6.7  5.5 4.5 13.8   4.9  14.5 
n-Pentadecane 1500     2.5   1.9 5.8 1.5  2.2       
(E,E)-α-Farnesene 1503 13.5 4.6 4.5 2.8 2.4 10.7 0.9 6.5 6.4 0.4   3.0 
γ-Cadinene 1508 33.3 22.1 40.8 20.7 54.9 164.2 19.0 115.1 49.2 9.5 3.5 1.5 105.4 
cis-γ-Bisabolene 1510 7.9   13.2 7.6 12.5 50.2 10.2 24.4 15.2 1.0 1.4 2.2 4.3 
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January April June September December 

Compound KI 
Hp 

TA 

VAp 

Hp 

TM 

VAp 

Hp 

TA 

VAp 

Hp 

TM 

VAp 

Hp 

TA 

VAp 

Hp 

TA 

Fl 

Hp 

TM 

VAp 

Hp 

TM

Fl 

Hp 

TA 

VAp 

Hp 

TM 

VAp 

Hp

TA 

VAp

Hp

TM 

VAp

In 
Vitro

shoots

SH 1516                   9.8 
δ-Cadinene 1521 60.8 31.2 53.8 32.1 39.3 104.0 27.7 64.1 82.9 12.4 14.1 8.9 23.9 
SH 1527     2.8   0.7  0.6          
E-γ-Bisabolene 1530 5.8   2.6 1.2 1.9 7.7 1.9 5.5 3.2 0.5   4.4 
α-Cadinene 1534 6.4   2.9 1.9 2.5 12.5 3.0 7.3 5.0 0.5   3.3 
SH 1540       1.9 2.5 2.2 1.0          
α-Calacorene 1543     1.8   3.7 7.9 3.0 1.6 2.7 1.9 1.4 1.7 4.3 
SO (?) 1549       1.7   34.3 6.2 2.2     2.7 
γ-Elemene (?) 1551 3.8   0.5   0.4  3.9  0.8       
E-Nerolidol 1564 8.1 9.7 58.5 26.2 41.8 76.3 52.0 56.0 65.3 13.4 11.3 11.3 2.5 
Spathulenol 1574 11.0   6.1 18.2 9.5 10.7 11.1 9.5 11.6   11.4    
cis-3-Hexenyl benzoate 1577 12.4 19.4 38.1 1.8 50.8 9.0 211.8 11.5 20.9 8.4 6.8 10.0   
Caryophyllene Oxide 1580 15.2 8.6 27.5 9.7 46.6 87.2 444.5 107.6 7.0 5.7  2.1   
Globulol 1585 7.9   6.9 3.5 2.1 3.4 2.2 2.3 35.0 1.1 1.2 0.6   
Viridiflorol 1592 10.0 8.1 27.2 9.8 4.3 10.0 2.7 7.1 9.6 2.4 2.3 1.0   
Guaiol 1593 5.0   2.7  2.5 1.6 1.3 3.5 23.1 10.5 0.3   2.5 
β-Copaen-4-α-ol 1597 36.0 29.7 20.6 38.2 33.2 30.2 42.8 6.4   14.3 18.7 20.2 2.8 
Humulene Epoxide II 1603     2.8   1.6 7.1 18.9  0.8       
β-Oplopenone 1610     1.6   1.7 1.4 5.8 1.2       1.3 
SO 1612 6.2 6.9 20.4 9.4 4.0  6.1        6.9 
epi-γ-Eudesmol 1619   7.8 7.6 1.9 1.9 18.4 7.5 11.8 70.1 3.3     
γ-Eudesmol 1624 8.9 5.6 4.9 3.2 1.5 6.6 3.7 4.9 5.6   2.0 1.0   
epi-α-Cubenol 1633   4.4 13.6 32.7 9.4 9.3 11.2 8.9 5.6 1.5 18.0 12.1 3.2 
epi-α-Cadinol 1640 43.8 18.6 66.4 10.2 7.3 269.0 17.3 175.9 93.2 13.2  3.0 22.8 
epi-α-Muurolol 1642 17.3 14.7 23.1 3.6 3.5 7.2 16.8 8.3 32.5 5.9 5.6 18.9 4.9 
δ-Cadinol 1644             6.1 
SO 1646         0.5     11.6       
α-Cadinol 1654 51.7 33.9 98.2 46.8 33.5 56.2 28.9 44.9 101.2 20.0 26.8  6.3 
β-Bisabolol 1673 3.9   3.7 2.3 17.2 75.4 9.1 4.5 8.0 6.9 1.4 1.1 45.1 
10-epi-α-Bisabolool 1677 4.2   52.9 2.7 13.8 32.8 21.9 44.2 29.7 18.5 3.3 2.3 31.1 
n-Tetradecanol 1681  5.7 21.5 7.5 3.8  19.8 19.2    1.9 2.1 
Benzyl benzoate 1738         1.1 1.7 1.4 1.5         
n-Heptadecane 1700                   2.1 
n-Octadecane 1800                   1.6 
n-Hexadecanol 1881         3.1 5.9 3.2 2.6 7.9 0.4   8.9 
n-Nonadecane 1900          11.5  13.0        
n-Eicosane 2000          4.8  3.5         
n-Heneicosane 2100     1.0 1.0 0.4 32.5 0.3 13.2         
Nonadecanal 2111     17.7 27.9 133.0 23.2 79.6 19.6 37.0  101.5   14.8 
n-Docosane 2200     1.3 0.8  3.0 0.4 1.2 0.1    0.4   
n-Tricosane 2300 11.5 12.1 13.8 13.1 2.8 12.5 2.4 5.4 5.0 2.4 6.7 5.8 2.0 
n-Tetracosane 2400  3.7 2.4 2.6 0.6 1.2 0.6 0.7 1.3 0.8 1.9 1.1 2.7 
n-Pentacosane 2500 13.4 8.5 22.2 13.5 4.5 8.6 4.0 5.7 10.2 5.3 7.0 3.5 6.2 
n-Hexacosane 2600        0.5      
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January April June September December 

Compound KI 
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shoots

n-Heptacosane 2700  5.1 3.3 3.7 2.5 13.4 2.2 10.8 5.5 3.2 1.4 1.6 11.0 
n-Octacosane 2800        1.8     1.8 
n-Nonacosane 2900 2.3       6.3 19.2 2.7 22.7 6.4 4.1   11.0 

Monoterpene Hydrocarbons 493.3 259.8 852.3 466.6 697.3 4041.7 925.8 3160.7 1194.8 153.4 334.8 133.8 342.4 
Oxygenated Monoterpenes   26.9 46.2 5.7 15.4 30.3 32.8 38.0 37.6 4.5 3.2 2.7   
Sesquiterpene Hydrocarbons 2519.0 1200.0 3824.5 1535.3 2309.4 6328.2 1350.7 4392.8 2493.4 696.1 606.4 222.1 1113.3
Oxygenated Sesquiterpenes 229.2 147.9 444.5 221.8 235.2 702.6 952.1 522.8 499.6 114.8 102.1 83.6 135.4 
Alkanes 732.9 237.5 1131.7 546.4 951.7 5466.8 1313.5 3620.9 1254.3 192.5 181.0 28.9 841.6 
Others 90.4 104.5 230.7 138.8 307.6 228.3 409.9 232.8 364.1 181.8 67.6 84.9 329.0 

VAp- Vegetative aerial parts; Fl- Flowers; KI- Kovats retention index on a DB-5 column 

 

In the vegetative aerial parts of plants from the Arcos de Valdevez population, the higher EO 

yield was coincident with the highest accumulation of sesquiterpene hydrocarbons (3.8 mg/g of 

biomass dry weight) in April. Lower amounts of this group were found in the EO of HpTM-

VAp (1.5 mg/g of biomass dry weight) in the same period. Likewise the EO of flowers of H. 

perforatum (common variety), the accumulations of sesquiterpenes hydrocarbons, monoterpene 

hydrocarbons and n-alkanes in EO of flowers of H. perforatum ‘Topaz’ were higher than in the 

EO of the respective vegetative aerial parts. 
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5.1- Chapter overview 

 

Two of the few phytochemical reports on Hypericum undulatum describes the presence 

of hypericin, quercetin, quercetin sulphate, rutin, mangiferin and chlorogenic acid in its leaves 

and aerial parts (Seabra et al., 1991; Seabra et al., 1992). However little is known about their 

essential oils (EO) given the scarce number of papers on this subject (Mathis et al., 1964; 

Nogueira, 2002). To our knowledge there is no report on in vitro cultures of this species. 

In this work, in vitro shoots cultures of H. undulatum were established in two basal 

media and the respective essential oils were chemically characterized along with the essential 

oils of in Nature growing plants. The analyses were performed on: (i) essential oils accumulated 

in the aerial parts of in vivo plants, over one year, with interval of 2 months, (ii) essential oils 

isolated from leaves, stems, ripened seed capsules and flowers of the plants, (iii) essential oils 

produced by in vitro shoots in both culture media and, (iv) essential oils isolated from aerial 

parts of micropropagated and acclimatized plants. 

The n-alkanes constituted the group most represented in the EO of almost all the H. 

undulatum plant material, with exception for leaves where the sesquiterpene hydrocarbons were 

produced and/or accumulated in higher amounts. Undoubtedly, the essential oils of this species, 

growing wild in the Northern of Portugal is characterized by the high percentage content of n-

nonane which was the major compound in the EO of all organs of plants and shoots of H. 

undulatum. Over the year fluctuations in the EO composition were registered, namely in what 

respects the relative contents of the major compounds, 3 of them common to the six samples (n-

nonane, β-pinene and germacrene D). Except for n-nonane, none of the other four most 

represented compounds in the EO from ripened seed capsules were among the most represented 

ones of the EO from leaves, stems and flowers. Variations in the composition of EO were 

observed in shoots grown on the two different media during 60 days of culture. Shoots grown 

on MS basal medium had a more complex EO than that of shoots grown on Mg basal medium, 

even though EO contents were identical in both cases. Hydrocarbon terpenic compounds 

predominated over the oxygenated ones in the EO of in Nature growing plants as well as in 

shoots and acclimatized plants. 
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Figure 1- a) Hypericum undulatum plants. b) Micropropagated and acclimatized plants of Hypericum undulatum 6 

months after transfer to plastic vessels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2- In vitro plantlets of Hypericum undulatum grown on a) MS basal medium without plant growth 

regulators after 70 days of culture, and b) Mg basal medium without plant growth regulators after 70 days of 

culture. 

a b 

a b 
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5.2- Manuscripts 
 

 

This chapter comprises the following manuscripts: 

 

 

Guedes, AP & Fernandes-Ferreira, M. Seasonal Variation of the Essential Oil Content and 

Composition of Hypericum undulatum Schousboe ex Willd. 

 

 

Guedes, AP & Fernandes-Ferreira, M. Essential oils from leaves, stems and ripened seed 

capsules of Hypericum undulatum Schousboe ex Willd. 

 

 

Guedes, AP & Fernandes-Ferreira, M. Micropropagation and in vitro essential oil production 

profiles of Hypericum undulatum Schousboe ex Willd. 
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Seasonal Variation of the Essential oil Content and Composition of 
Hypericum undulatum Schousboe ex Willd 

 
 

Ana P. Guedes and M. Fernandes-Ferreira 
 
CITAB- Centro de Investigação e de Tecnologias Agro-Alimentares e Biológicas, Department of Biology, University of Minho, 
Campus de Gualtar, 4720-057 Braga, Portugal 
 

 
Abstract 
 

The composition of Hypericum undulatum essential oils (EO) and the respective 

seasonal variation profile were determined. The EO contents composed of more than 76 

components ranged from 3.20 to 5.63 mg/g of biomass dry weight in spring and summer, 

respectively. From the 76 compounds identified, the n-alkanes constituted the major group, 

mainly due to n-nonane, which accounted for more than 37% of the total EO in all samples. The 

presence of a C17 to C29 n-alkanes series was recorded in the summer of the first year of study. 

Sesquiterpene hydrocarbons (SH) were the second major group of compounds between June 

and September, of the first year of study and from April to June of the second one, ranging from 

24% to 36% of the total EO. In the winter, the monoterpene hydrocarbons (MH) constituted the 

second major group instead of SH mainly due to the increase in β-pinene (MH) and decrease of 

germacrene D (SH) accumulation. 

 

Keywords: H. undulatum, essential oils, n-alkanes, monoterpene hydrocarbons, sesquiterpene 

hydrocarbons, n-nonane, β-pinene 
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1- Introduction 
 

Hypericum undulatum, usually grows in wet places and in the riverside edges (Nogueira 

2002 and references therein). Due to its reputation as a medicinal plant, this species is among 

the commercialized Hypericum species. Indeed, it is used to treat migraine and heal gall bladder 

ailments. Its decoctions are also believed to have renal antispasmodic and hepatic protector 

effects (Ferreira et al., 2006). Recent studies revealed that H. undulatum ethanolic extracts can 

help preventing and alleviating patients suffering from Alzheimer’s disease (Ferreira et al., 

2006). Previous reports indicated that the phenolic extracts of leaves and aerial parts of this 

species are mainly composed of hypericin, quercetin, quercetin sulphate, rutin, mangiferin and 

chlorogenic acid (Seabra et al., 1991; Seabra et al., 1992). However little is known about the H. 

undulatum essential oils (EO). In several species, variations in the EO profile occur by the 

effect of different factors, such as relative development and maturation of plant organs (Santos-

Gomes et al., 2001), climate conditions (Curado et al., 2006), season (Santos-Gomes et al., 

2001; Hudaib et al., 2002), and soil  mineral fertilization (Zheljazkov et al., 2006). The harvest 

time (Guedes et al., 2003; Guedes et al., 2004), the culture site (Nogueira, 2002), the organ type 

(Schwob et al., 2004), as well as conditions of biomass growth (e.g. in vitro or in vivo) (Guedes 

et al., 2003) are known to influence the EO content and composition of Hypericum plants. The 

characterization of the EO of H. perforatum plants have already been reported (Çakir et al., 

1997; Schwob et al., 2002a; Schwob et al., 2004; Pavlović et al., 2006), as well as the EO 

composition of other species of this genus, namely H. androsaemum (Guedes et al., 2003; 

Guedes et al., 2004), H. brasiliense (Abreu et al., 2004), H. coris (Schwob et al., 2002b), H. 

foliosium (Santos et al., 1999), H. hirsutum (Gudžic et al., 2007), H. linaroides (Cakir et al., 

2005), H. maculatum (Gudžić et al., 2002), H. olympicum (Pavlović et al., 2006) and H. 

tetrapterum (Pavlović et al., 2006). However, information on H. undulatum EO’s composition 

is negligible. n-Nonane was previously reported as the major compound of the EO of this 

species whereas some authors considered that sesquiterpene hydrocarbons constitute the second 

most represented group of compounds (Mathis et al., 1964; Nogueira, 2002). 

Nowadays, because EO constitutes a pool of potential pharmaceutical substances with 

medical and commercial value, a detailed identification of the EO components as well as the 

knowledge of the factors (physiological and environmental) that influence their relative 

concentrations is of utmost importance. In this work, the EO from aerial parts of H. undulatum 
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were analysed over one year to (i) characterize the broadest range of compounds produced, and 

(ii) study the variation of their composition profile over the seasonal cycles. 

 

2- Material and Methods 
 

2.1- Plant material 

H. undulatum plants were cultivated in Nature (Braga, northern Portugal) and aerial 

parts of 6-8 plants were randomly collected six times over a period of one year, starting in June 

of the first year and ending in June of the following year. 

 

2.2- Sampling and hydrodistillation of essential oils 

Fresh biomass (~10 g) from the pruned branches of the several samples was submitted 

to hydrodistillation in a Clevenger type apparatus over 1 h in the presence of a n-hexane (1.0 

mL) solution containing 5α-cholestane (1mg/mL), for the retention of the hydrodistillate 

components. The dry weight of the plant material was determined after drying (60ºC, 72h) in a 

drying stove. 

Further analyses of the hydrodistillates were performed by gas chromatography (GC) 

and gas chromatography-mass spectrometry (GC-MS) as described in Chapter 4 (pages 118-

119). 

 

 

3- Results and Discussion 
 

The EO yields obtained in the hydrodistillation of the six samples of aerial parts of 

Hypericum undulatum plants harvested over a period of one year ranged from a maximum of 

5.6 mg/g dry weight recorded in June of the first year to a minimum of 3.2 mg/g dry weight, 

recorded in April of the second year (Figure 1). 
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Figure 1 - Essential oil contents (mg/g dry weight) from plants of Hypericum undulatum Schousboe ex Willd. 

cultivated in Braga (Portugal) and harvested at different times over one year. 

 

The lowest EO contents registered in April coincided with the high spring vegetative 

growth rate of the plant. In this phase of the phenological cycle, carbon and energy are 

predominantly directed to nutrition and plant growth being, subsequently, less available for the 

production of secondary metabolites. Low EO contents during the spring were also reported for 

H. androsaemum (Guedes et al., 2004). The number of identified compounds in the 

hydrodistillates of H. undulatum samples, ranged from 49 to 76 depending of the harvest time 

(Table 1). To our knowledge, up to now, this is the first report describing such a complete 

composition of the H. undulatum EO. Twenty-two compounds were previously identified by 

Nogueira (2002), 17 from which were also detected in this study. 

 
Table 1 - Composition (%) of the essential oils from plants of Hypericum undulatum Schousboe ex Willd. 

cultivated in Braga (Portugal) and harvested at different times over one year. 

Compound KI(1) KI(2) June Sept. Nov. Jan. April June 

n-Octane 800 800 0.5 0.5 0.6 0.3 1.4 0.5 
(E)-2-Hexenal 854 854 2.0 0.2 0.2 tr 0.2 0.1 
n-Hexanol 862 863 0.2 0.1 tr tr 0.2 0.1 
n-Nonane 900 900 37.1 41.6 41.5 48.4 42.9 45.9 
α-Thujene 929 929 0.1 0.1 0.1 tr tr 0.1 
α-Pinene 937 936 2.4 2.4 5.3 5.4 3.0 2.3 
Camphene 952 950 tr 0.1 0.3 0.3 tr tr 
2,6-Dimethyloctane 970 972 0.1 0.1 - - - 0.1 
Sabinene 976 975 0.2 - - - - - 
β-Pinene 979 978 10.2 7.3 19.8 22.6 11.5 8.1 
6-Methyl 5 hepten-2-one 988 987 tr - - - - - 

Myrcene 991 991 0.2 0.2 0.3 0.3 0.2 0.2 
n-Decane 1000 1000 tr - tr tr - tr 
β-Phellandrene 1026 1024 tr - - - - tr 
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Compound KI(1) KI(2) June Sept. Nov. Jan. April June 

Limonene 1030 1030 0.3 0.1 0.6 0.3 0.2 0.2 
Z-β-Ocimene 1038 1040 0.3 0.1 0.3 tr tr 0.2 
E-β-Ocimene 1051 1050 5.1 1.6 2.0 1.3 2.3 4.0 
γ-Terpinene 1061 1060 tr tr tr - - 0.1 
Terpinolene 1089 1088 0.1 tr tr tr - 0.1 
n-Undecane 1100 1100 0.6 1.0 0.6 0.6 0.7 0.8 
n-Nonanal 1104 1103 tr - - - - tr 
2,2,6-Trimethyl hepta-
3,5-dione 1165 1162 tr - - - - tr 

Terpinen-4-ol 1178 1177 tr 0.1 tr - 0.2 0.1 
α-Terpineol 1191 1189 0.1 tr 0.1 tr - 0.1 
n-Decanal 1205 1205 1.0 0.8 1.4 0.3 2.2 1.3 
n-Decanol 1273 1276 0.1 - tr - - 0.2 
δ-Elemene 1338 1337 0.2 0.2 tr tr 0.1 0.2 
α-Cubebene 1351 1348 0.7 1.6 1.1 1.0 0.7 0.8 
α-Copaene 1374 1374 0.2 0.1 - - - 0.1 
β-Patchoulene 1375 1376 0.5 1.1 0.9 1.0 0.8 0.5 
β-Bourbonene 1384 1383 0.6 0.2 0.9 1.0 0.7 0.5 
β-Elemene 1390 1390 4.6 7.1 7.0 5.9 6.4 4.4 
iso-Italicene 1396 1395 0.2 0.5 0.5 0.3 0.2 0.3 
α-Cedrene 1409 1409 0.7 1.2 0.6 0.3 0.6 0.5 
(E)-Caryophyllene 1417 1416 7.4 6.0 1.7 1.6 3.6 6.2 
β-Gurjunene 1432 1427 0.6 1.0 0.8 0.6 0.7 0.5 
Aromadendrene 1443 1442 0.7 1.2 0.6 0.3 0.6 0.5 
α-Humulene 1447 1447 0.2 0.4 0.3 0.3 0.2 0.2 
allo-Aromadendrene 1452 1450 0.5 0.5 0.3 tr 0.2 0.5 
Germacrene D Isomer 1462 1463 tr 0.1 - - - 0.1 

γ-Muurolene 1476 1473 0.1 0.2 0.2 tr tr 0.2 
Germacrene D 1481 1478 13.2 11.0 3.9 2.5 6.0 11.6 
β-Selinene 1482 1482 0.4 0.2 0.2 0.3 tr 0.1 
α-Selinene 1494 1486 tr 0.1 - - - 0.2 
β-Guaiene 1496 1492 1.6 1.4 0.9 0.6 1.0 1.4 
α-Muurolene 1498 1497 0.1 0.1 tr tr - 0.1 
(E,E)-α-Farnesene 1506 1498 0.4 0.6 0.6 0.3 0.7 0.4 
γ-Cadinene 1512 1508 0.8 0.8 0.5 0.2 0.7 0.4 
δ-Cadinene 1522 1521 0.6 0.5 0.3 0.3 0.5 0.5 
Dimethyl-4-Isopropyl-
Bicyclo(4,4,0)-1,4-
Decadiene 

1526 1526 0.4 1.2 2.2 1.0 1.7 0.5 

α-Calacorene 1543 1543 0.1 tr - - - tr 
E-Nerolidol 1563 1563 0.1 tr - - - 0.1 
Spathulenol 1575 1576 0.1 0.4 tr tr tr 0.1 
Caryophyllene oxide 1581 1578 0.3 0.4 tr tr tr 0.3 
Globulol 1587 1587 0.1 - - - - 0.1 
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Compound KI(1) KI(2) June Sept. Nov. Jan. April June 

Viridiflorol 1591 1592 0.3 0.2 0.3 tr 0.2 0.3 
β-Copaen-4-α-ol 1596 1597 0.3 0.8 0.6 0.3 0.9 0.4 
β-Oplopenone 1612 1607 0.3 0.6 0.3 0.3 0.7 0.4 
epi-α-Cadinol 1639 1639 0.3 0.1 0.2 tr tr 0.3 
epi-α-Muurolol 1643 1642 0.2 0.1 - - - 0.2 
δ-Cadinol 1653 1650 0.6 0.6 0.5 0.3 0.7 0.9 
Z-α-Santalol 1670 1668 0.1 0.1 - - - tr 
epi-α-Bisabolol 1677 1674 0.2 0.2 0.1 tr - 0.1 
n-Heptadecane 1700 1700 tr tr - - - tr 
n-Octadecane 1800 1800 tr - - - - - 
n-Nonadecane 1900 1900 tr - - - - - 
n-Eicosane 2000 2000 tr - - - - - 
n-Heneicosane 2100 2100 tr - tr - - - 
n-Docosane 2200 2200 tr - - - - - 
n-Tricosane 2300 2300 tr tr - tr 0.2 - 
n-Tetracosane 2400 2400 tr tr tr tr 0.2 - 
n-Pentacosane 2500 2500 0.1 0.2 0.3 0.7 2.1 0.1 
n-Hexacosane 2600 2600 tr tr - tr 0.1 - 
n-Heptacosane 2700 2700 0.1 0.4 tr 0.7 2.2 - 
n-Octacosane 2800 2800 tr - - tr tr - 
n-Nonacosane 2900 2900 tr 0.1 - tr 0.9 - 
KI- Kovats retention index on a DB-5 column; KI(1) – KI for GC-MS; KI(2) – KI for GC 
tr- trace amounts 
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Figure 2 - Specific content (mg/g dry weight) and respective percentages of the five major classes of compounds 

present in the essential oils isolated from plants of Hypericum undulatum Schousboe ex Willd. cultivated in Braga 

(Portugal) and harvested at different times over one year. MH- Monoterpene Hydrocarbons; MO- Oxygenated 

Monoterpenes; SH- Sesquiterpene Hydrocarbons; SO- Oxygenated Sesquiterpenes 

 

Figure 2 shows the specific and relative contents of the five main groups of H. 

undulatum EO constituents, namely monoterpene hydrocarbons (MH), oxygenated 

monoterpenes (MO), sesquiterpene hydrocarbons (SH), oxygenated sesquiterpenes (SO) and n-

alkanes. n-Alkanes constitute the major group, corresponding to more than 38% of the total H. 

undulatum EO (Figure 2). n-Alkanes had already been considered the major group of 
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compounds in EO of aerial parts of H. undulatum growing wild in Portugal (Nogueira, 2002). 

Oxygenated sesquiterpenes (SO) and oxygenated monoterpenes constituted the minor groups of 

the EO of this species (Figure 2). The sesquiterpene hydrocarbons group gathered the most 

diverse number of compounds, 19 of which were common to all samples. During spring and 

summer, it was also the second most represented group, overcame by that of monoterpene 

hydrocarbons, in later autumn and winter. As shown in Figure 2, the variation of the relative 

contents of these two groups of compounds over the year was opposite. These results are 

coherent with those reported for H. perforatum (Chapter 4). As previously discussed such 

inverse correlation may reflect differential effects of the environmental conditions on the 

mevalonate independent pathway, mainly responsible by the biosynthesis of monoterpene 

compounds in the plastids, and on the acetate/mevalonate pathway leading to sesquiterpene 

biosynthesis in the cytosol (Davis et al., 2000). Both environmental conditions and plant 

development might have favoured the sesquiterpene accumulation in spring leading to the 

increase in its content. During the colder and shorter photoperiod months, the lower growth rate 

of H. undulatum could have allowed a higher maturation of chloroplasts leading to an increase 

in the accumulation of monoterpenes. Hudaib and co-workers (2002) also found higher 

amounts of monoterpene hydrocarbons in Thymus vulgaris L. plants harvested in December 

after the vegetative cycle. On can speculate however that such variation may be due to the 

higher volatile characteristics of the monoterpene hydrocarbons and consequent increased 

release under the effects of the warmer days of spring and summer. Sesquiterpene hydrocarbons 

being less volatile are not so easily lost what in parallel with their increased synthesis and 

accumulation would explain their higher relative contents in June (Figure 2). 

As shown in Table 2, the EO from H. undulatum plants were richer in hydrocarbon-like 

compounds rather than in the oxygenated ones.  
 

Table 2 - Relative contents (%) of the five major classes of compounds present in the essential oils isolated from 

plants of Hypericum undulatum Schousboe ex Willd. cultivated in Braga (Portugal) and harvested at different 

times during over one year. 

Compound group June Sept. Nov. Jan. April June 

Monoterpene Hydrocarbons 18.8 12.0 28.7 30.2 17.1 15.4 
Oxygenated Monoterpenes 0.1 0.1 0.1 <0.1 0.2 0.2 
Sesquiterpene Hydrocarbons 34.3 36.4 21.1 16.7 23.7 30.1 
Oxygenated Sesquiterpenes 2.8 3.5 1.9 1.0 2.5 3.3 
n-Alkanes 38.4 43.8 43.0 50.7 50.7 47.2 
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Terpinen-4-ol and α-terpineol were the only oxygenated monoterpenes detected, with a 

proportion of less than 0.2% of the total EO contents. Low amounts of oxygenated 

monoterpenes in EO of H. undulatum had already been reported (Mathis et al., 1964; Nogueira, 

2002) as well as in the EO of H. androsaemum (Guedes et al., 2003; Guedes et al., 2004). Only 

7 of the 12 identified oxygenated sesquiterpene compounds were common to the 6 samples. 

Among them, β-copaen-4-α-ol, β-oplopenone and δ-cadinol were the major ones, although 

their respective contributions to the total EO never had reached 1% along the year. Such low 

contents of oxygenated sesquiterpenes contrasts with the composition of the EO from 

Hypericum perforatum which showed high relative contents of oxygenated sesquiterpenes 

(Schwob et al., 2004; Radusiene et al., 2005). Indeed, EO from flowers and leaves of H. 

perforatum growing in Lithuania were dominated by oxygenated sesquiterpenes, corresponding 

to 36-70% of the total EO (Radusiene et al., 2005), while Schowb et al. (2004) reported values 

of around 20% of oxygenated sesquiterpenes in the EO of H. perforatum at vegetative, floral 

budding, flowering and fruiting stages. 

In all the studied EO samples, n-nonane was found the main compound of H. undulatum 

with a proportion of more than 37% of the total EO (Table 1). This result is in agreement with 

previous reports on the EO of this species (Mathis et al., 1964; Nogueira, 2002). In EO of 

Hypericum foliosum as well as in EO of H. caprifoliatum, n-nonane was also present in high 

percentages (Santos et al., 1999; Ferraz et al., 2005). However, this feature does not seem to be 

a specificity of the Hypericum genus since n-nonane was in low amounts or even undetected in 

some other species. These are the cases of H. hirsutum (Gudžic et al., 2007), H. androsaemum 

(Guedes et al., 2003; Guedes et al., 2004), H. perforatum (Schwob et al., 2004; Radusiene et 

al., 2005), and H. brasiliense (Abreu et al., 2004). In the H. undulatum EO the lowest level of 

n-nonane was recorded in June of the first year of study and the highest one was recorded in 

January, in coherence with most of the variation in the level of the total n-alkanes (Figure 2). In 

April, there was increase in n-pentacosane and n-heptacosane contents. A complete series of n-

alkanes from C17 to C29 was identified in the EO extracted from samples obtained in June of the 

first year of study. Among them, only n-pentacosane was common to all the 6 samples obtained 

over the year. A complete series of long chain n-alkanes was also previously described in H. 

androsaemum (Guedes et al., 2003; Guedes et al., 2004). Generally long chain n-alkanes are 

more abundant in plants than the short-chain ones since the first are found in plant epicuticular 

waxes (Kunst et al., 2003). The role of short-chain alkanes in EO has not been reported yet. 

Interestingly, the high levels of alkanes from C7 to C11 identified in oleoresins from several 

species of Pinus have been suggested to be a defence mechanism against insect and pathogen 
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attacks (Savage et al., 1996). Biosynthetically, it was suggested that shorter and long chain 

length n-alkanes do not share all the same pathways being the shorter chain length fatty acids 

better used by the acyl reduction pathway (Millar et al., 1999), while the long chain n-alkanes 

biosynthesis seems to involve fatty acid elongation followed by decarbonylation (Cheesbrough 

et al., 1984). Additionally, short-chain alkanes accumulation is interesting because of the 

excellent combustion properties they share with petrochemical liquid hydrocarbons in gasoline 

and diesel formulations (Savage et al., 1996). 

The relative contents of the compounds that mostly contributed to the variation of the 

monoterpene hydrocarbons (α-pinene, β-pinene and E-β-ocimene) and sesquiterpene 

hydrocarbons (β-elemene, (E)-caryophyllene and germacrene D) are shown in Figure 3. 
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Figure 3 - Relative content (%) of the major monoterpene hydrocarbons and sesquiterpene hydrocarbons of the 

essential oils from plants of Hypericum undulatum Schousboe ex Willd. cultivated at Braga (Portugal) and 

harvested at different times over one year 

 

From the 5 most represented compounds, 3 of them (n-nonane, β-pinene and 

germacrene D) were common to all samples. β-Elemene constituted also one of the 5 most 

represented compounds in the EO of H. undulatum, except for plants harvested in June of the 

first year of study, in which it was substituted by E-β-ocimene. During the flowering period 

(May-June) the content of E-β-ocimene increased two-fold comparing to the other phases of the 

phenological cycle. Accordingly, Dudareva and co-workers (2003) found high amounts of this 

monoterpene hydrocarbon in flowers of snapdragon. Between September of the first year of 
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study and June of the second one the variation of the relative content of germacrene D and (E)-

caryophyllene was opposite to that of the β-pinene and α-pinene. This variation pattern was 

consistent with the above mentioned variation of sesquiterpene- and monoterpene-hydrocarbons 

groups. The increase in the relative content of the total monoterpene hydrocarbons in November 

and January was essentially due to the increases in β-pinene accumulation and, in lower extent, 

α-pinene (Figure 3). In these months, β-pinene content reached about 20% of the total EO 

content and α-pinene was one of the 5 most represented compounds. The accumulation of these 

2 monoterpene hydrocarbons, was already demonstrated to be related to leaf development of 

Mentha piperita (Gershenzon et al., 2000). 

 

To conclude, among the numerous EO components described here in H. undulatum 

aerial parts, the n-alkanes group, and particularly the short chain alkane n-nonane, are 

predominant. Additionally, our results report a seasonal variation in the composition of the H. 

undulatum EO, correlated with variations in the contents of some of its compounds. 

 

Acknowledgements 
This work was sponsored by the Grant SFRH/BD/13283/2003 

 

References 
 
Abreu, I., M. Reis, A. Marsaioli & P. Mazzafera (2004). 

Essential oil composition of Hypericum 
brasiliense choise. Flavour and Fragrance 
Journal(19), 80-82. 

Çakir, A., M. E. Duru, M. Harmandar, R. Ciriminna, S. 
Passannanti & F. Piozzi (1997). Comparison of 
the volatile oils of Hypericum scabrum L. and 
Hypericum perforatum L. from Turkey. Flavour 
and Fragrance Journal 12(4), 285-287. 

Cakir, A., S. Kordali, H. Kilic & E. Kaya (2005). 
Antifungal properties of essential oil and crude 
extracts of Hypericum linarioides Bosse. 
Biochemical Systematics and Ecology 33(3), 
245-256. 

Cheesbrough, T. M. & P. E. Kolattukudy (1984). Alkane 
biosynthesis by decarbonylation of aldehydes 
catalyzed by a particulate preparation from 
Pisum sativum. Proceedings of the National 
Academy of Sciences of the United States of 
America 81(21), 6613-6617. 

Curado, M. A., C. B. A. Oliveira, J. G. Jesus, S. C. Santos, 
J. C. Seraphin & P. H. Ferri (2006). 
Environmental factors influence on chemical 
polymorphism of the essential oils of 
Lychnophora ericoides. Phytochemistry 67(21), 
2363-2369. 

Davis, E. M. & R. Croteau (2000). Cyclization Enzymes in 
the Biosynthesis of Monoterpenes, 
Sesquiterpenes and Diterpenes. Topics in 
Current Chemistry 209, 54-95. 

Ferraz, A. B. F., R. P. Limberger, S. A. L. Bordignon, G. 
L. v. Poser & A. T. Henriques (2005). Essential 
oil composition of six Hypericum species from 
southern Brazil. Flavour and Fragrance Journal 
20(3), 335-339. 

Ferreira, A., C. Proença, M. L. M. Serralheiro & M. E. M. 
Araújo (2006). The in vitro screening for 
acetylcholinesterase inhibition and antioxidant 
activity of medicinal plants from Portugal. 
Journal of Ethnopharmacology 108(1), 31-37. 

Gershenzon, J., M. E. McConkey & R. B. Croteau (2000). 
Regulation of Monoterpene Accumulation in 
Leaves of Peppermint. Plant Physiology 122, 
205-214. 

Gudžić, B., D. Djokovic, V. Vajs, R. Palić & G. 
Stojanovic (2002). Composition and 
antimicrobial activity of the essential oil of 
Hypericum maculatum Crantz. Flavour and 
Fragrance Journal 17(5), 392-394. 

Gudžic, B., A. Šmelcerović, S. Dordević, N. Mimica-
Dukić & M. Ristić (2007). Essential oil 



Essential oils from plants and in vitro shoot cultures of Hypericum androsaemum L., 
H. perforatum L. and H. undulatum Schousboe ex. Willd.  A. P. Guedes 

174 

composition of Hypericum hirsutum L. Flavour 
and Fragrance Journal 22(1), 42-43. 

Guedes, A. P., L. R. Amorim, A. Vicente & M. Fernandes-
Ferreira (2004). Variation of the essential oil 
content and composition in leaves from 
cultivated plants of Hypericum androsaemum L. 
Phytochemical Analysis 15, 146-151. 

Guedes, A. P., L. R. Amorim, A. M. S. Vicente, G. Ramos 
& M. Fernandes-Ferreira (2003). Essential Oils 
from Plants and in Vitro Shoots of Hypericum 
androsaemum L. J. Agric. Food Chem. 51(5), 
1399-1404. 

Hudaib, M., E. Speroni, A. M. Di Pietra & V. Cavrini 
(2002). GC/MS evaluation of thyme (Thymus 
vulgaris L.) oil composition and variations 
during the vegetative cycle. Journal of 
Pharmaceutical and Biomedical Analysis 29(4), 
691-700. 

Kunst, L. & A. L. Samuels (2003). Biosynthesis and 
secretion of plant cuticular wax. Progress in 
Lipid Research 42, 51-80. 

Mathis, C. & G. Ourisson (1964). Étude chimio-
taxonomique du genre Hypericum : II. 
Identification de constituants de diverses huiles 
essentielles d'Hypericum. Phytochemistry 3(1), 
115-131. 

Millar, A. A., S. Clemens, S. Zachgo, E. M. Giblin, T. 
D.C. & L. Kunst (1999). CUT1, an Arabidopsis 
gene required for cuticular wax biosynthesis and 
pollen fertility, encodes a very-long-chain fatty 
acid condensing enzyme. The Plant Cell 11, 
825-838. 

Nogueira, T. (2002). O género Hypericum L. em Portugal 
Continental. Contribuição para o estudo 
quimiotaxonómico. Instituto Superior de 
Agronomia. Lisboa, Universidade Técnica de 
Lisboa. PhD. Thesis. 

Pavlović, M., O. Tzakou, P. V. Petrakis & M. Couladis 
(2006). The essential oil of Hypericum 
perforatum L., Hypericum tetrapterum Fries and 
Hypericum olympicum L. growing in Greece. 
Flavour and Fragrance Journal 21(1), 84-87. 

Radusiene, J., A. Judzentiene & G. Bernotiene (2005). 
Essential oil composition and variability of 

Hypericum perforatum L. growing in Lithuania. 
Biochemical Systematics and Ecology 33(2), 
113-124. 

Santos-Gomes, P. C. & M. Fernandes-Ferreira (2001). 
Organ and season-dependent variation in the 
essential oil composition of Salvia officinalis L. 
cultivated in two different sites. Journal of 
Agricultural and Food Chemistry 49, 2908-
2916. 

Santos, P. A. G., A. C. Figueiredo, J. G. Barroso, L. G. 
Pedro & J. J. C. Scheffer (1999). Composition of 
the essential oil of Hypericum foliosum Aiton 
from five Azorean islands. Flavour and 
Fragrance Journal 14(5), 283-286. 

Savage, T. J., B. S. Hamilton & R. Croteau (1996). 
Biochemistry of Short-Chain Alkanes. Tissue-
Specific Biosynthesis of n-Heptane in Pinus 
jeffreyi. Plant Physiology 110, 179-186. 

Schwob, I., J.-M. Bessiere, V. Masotti & J. Viano (2004). 
Changes in essential oil composition in Saint 
John's wort (Hypericum perforatum L.) aerial 
parts during its phenological cycle. Biochemical 
Systematics and Ecology 32(8), 735-745. 

Schwob, I., J.-M. Bessière & J. Viano (2002a). 
Composition of the essential oils of Hypericum 
perforatum L. from southeastern France. 
Comptes Rendus Biologies 325(7), 781-785. 

Schwob, I., J. M. Bessiere, M. Dherbomez & J. Viano 
(2002b). Composition and antimicrobial activity 
of the essential oil of Hypericum coris. 
Fitoterapia 73(6), 511-513. 

Seabra, R. M., M. H. Vasconcelos, M. A. C. Costa & A. C. 
Alves (1992). Phenolic compounds from 
Hypericum perforatum and Hypericum 
undulatum. Fitoterapia 68, 473-474. 

Seabra, R. M., M. H. Vasconselos & A. C. Alves (1991). 
Flavonoid sulphates from Hypericum undulatum. 
Rev. Port. Farm. 12, 16-18. 

Zheljazkov, V. D., L. E. Craker & B. Xing (2006). Effects 
of Cd, Pb, and Cu on growth and essential oil 
contents in dill, peppermint, and basil. 
Environmental and Experimental Botany 58(1-
3), 9-16. 

 
 



Chapter 5  Essential Oils of Hypericum undulatum Schousboe ex Willd. 

175 

Essential oils from leaves, stems and ripened seed capsules of Hypericum 

undulatum Schousboe ex Willd 
 

 
Ana P. Guedes and M. Fernandes-Ferreira 

 
CITAB- Centro de Investigação e de Tecnologias Agro-Alimentares e Biológicas, Department of Biology, University of Minho, 
Campus de Gualtar, 4720-057 Braga, Portugal 
 

 

Abstract 
The composition of the essential oils (EO) from fresh leaves, stems, ripened seed 

capsules and flowers of Hypericum undulatum (Clusiaceae) obtained by hydrodistillation was 

determined by GC and GC-MS. The highest yield, expressed in terms of percentage of EO by 

biomass dry weight, was obtained from leaves (0.9%), followed by ripened seed capsules 

(0.8%), flowers (0.6%), and stems (0.3%). The most complex composition profile was that of 

flowers (97 compounds) followed by ripened seed capsules, leaves and stems with 85, 83 and 

47 compounds, respectively. The n-alkanes group, from which n-nonane was the dominant 

compound, corresponded to 84%, 42%, 37% and 24% of the EO of stems, flowers, ripened seed 

capsules, and leaves, respectively. n-Alkanes constituted the major group of EO constituents in 

the H. undulatum organs with the exception for leaves where the sesquiterpene hydrocarbons 

group predominated (59%). A complete series of n-alkanes, from C22 to C29, was identified in 

leaves whereas in stems, the n-heptacosane and n-nonacosane were the only long-chain n-

alkanes detected. Although the EO from leaves contained a broad range of sesquiterpene 

hydrocarbons, the dominant compound was n-nonane (21.6%). The absolute content of this n-

alkane corresponded to around 0.2% of the dried biomass of leaves and around 0.3% of the 

dried biomass of stems, flowers and ripened seed capsules of H. undulatum. The second major 

group of compounds in the EO of leaves was that of n-alkanes while in EO of stems, flowers 

and ripened seed capsules was that of sesquiterpene hydrocarbons which represented around 

10%, 41% and 28%, respectively. 

 

Keywords: H. undulatum, essential oils, leaves, flowers, ripened seed capsules, n-alkanes, n-

nonane, sesquiterpenes 
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1- Introduction 
 

Hypericum undulatum (Clusiaceae) along with Hypericum androsaemum L. and 

Hypericum perforatum L., is one of the three species of the Hypericum genus most used in 

Portuguese folk medicine. This species usually grows in wet places and in the riverside edges 

being also found in United Kingdom, Spain, France and Italy (Nogueira, 2002). Decoctions of 

its flowers are used in traditional medicine for the treatment of migraine, and in bladder and 

gall bladder ailments. These decoctions are also believed to have a renal antispasmodic and 

hepatic protector effect (Ferreira et al., 2006). According to some authors, H. undulatum can 

also help in preventing or alleviating patients suffering from Alzheimer’s disease, once its 

essential oils (EO), ethanolic extracts and decoctions showed both high antioxidant activity and 

acetylcholinesterase inhibitory capacity (Ferreira et al., 2006). Such type of extracts are mainly 

composed of phenolic compounds as demonstrated by some authors who identified hypericin, 

quercetin, quercetin sulphate, rutin, mangiferin and chlorogenic acid in alcoholic extracts of 

leaves and aerial parts of H. undulatum (Seabra et al., 1991; Seabra et al., 1992). 

In the past few years, there has been a growing interest in the secondary metabolite 

production of species of Hypericum genus, mainly due to the current widespread use of H. 

perforatum in the treatment of mild to moderate depression. The increasing interest for H. 

perforatum phenolic extracts might be related to their antidepressant properties. Studies on the 

essential oils (EO) of several Hypericum species have been reported, namely of H. perforatum 

(Smelcerovic et al., 2004; Ferraz et al., 2005; Radusiene et al., 2005) and H. androsaemum 

(Guedes et al., 2003; Guedes et al., 2004) some of which describing some of their biological 

effects namely antimicrobial activities (Toker et al., 2006; Saroglou et al., 2007). Studies on H. 

undulatum are however scant, namely in what respects the EO. To our knowledge the most 

complete study on H. undulatum EO reported up to now, was that of Nogueira (2002) who 

identified 22 compounds in hydrodistillates from aerial parts of plants from this species. 

Given the properties and uses reported to H. undulatum we consider of utmost 

importance a better knowledge on the composition of the extracts and fractions of this species, 

namely their EO. The present work reports the contents and composition profiles of the EO 

from leaves, stems, ripened seed capsules and flowers of H. undulatum growing in Nature. 
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2- Material and Methods 
 

2.1- Plant material 

H. undulatum plants wild growing in Braga (Northern Portugal) were randomly pruned 

in September and subsamples of leaves, stems and ripened seed capsules were collected for the 

EO extraction. The flowers used in the extraction of EO were pruned before, in June, in the 

same field.  

 

2.2- Sampling and hydrodistillation 

Subsamples of 10 g of fresh biomass of leaves, stems and flowers, as well as 5g of fresh 

biomass of ripened seed capsules of H. undulatum were submitted to hydrodistillation in a 

Clevenger type apparatus over 1 h in the presence of a n-hexane (1.0 mL) solution containing 

5α-cholestane (1mg/mL), for the retention of the EO components. The dry weight of the plant 

material was determined after drying (60ºC, 72h) in a drying stove. 

Further analyses of the EO were performed by gas chromatography (GC) and gas 

chromatography-mass spectrometry (GC-MS) as described in Chapter 4 (pages 118-119). 

 

 

3- Results and Discussion 
 

The EO yields obtained by hydrodistillation of the different organs of H. undulatum 

plants ranged from a minimum of 3.4 mg/g of biomass dry weight to a maximum of 8.7 mg/g of 

biomass dry weight determined for stems and leaves, respectively (Figure 1). Ripened seed 

capsules and flowers gave yields of 8.1 and 6.5 mg/g of biomass dry weight, respectively 

(Figure 1). 

 

 

 

 

 

Figure 1 - Essential oil contents (mg/g of biomass dry weight) in leaves, stems, ripened seed capsules (harvested 

in September) and flowers (harvested in June) of Hypericum undulatum Schousboe ex Willd growing in Braga, 

Northern of Portugal. 
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Despite being the organ with the highest EO yield, leaves contained a relatively narrow 

range of compounds compared to the flowers. More than one hundred compounds were found, 

distributed by the four organs, 89% of which were identified (Table 1). Only forty of all 

compounds were present in the whole plant including the stems which was the organ with the 

lowest number of EO constituents (47). 

 
Table 1 - Composition of the essential oils from leaves, stems, ripened seed capsules (harvested in September) and 

flowers (harvested in June) of Hypericum undulatum Schousboe ex Willd. growing in Braga, Northern of Portugal. 

Leaves Stems Rip seed caps Flowers 
COMPOUND KI  µg/g dry 

weight % µg/g dry
weight % µg/g dry 

weight % µg/g dry 
weight % 

n-Octane 800 9.4 0.1 32.6 1.0 71.5 0.8 44.8 0.6 
(E)-2-Hexenal 854 47.7 0.4 1.2 tr - - 14.6 0.2 
n-Hexanol 863 6.4 0.1 6.7 0.2 569.4 6.5 256.6 3.5 

n-Nonane 900 2247.9 21.6 2823.7 81.7 2685.9 30.4 2784.7 38.2

α-Thujene 929 2.0 tr 1.3 tr - - 0.5 tr 

α-Pinene 936 79.0 1.1 17.9 0.7 9.3 0.2 11.5 0.2 

Camphene 950 - - - - 5.2 0.1 4.6 0.1 

2,6-Dimethyloctane 972 5.7 0.1 7.6 0.2 696.9 8.0 166.5 2.3 

Sabinene 975 4.1 tr - - - - 1.4 0.1 

β-Pinene 978 312.8 4.0 74.8 2.9 11.1 0.2 42.2 0.8 

6-Methyl-5-hepten-2-one 987 8.9 0.1 - - 51.2 0.6 7.5 0.1 

Myrcene 991 10.7 0.1 3.1 0.1 21.3 0.3 7.5 0.1 

n-Decane 1000 4.5 tr 2.8 tr 15.9 0.2 4.0 0.1 

n-Octanal 1007 - - - - 6.0 tr 3.1 0.1 

α-Terpinene 1018 - - - - - - 2.2 0.1 

Limonene 1030 11.6 0.1 1.6 tr 6.1 0.2 8.5 0.1 

Z-β-Ocimene 1039 15.2 0.2 4.3 0.2 1.2 tr 3.2 0.1 

E-β-Ocimene 1050 144.5 1.9 22.6 0.9 3.1 tr 37.8 0.7 

γ-Terpinene 1060 1.9 tr - - 2.5 tr 4.6 0.1 

2-Methyl-decane 1071 - - - - 18.6 0.2 5.5 0.1 

trans-Linalool oxide (furanoid) 1073 7.1 0.1 - - 33.4 0.3 6.5 0.1 

2,6-Dimethyl-3,5-Heptanodione 1078 - - - - 42.2 0.5 3.7 0.1 

Terpinolene 1087 3.7 tr - - 9.5 0.2 12.0 0.2 

n-Undecane 1100 113.6 1.1 35.3 1.0 335.4 3.8 190.4 2.6 

n-Nonanal 1103 - - - - 9.3 0.2 6.5 0.1 

2,2,6-Trimethyl hepta-3,5-dione 1162 6.7 0.1 2.5 tr 27.0 0.3 8.0 0.1 
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Leaves Stems Rip seed caps Flowers 
COMPOUND KI  µg/g dry 

weight % µg/g dry
weight % µg/g dry  

weight % µg/g dry 
weight % 

Terpinen-4-ol 1176 4.0 tr - - - - 2.6 0.1 

α-Terpineol 1189 10.6 0.1 - - - - 8.2 0.1 

n-Decanal 1205 54.0 0.5 - - 2.8 tr 7.5 0.1 

n-Decanol 1277 5.4 tr - - - - 2.3 tr 

n-Tridecane 1300 - - - - 5.6 tr - - 

δ-Elemene 1336 51.8 0.7 1.7 tr - - 8.1 0.1 

α-Cubebene 1348 81.3 1.0 12.3 0.5 431.4 6.6 250.7 4.6 

SH 1370 10.4 0.1 - - 6.9 0.2 4.2 0.1 

α-Ylangene 1368 44.0 0.6 - - 3.4 0.1 2.9 0.1 

α-Copaene 1374 60.1 0.7 - - 420.5 6.3 168.2 3.1 

β-Patchoulene 1376 - - 8.4 0.2 - - 4.3 0.1 

iso-Longifolene 1378 51.8 0.7 - - - - 41.8 0.7 

β-Bourbonene 1382 286.1 3.8 12.9 0.5 21.5 0.3 177.3 4.5 

β-Elemene 1390 432.6 5.3 70.5 2.7 49.3 0.8 6.1 0.1 

iso-Italicene 1394 23.2 0.3 5.3 0.2 112.2 1.7 52.2 1.3 

SH 1395 - - - - 13.0 0.2 9.7 0.1 

SH 1401 38.2 0.5 - - 2.3 tr 3.3 0.1 

α-Cedrene 1408 411.2 5.7 7.1 0.2 9.5 0.2 125.0 0.5 

(Ε)-Caryophyllene 1416 779.0 9.6 50.5 1.9 145.2 2.2 282.1 6.6 

β-Gurjunene 1427 63.6 0.8 7.8 0.2 252.7 3.9 76.3 1.8 

SH 1435 39.2 0.6 - - 7.9 0.2 21.0 0.3 

Aromadendrene 1442 92.9 1.2 7.2 0.2 5.9 0.2 26.6 0.6 

α−Humulene 1447 47.0 0.6 3.1 0.1 5.8 0.2 10.9 0.2 

allo-Aromadendrene 1450 61.0 0.8 4.5 0.2 7.2 0.2 14.5 0.2 

SH 1458 31.1 0.4 - - 2.4 tr 18.6 0.5 

Germacrene D isomer 1463 15.2 0.2 2.9 0.1 5.7 0.1 14.9 0.2 

γ-Gurjunene 1467 - - - - 4.2 tr 14.7 0.2 

γ-Muurolene 1475 460.8 6.4 2.6 0.2 30.7 0.5 1.3 0.1 

γ-Curcumene 1483 - - - - 5.4 0.1 22.9 0.4 

Germacrene D 1478 1045.5 12.9 53.7 2.1 64.8 1.0 421.2 7.7 

SH 1480 - - - - - - 31.2 0.4 

β-Selinene 1482 23.5 0.3 3.8 0.2 5.5 0.2 5.8 0.1 

α-Selinene 1485 59.8 0.8 - - 44.1 0.7 5.7 0.1 

Valencene 1487 - - - - - - 36.9 0.7 

β-Guaiene 1492 121.3 1.5 8.7 0.2 - - 49.0 0.9 
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Leaves Stems Rip seed caps Flowers 
COMPOUND KI  µg/g dry 

weight % µg/g dry
weight % µg/g dry 

weight % µg/g dry 
weight % 

α-Muurolene 1497 26.5 0.4 - - 11.8 0.2 25.3 0.5 

(E,E)-α-Farnesene 1498 72.9 0.9 5.4 0.2 6.5 0.2 24.5 0.5 

SH 1499 - - - - - - 8.9 0.1 

SH 1503 - - - - - - 106.4 1.5 

γ-Cadinene 1508 87.8 1.1 1.8 tr 89.7 1.4 29.8 0.5 

δ-Cadinene 1521 57.5 0.7 3.8 0.2 30.9 0.5 67.0 1.2 
Dimethyl-4-Isopropyl-Bicyclo-
(4,4,0)-1,4-Decadiene 1526 28.8 0.4 2.5 tr 2.9 tr 39.4 0.5 

trans-Cadina-1(2),4-diene 1530 - - - - - - 8.0 0.1 

α-Cadinene 1535 5.3 0.1 - - 2.1 tr 5.1 0.1 

SH 1538 - - - - 27.5 0.4 3.0 0.1 

α-Calacorene 1543 8.9 0.1 0.7 tr 8.5 0.2 4.2 0.1 

γ-Elemene (?) 1546 2.9 tr - - 12.6 0.2 3.5 0.1 

trans-Nerolidol 1562 10.7 0.1 - - 175.0 2.0 17.5 0.2 

SO 1568 39.5 0.4 - - 15.1 0.2 - - 

cis-3-Hexenyl Benzoate 1572 34.9 0.3 - - 15.2 0.2 13.7 0.1 

SO 1569 - - - - 8.8 0.2 - - 

Spathulenol 1575 65.0 0.6 2.7 tr 30.1 0.3 9.2 0.1 

Caryophyllene oxide 1577 30.7 0.3 5.1 0.2 463.6 5.2 27.5 0.3 

Globulol 1587 16.3 0.1 - - 12.5 0.2 4.5 0.1 

Viridiflorol 1591 67.1 0.6 2.5 0.1 11.8 0.2 9.6 0.1 

SO 1585 - - - - - - 7.8 0.1 

β-Copaen-4-α-ol 1597 50.8 0.5 5.3 0.2 16.7 0.2 35.6 0.5 

α-Guaiol 1598 12.0 0.1 2.6 0.1 14.1 0.2 20.0 0.2 

Tetradecanal 1605 - - - - 24.8 0.3 - - 

β-Oplopenone 1606 76.9 0.8 4.1 0.1 71.9 0.8 38.7 0.5 

1-epi-Cubenol 1628 3.4 tr - - 54.5 0.7 15.8 0.2 

epi-α-Cadinol 1638 27.1 0.3 0.7 tr 51.6 0.5 66.9 0.9 

epi-α-Muurolol 1642 22.3 0.2 - - 81.5 0.9 55.0 0.7 

δ-Cadinol 1650 85.2 0.8 5.4 0.2 18.7 0.2 93.1 1.3 

Z-α-Santalol 1667 14.8 0.1 - - 53.6 0.6 10.2 0.1 

epi-α-Bisabolol 1674 25.7 0.2 - - 18.5 0.2 16.0 0.2 

n-Heptadecane 1700 6.4 0.1 - - 11.8 0.2 4.8 0.1 

n-Octadecane 1800 2.8 tr - - - - - - 

Hexahydrofarnesyl acetone 1849 - - - - 11.0 0.1 11.0 0.1 

n-Nonadecane 1900 - - - - 5.6 tr 6.2 0.1 
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Leaves Stems Rip seed caps Flowers 
COMPOUND KI  µg/g dry 

weight % µg/g dry
weight % µg/g dry  

weight % µg/g dry 
weight % 

n-Heneicosane 2100 - - - - 12.5 0.2 3.8 0.1 

n-Docosane 2200 3.1 tr - - - - - - 

n-Tricosane 2300 6.0 0.1 - - 7.7 0.1 10.8 0.1 

n-Tetracosane 2400 7.5 0.1 - - - - 1.2 tr 

n-Pentacosane 2500 45.0 0.4 - - 11.6 0.2 7.8 0.1 

n-Hexacosane 2600 6.6 0.1 - - 2.7 tr - - 

n-Heptacosane 2700 61.3 0.6 1.7 tr 37.7 0.4 - - 

n-Octacosane 2800 3.3 tr - - 8.9 0.2 - - 

n-Nonacosane 2900 17.6 0.2 1.4 tr 61.8 0.8 1.7 tr 

Monoterpene Hydrocarbons 586.9 7.5 125.5 4.8 69.3 1.0 136.5 2.5 

Oxygenated Monoterpenes 21.7 0.2    33.4 0.3 17.3 0.2 

Sesquiterpene Hydrocarbons 4592.4 59.0 274.4 10.2 1834.6 28.2 2193.4 41.1

Oxygenated Sesquiterpenes 547.4 5.2 28.3 0.9 1098.3 12.2 427.5 5.6 

n-Alkanes   2534.9 24.4 2897.5 83.6 3274.5 37.2 3060.2 42.0

Others   375.0 3.8 20.5 0.5 1795.7 21.0 627.9 8.7 
KI- Kovats retention index on a DB-5 column; tr- trace amounts 
Rip seed caps- Ripened seed capsules 

 

Some constituents of H. undulatum EO were associated to a given type of organ. Those 

are the cases of n-octadecane and n-docosane, only identified in leaves, n-tridecane and 

tetradecanal, present only in ripened seed capsules, and α-terpinene, valencene and trans-

cadina-1(2),4-diene, exclusive constituents from the EO of flowers. The EO composition of H. 

undulatum had already been studied by Nogueira (2002) who identified a maximum of 22 

compounds. n-Alkanes was the major group found in stems, ripened seed capsules and flowers, 

while in leaves, the sesquiterpene hydrocarbons predominated (Table 1). The other constituents 

distributed by monoterpene hydrocarbons (MH), oxygenated monoterpenes (MO) and 

oxygenated sesquiterpenes (SO) were present in the different types of organs, excepting for 

stems that lacked oxygenated monoterpenes (MO). 

n-Alkanes represented more than 80%, 37% and 40% of the total EO of stems, ripened 

seed capsules and flowers, respectively (Figure 2). The predominance of this group was mainly 

due to the high amount of n-nonane, the major compound in the four types of organs (Figure 3). 

In leaves, the n-alkanes constituted the second group most represented accounting for 24% of 

the total EO. Nogueira (2002) had already reported the predominance of alkanes in the EO of 
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H. undulatum, with n-nonane, 3-methyl-nonane and 2-methyl-octane, contributing to the 

abundance of this group. In the study here reported, 2-methyl-octane and 3-methyl-nonane were 

not detected. However, 2,6-dimethyloctane was identified as the second major compound of the 

EO from ripened seed capsules. The group of alkanes was also present, in significant 

percentage, in the EO of Hypericum perforatum and Hypericum tetrapterum grown in Greece 

even though not as the major group (Pavlović et al., 2006). However, the authors reported that 

in the EO of Hypericum olympicum the alkanes group accounted only for 9% of the total EO.  
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Figure 2 – Relative content (%) of the main groups of compounds in the essential oils from leaves, stems, ripened 

seed capsules (harvested in September) and flowers (harvested in June) of Hypericum undulatum Schousboe ex 

Willd growing in Braga, Northern of Portugal. MH- Monoterpene Hydrocarbons; MO- Oxygenated 

Monoterpenes; SH- Sesquiterpene Hydrocarbons; SO- Oxygenated Sesquiterpenes. 

 

The presence of a complete series of n-alkanes, between C22 and C29, was found in 

hydrodistillates of H. undulatum leaves (Table 1). In hydrodistillates from ripened seed 

capsules, a series of n-alkanes from C17 to C29 was identified, with exception of n-docosane and 

n-tetracosane. n-Heptacosane and n-nonacosane were the only long-chain n-alkanes common to 

the four type of organs. These n-alkanes are usually found in plant epicuticular waxes along 

with other long-chain aliphatic compounds (Kunst et al., 2003). The presence of series of n-

alkanes, from C18 to C28 and from C20 to C29, in the EO of Hypericum androsaemum had 

already been reported (Guedes et al., 2003; Guedes et al., 2004). A longer series (C19-C33) was 

detected by Stojanovic et al. (2003) in EO of Hypericum perforatum. The same authors 

identified almost all the compounds from the same series (C19-C33) in the EO of H. maculatum 

and H. olympicum. n-Alkanes with shorter chains, n-octane, n-decane and n-undecane, were 
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identified in all organs. The predominance of n-nonane in the EO of this species (Figure 3) was 

also reported by Mathis and Ourisson (1964) and Nogueira (2002). This compound was among 

the major ones in the EO of Hypericum foliosum (Santos et al., 1999), H. caprifoliatum (Ferraz 

et al., 2005) and of other species of the genus, although in a great range of contents, as reported 

for H. carinatum, H. myrianthum, H. polyanthemum, H. ternum and H. connatum (Ferraz et al., 

2005) as well as H. perforatum, H. tetrapterum and H. olympicum (Pavlović et al., 2006). 

Depending on the season, this compound can range greatly in the EO of Hypericum plants, as 

reported for H. androsaemum (0.6-9.1%) (Guedes et al., 2004) and, in some cases, as in H. 

perforatum, it is present in trace amounts (Radusiene et al., 2005) or even absent, as in the EO 

of H. scabrum and H. perforatum grown in Turkey (Çakir et al., 1997) and Uzbekistan (Baser 

et al., 2002), H. tormentosum and H. humifusum (Nogueira et al., 1998), H. perforatum grown 

in France (Schwob et al., 2002b; Schwob et al., 2004), H. rumeliacum (Couladis et al., 2003), 

and H. perfoliatum (Touafek et al., 2005). 

Sesquiterpene hydrocarbons, constituted the major group of compounds in EO of H. 

undulatum leaves being the second most represented in the EO of the other three H. undulatum 

organs accounting for 60% in leaves, 41 % in flowers, 28% in ripened seed capsules and 10% 

in stems. Nogueira (2002) had already reported this group as the second major one in the EO 

from H. undulatum with relative amounts ranging from 10% to 22%. Sesquiterpene 

hydrocarbons was also reported as the predominant group in EO of plants and in vitro shoots of 

H. androsaemum (Guedes et al., 2003; Guedes et al., 2004) as well as in the EO of H. 

perforatum, H. tetrapterum and H. olympicum (Pavlović et al., 2006). Other authors showed 

also that the composition of the EO from aerial parts of H. perforatum varies during the 

phenological cycle, with predominance of the sesquiterpene hydrocarbons at the floral budding, 

flowering and fruiting phases (Schwob et al., 2004).  
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Figure 3 – Percentage content of the five major compounds of the essential oils from leaves, stems, ripened seed 

capsules (harvested in September) and flowers (harvested in June) of Hypericum undulatum Schousboe ex Willd 

growing in Braga, Northern of Portugal. 

 

The relative amount of the total monoterpene hydrocarbons in the EO of H. undulatum 

leaves (7.5%) was higher than that found in the EO of each one of the other type of organs. This 

group was the major one in H. rumeliacum (Couladis et al., 2003) as well as in H. perforatum 

and H. scabrum grown in Turkey (Çakir et al., 1997), being also well represented in the EO of 

H. foliosum (Santos et al., 1999). From all the monoterpene hydrocarbons detected and 

identified, only 6 were common to the four types of organs. β-Pinene, was the main 

monoterpene hydrocarbon, accounting for 2.9% of the total EO of stems and 4% of the total EO 

content from the leaves. This compound, however, did not reach 1% of the total EO of ripened 

seed capsules and flowers (Figure 3). Nogueira (2002) reported β-pinene as one of the less 

represented compounds ranging from 0.4% to 1.4% of the H. undulatum EO. α-Pinene, a 

monoterpene hydrocarbon reported as a major compound in different species of Hypericum 

(Çakir et al., 1997; Nogueira et al., 1998; Baser et al., 2002; Couladis et al., 2003; Pavlović et 

al., 2006), was poorly represented in H. undulatum EO, accounting for less than 1.2% of its 

content. The group of oxygenated monoterpenes was poorly represented, being constituted by 

trans-linalool oxide, terpinen-4-ol and α-terpineol in the EO of leaves and flowers, and only by 

trans-linalool oxide in the EO of ripened seed capsules. No oxygenated monoterpene was 
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detected in the stems (Table 1). These results are coherent with those reported by Nogueira 

(2002) who found values of oxygenated monoterpenes lower than 1%. The author reported 

values of oxygenated sesquiterpenes of 1-2% in the EO of the aerial parts of H. undulatum. In 

the present study oxygenated sesquiterpenes accounted for less than 1% of the EO of stems, 

reaching, however, 5.2%, 5.6% and more than 12% in EO of leaves, flowers and ripened seed 

capsules, respectively. 

Considering the five most represented compounds in the four types of organs studied, 

only n-nonane was common to all of them (Figure 3). (Ε)-Caryophyllene and germacrene D 

were common to leaves, stems and flowers, while α-cubebene was among the five most 

abundant compounds of EO extracted from ripened seed capsules and flowers. The list of the 

five most represented compounds was completed with γ-muurolene and α-cedrene for leaves; β-

pinene and β-elemene for stems; 2,6-dimethyloctane, n-hexanol and α-copaene for ripened seed 

capsules; and β-bourbonene for flowers. Germacrene D was the second major compound in the 

EO of leaves (12.9%) and flowers (7.7%), and the fourth in the EO of stems (2.1%), 

representing however, 1% of the total EO of the ripened seed capsules of H. undulatum. 

Nogueira (2002) reported the presence of this compound, in contents not exceeding 1%, in EO 

of different H. undulatum accessions with one exception in which it reached 6%. (E)-

Caryophyllene is usually one of the most represented sesquiterpene hydrocarbons in the EO of 

several Hypericum species, such as H. carinatum and H. ternum at flowering stage (Ferraz et 

al., 2005) and H. perforatum (Baser et al., 2002). In the EO of leaves and flowers of H. 

undulatum here reported, (E)-caryophyllene was the third major compound, accounting for 

9.6% and 6.6%, respectively, while in the ripened seed capsules and in the stems it was lower 

than 3%. Lower relative amounts of (E)-caryophyllene in EO of H. undulatum had been 

reported before (0.5% to 2%) (Nogueira, 2002). In EO of H. androsaemum, a seasonal variation 

in the (E)-caryophyllene content from 9% to 17% was reported (Guedes et al., 2004). The 

reported contents of (E)-caryophyllene in EO of different Hypericum species has not been 

consistent, which may be related to its role as metabolic intermediary, sharing metabolic 

pathways with other EO compounds, such as caryophylladienol and caryophyllene oxide 

(Schwob et al., 2004). The caryophylladienol was not detected in H. undulatum EO, but the 

caryophyllene oxide was identified in the hydrodistillates of the four organs studied. In the 

ripened seed capsules this compound was the major oxygenated sesquiterpene (5.2%). From the 

16 oxygenated sesquiterpenes detected in this study, 14 were common to the EO of leaves, 

ripened seed capsules and flowers of H. undulatum while a half of these ones were common to 
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stems EO. n-Hexanol, the fourth most represented compound in the ripened seed capsules 

(6.5%), represented only 0.1%, 0.2% and 3.5% of the total EO of leaves, stems and flowers, 

respectively. This compound was not detected in the EO of H. undulatum analyzed by Nogueira 

(2002). 

 

As concluding remarks the present study revealed that the EO profiles of H. undulatum 

are quite different from the EO profiles of other Hypericum species already studied. Although 

the major compound (n-nonane) was common to the different organs, this report clearly shows 

that each H. undulatum organ has its specific EO profile. Indeed, EO from stems, ripened seed 

and flowers are richer in n-alkanes, while the EO of leaves have the sesquiterpene hydrocarbons 

as the most abundant group of compounds. The ripened seed capsules contain high levels of 

oxygen-containing sesquiterpenes, mainly due to the high amount of caryophyllene oxide. 

 

 

 

References 
 
Baser, K. H. C., T. Ozek, H. R. Nuriddinov & A. B. 

Demirci (2002). Essential oils of two Hypericum 
species from Uzbekistan. Chemistry of Natural 
Compounds. 38(1), 54-57. 

Çakir, A., M. E. Duru, M. Harmandar, R. Ciriminna, S. 
Passannanti & F. Piozzi (1997). Comparison of 
the volatile oils of Hypericum scabrum L. and 
Hypericum perforatum L. from Turkey. Flavour 
and Fragrance Journal 12(4), 285-287. 

Couladis, M., I. B. Chinou, O. Tzakou & P. V. Petrakis 
(2003). Composition and antimicrobial activity 
of the essential oil of Hypericum rumeliacum 
subsp. apollinis (Boiss. & Heldr.). Phytotherapy 
Research 17(2), 152-154. 

Ferraz, A., D. H. Faria, M. N. Benneti, A. Brondani da 
Rocha, G. Schwartsmann, A. Henriques & G. L. 
von Poser (2005). Screening for antiproliferative 
activity of six southern Brazilian species of 
Hypericum. Phytomedicine 12(1-2), 112-115. 

Ferraz, A. B. F., R. P. Limberger, S. A. L. Bordignon, G. 
L. v. Poser & A. T. Henriques (2005). Essential 
oil composition of six Hypericum species from 
southern Brazil. Flavour and Fragrance Journal 
20(3), 335-339. 

Ferreira, A., C. Proença, M. L. M. Serralheiro & M. E. M. 
Araújo (2006). The in vitro screening for 
acetylcholinesterase inhibition and antioxidant 
activity of medicinal plants from Portugal. 
Journal of Ethnopharmacology 108(1), 31-37. 

Guedes, A. P., L. R. Amorim, A. Vicente & M. Fernandes-
Ferreira (2004). Variation of the essential oil 

content and composition in leaves from 
cultivated plants of Hypericum androsaemum L. 
Phytochemical Analysis 15, 146-151. 

Guedes, A. P., L. R. Amorim, A. M. S. Vicente, G. Ramos 
& M. Fernandes-Ferreira (2003). Essential Oils 
from Plants and in Vitro Shoots of Hypericum 
androsaemum L. J. Agric. Food Chem. 51(5), 
1399-1404. 

Kunst, L. & A. L. Samuels (2003). Biosynthesis and 
secretion of plant cuticular wax. Progress in 
Lipid Research 42, 51-80. 

Nogueira, T. (2002). O género Hypericum L. em Portugal 
Continental. Contribuição para o estudo 
quimiotaxonómico. Instituto Superior de 
Agronomia. Lisboa, Universidade Técnica de 
Lisboa. PhD. Thesis. 

Nogueira, T., F. Duarte, F. Venâncio, R. Tavares, M. 
Lousã, C. Bicchi & P. Rubiolo (1998). Aspectos 
Quimiotaxonómicos do Género Hypericum L. 
em Portugal. Silva Lusitana 6(1), 55-61. 

Pavlović, M., O. Tzakou, P. V. Petrakis & M. Couladis 
(2006). The essential oil of Hypericum 
perforatum L., Hypericum tetrapterum Fries and 
Hypericum olympicum L. growing in Greece. 
Flavour and Fragrance Journal 21(1), 84-87. 

Radusiene, J., A. Judzentiene & G. Bernotiene (2005). 
Essential oil composition and variability of 
Hypericum perforatum L. growing in Lithuania. 
Biochemical Systematics and Ecology 33(2), 
113-124. 



Chapter 5  Essential Oils of Hypericum undulatum Schousboe ex Willd. 

187 

Santos, P. A. G., A. C. Figueiredo, J. G. Barroso, L. G. 
Pedro & J. J. C. Scheffer (1999). Composition of 
the essential oil of Hypericum foliosum Aiton 
from five Azorean islands. Flavour and 
Fragrance Journal 14(5), 283-286. 

Saroglou, V., P. D. Marin, A. Rancic, M. Veljic & H. 
Skaltsa (2007). Composition and antimicrobial 
activity of the essential oil of six Hypericum 
species from Serbia. Biochemical Systematics 
and Ecology 35(3), 146-152. 

Schwob, I., J.-M. Bessiere, V. Masotti & J. Viano (2004). 
Changes in essential oil composition in Saint 
John's wort (Hypericum perforatum L.) aerial 
parts during its phenological cycle. Biochemical 
Systematics and Ecology 32(8), 735-745. 

Schwob, I., J. M. Bessiere, M. Dherbomez & J. Viano 
(2002b). Composition and antimicrobial activity 
of the essential oil of Hypericum coris. 
Fitoterapia 73(6), 511-513. 

Seabra, R. M., M. H. Vasconcelos, M. A. C. Costa & A. C. 
Alves (1992). Phenolic compounds from 
Hypericum perforatum and Hypericum 
undulatum. Fitoterapia 68, 473-474. 

Seabra, R. M., M. H. Vasconselos & A. C. Alves (1991). 
Flavonoid sulphates from Hypericum undulatum. 
Rev. Port. Farm. 12, 16-18. 

Smelcerovic, A., N. Mimica-Dukic & S. Djordjevic 
(2004). Essential oil composition of Hypericum 
perforatum L. ssp angustifolium from South 
Serbia. J. Essent. Oil Bear. Plants 7, 275–278. 

Toker, Z., G. KizIl, H. Ç. Özen, M. KizIl & S. Ertekin 
(2006). Compositions and antimicrobial 
activities of the essential oils of two Hypericum 
species from Turkey. Fitoterapia 77(1), 57-60. 

Touafek, O., A. Nacer, A. Kabouche & Z. Kabouche 
(2005). Analysis of the essential oil of algerian 
Hypericum perfoliatum (L). Flavour and 
Fragrance Journal 20(6), 669-670. 

 



 

 

 



Chapter 5  Essential Oils of Hypericum undulatum Schousboe ex Willd. 

189 

Micropropagation and in vitro essential oil production profiles of Hypericum 
undulatum Schousboe ex Willd 

 

 
Ana P. Guedes and M. Fernandes-Ferreira 

 
CITAB- Centro de Investigação e de Tecnologias Agro-Alimentares e Biológicas, Department of Biology, University of Minho, 
Campus de Gualtar, 4720-057 Braga, Portugal 
 

 

Abstract 
 

In vitro cultures of Hypericum undulatum Schousboe ex Willd were established on two 

different basal media (MS and Mg) devoid of growth regulators from one nodal primary explant 

after its surface-sterilization. MS basal medium induced a higher number of shoots and roots 

per explant, as well as longer shoots and roots than did the Mg medium. The essential oil (EO) 

yields ranged from 0.5 to 1.0% and from 0.4 to 1.0% (w/w) by hydrodistillation of H. 

undulatum shoots grown on MS and Mg media, respectively. The hydrodistillation of 

micropropagated and acclimatized plants, 6 and 8 months after the plantlets transfer to plastic 

pots gave yields of 1.1%. The EO were predominantly constituted by n-alkanes whose relative 

contents constituted 63% (w/w) of the EO of micropropagated and acclimatized plants, 57-83% 

and 71-86% of the EO of shoots growing on MS and on Mg media, respectively. n-Nonane was 

the major constituent, representing 58-59% of the EO of micropropagated and acclimatized 

plants, 50-75% and 63-79% of the EO of shoots growing on MS and on Mg media, 

respectively. 

 

Keywords: Hypericum undulatum; in vitro shoots; acclimatized plants; essential oils; n-alkanes; 

n-nonane 

 

 

1- Introduction 
 

Hypericum undulatum, usually grows in wet places and in the riverside edges (Nogueira, 

2002), being used to treat migraine and heal gall bladder ailments. Its decoctions are also 

believed to have renal antispasmodic and hepatic protector effects (Ferreira et al., 2006). In 

Portugal, H. undulatum together with H. perforatum and H. androsaemum is one of the most 

used and commercialized medicinal Hypericum species. In view of the increasing demand for 
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medicinal plants, there is a need to develop approaches for efficient propagation. 

Micropropagation by in vitro meristems has been reported as an effective tool for obtaining 

genetically uniform plants, which can be the source of important secondary compounds. 

The growth rate of in vitro plant tissue and organ cultures is a function of the net 

assimilation rate resulting from uptake of the medium nutrients (Kothari et al., 2004). As the 

morphogenesis of plant tissues under in vitro conditions is also largely influenced by the 

composition of the culture medium, the right set up of a basal medium is of utmost importance 

for the establishment of an efficient tissue culture system for plant regeneration. Minerals are 

the major component of plant tissue culture media, which comprises the essential macro- and 

micronutrients and a supplement of carbon source and vitamins. The composition of macro- and 

microelements in most standard media has been developed through empirical manipulations of 

one or more combinations of existing formulations (Ramage et al., 2002; Kothari et al., 2004). 

Generally, the use of plant growth regulators is also required for optimal growth and 

regeneration rates of in vitro-cultured plant tissues. The morphogenic response of the explant 

depends on the interaction between the nutrient salts and the organic constituents, especially 

plant growth regulators (Chauhan et al., 2004). However, the effects of the ratio and 

concentrations of these growth regulators depend on the plant species and the type of culture. It 

has been reported that the nutrient levels in the medium greatly affect plant regeneration 

(Ramage et al., 2002). Regardless the growth regulator used, plant regeneration can be 

improved by modifying the salt composition (Kothari et al., 2004). Modifications of the basal 

medium have been found to influence callus induction and plant regeneration on species such 

as wheat (Purnhauser et al., 1993), indica rice (Sahrawat et al., 1999), recalcitrant indian barley 

(Chauhan et al., 2004), hazelnut (Nas et al., 2004), Paspalum scrobiculatum and Eleusine 

coracana (Kothari-Chajer et al., 2008), and Stevia rebaudiana (Jain et al., 2009). Therefore, the 

ratios of plant growth regulators cannot be viewed as the sole mechanism controlling in vitro 

developmental processes (Ramage et al., 2002). The optimal nutrient composition in the 

medium affects the sensitivity of the explants in response to plant growth regulators (Chauhan 

et al., 2004). It has also been reported that appropriate levels of nutrients may partially 

substitute plant growth regulators in the culture medium (Preece, 1995). For plant regeneration 

from embryogenic callus of Eleusine coracana the addition of higher concentrations of 

NH4NO3 can substitute the growth regulator NAA requirement in the medium (Poddar et al., 

1997). 

Plant regeneration of Hypericum species has been achieved using whole seedlings or 

their excised parts (Cellarova et al., 1995), such as hypocotyl sections (Murch et al., 2000) and 
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leaves (Pretto et al., 2000) as primary explants. However, to our knowledge, no report on the 

establishment of in vitro cultures of H. undulatum was published up to now. On the other hand 

little information is available on essential oils (EO) produced by H. undulatum plants in which, 

alkanes, namely n-nonane, and sesquiterpene hydrocarbons were reported as the major groups 

of compounds (Mathis et al., 1964a; Nogueira, 2002). 

In this work we established in vitro cultures of H. undulatum on MS culture medium 

and on a basal medium settled by us (Mg) by modification of that of N30K (Margara, 1984). 

The micropropagated plants were acclimatized and the respective EO composition profiles 

together with those of in vitro shoots were determined. The results from these studies are here 

reported. 

 

2- Material and Methods 
 

2.1- Plant material 

A total of 200 explants constituted by leaves, nodal and internodal segments of H. 

undulatum plants, grown in a field located in Braga (Northern Portugal), were excised and 

immersed in ethanol (70%) for 2 minutes, before surface sterilization by immersion in a sodium 

hypochlorite solution (5% or 10%) for 10 or 15 minutes. To remove traces of chlorine, leaves 

and stem segments were washed three times with sterile distilled water and then placed on 

Murashige and Skoog (Murashige and Skoog, 1962) basal medium (MS) supplemented with 

2% sucrose, without any growth regulators. The pH of the medium was adjusted to 5.7 and it 

was solidified with 0.8% agar prior to autoclaving at 15 psi for 20 min at 121ºC. Sterile primary 

explants were incubated at 25±2ºC under a photoperiod 16 h light/8 h dark. Illumination was 

supplied by cool white fluorescent tubes with a light intensity of 52µmol m-2s-1. 

 

2.2- Establishment and development of in vitro cultures 

To evaluate the effect of different basal media on shoot multiplication, around 50 

explants were distributed on MS and Mg [basal medium containing the macroelements of the 

N30K mineral formulation (Margara, 1984) with MS microelements and vitamins (Murashige et 

al., 1962)] basal media, both supplemented with 3% sucrose and without any growth regulators 

(Table 1). 
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Table 1- Macroelements composition of the MS and Mg culture media 

Macroelements MS (mg/L) Mg (mg/L) 

KNO3 1900 1313 

NH4NO3 1650 480 

Ca(NO3)2.4H2O - 590 

CaCl2.2H2O 440 - 

MgSO4.7H2O 370 246 

KCl - 74.5 

KH2PO4 170 136 

 

The efficacy of each basal medium on the plantlets proliferation and growth was 

determined after 30 and 60 days of culture by recording the number of induced shoots per 

explant, their length and their biomass dry weight. For plant multiplication, in both culture 

conditions, nodal segments were transferred every 8 weeks to fresh culture medium and 

incubated at 25±2ºC under a photoperiod 16 h light/8 h dark. Illumination was supplied by cool 

white fluorescent tubes with a light intensity of 52µmol m-2s-1. 

 

2.3- Growth profiles and acclimatization of the in vitro regenerated plantlets 

The growth profiles were determined over the 6th subculture period. Samples were 

constituted by 3 culture flasks, harvested every 10 days, in which shoots from the flasks of each 

basal media were separated from roots. The dry weight of the shoots and roots was determined 

after freeze drying at 0.05 mbar for 72 h. The study was carried out in a completely randomised 

design with three replicates per time of culture. 

Plantlets with 60 days of culture, grown on MS or Mg basal media were transferred to 

plastic pots containing an organic soil mixture substrate. Plantlets were kept under laboratory 

environmental conditions at room temperature and close to a window. Initially, plantlets were 

covered with a plastic bag, in which holes were made after 2 weeks. Several holes were 

periodically made until the plastic was removed after 8 weeks. 

 

2.4- Essential oil composition and production profiles 

The composition and production profiles of the essential oils were determined over the 

6th subculture period. Shoots from about 5 flasks of each basal media were separated from 

roots, at every 10 days, and the respective fresh biomass was gathered and submitted to 

hydrodistillation for essential oil recovery. Essential oils from the aerial parts of 6 and 8 months 
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old acclimatized plants were isolated by the same way. Hydrodistillation was performed in a 

Clevenger type apparatus, over 1 h in the presence of a n-hexane (1.0 mL) solution containing 

5α-cholestane (1mg/mL), for the retention of the hydrodistillate components. The dry weight of 

the plant material was determined after drying (60ºC, 72h) in a drying stove. 

Further analyses of the hydrodistillates were performed by gas chromatography (GC) 

and gas chromatography-mass spectrometry (GC-MS) in the conditions described before (pages 

118-119). 

 

 

3- Results and Discussion 
 

3.1- Establishment of in vitro cultures 

From the different methods of surface sterilization applied to the vegetative primary 

explants of H. undulatum only the treatment with 5% hypochlorite solution during 15 minutes 

allowed shoot regeneration (Table 2). 

 
Table 2- Effect of the method of surface-sterilization of primary explants (leaves, internodal and 

nodal segments) from in Nature growing Hypericum undulatum plants on the regeneration of in 

vitro plantlets. 

Culture 
medium Surface-sterilized method Contamination

(%) 
Death 
(%) 

Regeneration
(%) 

Ethanol 70% (2 min) 
Sodium Hypochlorite 5% (10 min) 
3 washes with sterile distilled water 

76 24 0 

Ethanol 70% (2 min) 
Sodium Hypochlorite 5% (15 min) 
3 washes with sterile distilled water 

25 74.5 0.5 

Ethanol 70% (2 min) 
Sodium Hypochlorite 10% (10 min) 
3 washes with sterile distilled water 

20 80 0 
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Ethanol 70% (2 min) 
Sodium Hypochlorite 10% (15 min) 
3 washes with sterile distilled water 

10 90 0 

 

In three of the four assays no one shoot regenerated due to a generalized high rate of 

contamination or explants’ death. Indeed, the plant regeneration occurred from only one nodal 

segment giving a plantlet without contamination. This only plantlet was cloned and multiplied 

successively through nodal segment subcultures giving origin to all H. undulatum plantlets used 

in all studies involving in vitro cultures of this species. Increasing the sodium hypochlorite 

concentration or time of exposure led to a reduction in the contamination rate but induced the 
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death of the explants by oxidation/browning (Table 2). Most of the in vitro cultures of 

Hypericum species have been established from seeds. Those are the cases of H. brasiliense 

(Cardoso et al., 1996) and H. perforatum (Murch et al., 2000; Bais et al., 2002; Murch et al., 

2002; Smith et al., 2002; Walker et al., 2002; Pasqua et al., 2003; Zobayed et al., 2005). An 

efficient protocol of surface sterilization of H. perforatum was obtained when leaves were 

surface-sterilized in a 20% (v/v) commercial sodium hypochlorite solution containing 0.04% of 

Tween 20 for 20 min (Pretto et al., 2000). The use of bleach (10%) for 20 min together with 

HgCl2 (0.2%) for 5 min and Tween 20 (0.01%) was reported to be the most suited to the 

sterilization of stem sections of H. foliosium (Moura, 1998). No reports have been published 

however on the establishment of in vitro cultures of H. undulatum. 

Nodal segments of the aseptically regenerated shoot of H. undulatum were cultivated on 

MS and Mg basal media without growth regulators. Shoot initiation was observed within 1-2 

weeks of culture in both culture media. This study was carried out to assess the effect of two 

basal media (MS and Mg) on sprouting of shoots from nodal segments of aseptic plants. More 

than 90% of subcultured nodal segments developed in complete plantlets on both basal media 

(Table 3). 

 
Table 3- Effect of basal media (Mg and MS) on the regeneration of in vitro plantlets of 

Hypericum undulatum by subculturing nodal segments. All the results are the mean and 

standard deviation of 3 replicas, determined at the end of 30 and 60 days of culture. 

Days of culture 30 days 60 days 

Culture medium Mg MS Mg MS 

Nº shoots/ explant 2.42±0.76 3.08±0.80 2.08±0.44 3.50±0.75 

Shoots length (mm) 21.8±0.38 36.2±0.79 87.4±3.44 97.0±3.97 

Shoots dry weight/ flask (mg) 12±0.00 15.22±0.03 70.2±3.71 62.19±0.00 

Nº roots/ explant 1.25±0.43 2.50±0.95 2.75±0.66 4.08±0.29 

Roots length (mm) 7.68±2.98 4.42±1.98 15.17±4.82 24.26±8.76 

Roots dry weight/ flask (mg) 0.69±0.34 0.19±0.13 11.51±0.68 13.58±0.74 

 

The number of shoots and roots produced from nodal explants, after 30 and 60 days of 

culture on MS basal medium was higher than that obtained with Mg medium (Table 3). On MS 

basal medium the shoots showed a faster linear growth, reaching 97mm after 60 days of culture. 

The roots from the plantlets grown on MS medium at 30th day were shorter than those grown on 

Mg medium, but longer at the 60th day (Table 3). At the 60th day of culture, plantlets grown on 

Mg basal medium were in lower number per explant and had shorter and thicker shoots than 
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those grown on MS medium. MS and Mg basal media differed in the macronutrients 

composition (Table 1). Mg basal medium was constituted by macronutrients of the N30K 

mineral formulation, having a lower ionic concentration than that of MS medium. Besides the 

differences shown in Table 3, on can say that there were no high discrepancies in terms of 

plantlet growth between the two basal media. Some authors have shown good results in terms 

of plant regeneration on media with ionic concentrations lower than that of MS medium. Moura 

(1998) tested the effect of five different basal media in the culture of H. foliosium, showing that 

the best results were obtained in the culture medium, whose MS macronutrient solution was 

diluted to 2/5. The high ionic concentration of the MS culture medium in some cases, seems to 

inhibit the growth of several woody species, and cause vitrification, as observed in cultures of 

Fragaria (Trigiano et al., 1992). Vitrification could be a physiological response to the high 

content of ammonium nitrate present in the MS culture medium. In our study no signs of 

vitrification were recorded in in vitro plantlets of H. undulatum. Trigiano and co-workers 

(1992) suggested the use of macronutrients of the N30K mineral formulation when plant species 

are sensitive to high concentrations of mineral salts. 

Notwithstanding the requirement of plant growth regulators in the regeneration of some 

species, no one was needful for development of H. undulatum plantlets from nodal segments. In 

vitro culture of H. foliosium on culture medium free of growth regulators induced a slight 

increase in the number of nodes per explant in the initiation stage of culture. The shoot length 

and number of nodes per shoot in the elongation stage were similar in both hormonal 

supplemented or non-supplemented culture media (Moura, 1998). Maximum multiplication 

rates from shoot apices of cotton was also obtained by culturing the explants on MS salts with 

modified B5 vitamins free of growth regulators (Zapata et al., 1999). A propagation system was 

devised for several Medicago truncatula genotypes, in which the addition of growth regulators 

was restricted to the induction phase, therefore reducing the risks of epigenetic and somaclonal 

variation (Neves et al., 2001). The results herein reported show that nodal segments of H. 

undulatum have the sufficient endogenous growth regulators to support growth and 

development without hormonal amendment in the culture media. 

All the plantlets grown on MS medium and acclimatized in the conditions here 

described survived, showing that the methodology assayed was completely successful. There 

was no branching of shoots observed, as well as no detectable/visible variation among the 

“acclimatized” plants with respect to morphological characteristics. The plantlets grown on Mg 

basal medium submitted to acclimatization by the same methodology died 1-2 months after 

transfer to the vessels. 
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3.2- Essential oils from in vitro shoots  

The EO contents ranged from 4.9 to 10.4 mg/g of biomass dry weight in plantlets grown 

on MS medium (Figure 1) and from 4.1 to 9.5 mg/g of biomass dry weight in plantlets grown 

on Mg medium (Figure 2). These variation ranges were higher than those recorded for the EO 

isolated from the aerial parts of in vivo plants of this species. Figures 1 and 2 show the EO 

specific content profiles of in vitro shoots during a culture cycle of 60 days, as well as the dry 

biomass growth, during the same time period on MS and Mg media, respectively. 

 

 

0

2

4

6

8

10

12

10 20 30 40 50 60

Time (days)

Es
se

nt
ia

l o
il 

(m
g/

 g
 d

ry
 

w
ei

gh
t)

0

10

20

30

40

50

60

70

80

Bi
om

as
s 

dr
y 

w
ei

gh
t (

m
g)

EO specific content Dry weight

 
Figure 1 - Essential oil contents (mg/g of biomass dry weight) and biomass dry weight per flask (mg) of in vitro 

shoot cultures of Hypericum undulatum grown on MS basal medium without plant growth regulators, over a 

culture cycle of 60 days. 
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Figure 2 - Essential oil contents (mg/g of biomass dry weight) and biomass dry weight per flask (mg) of in vitro 

shoot cultures of Hypericum undulatum grown on Mg basal medium without plant growth regulators, over a 

culture cycle of 60 days. 
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Figure 3- Essential oil contents (mg) by culture flask of in vitro shoots of Hypericum undulatum grown on MS and 

Mg basal media without plant growth regulators, over a culture cycle of 60 days. 

 

The highest specific EO contents were 10.4 and 9.5 mg/g of biomass dry weight, 

recorded at the 10th day of culture, in plantlets grown on MS and Mg media, respectively. 

Thereafter, the EO contents decreased in inverse correlation with biomass dry weight, reaching 

the minimum of 4.9 and 4.1 mg/g of dry weight at 40th day in plantlets grown on MS and Mg 

media, respectively (Figures 1 and 2). Between the 40th and 50th day of culture, however, the 

EO contents increased almost 2-fold, decreasing again between the 50th and 60th day of culture, 

while the biomass dry weight increased at a higher growth ratio (Figures 1 and 2). On can say 

that during the first 40 days of culture, the developing plantlets were preferentially using the 

carbon and energy sources for growth and plant development, in detriment of the production of 

secondary metabolites. The increase in the EO specific content between the 40th and the 50th 

days, however, is not consistent with this interpretation. On the other hand, essential oils are 

usually produced in specialized structures, whose differentiation may be delayed in the time, 

relatively to shoot growth, contributing thereby to the overall decrease in the EO specific 

content. In H. perforatum plants these structures can be translucent glands and/or type B 

cannals structures (Ciccarelli et al., 2001; Maffi et al., 2003).  

Over the 60 days of culture, some variations occurred in composition of the EO 

produced by in vitro shoots of H. undulatum on the two basal media (Table 4). 
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Table 4- Composition (µg/g of biomass dry weight) of the essential oils from in vitro shoots of Hypericum 

undulatum grown over 60 days on MS or Mg basal media without any growth regulator. 

10 days 20 days 30 days 40 days 50 days 60 days Compounds KI 
MS Mg MS Mg MS Mg MS Mg MS Mg MS Mg 

n-Octane 800      92.4  18.5  62.9  53.8 
(E)-2-Hexenal 854     35.5 84.5 21.9 31.2 38.2 54.1 49.7 47.1 
n-Hexanol 863     33.9  20.5  47.7  30.2  
n-Nonane 900 7402.5 7433.5 5925.2 6433.2 4215.1 4699.2 3000.6 2619.5 3800.8 5717.4 4051.2 4930.3
α-Pinene 936 207.5 360.7 307.6 204.9 188.7 189.3 112.1 80.9 126.6 119.4 147.2 154.7 
Camphene 950     16.5  9.9 2.3 13.5 80.1 11.8 49.4 
β-Pinene 978 542.8 312.2 784.2 908.8 440.6 583.1 263.9 248.3 314.7 335.3 420.6 415.5 
Myrcene 991     33.4  7.0  12.0  17.5  
n-Decane 1000     15.4  7.4    13.0  
Limonene 1030     12.4  7.4  10.1  9.5  
E-β-Ocimene 1051   64.7  18.0 5.2 7.3 2.0 16.9 3.3 16.7 10.4 
n-Undecane 1100 702.1 693.1 429.5 409.5 418.1 508.2 242.0 210.2 394.1 383.6 250.6 256.2 
α-Terpineol 1190     21.1  5.6  33.1  24.6  
n-Decanal 1205 89.6  56.9  24.9  8.4  8.6  8.2  
n-Tridecane 1300 115.1  68.2  28.3  10.2  11.3  10.1  
δ-Elemene 1337   146.5  96.0 88.5 35.2 27.9 136.7 82.4 104.8 67.5 
α-Cubebene 1348 177.3 38.2 148.2 302.9 145.3 213.4 103.6 149.4 127.7 185.3 123.3 236.6 
α-Copaene 1374 100.5 47.6 84.1 115.8 80.7 143.4 57.7 78.5 69.1 118.5 67.1 101.8 
β-Bourbonene 1383     23.4 4.9 10.2 2.9 13.0 3.2 14.0 25.4 
β-Elemene 1390 213.2 438.6 246.3 207.1 183.4 198.2 123.9 152.4 157.4 184.6 160.5 240.7 
SH 1392  49.3 57.3 34.3 42.8 91.5 31.3 32.5 35.9 53.2 36.5 77.8 
iso-Italicene 1395     8.9  5.7  23.6  21.9  
Italicene 1405     15.3  5.1  33.7  2.8  
α-Cedrene 1409   9.2 8.0 40.4 93.3 26.6 31.2 36.2 54.2 24.3 52.5 
(E)-Caryophyllene 1417     51.6 45.1 15.7 50.5 19.8 81.3 18.5 76.2 
β-Gurjunene 1427   54.3  46.0 141.4 35.3 52.1 44.8 82.5 42.3 66.2 
Aromadendrene 1442     32.3 7.3 26.6 3.0 34.3 24.0 32.7 50.6 
α-Humulene 1447         13.2  12.6  
allo-
Aromadendrene 1450 31.0  70.1  51.2  26.3  42.1  37.9  

Germacrene D 1480 74.2  101.6 213.6 57.3 39.5 48.2 33.3 11.2 22.2 10.1 5.8 
β-Selinene 1482    4.9  3.1  9.2 72.1 120.5 73.1 165.4 
α-Selinene 1486         15.4  16.4  
β-Guaiene 1492     34.5 48.3 14.8 21.2 13.3 16.1 21.0 49.3 
α-Muurolene 1497   18.3  10.9  13.5  9.7  11.8  
(E,E)-α-Farnesene 1498     165.4 407.5 1.9 8.8 6.1 25.0 50.0 48.3 
γ-Cadinene 1508 228.6  210.1  105.0  74.6  105.0  129.9  
δ-Cadinene 1521 215.7 163.8 259.1 112.5 113.1 88.3 116.5 91.4 80.7 79.8 88.3 49.7 
SH 1530     19.2  14.6  19.1  137.6  
α-Cadinene 1534   268.5  311.0  173.4  2519.7  145.3  
E-Nerolidol 1563   26.7  11.6        
Viridiflorol 1591   119.5  176.8  7.0  8.7  6.5  
β-Copaen-4-α-ol 1596     38.3  6.2  24.8  7.6  
β-Oplopenone 1612         6.2  8.2  
epi-α-Bisabolol 1674   79.2  63.6  7.0  13.7  8.3  
Z-α- trans-
Bergamotol 1694   61.7  21.6  7.7  11.6  8.0  

n-Heptadecane 1700   29.9  57.1  5.0    2.7  
n-Octadecane 1800   24.0  33.8  3.6  5.5  4.5  
n-Nonadecane 1900   37.0  23.8  2.7  4.8  6.0  
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10 days 20 days 30 days 40 days 50 days 60 days Compounds KI 
MS Mg MS Mg MS Mg MS Mg MS Mg MS Mg 

n-Eicosane 2000 117.1  40.5  28.6  5.6  3.8  11.8  
n-Heneicosane 2100   21.4  22.2  2.6  3.7  4.5  
n-Docosane 2200   25.9  31.1  3.0  4.4  10.9  
n-Tricosane 2300 55.6  50.3  23.0  1.8  5.0  1.1  
n-Tetracosane 2400   31.2  32.8  6.0  5.4  10.1  
n-Pentacosane 2500   25.3  25.9  5.5  6.1  12.2  
n-Hexacosane 2600   18.9  20.1  1.9  3.5  4.5  
n-Heptacosane 2700 130.8  72.1 12.9 65.6 11.4 45.2 89.1 54.5 83.0 49.6 67.1 
n-Octacosane 2800   23.8  24.6  6.8  7.5  6.8  
n-Nonacosane 2900 97.4  79.6 17.8 71.6 5.2 55.4 55.1 46.5 79.6 28.7 57.9 
Monoterpene 
Hydrocarbons 750.4 672.9 1156.5 1113.7 709.7 777.6 407.7 333.6 493.7 538.1 623.2 630.0 
Oxygenated 
Monoterpenes       5.6  33.1  24.6  
Sesquiterpene 
Hydrocarbons 1040.6 737.5 1673.7 999.1 1688.8 1613.7 961.0 744.1 3639.8 1132.6 1379.7 1313.8
Oxygenated 
Sesquiterpenes   287.0  311.9  27.9  53.4  38.5  

n-Alkanes 8620.5 8126.6 6902.7 6873.4 5108.8 5316.3 3405.4 2992.2 4368.4 6326.5 4478.4 5365.3

Others   56.9  94.2 84.5 50.8 31.2 94.5 54.1 88.1 47.1 

 

The EO isolated from in vitro cultures were less complex than those from in vivo plants. 

As can be seen, in the EO from shoots grown on MS basal medium, 17 to 56 compounds were 

detected over the culture cycle, while in the EO from shoots grown on the Mg basal medium, 

the number of compounds detected ranged from 9 to 25. All the compounds detected in the EO 

from shoots grown on the Mg basal medium were found in the EO of shoots grown on MS 

basal medium. Almost all of the compounds identified in the EO from in vitro shoots are 

constituents of the EO of in Nature wild growing H. undulatum plants. The exception was (Z)-

α-trans-bergamotol which was not identified in any of the organs from in vivo plants. The less 

complexity of in vitro essential oils may be due to the poor differentiation and/or juvenility of 

the shoots, characteristic of this type of cultures. In shoots grown on both culture media, the 

number of detected compounds increased with the time of culture reaching their maximum at 

the end of 60 days of culture on MS basal medium, and at the end of 40 days of culture on Mg 

basal medium (Table 4).  
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Figure 4a - Specific contents (mg/g of biomass dry weight) and percentage amounts (%) of the main compound 

groups from the essential oils of in vitro shoots of Hypericum undulatum grown on MS medium without plant 

growth regulators, over a culture cycle of 60 days. MH- Monoterpene Hydrocarbons; SH- Sesquiterpene 

Hydrocarbons. 

 

 
Figure 4b - Specific contents (mg/g of biomass dry weight) and percentage amounts (%) of the main compound 

groups from the essential oils of in vitro shoots of Hypericum undulatum grown on Mg medium without plant 

growth regulators, over a culture cycle of 60 days. MH- Monoterpene Hydrocarbons; SH- Sesquiterpene 

Hydrocarbons. 

 

The n-alkanes constituted the main group of constituents representing 57.4-83.4% and 

71.3-86.0% of the total EO from H. undulatum shoots grown on MS and Mg basal media, 

respectively (Figures 4a and 4b). Likewise the EO extracted from aerial parts of in Nature 

growing H. undulatum plants, n-nonane was the most represented compound, ranging from 

49.9% to 75.1% and from 63.2% to 78.5% of the EO of shoots grown on MS and on Mg basal 

media, respectively. n-Undecane, was the second most represented compound at the 10th day of 

culture in both basal media as well as at the 50th day of culture on the Mg medium. The 

0
1
2
3
4
5
6
7
8
9

10

10 20 30 40 50 60

Time (days)

m
g/

g 
dr

y 
w

ei
gh

t

MH SH n-Alkanes

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60

Time (days)

%

MH SH n-Alkanes

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60
Time (days)

%

MH SH n-Alkanes

0
1
2
3
4
5
6
7
8
9

10

10 20 30 40 50 60
Time (days)

m
g/

g 
dr

y 
w

ei
gh

t

MH SH n-Alkanes



Chapter 5  Essential Oils of Hypericum undulatum Schousboe ex Willd. 

201 

accumulation of substantial amounts of short-chain n-alkanes were also found in members of 

the pine family, as Jeffrey pine (Pinus jeffreyi), in which n-heptane was the dominant 

compound in the oleoresin secretion (Savage et al., 1996a; Savage et al., 1996b). This secretion 

is formed as a constitutive and inducible defence of conifers against insect pests (e.g. bark 

beetles) and pathogens (Trapp et al., 2001; Keeling et al., 2006; Keeling et al., 2008). Little is 

known about the biosynthesis of short-chain n-alkanes, although it probably does not follow the 

same pathway of the terpenoids (Bohlmann et al., 2008), as apparently they are dependent of 

different metabolic precursors (Savage et al., 1996a; Savage et al., 1996b). Not only the 

biosynthetic pathways of short-chain n-alkanes are still unclear, but also the functions of these 

molecules in EO are not well understood. A complete series of long-chain n-alkanes from n-

octadecane to n-nonacosane was found in the EO from shoots grown on MS basal medium 

since the 20th day until the 60th day of culture (Table 4). However, in shoots grown on Mg basal 

medium only n-heptacosane and n-nonacosane were detected. During the culture cycle, these 

last two n-alkanes were the most represented in the EO from shoots grown on MS medium. 

Long-chain n-alkanes were found also in the EO obtained from aerial parts and different organs 

of in Nature growing H. undulatum. 

The sesquiterpene hydrocarbons constituted the second major group at the 20th and 30th 

days in the EO of shoots grown on the MS and Mg media, respectively (Figures 4a and 4b). 

Over the first days the 2nd major group was that of monoterpene hydrocarbons whose major 

constituents were α- and β-pinene over all the growth cycle in shoots grown on both media. 

Beginning on the 20th day there was an increase in the percentage amount of sesquiterpene 

hydrocarbons in inverse correlation with monoterpene hydrocarbons whose percentage amount 

decreased up to 60th day (Figures 4a and 4b). Sesquiterpenes are derived from farnesyl 

diphosphate (FPP) by a group of enzymes termed sesquiterpene synthases, and encoded by 

members of the Tps gene family, while monoterpenes derive from geranyl diphosphate (GPP). 

The gradual increase in the accumulation of sesquiterpenes comparing to the monoterpenes, 

after the 20th day in H. undulatum shoots, regardless the basal culture medium, may reflect a 

higher efficiency in the synthesis of FPP from isopentenyl diphosphate (IPP) and its conversion 

into sesquiterpenes in detriment of the conversion of GPP into monoterpenes. Similarly, over 

the year, this same pattern of variation was registered in EO from aerial parts of in Nature 

growing H. undulatum. Therefore, it is possible that specific physiological and environmental 

conditions can modulate the production of EO compounds favouring one or another class of 

compounds. 
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α-Terpineol was the only oxygenated monoterpene detected in the EO from shoots 

growing on MS medium after the 30th day of culture. This class of compounds is usually 

synthesised from limonene, which shares with all the other monoterpene hydrocarbons the same 

precursor, GPP (Croteau et al., 1994). In shoots such as in Nature growing plants of H. 

undulatum the biosynthetic pathway of oxygenated monoterpenes is less favoured than that of 

sesquiterpenes. 

 

3.3- Essential oils from micropropagated and acclimatized plants 

The EO yield obtained from the micropropagated plants, eight months after their 

acclimatization (10.5 mg/g of biomass dry weight) was similar to that maximum obtained from 

in vitro shoots grown on MS medium at 10th day and higher than those obtained from in Nature 

wild growing plants. Such as it was recorded for in vitro shoots and in Nature wild growing 

plants, the EO of acclimatized plants were also characterized by a high content of n-alkanes 

(62.8%) with n-nonane as the major one (58 to 59%) of the 54 compounds detected (Table 5). 

Sesquiterpene hydrocarbons, gathering 24 compounds, and monoterpene hydrocarbons, 

gathering 10 compounds were the second and the third constituent groups representing around 

19-20% and 16% of the EO, respectively (Table 5). 
 

Table 5 - Composition (µg/g of biomass dry weight and %) of the essential oils from 

micropropagated and acclimatized plants of Hypericum undulatum, 6 and 8 months after 

transfer to plastic vessels. 

6 months 8 months 
Compounds KI µg/g dry 

weight % µg/g dry 
weight % 

(E)-2-Hexenal 854 24.6 0.2 19.1 0.2 
n-Nonane 900 6031.6 57.9 6164.1 58.9 
α-Thujene 929   7.9 tr 
α-Pinene 936 331.0 3.2 338.7 3.2 
Camphene 950 24.6 0.2 25.4 0.2 
2,6-Dimethyl-octane 972   19.8 0.2 
β-Pinene 978 1123.4 10.8 1156.8 11.0 
Myrcene 991 24.2 0.2 23.7 0.2 
n-Decane 1000   7.6 tr 
Limonene 1030 27.4 0.2 29.3 0.3 
Z-β-Ocimene 1038   8.3 0.0 
E-β-Ocimene 1051 102.6 1.0 95.0 0.9 
n-Undecane 1100 207.0 1.9 217.7 2.1 
Terpinen-4-ol 1178   5.9 tr 
α-Terpineol 1190 4.2 tr 4.8 tr 
n-Decanal 1206 3.7 tr 29.4 0.1 
n.Tridecane 1300 29.5 0.2 7.6 tr 
δ-Elemene 1337 134.1 1.3 134.1 1.3 
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6 months 8 months 
Compounds KI µg/g dry 

weight % µg/g dry 
weight % 

α-Cubebene 1348 166.8 1.6 169.6 1.6 
α-Copaene 1374 118.7 1.2 120.8 1.2 
β-Bourbonene 1382 33.9 0.3 25.2 0.2 
SH 1388   39.5 0.4 
β-Elemene 1390 522.8 5.1 448.0 4.3 
SH 1392 56.0 0.5 57.9 0.6 
iso-Italicene 1395 13.0 0.2 12.5 0.2 
Italicene 1405 19.0 0.2 19.3 0.2 
α-Cedrene 1410 55.9 0.5 58.4 0.6 
(E)-Caryophyllene 1417 87.0 0.8 94.7 0.9 
β-Gurjunene 1427 70.9 0.7 72.2 0.7 
Aromadendrene 1442 56.6 0.5 59.6 0.6 
α-Humulene 1447 17.8 0.2 21.6 0.2 
allo-Aromadendrene 1450 43.2 0.4 42.4 0.4 
Germacrene D 1480 11.4 0.2 13.2 0.2 
β-Selinene 1482 141.7 1.4 94.5 0.9 
α-Selinene 1486 21.3 0.2 22.4 0.2 
β-Guaiene 1492 33.2 0.3 11.0 0.2 
α-Muurolene 1497 37.9 0.4 13.9 0.2 
(E,E)-α-Farnesene 1499 117.5 1.2 105.9 1.0 
δ-Cadinene 1521 8.6 tr 8.1 tr 
(E)-γ-Bisabolene 1530 29.4 0.3 27.8 0.3 
α-Cadinene 1534 312.7 3.0 321.4 3.1 
Viridiflorol 1591 43.6 0.4 30.4 0.3 
β-Copaen-4-α-ol 1596 52.9 0.5 52.6 0.5 
β-Oplopenone 1612 25.1 0.2 26.9 0.3 
δ-Cadinol 1650 6.2 0.1 9.9 0.1 
epi-α-Bisabolol 1675 8.1 tr 7.3 tr 
n-Eicosane 2000 5.7 tr 5.3 tr 
n-Docosane 2200 0.7 tr 4.3 tr 
n-Tricosane 2300 3.0 tr 3.6 tr 
n-Tetracosane 2400 1.3 tr 7.1 0.1 
n-Pentacosane 2500 66.5 0.6 19.6 0.2 
n-Heptacosane 2700 139.4 1.5 103.8 1.2 
n-Octacosane 2800 6.7 0.1 14.6 0.2 
n-Nonacosane 2900 39.7 0.5 33.4 0.3 
Monoterpene Hydrocarbons 1633.1 15.6 1704.9 16.2 
Oxygenated Monoterpenes 4.2 <0.1 10.7 <0.1 
Sesquiterpene Hydrocarbons 2109.4 20.4 2001.7 19.3 
Oxygenated Sesquiterpenes 135.9 1.1 127.1 1.2 
n-Alkanes 6531.1 62.7 6581.0 63.0 
Others 28.3 0.2 48.6 0.3 

 

2,6-Dimethyloctane and n-decane as well as two monoterpene hydrocarbons (α-thujene 

and Z-β-ocimene), terpinen-4-ol and a sesquiterpene hydrocarbon were detected in the EO from 

the 8 months old acclimatized plants but not detected in the samples harvested 2 months before. 
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β-Elemene, α-cadinene and α-cubebene were the three major sesquiterpene hydrocarbons while 

β-pinene and α-pinene were the two major monoterpene hydrocarbons.  

Oxygenated terpenes were present in much lower amounts than the terpene 

hydrocarbons, likewise in Nature growing plants and in vitro shoots. In the EO of acclimatized 

plants, terpinen-4-ol and α-terpineol, in trace amounts, were the only oxygenated monoterpenes 

detected, and oxygenated sesquiterpenes contents represented less than 1.5% with β-copaen-4-

α-ol being the most represented one (0.5%). 

A similar number of compounds was detected in the EO obtained from shoots, after 60 

days of culture on MS basal medium and EO from acclimatized plants. However, the contents 

of EO found in acclimatized plants were higher than those recorded for 60 days old in vitro 

shoots. A different result was described for Salvia fruticosa, whose content of EO recorded in 

vitro was higher than that observed in the greenhouse-grown plants (Arikat et al., 2004). The 

authors attributed such difference to the hormonal supplementation used in the culture medium 

suggesting that the increased yield of EO in vitro would be a consequence of the increased 

percentage of glandular hairs at the secretory stage as a result of the addition of benzyladenine 

(BA). Positive effects of BA on the capacity of Lavandula dentata in vitro growing plantlets in 

the production and/or accumulation of EO were also shown (Sudriá et al., 1999). Similarities in 

the EO composition between the parent in vivo plants and in vitro cultures has been reported for 

several medicinal plants, such as Lavandula angustifolia and Rosmarinus officinalis (Webb et 

al., 1984), Mentha spicata (Hirata et al., 1990) and Minthostachys mollis (Chebel et al., 1998). 

 

As concluding remarks, in the work here reported differences in the composition of the 

EO from in vitro shoots were recorded as a consequence of the different mineral composition 

on the basal media as well as differences in the composition depending on the conditions of 

production, in vitro vs in vivo, with the in vitro shoots and acclimatized plants producing EO 

less complex than those produced by Nature growing wild plants. 
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5.3 Supplementary data 
An approximation of the absolute quantification of all the essential oils (EO) constituents from 

plants of Hypericum undulatum Schousboe ex Willd. cultivated in Braga (Portugal) and 

harvested at different times during the year is shown in Table S1. 
 

Table S1 - Composition (µg/g dry weight) of the essential oils from plants of Hypericum undulatum Schousboe ex 

Willd. cultivated in Braga (Portugal) and harvested at different times during the year. 

Compound KI(1) KI(2) June Sept. Nov. Jan. April June 

n-Octane 800 800 30.3 21.9 43.2 22.6 41.3 30.4 
(E)-2-Hexenal 854 854 128.2 8.5 11.2 5.2 6.0 11.0 
n-Hexanol 862 863 13.7 5.6 4.9 1.8 11.1 7.5 
n-Nonane 900 900 2411.5 1951.5 2642.8 2519.7 1518.3 2792.0 
α-Thujene 929 929 3.2 2.2 6.4 5.1 1.7 3.0 
α-Pinene 937 936 117.6 82.0 249.4 206.1 76.2 105.4 
Camphene 952 950 1.4 4.1 13.9 11.9 4.2 1.0 
2,6-Dimethyloctane 970 972 4.6 6.2 - - - 9.3 
Sabinene 976 975 8.6 - - - - - 
β-Pinene 979 978 489.8 253.8 932.9 873.6 299.4 366.5 
6-Methyl-5-hepten-2-one 988 987 1.6 - - - - - 
Myrcene 991 991 11.3 6.7 16.4 12.1 6.1 10.5 
n-Decane 1000 1000 2.1 - 2.2 2.0 - 1.5 
β-Phellandrene 1026 1024 1.2 - - - - 1.5 
Limonene 1030 1030 13.2 6.5 21.5 15.7 6.7 11.6 
Z-β-Ocimene 1038 1040 13.7 5.2 8.9 5.8 4.1 11.0 
E-β-Ocimene 1051 1050 245.6 55.1 98.7 47.3 62.3 178.4 
γ-Terpinene 1061 1060 2.0 1.4 3.1 - - 4.0 
Terpinolene 1089 1088 2.5 1.5 3.5 2.0 - 3.4 
n-Undecane 1100 1100 41.0 49.7 44.4 36.6 18.6 45.5 
n-Nonanal 1104 1103 2.1 - - - - 2.9 
2,2,6-Trimethyl hepta-3,5-
dione 1165 1162 0.8 - - - - 1.8 
Terpinen-4-ol 1178 1177 2.2 3.2 3.6 - 7.4 3.6 
α-Terpineol 1191 1189 4.3 2.5 9.2 3.7 - 6.7 
n-Decanal 1205 1205 62.4 35.4 88.8 24.1 71.2 82.3 
n-Decanol 1273 1276 5.3 - 5.0 - - 13.1 
δ-Elemene 1338 1337 10.6 6.8 5.4 2.7 3.6 9.1 
α-Cubebene 1351 1348 35.1 55.4 50.0 34.7 20.6 35.5 
α-Copaene 1374 1374 8.6 6.2 - - - 5.4 
β-Patchoulene 1375 1376 24.9 40.1 46.4 35.4 20.9 23.1 
β-Bourbonene 1384 1383 29.0 9.2 40.1 31.2 19.5 24.5 
β-Elemene 1390 1390 225.6 249.5 330.7 224.5 173.4 199.0 
iso-Italicene 1396 1395 11.8 18.3 20.3 13.0 7.9 13.4 
α-Cedrene 1409 1409 33.9 43.0 30.2 15.7 12.4 21.7 
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Compound KI(1) KI(2) June Sept. Nov. Jan. April June 

(E)-Caryophyllene 1417 1416 357.3 210.7 86.6 57.4 95.2 279.3 
β-Gurjunene 1432 1427 27.0 34.9 34.2 25.3 15.7 23.2 
Aromadendrene 1443 1442 34.0 41.6 26.6 16.9 12.7 21.5 
α-Humulene 1447 1447 9.9 13.7 10.9 6.7 4.9 7.5 
allo-Aromadendrene 1452 1450 25.5 16.8 9.5 5.2 7.7 21.4 
Germacrene D Isomer 1462 1463 2.7 4.3 - - - 1.8 
γ-Muurolene 1476 1473 5.6 7.7 5.3 5.2 0.7 8.0 
Germacrene D 1481 1478 642.7 383.9 183.6 101.4 156.0 517.9 
β-Selinene 1482 1482 17.6 7.9 6.9 7.3 0.7 3.7 
α-Selinene 1494 1486 2.1 2.0 - - - 7.4 
β-Guaiene 1496 1492 75.7 48.5 37.9 22.8 29.1 61.7 
α-Muurolene 1498 1497 6.3 6.3 4.3 2.0 - 5.7 
(E,E)-α-Farnesene 1506 1498 17.8 22.7 31.0 16.6 15.8 15.6 
γ-Cadinene 1512 1508 37.5 29.4 23.8 10.5 14.9 19.1 
δ-Cadinene 1522 1521 30.0 16.9 12.8 8.0 10.2 24.7 
Dimethyl-4-Isopropyl-
Bicyclo(4,4,0)-1,4-Decadiene 1526 1526 28.7 55.0 140.3 35.2 61.7 25.1 

α-Calacorene 1543 1543 4.3 2.6 - - - 2.0 
E-Nerolidol 1563 1563 5.0 2.1 - - - 4.3 
Spathulenol 1575 1576 6.2 17.6 6.3 2.9 5.1 9.7 
Caryophyllene oxide 1581 1578 16.4 18.2 3.4 2.2 2.6 20.8 
Globulol 1587 1587 6.4 - - - - 7.9 
Viridiflorol 1591 1592 22.2 36.8 33.3 13.9 30.6 24.8 
β-Copaen-4-α-ol 1596 1597 19.0 9.6 11.4 4.6 9.4 18.4 
β-Oplopenone 1612 1607 19.3 27.9 24.4 9.6 20.7 21.2 
epi-α-Cadinol 1639 1639 20.9 7.2 9.1 2.0 2.7 20.2 
epi-α-Muurolol 1643 1642 10.9 5.4 - - - 10.9 
δ-Cadinol 1653 1650 42.9 26.7 33.0 19.1 19.5 50.2 
Z-α-Santalol 1670 1668 5.7 3.1 - - - 2.6 
epi-α-Bisabolol 1677 1674 13.1 9.8 8.5 2.9 - 6.5 
n-Heptadecane 1700 1700 1.0 2.7 - - - 0.8 
n-Octadecane 1800 1800 0.2 - - - - - 
n-Nonadecane 1900 1900 0.2 - - - - - 
n-Eicosane 2000 2000 0.2 - - - - - 
n-Heneicosane 2100 2100 0.4 - 2.4 - - - 
n-Docosane 2200 2200 0.8 - - - - - 
n-Tricosane 2300 2300 1.6 1.3 - 2.1 6.7 - 
n-Tetracosane 2400 2400 0.8 1.4 3.1 4.3 7.8 - 
n-Pentacosane 2500 2500 6.7 9.2 15.4 18.7 74.0 2.7 
n-Hexacosane 2600 2600 0.3 1.2 - 1.7 5.2 - 
n-Heptacosane 2700 2700 4.9 17.1 5.5 14.8 72.6 - 
n-Octacosane 2800 2800 0.1 - - 1.3 3.2 - 
n-Nonacosane 2900 2900 0.6 3.6 - 3.7 26.6 - 
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Compound KI(1) KI(2) June Sept. Nov. Jan. April June 

Monoterpene Hydrocarbons 909.7 417.9 1351.6 1179.7 460.6 710.7 
Oxygenated Monoterpenes 7.3 5.7 12.8 3.7 7.4 8.9 
Sesquiterpene Hydrocarbons 1693.7 1298.8 1015.0 651.7 630.3 1386.3 
Oxygenated Sesquiterpenes 171.3 164.4 129.3 57.2 90.6 139.5 
n-Alkanes 2501.8 2056.9 2759.0 2627.5 1774.1 2168.6 
Others 348.8 248.7 319.5 80.2 615.9 941.5 

KI- Kovats retention index on a DB-5 column; KI(1) – KI for GC-MS; KI(2) – KI for GC 
 
 

The EO of H. undulatum were characterized by high contents of n-alkanes. The highest 

amount of those compounds occurred in November followed by monoterpene hydrocarbons. 

However, over the year, with the exception of later autumn and winter, sesquiterpene 

hydrocarbons were the second most represented group of compounds. Over the year, the 

constituents that most contributed to the variation of the major compound groups in the 

essential oils of plants of H. undulatum were: n-nonane (n-alkanes); α-pinene, β-pinene and E-

β-ocimene (Monoterpene Hydrocarbons); and β-elemene, (E)-caryophyllene and germacrene D 

(Sesquiterpene Hydrocarbons). 

 

 

The percentage composition of the essential oils of in vitro shoots of H. undulatum is 

shown in Table S2. 
 
Table S2 - Composition (%) of the essential oils from in vitro shoots of Hypericum undulatum grown over 60 days 

on MS or Mg basal media without any growth regulator. 

10 days 20 days 30 days 40 days 50 days 60 days Compound KI 
MS Mg MS Mg MS Mg MS Mg MS Mg MS Mg 

n-Octane 800          1.3   0.5   0.8  0.9 
E-2-Hexenal 854        0.9 1.2 0.4 0.8 0.6 0.7 0.8 0.9 
Hexanol 863        0.9   0.7   0.6   0.6  
n-Nonane 900 75.1 78.5 65.1 72.2 57.6 63.2 62.2 63.6 49.9 71.2 54.3 66.6 
α-Pinene 936 4.2 3.8 2.7 2.3 2.6 2.5 2.3 2.0 1.6 1.5 2.7 1.8 
Camphene 950        tr   tr tr 0.3 1.0 0.4 0.9 
β-Pinene 978 4.2 3.8 9.2 10.2 6.0 7.8 5.3 6.2 4.2 4.2 6.3 5.6 
Myrcene 991        0.3   tr   0.1   0.4  
n-Decane 1000        tr   tr       0.2  
Limonene 1030        tr   tr   tr   tr  
E-β-Ocimene 1051     0.8   tr tr tr tr 0.3 tr 0.4 tr 
n-Undecane 1100 8.3 7.5 4.3 4.6 5.8 6.8 5.1 5.2 5.1 4.7 4.6 3.6 
α-Terpineol 1190        tr   tr   0.4   0.4  
n-Decanal 1205 tr   tr   tr   tr   0.1   0.1  
n-Tridecane 1300 tr   tr   tr   0.2   0.1   0.1  
δ-Elemene 1337     1.4   1.1 1.2 0.8 0.7 1.7 1.0 1.9 0.9 
α-Cubebene 1348 tr tr 2.2 3.4 1.7 2.8 2.1 3.7 1.6 2.3 2.3 3.3 
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10 days 20 days 30 days 40 days 50 days 60 days Compound KI 
MS Mg MS Mg MS Mg MS Mg MS Mg MS Mg 

α-Copaene 1374 tr tr 0.6 1.3 0.9 1.9 1.3 2.0 0.9 1.5 1.2 1.5 
β-Bourbonene 1383        tr tr tr tr 0.3 tr 0.4 tr 
β-Elemene 1390 4.2 4.4 2.2 2.3 2.6 4.1 2.5 3.7 2.1 2.3 3.0 3.3 
SH 1392   tr tr tr 0.9 1.2 0.7 0.8 0.5 0.7 0.7 0.9 
iso-Italicene 1395        tr   0.2   0.3   0.4  
Italicene 1405        tr   0.2   0.3   0.1  
α-Cedrene 1409     tr tr 0.9 1.2 0.7 0.8 0.5 0.7 0.7 0.9 
(E)-Caryophyllene 1417        0.3 0.6 0.4 1.3 0.3 1.0 0.4 0.9 
β-Gurjunene 1427     tr   0.9 1.9 0.7 1.3 0.6 1.0 0.7 0.9 
Aromadendrene 1442        0.6 tr 0.7 tr 0.4 0.3 0.7 0.9 
α-Humulene 1447                0.2   0.4  
allo-Aromadendrene 1450 tr   tr   0.9   0.7   0.6   0.7  
Germacrene D 1480 tr   1.4 2.3 0.6 0.6 1.0 0.8 0.1 0.3 0.2 tr 
β-Selinene 1482      tr   tr   0.2 0.9 1.5 1.5 2.1 
α-Selinene 1486                0.3   0.4  
β-Guaiene 1492        0.3 0.6 0.4 0.5 0.1 0.2 0.4 0.9 
α-Muurolene 1497     tr   tr   0.5   0.1   0.2  
(E,E)-α-Farnesene 1498        1.0 tr tr 0.2 0.1 0.3 0.8 0.9 
γ-Cadinene 1508 1.3   2.9   1.1   1.7   1.3   2.1  
δ-Cadinene 1521 2.7 2.0 2.2 1.3 1.7 1.2 2.3 2.0 1.0 1.0 1.9 0.9 
SH 1530        tr   0.2   0.3   1.9  
α-Cadinene 1534     2.7   4.3   3.7   19.3   3.3  
E-Nerolidol 1563     tr   tr             
Viridiflorol 1591     1.4   1.0   tr   tr   tr  
β-Copaen-4-α-ol 1596        0.3   0.2   0.3   tr  
β-Oplopenone 1612                tr   0.1  
epi-α-Bisabolol 1674     tr   0.3   0.2   0.1   0.1  
n-Heptadecane 1694     0.6   0.3   tr       tr  
Z-α- trans-Bergamotol 1700     0.6   0.3   0.2   0.1   0.1  
n-Octadecane 1800     tr   0.3   0.2   tr   0.1  
n-Nonadecane 1900     tr   0.3   tr   tr   tr  
n-Eicosane 2000 tr   tr   0.3   tr   0.1   0.1  
n-Heneicosane 2100     tr   0.3   tr   tr   tr  
n-Docosane 2200     tr   0.3   tr   0.1   0.1  
n-Tricosane 2300 tr   tr   tr   tr   tr   tr  
n-Tetracosane 2400     tr   0.3   tr   0.1   0.1  
n-Pentacosane 2500     tr   0.3   tr   tr   0.1  
n-Hexacosane 2600     tr   tr   tr   tr   tr  
n-Heptacosane 2700 tr   tr tr 1.2 tr 1.1 2.0 1.0 1.0 1.1 0.9 
n-Octacosane 2800     tr   tr   tr   0.1   0.1  
n-Nonacosane 2900 tr   tr tr 1.5 tr 1.3 1.3 0.8 1.0 0.6 0.8 

Monoterpene Hydrocarbons 8.34 7.6 12.7 12.5 8.8 10.4 7.7 8.3 6.5 6.6 10.0 8.3 

Oxygenated Monoterpenes       <0.1  0.4  0.4  

Sesquiterpene Hydrocarbons 8.23 6.4 15.4 10.7 19.6 17.2 20.7 18.3 33.9 14.0 26.2 18.1 

Oxygenated Sesquiterpenes   2.0  1.8  0.4  0.4  0.2  

n-Alkanes 83.43 86.0 70.0 76.8 68.1 71.3 70.2 72.7 57.4 78.7 61.7 72.7 

Others   <0.1  1.7 1.2 1.1  1.3 0.7 1.6 0.9 
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The essential oils of in vitro shoots grown on MS and Mg basal media were characterized by 

high amounts of n-alkanes, followed by the terpene hydrocarbons and oxygenated terpenes. 

Over the 60 days of culture, the constituents that most contributed to the variation of the major 

compound groups in the essential oils of in vitro shoots grown on the two culture media were: 

n-nonane and n-undecane (n-alkanes), α-pinene and β-pinene (Monoterpene Hydrocarbons), 

and β-elemene (Sesquiterpene Hydrocarbons). 
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6.1- Chapter overview 
Gene transfer by Agrobacterium is the method of choice for the genetic transformation 

of most plant species and a possible strategy to enhance production of secondary metabolites in 

plant cultures. A. rhizogenes infection induces the production of hairy roots in plant cells, which 

according to some authors hold high growth rates and genetic stability (Canto-Canché et al., 

1999). Nevertheless, several parameters are known to affect T-DNA transfer and integration 

into the plant genome. Thus, a transformation protocol depends on the establishment of a 

reliable plant regeneration system as well as on the efficiency of Agrobacterium-plant 

interaction. The transformation of H. perforatum mediated by A. rhizogenes was already 

reported (Di Guardo et al., 2003; Vinterhalter et al., 2006). According to the authors, 

spontaneous shoot regeneration occurred from the hairy roots. 

In order to establish a transformation protocol of H. androsaemum, H. perforatum and 

H. undulatum mediated by A. rhizogenes A4, several approaches were tried by manipulating the 

following parameters: z explant pre-culture, (ii) bacterial density, (iii) type of explant, (iv) 

explant wounding, (v) addition of acetosyringone to the bacterial suspension and co-culture 

medium, and (vi) co-culture period. 

Notwithstanding the above-mentioned reports, on successful production of H. 

perforatum hairy roots, in this work, the production of hairy roots was not achieved. The efforts 

made included the use of leaves, internodal segments and root segments of the studied species 

as start material for genetic transformation. A reduction on the bacteria viability during co-

cultivation with plant cells, probably caused by the release of antimicrobial substances from the 

plant cells, has been previously pointed out as a possible reason for H. perforatum recalcitrance 

to A. rhizogenes A4 (Franklin et al., 2008). In this work, the antimicrobial activity of H. 

androsaemum, H. perforatum and H. undulatum against A. rhizogenes A4 was assayed using 

powdered dried biomass added to the bacteria growth medium culture. The results from these 

preliminary assays, however, were inconclusive. 

 
 
 
Canto-Canché, B. & V. Loyola-Vargas (1999). Chemicals from roots, hairy roots, and their application. Chemicals via higher 

plant bioengineering. Shahidi. NewYork, Kluwer Academic/Plenum Publishers. 23: 5−244. 
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and plant regeneration in Hypericum perforatum L. J. Genet. Breed. 57, 269–278. 
Franklin, G., L. Conceição, E. Kombrink & A. Dias (2008). Hypericum perforatum plant cells reduce Agrobacterium viability 

during co-cultivation. Planta 227, 1401–1408. 
Vinterhalter, B., S. Ninkovic, A. Cingel & D. Vinterhalter (2006). Shoot and root culture of Hypericum perforatum L. 

transformed with Agrobacterium rhizogenes A4M70GUS. Biologia Plantarum 50(4), 767-770. 



 

 



Chapter 6  In vitro Approaches for Hypericum Genetic Transformation 

217 

In vitro Approaches for Hypericum Genetic Transformation 
 

1- Introduction 
 

Agrobacterium rhizogenes, a gram-negative, soil-borne plant pathogen has the ability to 

insert foreign DNA sequences into the plant genome. The major advantage of Agrobacterium-

mediated gene transfer over biolistics is its ability to integrate fewer copies of foreign inserts 

into the plant genome, thereby reducing the risk of transgene rearrangements and gene silencing 

(Veluthambi et al., 2003). Genetic transformation by A. rhizogenes is characterized by the 

production of neoplastic roots which are known to have a high growth rate and genetic stability 

(Canto-Canché et al., 1999). The rolA, rolB and rolC oncogenes, isolated from T-DNA of the 

A. rhizogenes A4-Ri plasmids, were shown to induce root formation in transformed plant cells 

(Cardarelli et al., 1987; Spena et al., 1987). In fact, hairy root disease following agrobacterial 

infection is caused by the integration in the plant genome of the rolA, rolB, rolC and rolD genes 

that are carried on plasmids of A. rhizogenes (Giri et al., 2000; Bulgakov, 2008). The rol genes 

may affect either the metabolism of plant hormones or the sensitivity of plant cells to hormones 

(Meyer et al., 2000). As a group, rol genes have been suggested to cause an increase in auxin 

sensitivity (Spena et al., 1987), as in rolABC transformed tobacco (Spanò et al., 1988), tomato 

(van Altvorst et al., 1992) and rose leaves (Spanò et al., 1988). This discovery stimulated 

investigations that aimed to understand the effects of these genes upon plant development. 

Nowadays, a new function of the rol genes in plant-Agrobacterium interaction became apparent 

with the discovery that these genes are potential activators of secondary metabolism in 

transformed cells from the Solanaceae, Araliaceae, Rubiaceae, Vitaceae and Rosaceae plant 

families (Bulgakov, 2008). It was found that the accumulation of secondary metabolites in 

rolABC-transformed roots of tobacco and Catharanthus roseus was similar to that found in 

hairy roots induced by Agrobacterium wild type (Palazón et al., 1997; Hong et al., 2006). Roots 

of tobacco lines transformed with rolABC together or with rolC alone showed increased 

growing capacity and produced more nicotine, an alkaloid synthesized in the roots, than did the 

controls (Palazón et al., 1998). According to Bulgakov (2008), the ability of hairy roots to 

produce high amounts of secondary metabolites is an interesting natural phenomenon, which 

raises the question of which gene loci of T-DNA are responsible for this effect. Considering 

that T-DNA rol gene loci have a large impact on diverse biochemical processes in transformed 

plant cells, it is reasonable to consider that the essential genetic determinants are the rol genes 

of A. rhizogenes. Although a possible impact of additional T-DNA genes on secondary 
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metabolism in hairy roots cannot be excluded, the influence of such hypothetical genes seems 

to be less prominent (Bulgakov, 2008). 

Hairy roots of several plant species have already been reported for their capacity to 

produce a large variety of phytochemicals, some of those with putative interest to the 

pharmaceutical industry. For example, scopolamine, the most valuable tropane alkaloid used in 

medicine, is produced in the roots of several species, such as Hyoscyamus muticus. 

Transformation of this species with A. rhizogenes containing the gene encoding the enzyme that 

synthesizes the desired metabolite resulted in the production of hairy roots with enhanced levels 

of scopolamine (Jouhikainen et al., 1999). Other examples are the A. rhizogenes-mediated 

transformation of Valeriana wallichii and Panax ginseng, in which induced hairy roots 

produced a two- to threefold increase in valepotriates and ginsenoside levels, respectively 

(Banerjee et al., 1998; Bulgakov et al., 1998). 

Transformation of plants with A. rhizogenes can also result on the production of 

transgenic regenerated plants from hairy roots under in vitro culture conditions as it has been 

already reported for some species (Oksman-Caldentey et al., 1991; Handa, 1992; Christey, 

2001; Vinterhalter et al., 2006). Such transgenic plants regenerated from hairy roots display a 

characteristic phenotype which includes reduced apical dominance in both stems and roots, 

shortened internodes, wrinkled and wider leaves, adventitious root production, altered flower 

morphology, late flowering and reduced pollen and seed production (Tepfer, 1984; Christey, 

2001). These combined symptoms are termed hairy-root phenotype and can be observed in a 

number of species, although to varying degrees, depending on the species or the clone within 

the same species, being also possible the formation of morphological variants from the same 

root clone (Tepfer, 1984). The typical hairy-root phenotype has also been reported to be 

inheritable, although in some cases lateral shoots of hairy-root plants revert to the normal 

phenotype without losing the T-DNA (Tepfer, 1984). The advantage of Ri (root-inducing) 

plasmid based gene transfer is that spontaneous shoot regeneration is obtained avoiding the 

callus phase and genetic somaclonal variations. Ri plasmid-based gene transfer affords also a 

higher rate of transformation and regeneration of transgenic plants without the use of a selection 

agent, thereby allowing high rate of co-transfer of genes on binary vector without selection 

(Giri et al., 2000). Further, Agrobacterium tumefaciens mediated transformation results in a 

high frequency of escapes whereas A. rhizogenes mediated transformation consistently yields 

only transformed cells that can be obtained after several cycles of root tip cultures. The hairy 

roots can be maintained by subculturing for a long time and subsequent shoot regeneration can 

be obtained (Giri et al., 2000). Rapid growth of hairy roots on hormone-free medium followed 
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by high plantlet regeneration allows the clonal propagation of elite plants. The indirect effect of 

Ri plasmid T-DNA on the increase in essential oils, and thus on the fragrance of certain plants, 

may be an additional benefit of rol genes when introduced into ornamental plants such as lemon 

geranium (Pellegrineschi et al., 1994). Spontaneous shoot regeneration from hairy roots of 

lemon geranium with increased production of geraniol and other aromatic substances was 

reported (Pellegrineschi et al., 1997). The use of rol genes, together with other genes codifying 

for enzymes from biosynthetic pathways of odorous components, opens new perspectives on 

improving scent in ornamental flowers (Casanova et al., 2005). In some cases variability of 

secondary metabolite production in transgenic plants can occur, as suggested by some authors, 

as a consequence of the insertion of different numbers of gene copies and/or different insertion 

sites of the foreign T-DNA in the plant genome or yet, as a consequence of the silencing of 

genes involved in the secondary metabolism (Giri et al., 2000). 

Nevertheless, developing a transformation system requires not only a reliable 

regeneration system, but also an efficient cell transformation procedure, a mechanism for 

selection of the transformed cells, and antibiotic conditions for the inhibition of Agrobacterium 

growth in the in vitro culture post-infection (Ellis et al., 1989). Yet it is essential that the 

conditions used for each of these steps do not interfere with plant tissue regeneration. For H. 

perforatum two transformation protocols mediated by A. rhizogenes has been published (Di 

Guardo et al., 2003; Vinterhalter et al., 2006). In both transformation procedures the 

spontaneous regeneration of shoots from hairy roots was observed. Previous studies showed the 

presence of hypericin in two transformed plant lines of H. perforatum obtained by hairy roots 

induced from in vitro root and leaf tissues with the A. rhizogenes ATCC 15834 strain (Di 

Guardo et al., 2003; Kornfeld et al., 2007). However, no study has been published on the 

genetic transformation of H. androsaemum and H. undulatum. Since our initial attempts to 

develop an Agrobacterium-mediated transformation system were hampered by explants 

browning and subsequent death, we focused on exploring the hypothetical factors that may 

influence A. rhizogenes-mediated transformation of H. androsaemum, H. perforatum and H. 

undulatum. Thus, in the present study, several approaches were assayed in order to evaluate 

several parameters, such as: 

• sensitivity of H. androsaemum, H. perforatum and H. undulatum explants to the 

antibiotics cefotaxime and carbenicillin; 

• influence of preculturing period; 

• influence of the methods of co-cultivation. 



Essential oils from plants and in vitro shoot cultures of Hypericum androsaemum L., 
H. perforatum L. and H. undulatum Schousboe ex. Willd.  A. P. Guedes 

220 

2- Material and Methods 
 

2.1- Plant materials and tissue culture conditions 

In vitro shoot cultures of H. androsaemum, H. perforatum and H. undulatum were 

maintained on MS basal medium free of growth regulators in a growth room at 25±2ºC with a 

photoperiod of 16h light/8h dark. Leaves, internodal segments and root segments of 30-40 days 

old shoots of the three Hypericum species were excised, under aseptic conditions, cultivated on 

MS basal medium and used in the transformation procedures mediated by the wild type 

Agrobacterium rhizogenes A4.  

 

2.2- Assays with the antibiotics, cefotaxime and carbenicillin on Hypericum in vitro cultures  

Cefotaxime and carbenicillin, the antibiotics used in this work, are commonly used for 

counter-selection of Agrobacterium (Yepes et al., 1994; Shackelford et al., 1996). To 

investigate its effects in the plant regeneration, leaves, internodal segments and root portions of 

in vitro shoots, from the three Hypericum species, were cultured on MS basal medium with 

both antibiotics at varying concentrations ranging from 0, 150 and 200µg/ml. The excised 

explants were cultured on the MS basal medium free of growth regulators and supplemented 

with both cefotaxime (0, 150 and 200µg/ml) and carbenicillin (0, 150 and 200µg/ml). Both 

antibiotics were filter sterilized through a 0.22 µm membrane (Millipore). Aliquots of stock 

solutions of all these antibiotics were dispensed individually into 1.5 capacity eppendorf tubes 

and stored at -20ºC till further use. Antibiotic solutions were aseptically added to the autoclaved 

MS basal medium before the media were poured into the Petri dishes. The explants inoculated 

in Petri dishes were kept at 25ºC under 16 h photoperiod of white fluorescent lamps (52 

µmol·m-2·s-1). Regeneration was registered after 30 days of culture. 

 

2.3- Agrobacterium rhizogenes culture 

The wild type A. rhizogenes strain A4 used for Hypericum sp. transformation was 

grown in MYB medium [5 g/L yeast extract, 8 g/L mannitol, 0.5 g/L Casamino acids, 2 g/L 

(NH4)2SO4 and 5 g/L NaCl, pH 6.6], solidified with agar (20g/L) for 48h. The suspension 

culture for tissue inoculation was prepared by growing a single A. rhizogenes colony in 5.0 ml 

of MYB liquid medium overnight at 28ºC with continuous rotary shaking (200 rpm). 

Subsequently, 1.0 ml of the bacterial suspension was transferred into 9.0 ml of fresh MYB 

liquid medium and maintained under similar conditions. After the bacterial culture reached the 
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optical density (OD) of 0.6 at 600 nm, it was diluted (1:3) in liquid MS basal medium without 

growth regulators and used to infect plant explants. 

 

2.4- Assays for A. rhizogenes-mediated transformation of H. androsaemum, H. perforatum and 

H. undulatum 

In preliminary experiments (designated assay ECO2 in Table 1), explants (leaves, 

internodal segments and roots) were infected by wounding the tissues with a scalpel previously 

immersed in the diluted bacterial solution. Co-cultivation was performed on MS basal medium 

without growth regulators in dark for 3 days. After co-cultivation, all the explants were 

transferred to MS basal medium supplemented with the antibiotics carbenicillin (150µg/ml) and 

cefotaxime (150µg/ml) to eliminate A. rhizogenes. Control explants were cultured in the same 

conditions, after the respective tissues have been wounded with the scalpel previously 

immersed in liquid MS basal medium without growth regulators. After 30 days, roots 

developed from control and from co-cultivated explants were excised from the explants and 

cultivated on MS basal medium without growth regulators. The number of explants with 

regenerated roots and the number of browning death explants were counted after that period. 

 

2.5- Approaches for the optimization of a transformation protocol of H. androsaemum, H. 

perforatum and H. undulatum species by A. rhizogenes 

In order to get a suitable transformation protocol for hairy roots induced by A. 

rhizogenes of the three species of Hypericum, several parameters were evaluated. Table 1 

summarizes the various assays performed using leaves (L), internodal segments (In) and root 

segments (R) obtained from in vitro shoots of H. androsaemum, H. perforatum and H. 

undulatum as plant material target of the genetic transformation. In assays EPC2 and EPC4, the 

pre-culture of explants was performed by culturing leaves, internodal segments and root 

segments on MS basal medium devoid of growth regulators and maintained in a growth room at 

25±2ºC with a photoperiod of 16h light/8h dark, for 2 and 4 days, respectively, before 

Agrobacterium infection. Ten in vitro plantlets of each one of the three Hypericum species were 

also wounded with the scalpel blade previously immersed in a diluted (1:3) bacterial suspension 

in liquid MS basal medium without growth regulators. 
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Table 1 - Different transformation conditions of H. androsaemum, H. perforatum and H. undulatum mediated by 

the wild type A. rhizogenes strain A4 

Assay 
Bacterial  

concentration  
(OD at 600nm) 

Pre-culture  
period 
(days) 

Co-cultivation 
period (hours) 

[AS] 
bacterial 

suspension
(µM) 

[AS] co-
culture 
medium

(µM) 

Explant  Infection 
method 

ECO1 0.6 - 48 - - L / In / R wounding 
ECO2 0.6 - 72 - - L / In / R wounding 
ECO3 0.6 - 96 - - L / In / R wounding 
ECO4 0.6 - 120 - - L / In / R wounding 
EPC0 0.6 0 72 - - L / In / R wounding 
EPC2 0.6 2 72 - - L / In / R wounding 
EPC4 0.6 4 72 - - L / In / R wounding 
EAS0 0.6 - 72 0 - L / In / R wounding 
EAS20 0.6 - 72 20 - L / In / R wounding 
EAS100 0.6 - 72 100 - L / In / R wounding 
EAS200 0.6 - 72 200 - L / In / R wounding 
EAC20 0.6 - 72 - 20 L / In / R wounding 
EAC100 0.6 - 72 - 100 L / In / R wounding 
EAC200 0.6 - 72 - 200 L / In / R wounding 
EASC20 0.6 - 72 20 20 L / In / R wounding 
EASC100 0.6 - 72 100 100 L / In / R wounding 
EASC200 0.6 - 72 200 200 L / In / R wounding 
EB0.4 0.4 - 72 - - L / In / R wounding 
EB0.6 0.6 - 72 - - L / In / R wounding 
EB0.8 0.8 - 72 - - L / In / R wounding 
EB1.0 1.0 - 72 - - L / In / R wounding 

EI10 0.6 - 72 - - L / In / R immersion 
(10 min) 

EI20 0.6 - 72 - - L / In / R immersion 
(20 min) 

EI30 0.6 - 72 - - L / In / R immersion 
(30 min) 

EIASC20 0.6 - 72 20 20 L / In / R immersion 
(20 min) 

EIASC100 0.6 - 72 100 100 L / In / R immersion 
(20 min) 

EIASC200 0.6 - 72 200 200 L / In / R immersion 
(20 min) 

EIB0.6 0.6 - 72 - - L / In / R immersion 
(20 min) 

EIB0.8 0.8 - 72 - - L / In / R immersion 
(20 min) 

EIB1.0 1.0 - 72 - - L / In / R immersion 
(20 min) 

OD- Optical density 

[AS]- Acetosyringone concentration 

L- leaves; In- internodal segments; R- root segments 
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2.6- Assays for the evaluation of antibacterial activity of Hypericum sp. 

In order to determine an hypothetical antimicrobial activity of Hypericum against A. 

rhizogenes A4, in vitro cultures of H. androsaemum, H. perforatum and H. undulatum were 

freeze dried and powdered and 2g of biomass powder of each one were directly added to the 

MYB medium (15ml). In the first experiment, the dried powder of each Hypericum species was 

aseptically added to the autoclavated MYB medium before the media were poured into the Petri 

dishes. In a second experiment, the dried powder of each Hypericum species was added to the 

MYB medium before being autoclavated at 121ºC for 20 min. 

The suspension culture of the wild type A. rhizogenes strain A4 used for inoculation in 

the MYB medium with the plant powder was prepared in the same way as for the 

transformation procedure. When the bacterial culture reached the optical density (OD) of 0.6 at 

600 nm, it was diluted (1:3) in liquid MYB medium and inoculated in MYB medium with the 

plant powder. After 48 hours the bacterial growth was evaluated. 
 

3- Results 
 

3.1- Sensitivity of H. androsaemum, H. perforatum and H. undulatum explants to the antibiotics 

cefotaxime and carbenicillin 

The effects of cefotaxime and carbenicillin on the in vitro cultures of H. androsaemum, 

H. perforatum and H. undulatum, 4 weeks after the beginning of the culture, are summarised in 

the Tables 2, 3 and 4. 
 

Table 2 – Organ formation (%) from H. androsaemum explants (leaves, internodal segments and root segments) 

after 4 weeks of culture on MS basal medium devoid of growth regulators and supplemented with both cefotaxime 

and carbenicillin. 

Explant 
Cef/Carb 

(µg/ml) 

Nº of 

explants 

Explants with 

shoots (%) 

Explants with 

roots (%) 

Explants with 

callus (%) 

Necrotic 

explants (%) 

L 

0/0 (CT) 

150/150 

200/200 

30 

30 

30 

0 

0 

0 

40 

33 

20 

0 

0 

0 

60 

67 

80 

In 

0/0 (CT) 

150/150 

200/200 

30 

30 

30 

20 

17 

0 

0 

0 

0 

80 

73 

60 

0 

10 

40 

R 

0/0 (CT) 

150/150 

200/200 

30 

30 

30 

0 

0 

0 

20 

10 

7 

10 

10 

0 

70 

80 

93 
L- leaves; In- internodal segments; R- root segments 

cef- Cefotaxime; carb- Carbenicillin 
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The results from the treatment of leaves of H. androsaemum with 150 µg/ml of cef/carb 

were not significantly different from the control, as root regeneration occurred in similar ratio 

in both culture conditions. Shoots and calli were induced from internodal segments in control 

cultures as well as in those ones cultivated with cef/carb (150µg/ml). However, as it can be seen 

in Table 2 there was no induction of roots in this type of explant, in any of the tested conditions. 

Root segments were the explants with a lower capacity of regeneration in all the three 

conditions of culture. However, the increase in the antibiotics concentration influenced 

negatively the responses of the explants to the medium. Comparing to the control, the 

treatments with cef/carb 200/200 µg/ml decreased roots formation from 40 to 20% in leaves and 

from 20 to 7% in root explants and inhibited completely the shoot regeneration from internode 

explants (Table 2). 

 
Table 3 – Organ formation (%) from H. perforatum explants (leaves, internodal segments and root segments) after 

4 weeks of culture in MS basal medium devoid of growth regulators supplemented with both cefotaxime and 

carbenicillin. 

Explant 
Cef/Carb 

(µg/ml) 

Nº of 

explants 

Explants with 

shoots (%) 

Explants with 

roots (%) 

Explants with 

callus (%) 

Necrotic 

explants (%) 

L 

0/0 (CT) 

150/150 

200/200 

30 

30 

30 

0 

0 

0 

47 

30 

17 

0 

10 

0 

53 

60 

83 

In 

0/0 (CT) 

150/150 

200/200 

30 

30 

30 

10 

10 

7 

17 

10 

0 

70 

73 

70 

3 

7 

23 

R 

0/0 (CT) 

150/150 

200/200 

30 

30 

30 

0 

0 

0 

7 

10 

0 

20 

17 

7 

73 

73 

93 

L- leaves; In- internodal segments; R- root segments 

cef- Cefotaxime; carb- Carbenicillin 

 

Such as it happened with H. androsaemum, no shoot regeneration occurred from H. 

perforatum leaves independently of the presence or absence of cefotaxime and carbenicillin 

(Table 3). A decreasing effect on roots formation, from the petiole zone was however recorded 

with the increasing of the antibiotics. Root segments were that ones with the highest rate of 

explant death. More than 20 internodal segments had the formation of callus in all the culture 

conditions. The regenerated calli were mainly localized in the borders of the explants. Similarly 

to H. androsaemum, shoot regeneration occurred only from internodal explants of H. 

perforatum decreasing however in the presence of 200/200 µg/ml of antibiotics. 
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Table 4 – Organ formation (%) from H. undulatum explants (leaves, internodal segments and root segments) after 

4 weeks of culture in MS basal medium devoid of growth regulators supplemented with both cefotaxime and 

carbenicillin. 

Explant 
Cef/Carb 

(µg/ml) 

Nº of 

explants 

Explants with 

shoots (%) 

Explants with 

roots (%) 

Explants with 

callus (%) 

Necrotic 

explants (%) 

L 

0/0 (CT) 

150/150 

200/200 

30 

30 

30 

0 

0 

0 

40 

35 

15 

0 

0 

0 

80 

75 

90 

In 

0/0 (CT) 

150/150 

200/200 

30 

30 

30 

20 

13 

3 

0 

0 

0 

77 

63 

67 

3 

10 

30 

R 

0/0 (CT) 

150/150 

200/200 

30 

30 

30 

0 

0 

0 

10 

7 

0 

0 

0 

3 

90 

83 

97 

L- leaves; In- internodal segments; R- root segments 

cef- Cefotaxime; carb- Carbenicillin 

 

No shoots regenerated from leaves and root segments of H. undulatum such as it 

happened with the other two Hypericum species (Table 4). Shoot regeneration occurred from 

nodal segments decreasing however, proportionately with the antibiotics concentration (Table 

4). Induction of calli was favoured from internodal segments (more than 60% in the presence of 

both concentrations of antibiotics). However, the induction of roots was not observed from this 

type of explant. In previous reports on H. perforatum transformation, only one antibiotic was 

used. Di Guardo et al. (2003) and Vinterhalter et al. (2006) eliminated the bacteria used in the 

transformation protocol with cefotaxime at the concentrations of 100mg/L and 200mg/L, 

respectively, while Franklin and co-workers (2007) used ticarcillin clavulanate (250 mg/L) for 

Agrobacterium elimination. The results obtained in this work might be related with the effect of 

antibiotics on plant morphogenesis. In fact, cefotaxime-sodium salt (cephalosporin) as well as 

carbenicillin-disodium salt belong to the β-lactam group of antibiotics, which bind to the 50S 

subunits of the prokaryote ribosome thereby interfering with protein synthesis. Both antibiotics 

inhibit cell wall synthesis in dividing bacterial cells resulting in their lysis (Young et al., 1984; 

Mathias et al., 1986). Cefotaxime has a broader antimicrobial spectrum and higher 

pharmacological activity than carbenicillin (Wise et al., 1978; Doerr et al., 1980). But apart 

from their anti-microbial activity, previous reports showed that these antibiotics influence the 

growth of the plant cultures, due to their plant hormone-like effects (Nauerby et al., 1997). 

Indeed, cefotaxime was shown to influence morphogenesis in barley (Mathias et al., 1986), 

wheat (Yu et al., 2008), and apple (Yepes et al., 1994), among others, while carbenicillin 
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inhibited the maturation of somatic embryos in Picea sitchensis (Sarma et al., 1995). The 

carbenicillin effects on morphogenesis might be related with the formation of the degradation 

product from carbenicillin, phenylacetic acid, with auxin activity (Sarma et al., 1995). It is 

conceivable that auxins produced by the breakdown of carbenicillin when combined with 

endogenously synthesized auxins can explain the positive effect of this antibiotic on the 

organogenesis of several species (Nakano et al., 1993; Hammerschlag et al., 1997; Yu et al., 

2001), as well as its negative effect on others (Yepes et al., 1994; Nauerby et al., 1997). On the 

other hand, it was suggested that cefotaxime was not broken down into auxin-like substances, 

being its effects explained by another mode of action (Holford et al., 1992). Mathias and Boyd 

(1986) reported the possibility of metabolites, with plant growth regulatory activity, generated 

from cefotaxime by plant esterases, to be responsible for the above mentioned effects. In 

conclusion, although, cefotaxime and carbenicillin have been reported to be the best antibiotics 

for selective killing of Agrobacterium in several transformation experiments, any new plant 

culture system should be screened for antibiotic sensitivity prior to their use in eradicating 

Agrobacterium after co-cultivation. The optimum concentration of the selective agent should be 

that one that prevents regeneration without being toxic to the target explant (Yepes et al., 1994). 

Generally, after hairy roots induction, concentration of the antibiotic is gradually 

decreased in the next subcultures until no one is added to the culture medium. In conclusion, 

comparing with the control results, with the concentration of 150 µg/ml for both cefotaxime and 

carbenicillin all the explants had a positive response. However, the rate of regeneration from 

internodal segments of Hypericum sp. decreased when they were incubated on MS basal 

medium with both antibiotics at a concentration of 200 µg/ml. According to the results here 

described, cefotaxime and carbenicillin both at 150 µg/ml were used in the following 

approaches for genetic transformation of H. androsaemum, H. perforatum and H. undulatum, 

mediated by A. rhizogenes A4. For the three Hypericum species, among leaves, stem fragments, 

and root fragments, the best explants to be used in plant transformation seemed to be internodal 

segments, since they were the ones with a higher regeneration frequency even in the presence of 

the antibiotics cefotaxime and carbenicillin.  

 

3.2- Influence of pre-cultivation period 

During the pre-cultivation period, explants are usually cultivated in plant culture 

medium prior to bacterial infection, which can improve transformation efficiency because it 

accelerates cell division of explants and maintain cell activity, consequently favouring cell 

growth after transformation. For Petunia leaf explants, pre-cultivation in a medium with 2,4-D 
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and BAP during 2 to 3 days before co-cultivation with Agrobacterium drastically enhanced 

genetic transformation (Villemont et al., 1997). The authors suggested that during pre-culture, 

cells were actively dividing and duplicating DNA, and at the moment of bacterial inoculation 

phytohormone-activated cell nuclei were being recruited into S-phase of cell cycle. Pre-culture 

periods seemed to attenuate the drastic decrease in regeneration capacity after co-cultivation 

(Dronne et al., 1999). Proper phytohormone treatments during pre-culture period have also been 

used to overcome the reduced transformation susceptibility of the Arabidopsis mutant uvh1, 

which was previously considered resistant to Agrobacterium-mediated transformation (Chateau 

et al., 2000). Pre-cultured leaf blade, petiole, stem and root segment explants of H. perforatum 

on MS medium supplemented with BA (0.5mg/l) and IAA (1.0 mg /l), for 24h, were unable to 

induce the formation of transgenic shoots after Agrobacterium transformations (Franklin et al., 

2007). On the other hand, hairy root production and regeneration of shoots from hairy roots of 

H. perforatum were achieved in the absence of a pre-culture period (Di Guardo et al., 2003; 

Vinterhalter et al., 2006). In the experiments here reported, the tentative made either with pre-

culture periods ranging from 2 to 5 days or without it were not succeed as there was no hairy 

roots induced independently of the treatment used (Table 1). 

 

3.3- Influence of the methods of co-cultivation 

Co-cultivation is one of the most important steps for genetic transformation of plants, as 

it is during this step, that T-DNA is incorporated into plant genomic DNA. However, several 

factors can influence it. 

3.3.1- Bacterial density 

Different bacterial concentrations (0.4-1.0 of OD600) of wild type A. rhizogenes A4 were 

used in the attempt to transform leaves, internodal segments and roots of H. androsaemum, H. 

perforatum and H. undulatum (Table 1). However, none of those experiments were succeed in 

the formation of hairy roots from any of the tested explants of any Hypericum species. Even for 

the higher concentrations of A. rhizogenes A4, the usually observed overgrowth of the bacteria 

during co-cultivation period was not registered. Lack of H. perforatum hairy roots production 

after inoculation with A. rhizogenes wild type strains A4 and LBA9402 (0.8-1.0 of OD660) was 

also reported by Franklin and co-workers (2007). The same bacterial concentrations were also 

unsuccessfully used in the transformation of H. perforatum with A. tumefaciens LBA4404 and 

EHA105 (Franklin et al., 2007). However, DiGuardo and co-workers reported the production of 

hairy roots of H. perforatum after inoculation of roots and leaf segments with bacterial 

suspensions of wild type A. rhizogenes ATCC 15834 diluted 1:10 (0.1 OD550). Indeed, bacterial 
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concentration plays an important role in the production of transformed roots. Studies on other 

species has shown that suboptimal concentrations resulted in low availability of bacteria for 

transforming the plant cells while high concentrations decreased their potential by competitive 

inhibition (Kumar et al., 1991; Tao et al., 2006). 

Besides bacterial density, genetic transformation mediated by Agrobacterium is also 

affected by different strains of the bacteria. Differences in the ability for infection of several A. 

rhizogenes strains in a given plant species have already been reported showing that A. 

rhizogenes strains vary in their transforming efficiency (Tepfer, 1990; Maldonado-Mendoza et 

al., 1992; Vanhala et al., 1995; Zehra et al., 1998; Królicka et al., 2001). Therefore, different 

bacterial strains have different hairy roots generating capacity. Nguyen and co-workers 

suggested that differences in virulence and morphology could be explained by the plasmids 

harboured by bacterial strains (Nguyen et al., 1992). According to some authors the presence of 

specific signals from specific Agrobacterium strains, may be recognized by specific plant 

genotypes (Owens et al., 1985; Byrne et al., 1987; Hobbs et al., 1989; Fillipone et al., 1992). In 

addition, extensive morphological variation in individual hairy root cultures may be explained 

by differential expression of T-DNA genes present in the transformed roots, variable copy 

numbers of T-DNA inserts and positional integration effects of the T-DNA in the host genome 

(Cho et al., 1998). In our study, wild type A. rhizogenes strain A4 was that one used in the 

attempts to transform H. androsaemum, H. perforatum and H. undulatum. However, both our 

results and those reported by Franklin et al. (2007) showed the incapacity of this strain for hairy 

roots induction from Hypericum explants. A. rhizogenes strain A4M70GUS as well as the wild 

type A. rhizogenes ATCC 15834, were shown to induce hairy roots formation in H. perforatum 

(Di Guardo et al., 2003; Vinterhalter et al., 2006). The first strain contains a GUS construct 

[uidA sequence under the 70S promoter (enhancer-doubled 35S Ca MV promoter), followed by 

NOS polyadenylation sequence] integrated into the TL region of the cointegrative plasmid 

pRiA4 (Tepfer et al., 1987). 

 

3.3.2- Effect of the type of explant in hairy root production of Hypericum 

Previous results had shown that internodal segments of H. androsaemum, H. perforatum 

and H. undulatum would be the best explant for a plant transformation protocol, due to its 

higher regeneration frequencies, even in the presence of cefotaxime and carbenicillin. However, 

leaves and root segments of the three plant species were also infected with A. rhizogenes A4 

(Table 1). In none of the explants, the Agrobacterium infection induced the formation of hairy 

roots, likewise the results reported by Franklin and co-workers (2007). Given the absence of 
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hairy roots in the in vitro explants, 10 in vitro plantlets of the three plant species were infected 

by wounding the stem with the scalpel blade previously immersed in the bacterial suspension. 

Nevertheless, once more, no hairy roots were induced. A similar infection method was used by 

Vinterhalter et al. (2006), who reported the formation of hairy roots by that approach. Di 

Guardo et al. (2003) obtained hairy roots from leaf and root fragments with another wild 

agropine type A. rhizogenes strain ATCC15834. 

 

3.3.3- Effect of wounding the plant explants 

Among the different strategies used to increase Agrobacterium transformation 

frequency, wounding plant tissues prior to inoculation was found be one of the most important. 

According to some authors, plant wounding seems to be a key factor in the interaction between 

Agrobacterium and the host plant cells, thereby affecting the efficiency of Agrobacterium-

mediated gene transfer (Stachel et al., 1985). Wounding stimulates DNA replication and 

proliferation of plant cells, improving the integration of the T-DNA (Villemont et al., 1997). 

Wounding of explants also allows Agrobacterium to infect the target tissue as well as to 

produce the phenolic chemical signals (e.g. acetosyringone and α-hidroxiacetosyringone) that 

induce the T-DNA transfer (Stachel et al., 1985). Hairy roots were induced from H. perforatum 

explants when they were wounded with a lancet blade (Di Guardo et al., 2003) and from shoots 

wounded with a needle dipped in the bacterial suspension (Vinterhalter et al., 2006). Two 

methods of infection of leaves, internodal segments and root segments were used in the work 

here reported: (a) immersion of the explants from H. androsaemum, H. perforatum and H. 

undulatum in the A. rhizogenes A4 suspension (1:3 dilution) for 10 to 30 minutes, and (b) 

explants wounding with a scalpel previously immersed in the bacterial suspension (Table 1). 

However, once again, no hairy roots were induced. Immersion of different explants from H. 

perforatum during 5, 10, 20 and 30 min in the bacterial suspension also resulted in the absence 

of hairy root induction (Franklin et al., 2007). Several alternative approaches can be used to 

wound the target tissues. Some researchers reported that the wounding of the explant could be 

enhanced by subjecting the plant tissue to sonication (Trick et al., 1997; Tang, 2003; Weber et 

al., 2003). This technology or so-called sonication assisted Agrobacterium-mediated 

transformation (SAAT) tremendously improved the transformation efficiency of several crops 

that were recalcitrant to Agrobacterium-mediated transformation. The enhanced transformation 

efficiency by this method is probably due to the microwounding that occurs on the surface and 

inside of the target tissue which allows the bacterial cells to reach the proper target tissue and 
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stimulate the production of signalling molecules involved in the T-DNA transfer (Finer et al., 

2008). 

 

3.3.4- Effect of acetosyringone in the bacterial and co-cultivation media 

Addition of acetosyringone and related compounds to the bacteria and co-cultivation 

media are reported to improve Agrobacterium mediated transformation. In the work here 

reported, exogenous acetosyringone at 20 to 200µM (Table 1), in both inoculation and co-

cultivation media had no beneficial effect on the transformation, since no induction of hairy 

roots was got from any of the tested explants of H. androsaemum, H. perforatum and H. 

undulatum under the influence of that compound. Acetosyringone which is a plant wound-

exuded chemical, known to function as signal molecule inducing vir gene expression, and 

thereby activating T-DNA transfer (Stachel et al., 1985; Cangelosi et al., 1990), has been 

reported to improve transformation efficiency of several medicinal plant species, such as Salvia 

miltiorrhiza (Hu et al., 1993), Podophyllum hexandrum (Giri et al., 2001), Digitallis minor 

(Sales et al., 2003) and Ruta graveolens (Lièvre et al., 2005). Nevertheless, several studies 

demonstrated that pre-induction with exogenous acetosyringone may not be essential if the 

phenolic compounds exudates by the wounded tissue are sufficient to activate vir genes 

induction of Agrobacterium during co-cultivation (Hiei et al., 1997; Rao et al., 2007) (Park et 

al., 1996; Cheng et al., 1997). In the transformation protocols established by DiGuardo et al. 

(2003) and Vintherhalter et al. (2006), hairy roots were induced in the absence of 

acetosyringone. Other reports showed that for species such as Torenia fournieri (Tao et al., 

2006) and Pisum sativum (De Kathen et al., 1990), addition of high concentrations of 

acetosyringone can even have a detrimental effect. 

 

3.3.5- Effect of co-cultivation period 

The time of co-cultivation can also affect gene transfer frequency and consequently 

transformation efficiency. Co-cultivation periods from 1-5 days were tested for transformation 

of the three Hypericum species (Table 1), but none of them led to the formation of hairy roots. 

In general, most of the reported studies shows better levels of expression and higher 

transformations frequencies using co-culture periods of 48 to 72 hours (Gilbert et al., 1996; 

Tzvi Tzfira, 1997; Tao et al., 2006). Even though, longer co-cultivation periods can negatively 

affect transformation by reducing bacterial affinity to the plant cell or by leading to an 

overgrowth of the bacteria inducing competitive inhibition (Tao et al., 2006), hairy roots of H. 

perforatum were obtained from shoots after 7-10 days of co-cultivation (Vinterhalter et al., 
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2006). In the work here reported, a period of 72 hours of co-culture was used in all of the 

attempts to transform H. androsaemum, H. perforatum and H. undulatum without positive 

results. 

Several difficulties were found in attempts made in the work here reported to the 

establishment of a transformation protocol of Hypericum species mediated by A. rhizogenes. 

Several reports have been published on the high necrosis and poor survival rate of target plant 

tissues during the process of Agrobacterium-mediated T-DNA transfer. The lack of hairy root 

induction with A. rhizogenes, could be a consequence of induced death in the plant Hypericum 

cells. Indeed, there are several reports indicating a high level of necrosis and poor survival rate 

of target plant tissues during the process of Agrobacterium-mediated T-DNA transfer (Pu et al., 

1992; Deng et al., 1995; Mercuri et al., 2000; Chakrabarty et al., 2002; Das et al., 2002). Some 

authors have also demonstrated the induction of programmed cell death in plant cells after co-

cultivation with Agrobacterium (Hansen, 2000; Parrott et al., 2002). On the other hand, plants 

can modulate their gene expression in response to Agrobacterium infection which by its side 

can trigger the plant defence machinery maybe as a consequence of plant’s hypersensitive 

reaction to Agrobacterium infection as already suggested (Ditt et al., 2001; Ditt et al., 2005). 

Hypersensitive reaction is described as one of the plant defence responses, generally 

characterized by the accumulation of antimicrobial agents, as well as the rapid and localized 

cell death around the infection site (Hammond-Kosack et al., 1996; Richter et al., 2000). 

Necrosis of the collapsed cells is, sometimes, a consequence of the sequence of events during 

hypersensitive reaction (Goodman et al., 1994). In H. perforatum suspension cells infected with 

Agrobacterium, a drastic reduction in the bacteria viability during co-cultivation period has 

been found (Franklin et al., 2008). The same authors also verified antimicrobial potential of the 

cell-free liquid medium of Agrobacterium-treated plant cell cultures suggesting the release of 

some antimicrobial substance(s) by the H. perforatum cells to the culture media. In fact, it 

seems that H. perforatum cells recognize Agrobacterium as a potential pathogen, triggering its 

defence mechanism responses, and leading to the reduction of bacteria viability. 

 

3.4- Culture of Agrobacterium rhizogenes A4 in presence of Hypericum biomass 

Plant powder of the three Hypericum species were tested directly for their antibacterial 

activity against A. rhizogenes. The plant powder of H. androsaemum and H. undulatum 

incorporated in the culture medium showed no effect on the A. rhizogenes A4 growth. In the 

Petri dish a layer of bacteria colonies appeared. For H. perforatum, even though an uncountable 

number of bacterial colonies was registered, a slight reduction in the bacteria growth occurred. 
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However, after 48 hours of A. rhizogenes A4 inoculation in the MYB medium with powders 

previously sterilized by autoclave the number of colonies were uncountable. Comparing the 

results from the two experiments a lower growth of A. rhizogenes was found in Petri dishes 

with not autoclavated plant powder. It is possible that the putative active compounds that might 

exert any antibacterial activity against A. rhizogenes A4 might not be active after autoclaving. 

A similar procedure, in which plant powder was incorporated in the agar was used to test the 

antibacterial activity of black myrobalan (Teminalia chebula Retz) against Helicobacter pylori 

(Malekzadeh et al., 2001). According to the authors, plant powder gave higher MIC and MBC 

values (150 and 175 mg/l, respectively), than the water extracts. The authors suggested that 

black myrobalan extracts contain a heat stable agent(s) with possible therapeutic potential, since 

water extract was active after autoclaving for 30 min at 121°C.  

As previously mentioned (Chapter 2), several species of the genus Hypericum have been 

shown to possess various biological activities, including the ability to produce antimicrobial 

constituents. Reports on the activity of Hypericum plant products against Agrobacterium have 

already been published. That is the case of essential oils of different species of the genus 

Hypericum including H. perforatum, which showed antimicrobial activity against A. 

tumefaciens (Saroglou et al., 2007). Ethanolic extracts of H. perforatum showed also high 

antibacterial activity against A. tumefaciens (Milosevic et al., 2007). Moreover, the co-culture 

of H. perforatum suspension cells with Agrobacterium, have already shown to induce a drastic 

reduction on the bacteria viability (Franklin et al., 2008). 

 

4- Conclusions 
Although successful protocols of H. perforatum transformation have already been 

reported (Di Guardo et al., 2003; Vinterhalter et al., 2006), in this work several attempts to 

transform H. perforatum, H. androsaemum and H. undulatum, were not successful. The lack of 

hairy roots induction throughout the approaches here reported applied to the three Hypericum 

species, in which several parameters were tested (explants type and pre-culture period, methods 

of infection, co-cultivation period, addition of the inductor vir genes compound acetosyringone) 

seems to be related not to transfer and integration of T-DNA but with the effect of plant defence 

against A. rhizogenes. Similar conclusions were suggested by Franklin and co-workers (2007; 

2008), who successfully transformed H. perforatum suspension cells when particle 

bombardment was used as the method of gene delivery with the same plasmid 

(pCAMBIA1301) that failed when transformation was mediated by Agrobacterium.  
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For thousands of years, plants have had an important role in the Human life, either as a 

food supply or as a source of important medicines. In fact, during the last decades there has 

been, all over the world, an increase in the search on plant based pharmaceuticals. The research 

for natural products, such as essential oils (EO), has involved several type of industries such as 

food, and flavour and fragrance industries. Consequently, nowadays an increase in the global 

trade for aromatic and medicinal plants is occurring. However, some of these useful plant 

species can be difficult to regenerate by conventional methods or are in danger of extinction. 

Plant cell and tissue culture is seen as a useful alternative for multiplying and conserving plant 

species and is being used in the commercial propagation of some medicinal plants (Rout et al., 

2000). 

Several species of the Hypericum genus have a long traditional value as medicinal 

plants, being used in ailments as knowledge-based medicine in several countries, including 

Portugal, where H. androsaemum, H. perforatum, and H. undulatum, are the most used species 

of the genus. The main objective of this thesis was to increase our knowledge about the 

essential oils profiles produced by the above mentioned Hypericum species (H. androsaemum, 

H. perforatum and H. undulatum). Although several reports on H. perforatum essential oils 

have been published, information on the essential oils of the other two species is scant. As far 

as we know, the most detailed lists of essential oils constituents of H. androsaemum and H. 

undulatum are herein reported for the first time. Besides the contribution for a deeper 

knowledge on the biochemical characteristics of these species, this work can be a basis for 

definition of the biochemical markers for quality control of natural products based in essential 

oils of these Hypericum species. Even though the three studied species are known for their 

therapeutic properties, in many cases there is no information on the identity of the constituents 

responsible for the attributed biological activities. Therefore, the detailed characterization of the 

essential oils herein described is crucial for the subsequent identification of constituents 

responsible for the putative biological activities. 

This study showed that the essential oils of H. androsaemum and H. perforatum plants 

are characterized by the predominance of the sesquiterpene hydrocarbons, while H. undulatum 

essential oils are majority constituted by n-alkanes. 

Essential oils production and/or accumulation is known to be modulated by several 

factors, either intrinsic or extrinsic to the plant (Figueiredo et al., 2008). Indeed, the exhaustive 

work here reported based in periodic sampling and chromatographic analysis of the essential 

oils from the three Hypericum species showed that the respective production and/or 
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accumulation is influenced by harvest time and season, geographical distribution, growing 

conditions (in vitro and in vivo) and plant organ. 

In both H. androsaemum and H. undulatum, the lowest essential oil contents were 

detected in the spring. In the essential oils of vegetative aerial parts of plants of H. perforatum 

and H. perforatum cv. Topaz it was shown a decrease in the relative content of sesquiterpene 

hydrocarbons during the spring and summer, increasing afterwards to its maximum in the 

winter, in coincidence with the lowest contents of the essential oils in the plants. In the essential 

oils of H. androsaemum the minimum content of sesquiterpene hydrocarbons was registered 

later in the summer. Generally, over the year, a pattern of inverse variation in the relative 

contents of sesquiterpene hydrocarbons and monoterpene hydrocarbons was evident in the 

essential oils of the three Hypericum species here studied.  

The different plant organs of the three target Hypericum species showed different 

essential oil contents and composition profiles. The highest contents of essential oils were 

found in ripened seed capsules of H. androsaemum, in flowers of H. perforatum and leaves of 

H. undulatum. The stems of H. androsaemum and H. undulatum were the organs with the 

lowest essential oils content. Variations in essential oils composition depending of the growth 

site were also found in the studies performed with H. androsaemum and H. perforatum. 

Because in vitro micropropagation can be used as a way to produce plant material and 

valuable secondary metabolites, under environmental and nutritional controlled conditions, in 

vitro shoot cultures of H. androsaemum, H. perforatum, and H. undulatum were established 

from nodal segments. The essential oils composition of in vitro shoots of the H. androsaemum, 

H. perforatum, and H. undulatum was reported in this work, for the first time. Likewise results 

obtained in other plant species (Charlwood et al., 1988; Santos-Gomes et al., 2003), essential 

oils from in vitro shoots of H. androsaemum, H. perforatum, and H. undulatum were different 

from those of the in vivo plants. Less complex essential oils were found in the in vitro shoots of 

these species comparing to those produced by in vivo plants. As the first results obtained on the 

essential oils produced by in vitro shoots of H. androsaemum, H. perforatum, and H. 

undulatum, this work opened up a field of investigation involving in vitro cultures in order to 

modulate the essential oils composition through culture media manipulation and culture growth 

conditions. This type of cultures can also be used in future works, as model systems in the 

elucidation of biosynthetic pathways of the respective essential oil constituents through the 

isolation and characterisation of enzymes involved in these biosynthetic routes. 

An interesting result demonstrated in this work was the predominance of the n-alkanes 

group in the essential oils from plants, in vitro shoots, and micropropagated and acclimatized 
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plants of H. undulatum. n-Nonane was the major compound in all the essential oils obtained 

from H. undulatum plant material. Its function in the essential oils however remains unclear. As 

high contents of n-nonane were found in the essential oils of in vitro shoots of this species, this 

type of cultures might be a good system in the attempt of elucidating, not only its biosynthetic 

pathway, but also its function as a constituent of the essential oils. The results herein reported 

might be the start point for further studies, in order to increase the biotechnological production 

of this compound, which is usually used as a fuel additive and in biodegradable detergent. 

Extraction methods can also be optimized to increase the content of n-nonane extracted from H. 

undulatum plant material, not only in essential oils but also in other type of extracts (e.g. lipidic 

extracts). 

Several strategies have been developed to enhance production of secondary metabolites 

in plant cultures, including plant transformation. Gene transfer by Agrobacterium is the method 

of choice for the genetic transformation of most plant species. However, a successful protocol 

of transformation depends on the establishment of a reliable plant regeneration system and an 

efficient interaction of Agrobacterium-plant. Aware of the fact that several factors affect this 

bacteria-plant interaction, in this work some of them were evaluated (explants pre-culture, 

bacterial density, type of explants, explants wounding, addition of acetosyringone to the 

bacterial suspension and co-culture medium, and co-culture period) on the several attempts of 

transformation of H. androsaemum, H. perforatum and H. undulatum mediated by A. 

rhizogenes A4. However, hairy roots production was not achieved in any of the plant species 

tested, probably due to the trigger of a plant defence mechanism against A. rhizogenes. 

Recently, a reduction on the Agrobacterium viability during co-cultivation with H. perforatum 

was reported (Franklin et al., 2008). The authors suggested that it might be caused by the 

release of antimicrobial substances from the plant cells. Antibacterial activity of essential oils 

from different species of Hypericum genus against A. tumefaciens has already been reported 

(Saroglou et al., 2007). Our results together with those reported on the literature rise the need of 

new approaches and molecular studies using this agroinfection system to understand the 

possible defence mechanisms underlying this phenomenon, as well as antibacterial assays of 

several extracts of the studied Hypericum species (e.g. crude extracts, essential oils) to evaluate 

their activity against Agrobacterium. Even though successful protocols of Agrobacterium-

mediated transformation of H. perforatum have been reported (Di Guardo et al., 2003; 

Vinterhalter et al., 2006), the lack of hairy roots induction herein reported and the results from 

other authors (Franklin et al., 2007) show the need in finding alternative ways such as that of 

particle bombardment as it was used in the transformation of H. perforatum. Hence, in order to 
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try the manipulation of essential oils pathways through plant transformation, more work should 

to be done in the optimization of a particle bombardment protocol of the studied Hypericum 

species. 
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