
A CLASS OF STATIONARY NONLINEAR MAXWELL SYSTEMS

FERNANDO MIRANDA

Department of Mathematics/CMat, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal

fmiranda@math.uminho.pt
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We study a new class of electromagnetostatic problems in the variational framework of
the subspace of W 1,p(Ω) of vector functions with zero divergence and zero normal trace,
for p > 6

5
, in smooth, bounded and simply connected domains Ω of R3. We prove a

Poincaré-Friedrichs type inequality and we obtain the existence of steady-state solutions
for an electromagnetic induction heating problem and for a quasi-variational inequality
modelling a critical state generalized problem for type-II superconductors.
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1. Introduction

Consider a nonlinear electromagnetic field in equilibrium in a bounded domain Ω of
R3. The electric and the magnetic fields, respectively e and h, satisfy the stationary
generalized Maxwell’s equations

j = ∇×h, ∇×e = f and ∇·h = 0 in Ω, (1.1)
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where j denotes the total current density and f denotes an internal magnetic cur-
rent. The magnetic field h is supposed to be divergence-free by assuming the usual
relation with the magnetic induction field, b = µh, where the magnetic permeabil-
ity µ is constant (see Ref. 18). In classical Faraday’s law f = 0 but, in theoretical
physics, magnetic monopoles have been postulated by formal symmetry consider-
ations (Bossavit8) and by reported observations (Cabrera10) so, for mathematical
purposes, it may be interesting to consider f 6= 0.

Here we shall consider nonlinear extensions of the classical Ohm’s law in the
form

e = ρ j (1.2)

where the scalar resistivity ρ = ρ(θ,h,∇×h) can be taken as a highly nonlinear
function of the temperature θ and of the magnetic field h.

In this work we are concerned with the natural boundary value problem associ-
ated with (1.1),

h · n = 0 and e× n = g on Γ = ∂Ω, (1.3)

where n denotes the outward unitary normal vector to Γ and g is a tangential
current field.

In order to take into account the thermal effects, in the nonisothermal stationary
case, we have the equilibrium of energy

∇·q = j · e, (1.4)

where the heat flux q = −k∇θ is given in terms of a nonlinear thermal conductivity
k = k(θ)|∇θ|q−2, q > 1, (the case of a constant k > 0 corresponds to the usual linear
Fourier law) and the right-hand side of (1.4) represents the Joule heating.

We are particularly interested in the case of a nonlinear resistivity in (1.2) also
of power type, ρ = ν(θ)|∇×h|p−2, p > 1, when the equilibrium equations for h and
θ may be written, from (1.1), (1.2) and (1.4), in the form

∇×
(
ν(θ)|∇×h|p−2∇×h

)
= f and ∇·h = 0 in Ω, (1.5)

−∇·
(
k(θ)|∇θ|q−2∇θ

)
= ν(θ)|∇×h|p in Ω. (1.6)

From the first equation of (1.5) the external field f must satisfy ∇·f = 0 and,
if we associate the second boundary condition of (1.3), the given field g should be
tangential on Γ and compatible with f :

∇Γ · g = f · n on Γ, (1.7)

where ∇Γ · denotes the surface divergence. The presence of the external vector
field f , although unusual in classical Maxwell’s theory, has been considered in the
mathematical literature (see, for instance, Yin30) and, combined with the tangential
current field on the boundary, it enlights the compatibility condition (1.7) – see also
Remark 2.2 below.
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We observe that the system (1.5) has a mathematical structure similar to the
usual p-Laplace equation. Indeed, it reduces to a scalar equation with the left-
hand side structurally similar to the left-hand side of (1.6) in only two dimen-
sions, when the domain Ω = ω × R is a longitudinal media and the parallel field
h =

(
0, 0, h(x1, x2)

)
, for (x1, x2) ∈ ω. In this case, the second equation in (1.3)

reduces to a Neumann boundary condition on ∂ω for the third component h.
In the evolutionary situation, this scalar coupled 2D problem has been con-

sidered by several authors, for instance, with p = q = 2 and Dirichlet data, in
Rodrigues28 or in Parietti-Rappaz26 for alternating currents. Also for unsteady cases
with p = q = 2 the 3D “induction heating” problem has been considered, for in-
stance, in Bossavit-Rodrigues9 or in Yin,31 and with phase changes in Bermudez et
al5 or Manoranjan et al.22

A second example of a generalization of the constitutive law (1.2) arises in type-II
superconductors and is known as an extension of the Bean critical-state model, in
which the current density cannot exceed some given critical value j > 0.

p > 2

p < 2

j |j|

|e|

p = 2

When this critical threshold j may vary with the absolute value |h| of the mag-
netic field, Prigozhin27 has remarked that this model admits a formulation in terms
of a quasi-variational inequality. Here we shall consider the case

e =


ν0|∇×h|p−2∇×h if |∇×h| < j(|h|),

(
ν0 j

p−2 + λ
)
∇×h if |∇×h| = j(|h|),

(1.8)

with the nondegeneracy parameter ν0 > 0, where ν0 is a small given constant and
λ = λ(x) ≥ 0 can be regarded as a (unknown) Lagrange multiplier associated with
the inequality constraint

|∇×h|(x) ≤ j
(
|h|(x)

)
a.e. x ∈ Ω. (1.9)

The support of λ lies in the superconductivity region

S =
{
x ∈ Ω : |∇×h|(x) = j

(
|h|(x)

)}
.

Multiplying the second equation of (1.1) by v − h and integrating over Ω we
obtain ∫

Ω

∇×e · (v − h) =
∫

Ω

f · (v − h).
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Integrating by parts and using (1.3) we get∫
Ω

e · ∇×(v − h) =
∫

Ω

f · (v − h) +
∫

Γ

g · (v − h),

and by (1.8), we have∫
Ω

e · ∇×(v − h) =
∫

Ω

ν0|∇×h|p−2∇×h · ∇×(v − h) +
∫
S

λ∇×h · ∇×(v − h).

Choosing v such that |∇×v| ≤ j(|h|), we have

λ∇×h · ∇×v ≤ λ |∇×h| j(|h|) = λ|∇×h|2 in S

obtaining the quasi-variational inequality∫
Ω

ν0|∇×h|p−2∇×h · ∇×(v − h) ≥
∫

Ω

f · (v − h) +
∫

Γ

g · (v − h), (1.10)

for any test function v such that |∇×v| ≤ j(|h|).
This variational formulation for the analysis of critical state models for type-II

superconductivity has stimulated the study of the power law model, since it has been
shown to be the limit case p→∞, first in the scalar case, Barrett-Prigozhin,3 and
also in the case of a bounded simply-connected domain in R3 with null tangential
component on the boundary, Yin et al,32 both for the evolutionary problems.

In previous works of Yin and co-workers, instead of the natural boundary con-
dition (1.3) for perfectly conductive (superconductive) walls (h tangential to the
boundary: h · n = 0 on Γ) only the case of perfectly permeable walls (h normal
to the boundary: h × n = 0 on Γ) has been considered. In particular, Yin and
co-workers32,33 obtained existence and some regularity results for this later evolu-
tionary case for p > 2.

A main difficulty arises in extending the “main inequality of 3D vector analysis”
(see Ref. 1 for p = 2) to the nonlinear framework p 6= 2. So the variational frame-
work for magnetostatic and electrostatic problems that has been developed for the
linear problems in the hilbertian framework (see, for instance, Refs. 14, 11, 15 and
12) requires, to the nonlinear case, further extensions that go beyond the natural
extension to the Lp-integrable functions that has been done for arbitrary Lipschitz
domains in R3 (see Refs. 23 and 24).

In this first work, that is restricted to steady-state problems, we develop the
variational approach to power law Maxwell models of the type (1.5) with homoge-
neous normal trace (1.3) in bounded simply connected domains of R3. In Section 2
we show a new Poincaré-Friedrichs inequality for p > 6

5 , extending a well-known
property for p = 2, for vector functions with curl in Lp(Ω) and with null divergence
and null normal trace.

In Section 3 we develop the well-posed variational theory in two applicable direc-
tions: a strongly continuous dependence result and the limit variational inequality
problem with bounded curl when the power of the nonlinearity n→∞. The station-
ary electromagnetic induction heating problem (1.5)-(1.6) is formulated and solved,
in Section 4, as a coupled system for the cases p > 6

5 and q > 5
3 .
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Finally, in Section 5, we solve the quasi-variational inequality (1.9)-(1.10), by
extending a continuous dependence result of Mosco type (see also Ref. 2) for convex
sets of bounded curl and generalizing an existence result of Kunze-Rodrigues17 in
the scalar case.

2. The variational approach

2.1. Weak formulation of the model problem

In this section we consider an abstract problem associated with (1.5), for a given
temperature, with the boundary conditions (1.3),

∇×(a(x,∇×h)) = f in Ω, (2.1a)

∇·h = 0 in Ω, (2.1b)

a(x,∇×h)× n = g on Γ, (2.1c)

h · n = 0 on Γ, (2.1d)

where a : Ω× R3 −→ R3 is a Carathéodory function satisfying the structural con-
ditions

a(x,u) · u ≥ a∗|u|p, (2.2a)

|a(x,u)| ≤ a∗|u|p−1, (2.2b)(
a(x,u)− a(x,v)

)
· (u− v

)
> 0, if u 6= v, (2.2c)

for given constants a∗, a∗ > 0, for all u, v ∈ R3 and a.e. x ∈ Ω.
The variational approach of this problem leads to introduce

W
p(Ω) =

{
v ∈W 1,p(Ω) : ∇·v = 0 ,v · n|Γ = 0

}
, 1 < p <∞, (2.3)

which is a closed subspace of W 1,p(Ω). Here W 1,p(Ω) = W 1,p(Ω)3 denotes the
usual Sobolev space, where the following Green-type formula∫

Ω

∇×v ·ϕ−
∫

Ω

v · ∇×ϕ =
∫

Γ

v × n ·ϕ ∀ϕ ∈W 1,p′(Ω) (2.4)

holds with v × n|Γ ∈W
− 1

p ,p(Γ) in the sense of traces (see Refs. 13 and 23).
From (2.1) we are then naturally lead to the weak formulation of the model

problem: given f ∈ Lp
′
(Ω) and g ∈ Lp

′
(Γ), find h ∈Wp(Ω) such that∫

Ω

a(x,∇×h) · ∇×ϕ =
∫

Ω

f ·ϕ+
∫

Γ

g ·ϕ ∀ϕ ∈Wp(Ω). (2.5)

2.2. The space Wp(Ω)

In this section we characterize the spaceWp(Ω) and we prove an essential extension,
for p > 6

5 , of the Poincaré-Friedrichs inequality for the well-known case p = 2. The
following assumption stands in the rest of this work:

Ω is a bounded domain in R3, simply connected, with a C 2 boundary Γ. (2.6)
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Here we also define the W 1,p-norm of v, as usually, by the sum of the Lp-norms
of v and ∇v.

Theorem 2.1. In Wp(Ω), for Ω satisfying (2.6) and p > 6
5 , the semi-norm

‖∇×·‖Lp(Ω) is a norm, denoted by ‖ · ‖
Wp(Ω), equivalent to the W 1,p-norm.

First we introduce the functional spaces

W p(∇·,Ω) =
{
v ∈ Lp(Ω) : ∇·v ∈ Lp(Ω)

}
and

W p(∇×,Ω) =
{
v ∈ Lp(Ω) : ∇×v ∈ Lp(Ω)

}
,

endowed with the graph norms, in particular

‖v‖W p(∇×,Ω) = ‖v‖Lp(Ω) + ‖∇×v‖Lp(Ω) .

W p
0(∇·,Ω) and W p

0(∇×,Ω) represent the closure of D(Ω)3 in the spaces
W p(∇·,Ω) and W p(∇×,Ω), respectively. All these spaces are separable reflexive
Banach spaces when 1 < p <∞ and D(Ω̄)3 is dense inW p(∇·,Ω) andW p(∇×,Ω),
where Green formulas, such as (2.4), hold, being the boundary integrals interpreted
in the duality between W

1
p ,p

′
(Γ) and W− 1

p ,p(Γ) (see, for instance, Refs. 13 and 23).
The following characterizations

W p
0(∇·,Ω) =

{
v ∈W p(∇·,Ω) : v · n|Γ = 0

}
and

W p
0(∇×,Ω) =

{
v ∈W p(∇×,Ω) : v × n|Γ = 0

}
are also well-known.

Lemma 2.1. With the same assumptions of the Theorem 2.1, inWp(Ω) the norm

||| · ||| = ‖ · ‖Lp∨2(Ω) + ‖∇×·‖Lp(Ω)

is equivalent to the W 1,p-norm. Here p ∨ 2 = max{p, 2}.

Proof. We prove first that

W
p(Ω) = L2(Ω) ∩W p(∇×,Ω) ∩W p

0(∇·, 0,Ω).

where W p
0(∇·, 0,Ω) =

{
v ∈W p

0(∇·,Ω) : ∇·v = 0
}
.

Observing that for p ≥ 6
5 we have W 1,p(Ω) ↪→ L2(Ω), we need to prove that a

divergence-free function v ∈ L2(Ω) ∩ Lp(Ω) = L2∨p(Ω), having curl in Lp(Ω) and
v · n|Γ = 0, has gradient in Lp(Ω).

Considering

V =
{
ξ ∈H1

0(Ω) : ∇·ξ = 0
}
,
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the homogeneous Dirichlet problem for

−∆ξ = ∇×(∇×ξ) = ∇×v in Ω (2.7)

has a unique solution ξ ∈ V . Indeed, in the Hilbert space V , the norms ‖ · ‖H1(Ω)

and ‖∇×·‖L2(Ω) are equivalent (see Ref. 13, p. 209) and, since ∇×v ∈ Lp(Ω) and
Lp(Ω) ↪→ H−1(Ω) if p ≥ 6

5 , the existence of solution to the weak formulation of
(2.7) ∫

Ω

∇×ξ · ∇×ϕ =
∫

Ω

∇×v ·ϕ ∀ϕ ∈ V ,

follows from standard results. By elliptic regularity we may conclude that ξ ∈
H1

0(Ω) ∩W 2,p(Ω) (see Ref. 16).
Let us consider the function ψ = ∇×ξ−v. By the properties of v and (2.7) this

function is such that

ψ ∈ Lp(Ω) ∩L2(Ω),

∇·ψ = ∇·(∇×ξ)−∇·v = 0 in Ω,

∇×ψ = ∇×(∇×ξ)−∇×v = 0 in Ω,

ψ · n = (∇×ξ) · n− v · n = 0 on Γ,

this last equation being a consequence of ξ = 0 on Γ, which implies that ∇×ξ|Γ is
orthogonal to n, by applying Stokes theorem over Γ.

So, ψ ∈ H(Ω) =
{
u ∈ L2(Ω) : ∇×u = 0, ∇·u = 0, u · n|Γ = 0

}
. As we

have that dim H(Ω) = 0 (see Ref. 13, p. 219), we conclude that ψ = 0, and so
v = ∇×ξ ∈W 1,p(Ω).

To prove the equivalence of the norms ‖ · ‖W 1,p(Ω) and ‖ · ‖Lp∨2(Ω)+‖∇×·‖Lp(Ω)

inWp(Ω), it is enough to observe that this space is a Banach space with both norms
and that the first norm is stronger than the second one.

For the proof of Theorem 2.1 we also need the following Lemma, which proof
can be found in Lions-Magenes,21 p. 171.

Lemma 2.2 (Peetre). Let E0, E1 and E2 be three Banach spaces and let

A1 : E0 −→ E1 and A2 : E0 −→ E2

be two linear continuous mappings with:

1. A2 is a compact mapping;
2. there exists a constant c > 0 such that

‖v‖E0
≤ c

(
‖A1v‖E1

+ ‖A2v‖E2

)
∀v ∈ E0. (2.8)

Then:

1. kerA1 has finite dimension and ImA1 is closed;
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2. there exists a constant C0 > 0 such that

inf
w∈kerA1

‖v + w‖E0
≤ C0 ‖A1v‖E1

.

Proof of Theorem 2.1: To see that the semi-norm ‖∇×·‖Lp(Ω) is a norm in
W

p(Ω) for p > 6
5 , we define the linear continuous operators

A1 :Wp(Ω) −→ Lp(Ω)
v 7−→ ∇×v

and

A2 :Wp(Ω) −→ L2(Ω) ∩Lp(Ω),
v 7−→ v

noting that A2 is compact.
Since

|||v||| = ‖A1v‖Lp(Ω) + ‖A2v‖Lp∨2(Ω) ,

the inequality (2.8) is verified, so by Peetre lemma,

∃C0 > 0 inf
u∈kerA1

|||u+ v||| ≤ C0 ‖A1v‖Lp(Ω) . (2.9)

Observing that kerA1 ⊆ H(Ω) = 0, the relation (2.9) is equivalent to

∃C0 > 0 |||v||| ≤ C0 ‖∇×v‖Lp(Ω) ,

proving that the semi-norm ‖∇×·‖Lp(Ω) is a norm in Wp(Ω), equivalent to the
W 1,p-norm.

Corollary 2.1. Let Ω satisfy (2.6) and p > 6
5 . Given h ∈ Wp(Ω), its trace,

h|Γ ∈W
1
p′ ,p(Γ), is such that∥∥h|Γ∥∥

W
1
p′ ,p

(Γ)
≤ C ‖h‖

Wp(Ω) (2.10)

for some C = C(Ω, p) > 0.

Proof. This result is an immediate consequence of the continuity of the trace map
from W 1,p(Ω) onto W

1
p′ ,p(Γ) and of the equivalence, inWp(Ω), between the W 1,p

andWp norms.

2.3. Solution of the variational problem

We can now show the existence and uniqueness of solution of the variational for-
mulation (2.5) of the problem (2.1).

Proposition 2.1. For Ω satisfying (2.6) and p > 6
5 , the problem (2.5) has a unique

solution.
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Proof. Wp(Ω) is a separable reflexive Banach space. Considering the operator
A :Wp(Ω) −→Wp(Ω)′ such that

〈Ah,ϕ〉 =
∫

Ω

a(x,∇×h) · ∇×ϕ ∀h, ϕ ∈Wp(Ω),

the structural properties (2.2) allow us to conclude that A is a bounded, hemicon-
tinuous, monotone and coercive operator.

Defining L ∈Wp(Ω)′ such that

〈L,ϕ〉 =
∫

Ω

f ·ϕ+
∫

Γ

g ·ϕ ∀ϕ ∈Wp(Ω),

a well-known existence theorem to monotone operators (Ref. 20) guarantees the
existence of solution in Wp(Ω) to the problem Ah = L. The uniqueness results
directly from the strict monotonicity (2.2c) of the operator A.

Remark 2.1. For the existence of solution of the strong boundary value problem
(2.1) with given data (f , g), as we observed in the introduction, it is necessary that
f is divergence-free and g is tangential on Γ. However the weak formulation (2.5) of
the problem (2.1) has a unique solution with no restrictions on the data, that can
be taken more generally as an element L ∈Wp(Ω)′ in the right-hand side of (2.5).
Usually, a solution of a weak problem is also solution of the strong one, as long as
it has enough regularity. The situation here is different. In fact, the compatibility
condition (1.7) is a necessary condition for the existence of solution of (2.1) (see
Ref. 23, p. 143) but not for the existence of a weak solution.

Remark 2.2. Let us observe that, given f ∈ Lp
′
(Ω), using the Helmholtz decom-

position (see Ref. 29), we may write f = f0 +∇ξ, where f0 is divergence-free and,
given g ∈ Lp

′
(Γ), we may write g = gT + gN , where gT and gN are, respectively,

the tangential and the normal components of g.
Since the set of test functionsWp(Ω) only takes into account f0 (the divergence-

free component of f) and gT (the tangential component of g), the problems (2.5)
with data (f , g) and (f0, gT ) are the same and both correspond to the weak for-
mulation of problem (2.1) with data (f0, gT ).

Although, because of the structure of the test functions in the weak formulation
of the problem, in order to go back to the strong formulation, we have to impose
the compatibility condition (1.7). In fact, if h is a regular solution of (2.5) with
data (f , g), if we set a = a(x,∇×h), integrating by parts, we have∫

Ω

(
∇×a− f0

)
·ϕ+

∫
Γ

(
a× n− gT

)
·ϕ = 0 ∀ϕ ∈Wp(Ω),

so, a× n = gT on Γ. Noticing that the function ζ = ∇×a− f0 is divergence-free
and, on the other hand, since a× n|Γ is tangential, we have, on Γ

ζ · n =
(
∇×a · n

)
− f0 · n = ∇Γ ·

(
a× n

)
− f0 · n = ∇Γ · g − f0 · n = 0,

as long as the compatibility condition (1.7) is satisfied. This implies that ζ is zero
and (2.1a) is satisfied.
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3. Properties of the variational solution

3.1. A continuous dependence result

Consider sequences of functions fn ∈ Lp
′
(Ω), gn ∈ Lp

′
(Γ) and a sequence of

Carathéodory functions an satisfying, together with a, the properties (2.2) with
the same a∗ and a∗, where we replace (2.2c) by

(
a(x,u)− a(x,v)

)
· (u− v) ≥


a∗|u− v|p, p ≥ 2,

a∗(|u|+ |v|)p−2|u− v|2, 1 < p < 2.
(3.1)

Let, for each n ∈ N, hn ∈Wp(Ω) be the solution of the problem∫
Ω

an(x,∇×hn) · ∇×ϕ =
∫

Ω

fn ·ϕ+
∫

Γ

gn ·ϕ ∀ϕ ∈Wp(Ω). (3.2)

Theorem 3.1. If fn −−−−→
n

f in Lp
′
(Ω), gn −−−−→

n
g in Lp

′
(Γ) and

an −−−−→
n

a a.e. in Ω × R3, then the sequence of the solutions of the problems

(3.2), {hn}n, converges in Wp(Ω) to h, solution of the problem (2.5).

Proof. Replacing in (2.5) and (3.2) the test function ϕ by hn − h we have that∫
Ω

(
an(x,∇×hn)− a(x,∇×h)

)
· ∇×(hn − h) =∫
Ω

(fn − f) · (hn − h) +
∫

Γ

(gn − g) · (hn − h)

and so h and hn satisfy the relation∫
Ω

(
an(x,∇×hn)− an(x,∇×h)

)
· ∇×(hn − h)+∫

Ω

(
an(x,∇×h)− a(x,∇×h)

)
· ∇×(hn − h) =∫

Ω

(fn − f) · (hn − h) +
∫

Γ

(gn − g) · (hn − h). (3.3)

Notice that, given f ∈ Lp
′
(Ω), g ∈ Lp

′
(Γ) and h ∈Wp(Ω) there are constants

C1 and C2 such that∫
Ω

f · h ≤ ‖f‖Lp′ (Ω) ‖h‖Lp(Ω) ≤ C1 ‖f‖Lp′ (Ω) ‖h‖Wp(Ω)

and ∫
Γ

g · h ≤ ‖g‖Lp′ (Γ) ‖h‖Lp(Γ) ≤ C2 ‖g‖Lp′ (Γ) ‖h‖Wp(Ω) .
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Using the property (3.1), in the case p ≥ 2, from the relation (3.3) we obtain

a∗ ‖∇×(hn − h)‖pLp(Ω) ≤

‖an(x,∇×h)− a(x,∇×h)‖Lp′ (Ω) ‖∇×(hn − h)‖Lp(Ω) +

C1 ‖fn − f‖Lp′ (Ω) ‖hn − h‖Wp(Ω) + C2 ‖gn − g‖Lp′ (Γ) ‖hn − h‖Wp(Ω)

and so

a∗ ‖∇×(hn − h)‖p−1
Lp(Ω) ≤

‖an(x,∇×h)− a(x,∇×h)‖Lp′ (Ω) +

C1 ‖fn − f‖Lp′ (Ω) + C2 ‖gn − g‖Lp′ (Γ) . (3.4)

In the case 6
5 < p < 2 using the property (3.1), from (3.3) we obtain

a∗

∫
Ω

(
|∇×hn|+ |∇×h|

)p−2∣∣∇×(hn − h)
∣∣2 ≤

‖an(x,∇×h)− a(x,∇×h)‖Lp′ (Ω) ‖∇×(hn − h)‖Lp(Ω) +

C1 ‖fn − f‖Lp′ (Ω) ‖hn − h‖Wp(Ω) + C2 ‖gn − g‖Lp′ (Γ) ‖hn − h‖Wp(Ω) . (3.5)

Using a reverse Hölder inequality with 0 < p
2 < 1 and p

p−2 < 0, we obtain

a∗

∫
Ω

(
|∇×hn|+ |∇×h|

)p−2∣∣∇×(hn − h)
∣∣2 ≥

a∗

(
2p−1

(
‖∇×hn‖pLp(Ω) + ‖∇×h‖pLp(Ω)

)) p−2
p

‖∇×(hn − h)‖2
Lp(Ω) . (3.6)

We have, from (2.2a), that for n ∈ N

a∗ ‖∇×hn‖pLp(Ω) =
∫

Ω

a∗|∇×hn|p ≤
∫

Ω

a(x,∇×hn) · ∇×hn =∫
Ω

fn · hn +
∫

Γ

gn · hn ≤
(
C1 ‖fn‖Lp′ (Ω) + C2 ‖gn‖Lp′ (Γ)

)
‖∇×hn‖Lp(Ω) .

Using the convergences of fn and gn to f and g respectively, there exists a
positive constant C such that

a∗ ‖∇×hn‖p−1
Lp(Ω) ≤ C.

Going back to the inequality (3.6), this last estimate allow us to write

a∗

∫
Ω

(
|∇×hn|+ |∇×h|

)p−2∣∣∇×(hn − h)
∣∣2 ≥ C3 ‖∇×(hn − h)‖2

Lp(Ω)

for some positive constant C3 independent of n.
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Using this last inequality, from (3.5) we have

C3 ‖∇×(hn − h)‖Lp(Ω) ≤

‖an(x,∇×h)− a(x,∇×h)‖Lp′ (Ω) +

C1 ‖fn − f‖Lp′ (Ω) + C2 ‖gn − g‖Lp′ (Γ) . (3.7)

We can write both relations (3.4) and (3.7) in the following inequality

‖∇×(hn − h)‖(p−1)∨1
Lp(Ω) ≤

C4

(
‖an(x,∇×h)− a(x,∇×h)‖Lp′ (Ω) +

‖fn − f‖Lp′ (Ω) + ‖gn − g‖Lp′ (Γ)

)
(3.8)

valid for p > 6
5 , where C4 is a positive constant independent of n.

Remark 3.1. If

an(x,u) = νn(x)|u|p−2u and a(x,u) = ν(x)|u|p−2u

from (3.8) we have a stronger result

‖hn − h‖(p−1)∨1
Wp(Ω) ≤ Cp

(
‖νn − ν‖L∞(Ω) + ‖fn − f‖Lp′ (Ω) + ‖gn − g‖Lp′ (Γ)

)
.

3.2. A limit problem when n → ∞

In this section we assume that 6
5 < p < n, p′ and n′ are respectively the conjugate

exponents of p and n, f ∈ Lp
′
(Ω) and g ∈ Lp

′
(Γ). For simplicity we denote

∇p×u = |∇×u|p−2∇×u. (3.9)

Since the operator An :Wn(Ω) −→Wn(Ω)′ defined by

〈Anu,v〉 =
∫

Ω

∇n×u · ∇×v +
∫

Ω

δ(x,∇×u) · ∇×v,

where δ(x,u) satisfying (2.2 a,b) and (3.1) with nonnegative constants δ∗ and δ∗

(in particular, we may have δ∗ = δ∗ = 0), is bounded, hemicontinuous, strictly
monotone and coercive, the problem∫

Ω

∇n×hn ·∇×ϕ+
∫

Ω

δ(x,∇×hn)·∇×ϕ =
∫

Ω

f ·ϕ+
∫

Γ

g ·ϕ ∀ϕ ∈Wn(Ω), (3.10)

has a unique solution hn.
We are going to characterize the limit of {hn}n, when n→∞. If we take ϕ = hn

in (3.10) we obtain∫
Ω

|∇×hn|n +
∫

Ω

δ(x,∇×hn) · ∇×hn =
∫

Ω

f · hn +
∫

Γ

g · hn
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and so there exists a positive constant C1, independent of n, such that∫
Ω

|∇×hn|n + δ∗

∫
Ω

|∇×hn|p ≤

C1

(
‖f‖Ln′ (Ω) ‖hn‖Ln(Ω) + ‖g‖Ln′ (Γ) ‖hn‖W

1
n′ ,n

(Γ)

)
. (3.11)

Using the equivalence between the Wn and W 1,n norms and the inequality of
Corollary 2.1, we obtain the a priori estimate

‖∇×hn‖Ln(Ω) ≤ C2, C2 = C2

(
‖f‖Lp′ (Ω), ‖g‖Lp′ (Γ)

)
. (3.12)

Defining the convex set K∞ =
{
v ∈W∞(Ω) : |∇×v| ≤ 1 a.e. in Ω

}
, where in

(2.3), letting p = ∞, we obtain the definition ofW∞(Ω), we consider the following
variational inequality.

To find h∞ ∈ K∞ such that∫
Ω

δ(x,∇×h∞) · ∇×(ϕ− h∞) ≥
∫

Ω

f · (ϕ− h∞) +
∫

Γ

g · (ϕ− h∞)

∀ϕ ∈ K∞. (3.13)

Theorem 3.2. Assuming that the operator δ satisfies (2.2 a,b), with nonnegative
δ∗ and δ∗, and (3.1), let hn denote the solution of (3.10). Then we have, at least
for subsequences,

hn −−⇀ h∞ in Wp(Ω)-weak, (3.14)

where h∞ is a solution of (3.13).
If δ∗ > 0, the whole sequence converges to the unique limit.

Proof. As the sequence {hn}n is bounded in Wp(Ω), there exists a function h∞
such that at least for a subsequence, still denoted by {hn}n, we have

hn −−⇀ h∞ weakly inWp(Ω).

Due to the equivalence between the norm of Wp(Ω) and of W 1,p(Ω), we may
say that

∇×hn −−⇀ ∇×h∞ in Lp(Ω) - weak,

hn −−→ h∞ in Lp(Ω) - strong.

Given p < q < n we have, using the estimate (3.12),

‖∇×hn‖Lq(Ω) ≤ |Ω|
1
q−

1
n ‖∇×hn‖Ln(Ω) ≤ |Ω|

1
q−

1
nC

1
n
2

and so

‖∇×h∞‖Lq(Ω) ≤ lim inf
n

‖∇×hn‖Lq(Ω) ≤ |Ω|
1
q ∀ q > p.

As ∇×h∞ ∈ L∞(Ω) and ‖∇×h∞‖L∞(Ω) ≤ 1, we have that h∞ belongs to the
convex set K∞.
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Choosing, in (3.10), ϕ = v−hn ∈W∞(Ω) as test function, by monotonicity we
have∫

Ω

∇n×v · ∇×(v − hn) +
∫

Ω

δ(x,∇×v) · ∇×(v − hn) ≥∫
Ω

f · (v − hn) +
∫

Γ

g · (v − hn)

and imposing that ‖∇×v‖L∞(Ω) < 1, letting n→∞, we obtain that h∞ satisfies∫
Ω

δ(x,∇×v) · ∇×(v − h∞) ≥
∫

Ω

f · (v − h∞) +
∫

Γ

g · (v − h∞), (3.15)

for any v ∈ K∞ such that ‖∇×v‖L∞(Ω) < 1 and, by density, also for any v ∈ K∞.
Choosing now, in (3.15), v = λϕ + (1 − λ)h∞, where 0 < λ ≤ 1 and ϕ ∈ K∞

is arbitrary, we easily see, after letting λ→ 0, that h∞ satisfies (3.13).

Remark 3.2. Notice that the above argument holds even in the case where δ = 0.
In this degenerate case, we have shown the existence of h0

∞ ∈ K∞ such that∫
Ω

f · (ϕ− h0
∞) +

∫
Γ

g · (ϕ− h0
∞) ≤ 0 ∀ϕ ∈ K∞.

4. A stationary electromagnetic induction heating problem

4.1. Weak formulation of the coupled system

Considering the coupled problem (1.5)-(1.6) and using the notation (3.9) for the
operator p-curl, and, similarly,

∇qθ = |∇θ|q−2∇θ,

we introduce the weak formulation of the stationary electromagnetic induction heat-
ing problem.

To find (h, θ) ∈Wp(Ω) ×W 1,r
0 (Ω) (for a certain r : 1 ∨ (q − 1) ≤ r ≤ q) such

that ∫
Ω

ν(θ)∇p×h · ∇×ϕ =
∫

Ω

f ·ϕ+
∫

Γ

g ·ϕ ∀ϕ ∈Wp(Ω), (4.1a)∫
Ω

k(θ)∇qθ · ∇ξ =
∫

Ω

ν(θ)|∇×h|pξ ∀ξ ∈W 1,∞
0 (Ω). (4.1b)

For technical reasons we shall restrict ourselves to the case p > 6
5 and q > 5

3 .
Here we assume that ν, k : R −→ R are continuous functions such that

0 < ν∗ ≤ ν(θ) ≤ ν∗ and 0 < k∗ ≤ k(θ) ≤ k∗ ∀θ ∈ R. (4.2)

Theorem 4.1. Letting p > 6
5 and q > 5

3 , ν, k : R −→ R satisfy (4.2) and f ∈
Lp

′
(Ω) and g ∈ Lp

′
(Γ), the problem (4.1) has a solution with r = q if q > 3 and

1 < r < 3
2 (q − 1) if 5

3 < q ≤ 3.
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To solve this problem, we consider a family of approximated problems by trun-
cation.

Let us define the truncation operator as follows: given M > 0 and v a real
function,

τM (v) = (v ∧M) ∨ (−M) =


−M if v ≤ −M,

v if −M < v < M,

M if v ≥M.

For M > 0 consider the approximated problem of (4.1) which consists of finding
(hM , θM ) ∈Wp(Ω)×W 1,q

0 (Ω) such that∫
Ω

ν(θM )∇p×hM · ∇×ϕ =
∫

Ω

f ·ϕ+
∫

Γ

g ·ϕ ∀ϕ ∈Wp(Ω), (4.3a)∫
Ω

k(θM )∇qθM · ∇ξ =
∫

Ω

τM
(
ν(θM )|∇×hM |p

)
ξ ∀ξ ∈W 1,q

0 (Ω). (4.3b)

Proposition 4.1. For any p > 6
5 and q > 1 the problem (4.3) has a solution.

Remark 4.1. In fact, the function
∣∣τM(

ν(θM )|∇×hM |p
)∣∣ is a priori bounded by

M , and a well-known classical global estimate for θM (see Ref. 16, Section 10.5, for
instance) yields

‖θM‖L∞(Ω) ≤ CM,

where C is a positive constant depending only on Ω, q and k∗. So, for the existence
result of Proposition 4.1, the upper bounds ν∗ and k∗ in the assumption (4.2) are
not necessary.

Remark 4.2. More generally, we can consider a coupled problem for (h, θ) ∈
W

p(Ω)×W 1,r
0 (Ω) (where, as before, 1 ∨ (q − 1) ≤ r ≤ q) of the form∫

Ω

ap(x, θ,h,∇×h) · ∇×ϕ = 〈L,ϕ〉 ∀ϕ ∈Wp(Ω),∫
Ω

bq(x, θ,h,∇θ) · ∇ξ =
∫

Ω

(
ap(x, θ,h,∇×h) · ∇×h

)
ξ ∀ ξ ∈W 1,∞

0 (Ω),

for a general L ∈Wp(Ω)′ and quasi-linear Carathéodory functions

ap, bq : Ω× R× R3 × R3 −→ R3

satisfying the structural conditions (2.2), respectively for p > 6
5 and q > 5

3 , uni-
formly in the variables (x, θ,h).

Remark 4.3. The case 1 < q ≤ 5
3 can still be considered in the framework of

entropy solutions introduced by Bénilan et al.4 It consists in replacing (4.1b) by∫
Ω

k(θ)∇qθ · ∇τs(θ − ξ) =
∫

Ω

ν(θ)|∇×h|pτs(θ − ξ) ∀ ξ ∈W 1,∞
0 (Ω) ∀ s > 0,

and the entropy solution is such that τs(θ) ∈W 1,q
0 (Ω), for every s > 0. A continuous

dependence result for entropy solutions (see Ref. 19) and their truncates allows to
extend the existence result to this case.
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4.2. Existence of weak solutions

Proof of Proposition 4.1: The proof will be done using the Schauder fixed point
theorem.

Given R > 0, we consider DR =
{
γ ∈ Lq(Ω) : ‖γ‖Lq(Ω) ≤ R

}
and, fixing

γ ∈ DR, we solve the auxiliary problem∫
Ω

ν(γ)∇p×h · ∇×ϕ =
∫

Ω

f ·ϕ+
∫

Γ

g ·ϕ ∀ϕ ∈Wp(Ω). (4.4)

This problem is exactly the problem (2.5), for which we proved the existence
of unique solution in the Proposition 2.1. Calling the solution h(γ) and using it as
test function in (4.4) and recalling (4.2), there exists C > 0, depending only on ν∗,
p, Ω, f and g, such that

‖∇×h(γ)‖Lp(Ω) ≤ C. (4.5)

Observe that, using the continuous dependence result of Theorem 3.1, we have
that the function S1 : Lq(Ω) −→Wp(Ω) defined by S1(γ) = h(γ) is continuous for
the strong topologies.

Considering now γ and S1(γ) = h(γ) fixed, we solve the problem∫
Ω

k(γ)∇qθ · ∇ξ =
∫

Ω

τM
(
ν(γ)|∇×h(γ)|p

)
ξ ∀ξ ∈W 1,q

0 (Ω). (4.6)

This elliptic problem has a unique solution θ(γ) = θ(γ,h(γ)) ∈ W 1,q
0 (Ω) (see

Ref. 20).
Using θ(γ) as a test function in (4.6), we get

k∗

∫
Ω

|∇θ(γ)|q ≤
∥∥τM(

ν(γ)|∇×h(γ)|p
)∥∥
Lq′ (Ω)

‖θ(γ)‖Lq(Ω)

and applying the Poincaré inequality,

‖θ(γ)‖W 1,q
0 (Ω) ≤ CM , (4.7)

where CM > 0 depends on M and Ω.
It is now easy to see that the function

S2 : Lq(Ω) −→Wp(Ω) −→ W 1,q
0 (Ω),

γ 7−→ h(γ) 7−→ θ(γ,h(γ))

is continuous. Indeed if {γn}n is a sequence in Lq(Ω) such that γn −−−−→
n

γ, then

by Theorem 3.1, |∇×h(γn)|p −−−−→
n

|∇×h(γ)|p in L1(Ω).

Arguing as in the proof of Theorem 3.1 for the Dirichlet problem (4.3b), which
satisfies the structural assumption (3.1) with q > 1, as in Remark 3.1, we easily
obtain the estimate∥∥∇(

θ(γn)− θ(γ)
)∥∥(q−1)∨1

Lq(Ω)
≤ C ‖k(γ)− k(γn)‖L∞(Ω) +∥∥τM(

ν(γ)|∇×h(γn)|p
)
− τM

(
ν(γ)|∇×h(γ)|p

)∥∥
Lq′ (Ω)

, (4.8)
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so θ(γn) −−−−→
n

θ(γ) in W 1,q
0 (Ω) and the continuity of S2 follows.

Recalling the compact imbedding of W 1,q
0 (Ω) into Lq(Ω) the Schauder fixed

point theorem in Lq(Ω) yields a solution to (4.3) with hM = h(θM ).

Proof of Theorem 4.1: For q > 3, by the Sobolev imbedding W 1,q
0 (Ω) ⊂ C0(Ω̄),

repeating the proof of the Proposition 4.1 with (4.4) and (4.6) without the trun-
cation τM , we obtain the a priori estimate (4.5) and (4.7) with a constant C ′ > 0
depending only on Ω, on C of (4.5) and on the constants k∗ and ν∗ in (4.2). Hence
the same fixed point argument yields directly a solution (h(θ), θ) to (4.1).

For 5
3 < q ≤ 3, we consider solutions (hM , θM ) of (4.3) and we note that∥∥τM(
ν(γ)|∇×hM |p

)∥∥
L1(Ω)

≤ ‖ν(γ)|∇×hM |p‖L1(Ω) ≤

ν∗ ‖∇×hM‖pLp(Ω) ≤ C∗, (4.9)

where C∗ > 0 is a constant independent of M .
By the estimates of Boccardo-Gallouët,6 we have for 1 ≤ r < 3

2 (q − 1) the a
priori estimate

‖θM‖W 1,r
0 (Ω) ≤ Cr,

where Cr > 0 is a constant also independent of M but depending on C∗ of (4.9)
and on the constants of (4.2).

Then, by compactness, at least for a subsequence M →∞ we may suppose

hM −−→ h in Lp(Ω), (4.10a)

∇×hM −−⇀ ∇×h in Lp(Ω)-weak, (4.10b)

θM −−→ θ in Lr(Ω), (4.10c)

∇θM −−⇀ ∇θ in Lr(Ω)-weak (4.10d)

and, using the assumption (4.2), also

ν(θM ) −−→ ν(θ) in Ls(Ω) ∀ 1 < s <∞, (4.10f)

ν(θM )∇p×hM −−⇀ λ in Lp
′
(Ω)-weak, (4.10g)

since ‖ν(θM )∇p×hM‖Lp′ (Ω) ≤ ν∗ ‖∇×hM‖p−1
Lp(Ω) ≤ C ′′, where C ′′ does not depend

on M by (4.5).
From (4.3a) and (4.10g) we see that h solves (4.1a) if we show∫

Ω

λ · ∇×ϕ =
∫

Ω

ν(θ)∇p×h · ∇×ϕ ∀ϕ ∈Wp(Ω), (4.11)

which can be done by an adaptation of Minty’s lemma (see Ref. 20).
Indeed, on one hand, letting M →∞ in (4.3a), we obtain first∫

Ω

λ · ∇×ϕ =
∫

Ω

f ·ϕ+
∫

Γ

g ·ϕ ∀ϕ ∈Wp(Ω)
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and, noting that h ∈Wp(Ω), also

lim
M

∫
Ω

ν(θM )∇p×hM · ∇×hM = lim
M

(∫
Ω

f · hM +
∫

Γ

g · hM
)

=∫
Ω

f · h+
∫

Γ

g · h =
∫

Ω

λ · ∇×h. (4.12)

By monotonicity, we have∫
Ω

ν(θM )∇p×hM · ∇×(hM − v)−
∫

Ω

ν(θ)∇p×v · ∇×(hM − v) ≥∫
Ω

(
ν(θM )− ν(θ)

)
∇p×v · ∇×(hM − v)

and, letting M →∞, using (4.12), we obtain∫
Ω

(
λ− ν(θ)∇p×v

)
· ∇×(h− v) ≥ 0 ∀v ∈Wp(Ω). (4.13)

Choosing v = h− αϕ with ϕ ∈Wp(Ω), dividing by α > 0 and letting α → 0,
we obtain from (4.13)∫

Ω

(
λ− ν(θ)∇p×h

)
· ∇×ϕ ≥ 0 ∀ϕ ∈Wp(Ω),

which implies (4.11).
Taking ϕ = hM − h in (4.1a) and (4.3a) we obtain∫
Ω

ν(θM ) (∇p×hM −∇p×h) · ∇×(hM − h) =∫
Ω

(ν(θ)− ν(θM ))∇p×h · ∇×(hM − h). (4.14)

By Lebesgue theorem and (4.10f) we have
(
ν(θ)− ν(θM )

)
∇p×h→ 0 in Lp

′
(Ω),

so the right-hand side of (4.14) tends to zero. The assumptions (4.2) imply that

∇×hM −−−−→
M

∇×h in Lp(Ω),

using, when p < 2, arguments similar to (3.6). By (4.10f), we have

ν(θM )|∇×hM |p −−−−→
M

ν(θ)|∇×h|p in L1(Ω)

and, consequently, also

τM
(
ν(θM )|∇×hM |p

)
−−−−→

M
ν(θ)|∇×h|p in L1(Ω).

Finally, in order to show that θ also solves (4.1b) we apply Lemma 1 of Boccardo-
Gallouët,7 which implies that {θM}M is compact in W 1,r

0 (Ω), for any 1 ≤ r <
3
2 (q − 1) and therefore we have

k(θM )∇qθM −−−−→
M

k(θ)∇qθ in Ls(Ω) ∀ 1 ≤ s < 3
2 .
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5. A stationary magnetization of a superconductor

5.1. The quasi-variational inequality

Similarly to the quasi-variational inequality (1.10) considered in the introduction,
and substituting the operator p-curl by the more general operator a, we are lead to
the following quasi-variational inequality,

h ∈ Kh =
{
v ∈Wp(Ω) : |∇×v| ≤ F (|h|) a.e. in Ω

}
∫

Ω

a(x,∇×h) · ∇×(v − h) ≥
∫

Ω

f · (v − h)+
∫

Γ

g · (v − h) ∀v ∈ Kh,

(5.1)

where the operator a satisfies the assumptions (2.2).

Theorem 5.1. Suppose that p > 6
5 , f ∈ Lp

′
(Ω), g ∈ Lp

′
(Γ) and F : [0,∞) −→ R

is continuous and there exists ν > 0 such that

F (s) ≥ ν > 0 ∀ s ≥ 0. (5.2)

If 6
5 < p ≤ 3 suppose, in addition, that there exists positive constants c0 and c1

such that

F (s) ≤ c0 + c1s
α ∀ s ≥ 0, (5.3)

where α ≥ 0 if p = 3 and 0 ≤ α ≤ p
3−p if 6

5 < p < 3.
Then the quasi-variational inequality (5.1) has a solution.

5.2. A continuous dependence result

We consider first the following variational inequality, defined for a given nonnegative
function ϕ ∈ L∞(Ω),

h ∈ Kϕ =
{
v ∈Wp(Ω) : |∇×v| ≤ F (ϕ) a.e. in Ω

}
∫

Ω

a(x,∇×h) · ∇×(v − h) ≥
∫

Ω

f · (v − h) +
∫

Γ

g · (v − h) ∀v ∈ Kϕ.

(5.4)

Lemma 5.1. Suppose we have a sequence {ϕn}n in L∞(Ω) such that ϕn −−−−→
n

ϕ

in L∞(Ω). Let F satisfy the assumption (5.2) and the operator a verify (2.2). If hn
and h denote the solution of the variational inequality (5.4) for given ϕn and ϕ,
respectively, then

hn −−−−→
n

h in Wp(Ω). (5.5)

Proof. We follow arguments similar to Ref. 2 by proving the Mosco convergence
of the family of convex sets Kϕn

to Kϕ.
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Given a sequence {vn}n belonging to Kϕn , we need to prove that if vn −−⇀
n

v

in Wp(Ω) then v ∈ Kϕ. It is enough to observe that, for vn belonging to Kϕn we
have |∇×vn| ≤ F (ϕn) and, since for any measurable ω ⊂ Ω,∫

ω

|∇×v| ≤ lim inf
n

∫
ω

|∇×vn| ≤ lim inf
n

∫
ω

F (ϕn) =
∫
ω

F (ϕ),

we get |∇×v| ≤ F (ϕ) a.e. in Ω.
Given v ∈ Kϕ we need to construct a sequence vn ∈ Kϕn such that

vn −−−−→
n

v inWp(Ω). Defining λn = ‖F (ϕn) − F (ϕ)‖L∞(Ω), we have

λn −−−−→
n

0. If we define vn = 1
µn
v, for µn = 1 + λn

ν then vn ∈Wp(Ω) and

|∇×vn| =
1
µn
|∇×v| ≤ 1

µn
F (ϕ) ≤ F (ϕn)

since

µn = 1 +
‖F (ϕn)− F (ϕ)‖L∞(Ω)

ν
≥ 1 +

F (ϕ)− F (ϕn)
F (ϕn)

=
F (ϕ)
F (ϕn)

,

which means that vn ∈ Kϕn
. Besides that

‖vn−v‖pWp(Ω) =
∫

Ω

|∇×(vn−v)|p =
∫

Ω

(
1− 1

µn

)p
|∇×v|p = λn

ν ‖v‖
p
Wp(Ω) −−−−→n 0

and so the Mosco convergence is proved. By a well-known result of Mosco (see
Ref. 25), we have (5.5).

5.3. Existence of solution of the quasi-variational inequality

Proof of Theorem 5.1: Following Ref. 17, we use a fixed point argument to prove
this theorem.

For a given ϕ ∈ C(Ω̄), we denote by hϕ the unique solution of the variational
inequality (5.4) with convex Kϕ and we define

S : C(Ω̄) −→Wp(Ω).

ϕ 7−→ hϕ

The continuity of S is a consequence of Lemma 5.1.
For p > 3, sinceWp(Ω) is a subspace ofW 1,p(Ω) and this last space is compactly

imbedded in C(Ω̄), we have

S̃ : C(Ω̄) →Wp(Ω) ↪→ C(Ω̄) → C(Ω̄)

ϕ 7→ hϕ 7→ hϕ 7→ |hϕ|

(5.6)

is a continuous and compact mapping.
Taking v = 0 in (5.4), we easily conclude that

‖hϕ‖Wp(Ω) ≤ C, (5.7)
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where C > 0 is independent of the ϕ but depends on a∗, Ω, f and g. Therefore,
there exists some R > 0, such that we have S̃

(
C(Ω̄)

)
⊆ DR, for DR =

{
ϕ ∈ C(Ω̄) :

‖ϕ‖C(Ω̄) ≤ R
}
. Applying the Schauder fixed point theorem, we get that S̃ has a

fixed point in DR, which solves (5.1).
To prove the case 6

5 < p ≤ 3, we apply Leray-Schauder principle (see e.g. Ref. 16,
p. 280). We start noticing that, given ϕ ∈ C(Ω̄), the solution hϕ of (5.4) belongs to
W

∞(Ω).
Besides that, given ψ ∈ C(Ω̄) and for any r > 3 we have

‖hϕ − hψ‖rWr(Ω) =
∫

Ω

|∇×(hϕ − hψ)|r ≤

2r−p−1

∫
Ω

(
|F (ϕ)|r−p + |F (ψ)|r−p

)∣∣∇×(hϕ − hψ)
∣∣p. (5.8)

So, using Lemma 5.1, the function S̃, defined as in (5.6), with Wp(Ω) replaced
byWr(Ω) is continuous and compact. To prove that S̃ has a fixed point it is enough
to prove that the set

A =
{
ϕ ∈ C(Ω̄) : ϕ = λS̃(ϕ) for some λ ∈ [0, 1]

}
is bounded independently of λ.

Given ϕ ∈ A, we have ϕ = λS̃(ϕ) = λ|hϕ|, for some λ ∈ [0, 1]. So

‖ϕ‖rC(Ω̄) = λr‖ |hϕ| ‖rC(Ω̄) ≤ c ‖hϕ‖rWr(Ω) = c

∫
Ω

|∇×hϕ|r ≤

c

∫
Ω

|F (ϕ)|r ≤ c

∫
Ω

(
c0 + c1|ϕ|α

)r = c̃0 + c̃1|λ|rα
∫

Ω

|hϕ|rα ≤

c̃0 + c2‖hϕ‖rαW 1,p(Ω) ≤ c̃0 + c3

(∫
Ω

|∇×hϕ|p
) rα

p

,

using the Sobolev inclusion W 1,p(Ω) ⊂ Lrα(Ω), which is verified by the assump-
tion (5.3) on α. The conclusion of the boundedeness of A follows then directly from
(5.7).
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