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Abstract

This paper presents the use of the feasibility and domi-
nance (FAD) rules in a electromagnetism-like mechanism
(EM) for the constraints handling in constrained global op-
timization. The FAD rules are easily incorporated in the EM
algorithm: when two points are compared at a time and a
selection is required, and when the direction of individual
forces between two points has to be decided. Numerical ex-
periments are presented, including a comparison with other
methods recently reported in the literature.

1. Introduction

The problem that is addressed in the paper considers
finding a global solution of a nonlinear optimization prob-
lem in the following form:

minimize f(x)
subject to g(x) ≤ 0

h(x) = 0
x ∈ Ω,

(1)

where f : IRn → IR, g : IRn → IRp and h : IRn → IRm are
nonlinear continuous functions and the closed set Ω is de-
fined by Ω = {x ∈ IRn : l ≤ x ≤ u}. We assume that the
objective function f is nonconvex and possesses many local
minima in the feasible region. This class of global optimiza-
tion problems is very important and frequently encountered
in engineering applications.

In the last decades, many algorithms have been proposed
to solve problem (1). Probably the most extensively used in
practice are stochastic-type algorithms.

In this paper, we are interested in the electromagnetism-
like (EM) algorithm proposed in [2]. This is a population-
based algorithm that simulates the electromagnetism theory
of physics by considering each point in the population as an

electrical charge. The method uses an attraction-repulsion
mechanism to move a population of points towards optima-
lity. The EM algorithm was specifically designed for solv-
ing optimization problems with bound constraints [1, 2, 3]

minimize f(x)
subject to x ∈ Ω.

(2)

We have been incorporating different strategies into the
EM algorithm in order to improve the accuracy of the re-
sults as well as the efficiency of the overall algorithm. A
pattern search method was introduced as a local search pro-
cedure and compared with the original EM algorithm [13].
A modification in the total force vector, that is used to move
each point in the population, was tested and compared with
other well-known heuristics such as the genetic algorithm,
the particle swarm optimization (PSO) and an hybrid evolu-
tionary algorithm (EA) [15]. The effect of different charge
calculations has been analyzed and compared with PSO, EA
and differential evolution methods [14].

In this work, the EM algorithm is extended for solving
constrained optimization problems like (1). A previous ex-
tension of the EM algorithm to constrained problems re-
lies on penalty and barrier methods [1]. In these methods,
constrained problems like (1) can be transformed into the
bound constrained form (2) so that the EM algorithm can
be directly applied. Tests therein reported involve a set of 5
problems selected from [7] and do not include a comparison
with other heuristics.

The extension herein presented for handling the cons-
traints g(x) ≤ 0 and h(x) = 0 considers a very simple
heuristic consisting of three rules, designated by feasibility
and dominance (FAD). The reader is referred to [10] and
[21] for details. In [10], FAD is used in an artificial bee
colony (ABC) optimization algorithm context, whereas in
[21], the authors incorporate the heuristic FAD into a parti-
cle evolutionary swarm optimization algorithm, therein de-
noted by PESO.
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The paper is organized as follows. In Section 2 we de-
scribe the EM algorithm. Section 3 resumes the FAD rules
for constraints handling and Section 4 presents the modifi-
cations that were introduced in the EM algorithm. Section
5 contains the results of all the numerical experiments, in-
cluding comparisons with other methods, and we conclude
the paper in Section 6.

2. The electromagnetism-like mechanism for
bound constrained problems

In this section we describe the EM algorithm for solving
problem (2). The algorithm starts with a population of ran-
domly generated points from the feasible set Ω. Analogous
to electromagnetism, each point is a charged particle that is
released to the space. The charge of each point is related to
the objective function value and determines the magnitude
of attraction of the point over the others in the population.
The better the objective function value, the higher the mag-
nitude of attraction. The charges are used to find a direction
for each point to move in subsequent iterations. The regions
that have higher attraction will signal other points to move
towards them. In addition, a repulsion mechanism is also
introduced to explore new regions for even better solutions.
A more detailed explanation follows.

First, a population of psize points is randomly generated
from the feasible region Ω. Let xi be the ith. point of the
population. Then each coordinate of a point is denoted as
xi

k (k = 1, . . . , n) and computed by

xi
k = lk + λ(uk − lk) (3)

where λ ∼ U(0, 1). All points are evaluated (the corres-
ponding objective function values are computed) and com-
pared in order to identify the best point, xbest.

Then the total force vector F i exerted on each point xi

by the other psize − 1 points is calculated by adding the
individual component forces, F i

j , between any pair of points
xi and xj of the population. According to the electromag-
netism theory, each individual force is inversely propor-
tional to the square of the distance between the two points
and directly proportional to the product of their charges.

Since the charge qi of point xi determines the power of
attraction or repulsion for that point, the charge is computed
according to the objective function value by

qi = exp

(
−n(f(xi) − f(xbest))∑psize

j=1 (f(xj) − f(xbest))

)
, i = 1, . . . , psize.

(4)
In this way the points that have better objective function va-
lues possess higher charges. This is a scaled distance of the
function value at xi to the function value of the best point in
the population. Different approaches for charge evaluations
may be adopted, see for example [5, 9, 14].

Since the charges (4) are all positive, the direction of a
force F i

j depends on the objective function values at x i and
xj . If f(xj) < f(xi) then the point xj attracts xi and the

direction of the force should be
−−→
xixj , whereas if f(xj) ≥

f(xi) then xj repels xi and the direction of the force is
−−→
xjxi.

Thus,

F i
j =

{
(xj − xi) qiqj

‖xj−xi‖3 if f(xj) < f(xi)

(xi − xj) qiqj

‖xj−xi‖3 otherwise
(5)

for j �= i. The total force vector F i exerted on each point
xi is then calculated by adding the individual component
forces, F i

j ,

F i =
psize∑
j �=i

F i
j , i = 1, . . . , psize.

Finally, this total force vector, F i, is used to move the
point xi in the direction of the force by a random step length
λ ∼ U(0, 1) as follows

xi
k =

⎧⎨
⎩ xi

k + λ
F i

k

‖F i‖ (uk − xi
k) if F i

k > 0

xi
k + λ

F i
k

‖F i‖ (xi
k − lk) otherwise

(6)

for each k (k = 1, 2, . . . , n) and for i = 1, . . . , psize and
i �= best. The best point, xbest, is not moved and is carried
out to the subsequent iteration.

We would like to remark that, as shown in (6), feasibility
is maintained by using the normalized total force vector and
scaling it with the allowed range of movement towards the
lower bound lk, or the upper bound uk, of the set Ω.

This EM algorithm was indeed designed to generate and
iteratively move points in the population that are feasible in
a bound constrained problem context.

Like other hybrid population-based algorithms, the EM
algorithm incorporates a local search procedure in order to
improve the accuracy of the solution. Although this local
refinement could be applied to all points in the population,
it has been shown that when the local procedure is applied
only to the best point, the accuracy of the results still im-
proves and the number of function evaluations is not ex-
tremely high [2].

Thus, the local refinement is applied coordinate by coor-
dinate to the best point in the population as described below.
Based on a parameter δ, the maximum feasible step length
smax = δ(maxk(uk − lk)) is computed. Then, for each co-
ordinate k, a random number λ between 0 and 1 is selected
as a step length and a new point is calculated along that di-
rection. The new point is compared with the old one. If an
improvement is observed, within nitmax iterations, the new
point replaces the best point and the search continues with
the next coordinate.



The EM algorithm for bound constrained optimization
can be described as shown below.

Algorithm 1 (EM algorithm)
Given l, u, psize, nfemax, nitmax, δ and set k = 1

step 1 Randomly generate a population of psize points in
the set Ω, using (3)

step 2 Evaluate the points and compare them to identify
the best point xbest

step 3 If termination criterion is satisfied, stop

step 4 Compute the charges of all points by using (4)

step 5 Compute the forces and decide their directions
based on function values using (5)

step 6 Compute the total force vector for each point in
the population

step 7 Move all points, except the best point, in the set Ω
according to (6). Evaluate the points and compare them to
identity the best point.

step 8 Perform a local search about the best point to look
for an improvement

step 9 set k = k + 1 and go to step 3.

At this moment there are two issues in the Algorithm
1 that need to be further explained. One involves the eva-
luation of the points, computing the corresponding objec-
tive function values, and their comparison, and the other is
concerned with the termination criterion.

We remark here that in step 2, step 5, step 7 and
step 8 of the algorithm, points in the population are com-
pared solely based on function values, in order to select the
best point. Thus, in the context of solving problem (2), the
rule that is operated is summarized as follows:

• when comparing two points at a time, select the one
with lowest function value.

Finally, the condition that is used to terminate the algo-
rithm considers a limit on the number of function evalua-
tions, nfemax.

3. Heuristic for handling constraints

Most stochastic methods for global optimization are de-
veloped primarily for unconstrained problems. Then they
are extended to constrained optimization problems by modi-
fying the original procedures or by using penalty functions.
The most common approach to solving constrained prob-
lems is based on penalty functions. Penalty terms are added
to the objective function to penalize constraints violation.

The penalty techniques transform the constrained problem
into an unconstrained problem by penalizing f when con-
straints are violated and then minimizing the penalty func-
tion using methods for unconstrained problems. There are
two main classes of penalty terms: i) a stationary penalty
term that uses fixed penalty parameters throughout the itera-
tive process and depends on constraints violation [1, 4, 12];
ii) non-stationary penalty term that changes dynamically
and depends on the iteration counter [11, 17]. Barrier meth-
ods use a similar framework although they require initial
feasible points and maintain feasibility along the iterative
process [1]. Recently, filled function methods have also
been used for solving constrained global optimization [20].
Other constraint handling techniques treat constrained opti-
mization as multi-objective optimization, where constraints
are regarded as objective functions. Adapted from the
multi-objective optimization, a relaxed dominance concept
is used in [19] to assess progress towards feasibility and
optimality. Another approach that is able to balance domi-
nance between objective and penalty functions in a stochas-
tic manner, known as stochastic ranking, is proposed and
tested in [16].

The approach herein adopted for handling the inequality
and equality constraints of problem (1) relies on a simple
heuristic consisting of three rules denoted by feasibility and
dominance (FAD) rules [10, 21].

We assume that all equality constraints are converted into
inequality constraints, |hj | ≤ ε, j = 1, . . . , m. (For exam-
ple, ε = 0.001.) For simplicity the problem (1) is rewritten
as

minimize f(x)
subject to c(x) ≤ 0

x ∈ Ω,
(7)

where the vector of inequality constraints of the problem is
defined by:

c(x) = (g1(x), . . . , gp(x), |h1(x)| − ε, . . . , |hm(x)| − ε) ,

and the constraints violation is measured by the l2 norm of
a vector, ‖π(x)‖2, where

πj(x) = max{0, cj(x)}, j = 1, . . . , p + m .

In the sequel, a point xi with ‖π(xi)‖2 = 0 is feasible,
whereas if ‖π(xi)‖2 > 0 then the point is infeasible. When
using the FAD rules, two points are compared at a time, and
if

FAD1 both points are feasible, select the one with lowest
function value;

FAD2 one point is feasible and the other is infeasible, select
the feasible point;

FAD3 both points are infeasible, select the one with lowest
constraints violation.



4. FAD-EM algorithm for constrained prob-
lems

The modifications that were introduced in the EM algo-
rithm for handling the inequality constraints c(x) ≤ 0 in
problem (7) are justified and presented below.

4.1. Evaluation of the points

The first modification is concerned with the evaluation
of the points in the population. In the constrained problem
(7) context, when the evaluation of the points is required,
the objective function value and the constraints violation
are computed for each point in the population. This pair
of information (f(xi), ‖π(xi)‖2) defines the point fitness.

4.2. The direction of forces

To decide the direction of the individual forces F i
j , the

points xj and xi are compared. We say that xj is better that
xi if xj is the selected point according to the FAD rules and
consequently xi is attracted to xj . Conversely, xi is repelled
by xj if xi is the selected point according to the FAD rules.
Hence, the new conditions are summarized as follows:

F i
j =

{
(xj − xi) qiqj

‖xj−xi‖3 if xj is better than xi

(xi − xj) qiqj

‖xj−xi‖3 otherwise
(8)

for j �= i.

4.3. Charges calculation

Another important issue is related with the charges cal-
culation. Maintaining a similar approach to that of the orig-
inal EM algorithm, where only objective function values are
compared, then

qi = exp

(
−n|f(xi) − f(xbest)|∑psize

j=1 |f(xj) − f(xbest)|

)
, i = 1, . . . , psize.

(9)
We now have to use absolute values because there is

no guarantee that the best point in the population has the
smallest function value. With (9), the charges q i (i =
1, . . . , psize) remain positive and the direction of each in-
dividual force F i

j relies on xi and xj fitness as described
above.

However, when constraints are present in the problem
like (7), two objectives have to be achieved in the way to the
solution: one is to minimize the objective function f and the
other is to minimize constraints violation ‖π‖2. Since a so-
lution must be a feasible point, the minimization of ‖π‖2 is
indeed the most important. Thus, the charge of a point could

be related to its constraints violation in the sense that fea-
sible points are the only candidates to solutions. The better
the constraints violation, the higher the magnitude of attrac-
tion. Our proposal here considers the charge calculation as
a scaled measure of feasibility

qi = exp

(
−n‖π(xi)‖2

2∑psize

j=1 |f(xj) − f(xbest)|

)
, i = 1, . . . , psize.

(10)
In this way, the feasible points in the population have unit
charges, whereas the infeasible points have smaller charges
and the larger the violation the smaller the charge. This
means that feasible points have the ability to attract infeasi-
ble points.

4.4. The local search

When a local refinement is applied coordinate by coordi-
nate to the best point, two points are to be compared to see
if an improvement is observed. The fitness of the points are
compared according to the FAD rules.

4.5. The algorithm

The algorithm for solving constrained global optimiza-
tion problems that uses the electromagnetism-like mecha-
nism and the feasibility and dominance rules for constraints
handling is as follows:

Algorithm 2 (FAD-EM algorithm)
Given l, u, psize, nfemax, nitmax, δ and set k = 1

step 1 Randomly generate a population of psize points in
the set Ω, using (3)

step 2 Evaluate the points and apply the FAD rules to
identify the best point xbest

step 3 If termination criterion is satisfied, stop

step 4 Compute the charges of all points by using (9) or
(10)

step 5 Compute the forces and apply the FAD rules to
decide the direction of the force using (8);

step 6 Compute the total force vector for each point in
the population

step 7 Move all points, except the best point, in the set
Ω according to (6). Evaluate the points and apply the FAD
rules to identify the best point

step 8 Perform a local search about the best point and
apply the FAD rules to look for an improvement

step 9 set k = k + 1 and go to step 3.



Table 1. Details of the 13 constrained prob-
lems.

P Type of f n p m nactive

g01 quadratic 13 9 0 6
g02 general 20 2 0 1
g03 polynomial 10 0 1 1
g04 quadratic 5 6 0 2
g05 cubic 4 2 3 3
g06 cubic 2 2 0 2
g07 quadratic 10 8 0 6
g08 general 2 2 0 0
g09 general 7 4 0 2
g10 linear 8 6 0 6
g11 quadratic 2 0 1 1
g12 quadratic 3 1 0 0
g13 general 5 0 3 3

5. Numerical experiments

To evaluate the performance of the herein proposed EM
algorithm for constrained problems a set of 13 benchmark
problems, described in full detail in the Appendix of [21],
is used. The problems are known as g01, g02, . . ., g13
[10, 16, 21]. We remark that g02, g03, g08 and g12 are
maximization problems while the others are minimization
ones.

The algorithm is coded in the C programming language
and it contains an interface to connect to AMPL so that
the problems coded in AMPL could be easily solved [8].
AMPL is a mathematical programming language that al-
lows the codification of optimization problems in a pow-
erful and easy to learn language. The set of coded problems
may be obtained from the first author upon request.

The fixed values for the parameters in the EM algorithm
are as follows: δ = 0.001 and nitmax = 10.

Details of the selected problems are listed in Table 1,
where n represents the number of variables, p and m are
the number of inequality and equality constraints respec-
tively and nactive is the number of active constraints at the
solution.

Initially, we study the two versions of the EM algorithm
for constrained optimization based on the FAD rules, which
differ in the computation of the charges, see (9) and (10) re-
spectively. We select the best version and report the results
obtained with the selected 13 benchmark problems, using
the best, the average and the worst objective function val-
ues obtained after 30 independent runs each starting from a
random population with different seeds. Here, we consider
a population size of 50 points and use a limit of 350000
function evaluations to terminate the algorithm.

Figure 1. Performance profiles of fbest over 30
runs.
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We then compare our results with other methods recently
reported in the literature. For a set of comparisons, we re-
peat the experiments with different conditions: psize = 40
and a limit of 240000 function evaluations.

5.1. Comparison of the two versions

The comparison of the two versions of the FAD-EM
algorithm which differ in the computation of the charges,
herein designated by FAD-EM-(9) and FAD-EM-(10), cor-
responding to (9) and (10) respectively, is based on the
Dolan and Moré’s performance profile approach as outline
in [6]. The performance profiles give, for every τ ≥ 1, the
proportion ρ(τ) of test problems on which each algorithm
under comparison has a performance within a factor τ of
the best. An explanation of our implementation of this ap-
proach follows.

Let P be the set of all problems and S the set of solvers
used in the comparative study. Let m(p,s) be the perfor-
mance metric found by solver s ∈ S on problem p ∈ P
after a fixed number of function evaluations. The metric
that is used when the performance assessment is on the best
result obtained by the solvers is

m(p,s) = fbest (p,s), (11)

where fbest (p,s) is the best function value found by solver
s on problem p, after nfemax = 350000 function evalua-
tions, and over 30 runs. However, if the performance as-
sessment is on the average result obtained by the solvers
then favg (p,s) should de used in the metric (11).

The performance ratio adopted for this comparative



Figure 2. Performance profiles of fbest for
1 ≤ τ ≤ 1.002.
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Figure 3. Performance profiles of favg over 30
runs.
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Table 2. Average number of function evalua-
tions for the fixed accuracy (12).

P FAD-EM-(9) FAD-EM-(10)
g03 323221 303962
g11 270250 271220
g12 529 443

Figure 4. Performance profiles of favg for
1 ≤ τ ≤ 1.02.
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Table 3. Best, average, worst and standard
deviation of the results.

P fglobal fbest favg fworst

g01 -15.000000 -14.999805 -14.590470 -12.500515
sd: 0.770339

g02 0.803619 0.444939 0.427705 0.377406
sd: 0.012574

g03 1.000500 1.002983 0.999661 0.996438
sd: 0.001663

g04 -30665.539 -30642.600 -30591.897 -30521.434
sd: 29.849753

g05 5126.497 5135.818 5338.583 6117.660
sd: 273.027370

g06 -6961.814 -6953.411 -6942.915 -6933.264
sd: 4.250238

g07 24.30621 27.46692 53.08965 103.5507
sd: 19.236274

g08 0.095825 0.095825 0.095825 0.095825
sd: 0.000000

g09 680.630 681.777 689.896 701.344
sd: 5.104498

g10 7049.248 7187.181 9492.735 16395.51
sd:1671.593930

g11 0.749900 0.749001 0.749079 0.749346
sd: 0.000086

g12 1.000000 1.000000 1.000000 1.000000
sd: 0.000000

g13 0.053942 0.063196 2.083421 20.784428
sd: 5.010076



Table 4. Settings used in the comparisons.

psize nfemax version methods references
50 350 000 FAD-EM50 PSO, PESO [21]

TCPSO, SR [16, 21]
40 240 000 FAD-EM40 DE, ABC [10]

study is

r(p,s) =
m(p,s)

min
{
m(p,s) : s ∈ S}

and the overall assessment of the performance of a particu-
lar solver s is defined by

ρs(τ) =
nPτ

nP

where nP is the number of problems in the set P and nPτ

is the number of problems in the set such that the perfor-
mance ratio r(p,s) is less than or equal to τ for solver s.
Hence, ρs(τ) is the probability (for solver s ∈ S) that the
performance ratio r(p,s) is within a factor τ ∈ IR of the best
possible ratio.

Using the performance profile plot one can compare how
well a solver can estimate the optimum relative to the others.
The value of ρs(1) gives the probability that the solver s will
win over the others in the set. However, for large values of
τ , the ρs(τ) measures the solver robustness.

Figure 1 contains the performance profiles of f best for
the two versions in comparison. Figure 2 contains details
of the plots for values of τ near 1. They show that the ver-
sion based on the charge calculation (10) is superior on the
best performance. For τ = 1, this version wins in 70%
of the problems over the other, whereas the version based
on charge (9) is better for values of τ greater than 1.0018.
When the average performance is considered, Figures 3 and
4 show that the version FAD-EM-(10) outperforms the other
version for small values of τ and is exceeded by FAD-EM-
(9) for τ > 1.3.

To compare further the two versions of the FAD-EM al-
gorithm, we record in Table 2 the average number of func-
tion evaluations needed for finding a feasible solution satis-
fying a fixed accuracy level, herein defined by

|f(xbest) − fglobal| ≤ 0.0001 (12)

over the 30 runs. The table reports only the problems where
condition (12) was verified before the algorithm has termi-
nated due to the 350000 function evaluations. The perfor-
mances are competitive.

5.2. Detailed results of FAD-EM algorithm

We now report detailed results of the best version - FAD-
EM-(10). The experiments are based on a population size

Table 5. Comparison of the best results, over
the 30 runs, with PSO and PESO.

P fglobal FAD-EM50 PSO PESO
g01 -15.000000 -14.999886 -15.000000 -15.000000
g02 0.803619 0.439669 0.669158 0.792608
g03 1.000500 1.002100 0.993930 1.005010
g04 -30665.539 -30628.932 -30665.539 -30665.539
g05 5126.497 5126.703 5126.484 5126.484
g06 -6961.814 -6957.004 -6961.814 -6961.814
g07 24.30621 35.18561 24.37015 24.30692
g08 0.095825 0.095825 0.095825 0.095825
g09 680.630 686.858 680.630 680.630
g10 7049.248 7539.071 7049.381 7049.459
g11 0.749900 0.749000 0.749000 0.749000
g12 1.000000 1.000000 1.000000 1.000000
g13 0.053942 0.056688 0.085655 0.081498

of 50 points and the algorithm is terminated after 350000
function evaluations. Table 3 contains the best, average and
worst function values obtained over the 30 runs. The ta-
ble also shows the standard deviation (sd) of the obtained
function values in a row below the other results. The col-
umn headed with fglobal lists the most recent known global
solutions (see http://www.ntu.edu.sg/home/EPNSugan/).

5.3. Comparison with other heuristics

To demonstrate the performance of the new EM type al-
gorithm for general constrained global optimization prob-
lems, we carried out a comparison with six very well-known
and recent methods: the PSO (standard particle swarm op-
timization), PESO (particle evolutionary swarm optimiza-
tion), TCPSO (the Toscano and Coello’s PSO), SR (stochas-
tic ranking), DE (differential evolution) and ABC (artificial
bee colony).

To be able to compare our results with those of recent
publications, we use the same set of 13 problems. The re-
sults obtained by PSO, PESO and TCPSO are reported in
[21] and the ones obtained by SR can be seen in [16, 21].
For a fair comparison, we use the population size and the
maximum number of objective function evaluations similar
to the therein reported. Table 4 contains these settings. To
compare with the DE and ABC algorithms, we change the
settings and the DE and ABC results are reported in [10].

Table 5 reports the best function value obtained after 30
runs. We denote our version as FAD-EM50, since it is based
on a population of 50 points and is to be compared with two
specific versions of the particle swarm optimization algo-
rithm: PSO and PESO. We remark that the table summa-



Table 6. Comparison of the average results,
over the 30 runs, with PSO and PESO.

P fglobal FAD-EM50 PSO PESO
g01 -15.000000 -12.151068 -14.710417 -15.000000
g02 0.803619 0.414594 0.419960 0.721749
g03 1.000500 0.998865 0.764813 1.005006
g04 -30665.539 -30589.882 -30665.539 -30665.539
g05 5126.497 5336.962 5135.973 5129.178
g06 -6961.814 -6943.954 -6961.814 -6961.814
g07 24.30621 196.253 32.40727 24.37125
g08 0.095825 0.075382 0.095825 0.095825
g09 680.630 698.440 680.630 680.630
g10 7049.248 11947.504 7205.500 7099.101
g11 0.749900 0.749056 0.749000 0.749000
g12 1.000000 1.000000 0.998875 1.000000
g13 0.053942 1.671718 0.569358 0.626881

rizes the results of the version FAD-EM-(9), that are slightly
different from those listed in Table 3. The results obtained
for the mean best function values are reported in Table 6.

From Table 5 we may conclude that FAD-EM is better
than PSO in problems g03 and g13, is better than PESO
only in the problem g13, while in the problems g08, g11
and g12 is competitive with both PSO and PESO.

Table 6 shows that FAD-EM is clearly better than PSO in
problems g03 and g12, but PSO is better in all the remaining
problems of the set. PESO is also better than FAD-EM in
all problems, except in problem g12 that is competitive. We
note that FAD-EM worst values are really far from the best
values, giving a poor performance on the average values.

Table 7 compares our average results with those of other
algorithms: TCPSO and SR. TCPSO refers to the Toscano
and Coello’s PSO that incorporates a constraints handling
mechanism into the standard PSO algorithm [18], and SR
denotes stochastic ranking [16]. This is an evolution strat-
egy enhanced with a stochastic constraints handling mech-
anism. FAD-EM average results are better than TCPSO re-
sults in problems g05, g11 and g13, and are competitive in
g12. FAD-EM is better than SR only in the problem g11
and is competitive in problem g12.

In this part of the paper we compare the FAD-EM al-
gorithm with DE and ABC algorithms. The best function
value and the mean best function values are listed in Tables
8 and 9 respectively. The version under comparison, de-
noted by FAD-EM40, considers the formula (9) to evaluate
the charges and is based on a population of 40 points. The
algorithm terminates when the number of function evalua-
tions exceeds 240000.

From Table 8, we note that FAD-EM best results are bet-

Table 7. Comparison of the average results,
over the 30 runs, with TCPSO and SR.

P fglobal FAD-EM50 TCPSO SR
g01 -15.000000 -12.151068 -15.000000 -15.000000
g02 0.803619 0.414594 0.790406 0.781975
g03 1.000500 0.998865 1.003814 1.000000
g04 -30665.539 -30589.882 -30665.500 -30665.539
g05 5126.497 5336.962 5461.081 5128.881
g06 -6961.814 -6943.954 -6961.810 -6875.940
g07 24.306201 196.253 25.35577 24.374
g08 0.095825 0.075382 0.095825 0.095825
g09 680.630 698.440 680.852 680.656
g10 7049.248 11947.504 7560.048 7559.192
g11 0.749900 0.749056 0.750107 0.750000
g12 1.000000 1.000000 1.000000 1.000000
g13 0.053942 1.671718 1.716426 0.057006

ter than DE results in problems g02, g03, g11 and g13, and
are competitive in problems g08 and g12. When comparing
with ABC results, FAD-EM wins in the problems g03, g11
and g13. Both algorithms are competitive in problems g08
and g12.

Table 9 contains the average results of FAD-EM, DE and
ABC obtained when solving the 13 problems. In the ta-
ble, "-" means that no feasible solutions were found. Al-
though the average results are competitive in problems g08
and g12, FAD-EM is clearly better only in the problem g11.

Table 8. Comparison of the best results, over
the 30 runs, with DE and ABC.

P fglobal FAD-EM40 DE ABC
g01 -15.000000 -14.999830 -15.000 -15.000
g02 0.803619 0.491136 0.472 0.803598
g03 1.000500 1.003318 1.000 1.000
g04 -30665.539 -30605.032 -30665.539 -30665.539
g05 5126.497 5126.672 5126.484 5126.484
g06 -6961.814 -6953.069 -6954.434 -6961.814
g07 24.30621 25.81694 24.306 24.330
g08 0.095825 0.095825 0.095825 0.095825
g09 680.630 681.792 680.630 680.634
g10 7049.248 7739.708 7049.248 7053.904
g11 0.749900 0.749003 0.752 0.750
g12 1.000000 1.000000 1.000 1.000
g13 0.053942 0.095896 0.385 0.760



Table 9. Comparison of the average results,
over the 30 runs, with DE and ABC.

P fglobal FAD-EM40 DE ABC
g01 -15.000000 -14.503678 -14.555 -15.000
g02 0.803619 0.427662 0.665 0.792412
g03 1.000500 0.999822 1.000 1.000
g04 -30665.539 -30573.439 -30665.539 -30665.539
g05 5126.497 5303.154 5264.270 5185.714
g06 -6961.814 -6936.598 - -6961.813
g07 24.30621 66.57473 24.310 24.473
g08 0.095825 0.095825 0.095825 0.095825
g09 680.630 689.423 680.630 680.640
g10 7049.248 9476.079 7147.334 7224.407
g11 0.749900 0.749074 0.901 0.750
g12 1.000000 1.000000 1.000 1.000
g13 0.053942 1.312976 0.872 0.968

5.4. Comparison with results in Birbil’s the-
sis [1]

To further examine the performance of the proposed fea-
sibility and dominance EM algorithm, we carried out one
more comparison. The results reported in [1], where penalty
and barrier methods are incorporated into the EM algorithm
for the constraints handling, are compared with FAD-EM
results. In these comparisons the termination criterion in
Algorithm 2 limits the number of iterations, herein denoted
by nEMmax, instead of the number of function evaluations.
The Table 10 contains the details of the 5 tested problems.
For a fair comparison we use the conditions reported in [1]:
δ = 0.01 in the local procedure of the EM algorithm; 10
runs were made for each problem; the size of the popula-
tion and the maximum number of FAD-EM iterations are as
listed below

• TP1 – psize = 30; nEMmax = 75

• TP2 – psize = 40; nEMmax = 100

• TP3 – psize = 20; nEMmax = 50

• TP4 – psize = 30; nEMmax = 50

• TP5 – psize = 20; nEMmax = 75.

The results are reported in Table 11. We use TP to
identify the problem; ALG to identify the algorithm; P
means penalty method, B barrier method, and EM refers
to the FAD-EM algorithm that uses the formula (9) for the
charges.

Table 10. Details of the 5 constrained prob-
lems in [1].

P Type of f n p m
TP1 quadratic 5 6 0
TP2 quadratic 6 6 0
TP3 linear 2 2 0
TP4 general 3 1 0
TP5 general 4 2 0

Table 11. Comparison with the results in [1].

TP ALG fglobal fbest favg nfe
1 P [1] -30665.539 -30563.285 -30374.467 2534

B [1] -30596.784 -30447.682 2264
EM -30399.961 -30168.944 2632

2 P [1] -310 -297.7095 -293.9035 4311
B [1] -307.2018 -297.8254 3969

EM -297.2020 -295.190 4577
3 P [1] -5.508013 -5.5036 -5.4256 886

B [1] -5.4756 -5.4245 885
EM -5.500585 -5.451045 1089

4 P [1] -83.254 -83.096 -82.5450 1597
B [1] -83.1574 -81.9877 1347

EM -83.063359 -82.481219 1684
5 P [1] -5.7398 -5.6450 -5.4857 1092

B [1] -5.6346 -5.0523 1251
EM -5.687241 -5.645319 1812

6. Final remarks

This paper presents a new EM type algorithm for solv-
ing constrained global optimization problems. The tech-
nique used for the constraints handling relies on a very sim-
ple heuristic known as the feasibility and dominance rules.
These rules are easily incorporated into the EM algorithm
whenever

• the best point in the population has to be identified;

• the direction of individual forces between pair of
points in the population has to be defined;

• a local refinement is applied to the best point and an
improvement has to be assessed.

The preliminary results reported in the paper seem to show
that this approach is competitive with other algorithms, al-
though some modifications are in progress to improve accu-
racy. Further testing with a different set of constrained prob-



lems [4] and engineering problems like the ones reported in
[12, 19] are required.

Since the charges calculation seems a crucial issue in
the electromagnetism-like mechanism, future developments
will focus on a new approach so that a balance between
the objective function value and the constraints violation is
achieved.
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