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Abstract. We solve and characterize the Lagrange multipliers of a reaction-
-diffusion system in the Gibbs simplex of RN+1 by considering strong solutions
of a system of parabolic variational inequalities in RN . Exploring properties of
the two obstacles evolution problem, we obtain and approximate a N -system in-
volving the characteristic functions of the saturated and/or degenerated phases
in the nonlinear reaction terms. We also show continuous dependence results
and we establish sufficient conditions of non-degeneracy for the stability of
those phase subregions.

Dedicated to MASAYASU MIMURA on the occasion of its 65th birthday

1. Introduction. This paper is motivated by the vector-valued reaction-diffusion
equation

∂tU −∆U = F (x, t,U), in Q, (1)

for U = U(x, t), defined from Q = Ω × (0, T ) into RN+1, with homogeneous
Neumann condition on ∂Ω× (0, T ), where Ω is a bounded domain of Rn and T > 0
is arbitrary. We are interested in the case when every component ui = ui(x, t) is
nonnegative and the system is subject to the multiphase non-voids condition with
J = (1, . . . , 1) ∈ RN+1:

U · J =
N+1∑
j=1

uj = 1 in Q. (2)
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From the equation (1) it is clear that the constraint (2) implies F (x, t,U) ·J = 0
in Q and so the reaction vector F should satisfy the necessary and very restrictive
condition

FN+1(x, t, V ) = −
N∑
j=1

Fj(x, t, V ) in Q,

∀V = (v1, . . . , vn, 1−
N∑
j=1

vj), 0 ≤ vi ≤ 1. (3)

For instance, in replicator dynamics describing the evolution of certain frequen-
cies in a population, one possible definition of the reaction term with this compat-
ibility condition consists in choosing

Fi(x, t, V ) = vi[φi(x, t, V )−
N+1∑
j=i

vjφj(x, t, V )] in Q, i = 1, ..., N + 1, (4)

where vi represents the i-frequency of the population and φi the respective fitness
(see, for instance, [12] and [13]), the constraint (2) is essential to describe mixed
strategies in evolutionary game theory in spatially homogeneous population dynam-
ics (see [20] and its references) or to model the non-voids condition in biological
tissue growing [17, 16]. In phase fields models, the condition (2) arises naturally in
simulation of multiphase flows [15], multiphase systems with diffuse phase bound-
aries, as in solidification of alloys or in grain boundary motion (see [11] or [3]) and
in multicomponent mixtures [9] and [8].

Of course, in the case (3), in particular, if F = 0, the problem becomes a simple
one if the initial data U(0) = U0 also satisfies the constraint (2). However the
situation is entirely different in the general case of non trivial reactions, specially
in multiphase problems where at least one phase “i” in a subregion of Q is absent
(i.e. ui = 0), or fulfils another subregion (when ui = 1).

Instead of solving the system (1) in the Gibbs (N+1)-simplex

Ψ = {(v1, . . . , vN+1) ∈ RN+1 :
N+1∑
j=1

vj = 1 and vi ≥ 0, i = 1, . . . , N + 1},

we shall replace this problem by the study of a unilateral problem for the vector
field of the first N components u = (u1, . . . , uN ) of U , with the N + 1 convex
constraints

N∑
i=j

uj ≤ 1 and ui ≥ 0 in Q, i = 1, . . . , N. (5)

This corresponds to solve the system of parabolic variational inequalities, at each
time t ∈ (0, T ),

u(t) ∈ K :
∫

Ω

∂tu(t) ·
(
v − u(t)

)
+
∫

Ω

∇u(t) · ∇(v − u(t))

≥
∫

Ω

f(u(t)) ·
(
v − u(t)

)
, ∀v ∈ K, (6)

under the initial condition

u(0) = u0 = (u01, . . . , u0N ) ∈ K. (7)
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Here K denotes the convex subset of the Sobolev space H1(Ω)N defined by

K = {v ∈ H1(Ω)N :
N∑
j=1

vj ≤ 1, vi ≥ 0, i = 1, . . . , N, in Ω}, (8)

where v = (v1, . . . , vN ).
The reaction term may have a general form fi(u) = fi(x, t,U(x, t)), i =

1, . . . , N , with (x, t) ∈ Q and U =
(
u1, . . . , uN , 1−

N∑
j=1

uj
)
. We denote ∂t =

∂

∂t
and

∇ =
( ∂

∂x1
, . . . ,

∂

∂xn

)
.

The main part of this work is the analysis of the new unilateral problem (6)-
(7) under general assumptions on f : only continuity on u and integrability in
(x, t) ∈ Q. In particular, we prove that its solution u = u(x, t) is such that each
component ui satisfies a double obstacle problem

0 ≤ ui ≤ 1−
∑
j 6=i

uj in Q, i = 1, . . . , N, (9)

where
∑
j 6=i

uj denotes the sum of all N − 1 components but ui. In fact, ui is also

the solution of a reaction-diffusion system in the form

∂tui −∆ui = fi(u) + f−i (u)χ{ui=0}

−
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(
fi1(u) + · · ·+ fik(u)

)+χ
ii...ik , in Q. (10)

Here
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

denotes the summation over all the subsets {i1, . . . , ik} of

{1, . . . , N} to which i belongs, in particular, k varies from 1 to N . We also denote
g+ = g ∨ 0 and g− = −(g ∧ 0) the positive and negative parts of a scalar function
g = g+ − g−, χA the characteristic function of the set A, (i.e., χA = 1 in A and
χ
A = 0 in Q \A) and χi1...ik the characteristic function of the set

Ii1...ik =
{

(x, t) ∈ Q :
(
ui1 + · · ·+ uik

)
(x, t) = 1, uij (x, t) > 0, j = 1, . . . , k},

where k ∈ {1, . . . , N}.
In particular {ui = 1} =

⋂
j 6=i

{uj = 0}, i.e., one component is fully saturated if

and only if the others are absent. Hence from (10) we see that, in general, the
respective reaction terms are coupled not only through the semilinear term f(u)
but also through the characteristic functions of the saturation sets Ii1...ik .

In this way, by setting for i = 1, . . . , N,

Fi(U) = fi(u) + f−i (u)χ{ui=0} −
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(
fi1(u) + · · ·+ fik(u)

)+χ
ii...ik ,
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with U = (u, 1−
N∑
j=1

uj), we can solve the system (1) under the constraint (2) and

identify the respective Lagrange multipliers hi ≡ Fi(U)− fi(U) in a precise form.
To illustrate the meaning of the system (10), that contains 2N − 1 + N charac-

teristic functions, in general, we may consider the cases N = 1, 2 or 3. Denoting,
for simplicity, fi = fi(u), χi = χ

{ui=1}, we may write the Lagrange multipliers as

h1 = f−1
χ
{u1=0} − f+

1
χ

1 − 1
2
(f1 + f2)+χ12 − 1

2
(f1 + f3)+χ13 − 1

3
(f1 + f2 + f3)+χ123

h2 = f−2
χ
{u2=0} − f+

2
χ

2 − 1
2
(f1 + f2)+χ12 − 1

2
(f2 + f3)+χ23 − 1

3
(f1 + f2 + f3)+χ123

h3 = f−3
χ
{u3=0} − f+

3
χ

3 − 1
2
(f1 + f3)+χ13 − 1

2
(f2 + f3)+χ23 − 1

3
(f1 + f2 + f3)+χ123

Ignoring the third equation and all the terms involving the third component, we
may obtain the case N = 2. The first two terms of the right hand side of the first
equation correspond, in the case N = 1, to the scalar two obstacles problem that
has been proposed for phase separations in [4, 5].

The mathematical treatment of this unilateral system is done in the following
three sections. In section 2, we consider the semilinear approximation of the unique
solution of (6)-(7) in the case of the reaction f is in L2(Q)N and independent
of the solution. Although there exists a large literature on parabolic variational
inequalities (see, for instance, [18], [6], [14], [7] or [10]), the direct approach of the
bounded penalization used for the two obstacles problem in [23] (see also [21]),
extended here for the system (10), allows the use of monotone methods. This yields
a direct way of obtaining Lewy-Stamppachia inequalities (26), obtained first by [7]
for parabolic problems, implying the W 2,1

p and Hölder regularity for the solution to
(6). Similar results for the N -membranes stationary problem have been obtained
in [1, 2]. We note in our case the simplification due to homogeneous Neumann
condition.

In section 3, we extend the existence result to general nonlinear reaction f = f(u)
taking values in L1(Q)N . Here we explore the fact that the convex set (8) lies in
the unit disc and we extend the direct technique of [22]. We show also a continuous
dependence result and, in the case of λI − f being monotone non-decreasing, in
particular if f is Lipschitz continuous in u, also the uniqueness of solution and
their strong approximation by the penalized solutions.

Finally, in the last section, we characterize the solution of the variational in-
equality (6) as solutions of the reaction-diffusion system (10), by extending some
remarks of [24] to the two obstacles parabolic problem. We also show that

{ui = 0} ⊂ {fi(u) ≤ 0} and Ii1...ik ⊂
{ k∑
j=1

fij (u) ≥ 0
}

a.e. in Q, for 1 ≤ i ≤ N , 1 ≤ i1 < · · · < ik ≤ N , ∀ k = 1, . . . , N and we can
modify the system (10) (see (77)) and show that the a.e. pointwise nondegeneracy
assumptions

k∑
j=1

fij (u) 6= 0, 1 ≤ i1 < · · · < ik ≤ N, k = 1, . . . , N,

are sufficient conditions for the local stability of the characteristic functions χ{ui=0}
and χi1...ik with respect to the perturbation of the nonlinear reaction terms f .
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2. Approximation of strong solutions by semilinear problems. In this sec-
tion we consider the case where f = (f1, . . . , fN ) depends only on (x, t) and is given
in L2(Q)N .

To prove existence of solution of the variational inequality (6)-(7), we consider a
family of approximating semilinear systems of equations. We define, for each ε > 0,
θε : R −→ R by

θε(s) =


0 if s ≥ 0

s/ε if − ε < s < 0

−1 if s ≤ −ε,

(11)

and we denote
Pu = ∂tu−∆u = (Pu1, . . . , PuN ),

where ∂tu = (∂tu1, . . . , ∂tuN ) and ∆u = (∆u1, . . . ,∆uN ). We also denote Pui =
∂tui −∆ui, i = 1, . . . , N . The approximating problems are given by the following
weakly coupled parabolic system with Neumann condition

Puεi + f−i θε(u
ε
i )−

∑
1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uεi1...ik) = fi in Q,

(12)
∂uεi
∂n

= 0 on ∂Ω× (0, T ), (13)

uεi (0) = u0i in Ω, (i = 1, . . . , N) (14)

where
∂

∂n
is the outward normal derivative on ∂Ω × (0, T ), the meaning of∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

was explained in the introduction and

∀v = (v1, . . . , vN ) ∀ {i1, . . . , ik} ⊆ {1, . . . , N} vi1...ik = vi1 + · · ·+ vik . (15)

Defining the penalization operator Θε by

Θεu · v =
N∑
i=1

[
f−i θε(ui)−

∑
1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− ui1...ik)

]
vi

(16)

=
N∑
i=1

f−i θε(ui)vi −
∑

1≤ i1<. . .< ik≤ N

1
k

(
fi1 + · · ·+ fik

)+
θε(1− ui1...ik)vi1...ik ,

(17)

we formulate (12)-(13) in variational form for a.e. t ∈ (0, T ),∫
Ω

∂tu
ε(t) · v +

∫
Ω

∇uε(t) · ∇v +
∫

Ω

Θε(uε(t)) · v =
∫

Ω

f(t) · v, ∀v ∈ H1(Ω)N ,

(18)
associated with the initial condition (14).

Proposition 2.1. Assuming that

f = (f1, . . . , fN ) ∈ L2(Q)N and u0 ∈ K, (19)
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the problem (18)-(14) has a unique solution

uε ∈ H1(0, T ;L2(Ω)N ) ∩ L∞(0, T ;H1(Ω)N ).

Proof. We begin by proving the monotonicity of the penalization operator Θε.
In fact, recalling that θε is monotone nondecreasing and the definition (15) we

have(
Θεu−Θεv

)
·
(
u− v

)
=

N∑
i=1

f−i
(
θε(ui)− θε(vi)

)
(ui − vi)

−
∑

1≤ i1<. . .< ik≤ N

1

k

(
fi1 + · · · fik

)+(
θε(1− ui1...ik )− θε(1− vi1...ik )

)
(ui1...ik − vi1...ik ),

≥ 0,

since f−j and
(
fi1 + · · · fik

)+ are nonnegative functions.
The existence and uniqueness of solution uε ∈ L2(0, T ;H1(Ω)N ) is immediate

by applying the theory of monotone operators ([18], [26])).
Setting v = (uε1, . . . , u

ε
N ) in the approximating problem (18) and integrating in

time, letting

gεi = Puεi = fi − f−i θε(u
ε
i ) +

∑
1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uεi1...ik),

which is bounded in L2(Q) independently of ε, we obtain that, for every 0 < t < T ,
with Qt = Ω× (0, t),

1
2

∫
Ω

|uε(t)|2 +
∫
Qt

|∇uε|2 ≤ 1
2

∫
Ω

|u0|2 +
1
2

∫
Qt

|gε|2 +
1
2

∫
Qt

|uε|2.

The Grownwall inequality yields the uniform boundedeness (in ε) of uε, first in
L∞(0, T ;L2(Ω)N )) and afterwards also in L2(0, T ;H1(Ω)N ).

Letting, formally, v = ∂tu
ε in (18) (in fact in the respective Faedo-Galerkin

approximation) and integrating in time, we get∫
Qt

∣∣∂tuε∣∣2 +
∫

Ω

|∇uε(t)|2 ≤
∫
Qt

|gε|2 +
∫

Ω

|∇u0|2

and so ∂tuε is also bounded in L2(Q)N and ∇uε in L∞(0, T ;L2(Ω)N ). Therefore

{uε}ε>0 is bounded in H1(0, T ;L2(Ω)N )) ∩ L∞(0, T ;H1(Ω)N ). (20)

Proposition 2.2. Assuming (19), the solution uε of the problem (18)-(14) satisfies

uεi ≥ −ε, i = 1, . . . , N,
N∑
i=1

uεi ≤ 1 + ε. (21)

Proof. In fact, we are going to prove the following more general set of inequalities

uεi ≥ −ε, i = 1, . . . , N, and uεi1...ir ≤ 1 + ε, ∀ 1 ≤ i1 < . . . < ir ≤ N

and the proof of the right hand side inequalities will be done by induction on r.
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Let us prove the case r = 1, i.e., uεi ≤ 1 + ε, for all i ∈ {1, . . . , N}. Multiplying
the i-th equation of the approximating system (12) by (uεi−(1+ε))+ and integrating
over Qt = Ω× (0, t), we have∫

Qt

∂tu
ε
i (u

ε
i − (1 + ε))+ +

∫
Qt

∇uεi · ∇(uεi − (1 + ε))+ =
∫
Qt

[
fi − f−i θε(u

ε
i )

+
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uεi1...ik)

]
(uεi − (1 + ε))+

Recalling that −1 ≤ θε ≤ 0 and that, in the set {uεi > 1 + ε}, we have θε(uεi ) = 0
and θε(1− uεi ) = −1 we get

1
2

∫
Ω

|(uεi − (1+ε))+(t)|2 +
∫
Q

|∇(uεi − (1+ε))+|2 ≤
∫
Q

(fi−f+
i )(uεi − (1+ε))+ ≤ 0,

(22)
so (uεi − (1 + ε))+ ≡ 0, i.e. uεi ≤ 1 + ε.

Assuming we have proved that uεi1...ir ≤ 1 + ε, we are going to show that
uεi1...irir+1

≤ 1 + ε.
We multiply the equations ij , j = 1, . . . , r + 1, by (uεi1...irir+1

− (1 + ε))+, sum
from 1 to r + 1 and integrate over Qt. We obtain∫

Qt

Puεi1...irir+1
(uεi1...irir+1

− (1 + ε))+ =
∫
Qt

[ r+1∑
j=1

fij −
r+1∑
j=1

f−ij θε(u
ε
ij )

+
r+1∑
j=1

∑
1≤ i1<. . .< ik≤ N
ij ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uεi1...ik)

]
(uεi1...irir+1

− (1 + ε))+.

Observe that, in the set {uεi1...irir+1
> 1+ε} we have uεij ≥ 0, for j = 1, . . . , r+1,

since, by induction, uεl1...lr = uεi1 +· · ·+uεir+1
−uεij ≤ 1+ε. So, in that set, θε(uεij ) = 0

and, on the other hand, θε(1− uεi1...irir+1
) = −1. The induction conclusion follows

from∫
Ω

|(uεi1...irir+1
− (1 + ε))+(t)|2 +

∫
Qt

|∇(uεi1...irir+1
− (1 + ε))+|2

≤
∫
Qt

[ r+1∑
j=1

fij − (r + 1)
1

r + 1
(
fi1 + · · ·+ fir+1

)+](uεi1...irir+1
− (1 + ε))+ ≤ 0.

To prove that uεi ≥ −ε, we multiply the i-th equation of (12) by (−uεi − ε)+,
obtaining

1
2

∫
Ω

|(−uεi − ε)+(t)|2 +
∫
Q

|∇(−uεi − ε)+|2 =
∫
Q

[
− fi + f−i θε(u

ε
i )

−
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uεi1...ik)

]
(−uεi − ε)+.

Let Jk,i = {i1, . . . , ik}\{i} and denote the elements of Jk,i by j1, . . . , jk−1. Since,
in the set {(−uεi−ε)+ > 0} = {uεi < −ε}, we have 1−uεi1...ik = 1−uεj1...jk−1

−uεi > 0
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(recall that uεj1...jk−1
≤ 1 + ε), so

1
2

∫
Ω

|(−uεi − ε)+(t)|2 +
∫
Q

|∇(−uεi − ε)+|2

≤
∫
Q

[
− fi − f−i

]
(−uεi − ε)+ =

∫
Q

−f+
i (−uεi − ε)+ ≤ 0,

that implies (−uεi − ε)+ = 0, or uεi ≥ −ε.

Theorem 2.3. Assuming (19), the variational inequality (6)-(7) has a unique so-
lution u such that

u ∈ H1(0, T ;L2(Ω)N ) ∩ L∞(0, T ;H1(Ω)N ) (23)

and
Pu ∈ L2(Q)N . (24)

Proof. Let uε be the solution of the problem (18). Using the uniform estimates (in
ε) obtained in (20), by compactness, we know there exists u such that

uε −−−−→
ε

u in L2(Q)N strong,

uε −−−⇀
ε

u in L∞(0, T ;H1(Ω)N ) weak-∗,

∂tu
ε −−−⇀

ε
∂tu and Puε −−−⇀ Pu in L2(Q)N weak.

We have u(t) ∈ K, for a.e. t ∈ [0, T ], because uε satisfies the inequalities (21).
Given v ∈ L2(0, T ; K), set v(t)− uε(t) in (18) and integrate in time. Then∫

Q

∂tu
ε · (v − uε) +

∫
Q

∇uε · ∇(v − uε) ≥
∫
Q

fε · (v − uε),

since
∫
Q

(
Θε(uε)−Θε(v)

)
· (v − uε) ≤ 0 and Θε(v(t)) = 0 if v(t) ∈ K. Passing to

the limit when ε→ 0 and noting that

lim inf
ε→0

∫
Q

(
∂tu

ε · uε +∇uε · ∇uε
)
≥
∫
Q

(
∂tu · u +∇u · ∇u

)
,

we find that u satisfies (7) and∫
Q

∂tu · (v − u) +
∫
Q

∇u · ∇(v − u) ≥
∫
Q

f · (v − u), ∀v ∈ L2(0, T ; K), (25)

which is easily seen to be equivalent to (6). The uniqueness is immediate.

We remark that no regularity of the boundary ∂Ω has been required in (18)
and, in fact, the Neumann boundary condition (13) is only formal. In the proof
of Theorem 2.3 we have used the compactness of the sequence {uε}ε in L2(Q)N .
This holds, for instance, for domains with Lipschitz boundaries, but also, since the
sequence {uε}ε is uniformly bounded in L∞(Q)N , for a larger class of bounded open
subsets of Rn+1. However, the approximation by semilinear parabolic equations
yields immediately an additional regularity of these strong solutions.
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Indeed, from the definitions of θε and Θε, from (18) with arbitrary ϕ ∈ D(Q),
ϕ ≥ 0, we find

fi −
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+ ≤ Puεi
= fi −Θε(uε) ≤ fi + f−i = f+

i a.e. in Q. (26)

By the conclusion of Theorem 2.3 we also obtain, for each i = 1, . . . , N,

fi −
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(fi1 + · · ·+ fik)+ ≤ Pui ≤ f+
i a.e. in Q (27)

and we can apply directly the second order linear parabolic theory (see [19]) in the
Sobolev spaces

W 2,1
p (Q) = W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)), 1 < p <∞.

These spaces satisfy the Sobolev imbeddings, for p > (n+2)/(2−k), with k = 0, 1,

W 2,1
p (Q) ⊂ Ck,0α (Q), 0 ≤ α < 2− k − (n+ 2)/p,

where Ck,0α (Q) denotes the spaces of Hölder continuous functions v in Q, with
exponent α in the x-variables and α/2 in the t-variable and, in the case k = 1, with
∇v satisfying the same property (see [19], p. 80). Therefore, as a consequence of
(27), we conclude

Theorem 2.4. Assume that ∂Ω is smooth, say of class C2 and

f ∈ Lp(Q)N and u0 ∈ K ∩W 2−2/p,p(Ω)N , 1 < p <∞, (28)

with each component u0i satisfying the compatibility condition
∂u0i

∂n
= 0 on ∂Ω if

p > 3.
Then the unique solution u of the variational inequality (6)-(7) is such that

u ∈ W 2,1
p (Q)N ∩ L∞(0, T ; K), (29)

and, in particular, is Hölder continuous in Q if p > (n + 2)/2 and has ∇u also
Hölder continuous if p > n+ 2. �

We observe that, when p < 2, the inclusion W 2,1
p (Q) ⊂ L2(0, T ;H1(Ω)) only

takes place if p ≥ (2n+ 4)/(n+ 4) but, as we shall see in the next section and since
K is bounded, (6)-(7) is solvable for any f ∈ L1(Q)N .

3. Existence and uniqueness of variational solutions. In this section, requir-
ing the compactness of the inclusion of H1(Ω) into L2(Ω) by assuming a Lipschitz
boundary ∂Ω, we show how we can still solve the variational inequality (25) for a
more general initial condition

u0 ∈ K̃ = {v ∈ L2(Ω)N :
N∑
j=1

vj ≤ 1, vi ≥ 0, i = 1, . . . , N, in Ω} (30)
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and for general nonlinear f = f(u) defining a continuous operator from L2(0, T ; K̃)
in L1(Q)N . We shall assume that f = f(x, t,v) : Q× [0, 1]N → RN satisfies

f = f(x, t,v) is continuous in v for a.e. (x, t) ∈ Q, (31)

∃ϕ1 ∈ L1(Q) : |f(x, t,v)| ≤ ϕ1(x) ∀v ∈ [0, 1]N , for a.e. (x, t) ∈ Q. (32)
However, now the solution has less regularity, namely

u ∈ C([0, T ];L2(Ω)N ∩ K̃) ∩ L2(0, T ;H1(Ω)N ) (33)

and its derivative may not be a function, since we only have

∂tu ∈ L1(Q)N + L2
(
0, T ;

(
H1(Ω)N

)′)
. (34)

Hence the first term in the variational inequality (25)-(30) should be inter-
preted in the duality sense between L1(Q)N + L2

(
0, T ;

(
H1(Ω)N

)′) and L∞(Q)N ∩
L2(0, T ;H1(Ω)N ), namely through the formula

〈∂tu,v〉t =
∫
Qt

Pu·v−
∫
Qt

∇u·∇v, ∀v ∈ L∞(Q)N ∩ L2(0, T ;H1(Ω)N ), (35)

for arbitrary t ∈ (0, T ] since, as we shall see, (27) yields Pu ∈ L1(Q)N .

Theorem 3.1. Under the assumptions (30), (31)and (32), the variational inequality
(25) has a solution u satisfying (33), (34), (27) and u(0) = u0 and we can write∫

Q

(
Pu− f(u)

)
· (v − u) ≥ 0, ∀v ∈ L2(0, T ; K̃). (36)

Proof. We consider the closed convex subset of L2(Q)N

K = L2(0, T ; K̃) = {v ∈ L2(Q)N : ui ≥ 0, i = 1, . . . , N,
N∑
i=1

ui ≤ 1 in Q}

and we define Φ : K →K as the nonlinear operator that associates to each w ∈ K
the solution uw = Φ(w) of the variational inequality (25) with f replaced by
g = f(x, t,w) and fixed initial data u0 ∈ K̃.

By showing that Φ is a continuous and compact operator, a fixed point u = Φ(u),
given by Schauder Theorem, will provide a solution with the required properties.

Indeed, first we observe that if we consider any sequence K 3 wν −−−−→
ν

w ∈K

in L2(Q)N , by (31) and (32), the Lebesgue Theorem implies

gν = f(wν) −−−−→
ν

f(w) = g in L1(Q)N .

Next, for any g ∈ L1(Q)N and any u0 ∈ K̃ we consider sequences gν ∈ L2(Q)N

and u0ν ∈ K such that

gν −−−−→
ν

g in L1(Q)N and u0ν −−−−→
ν

u0 in L2(Ω)N

and we denote by uν ≡ S(u0ν , gν) the unique solution of (25)-(7) given by Theorem
2.3, for each gν and u0ν . We observe that each component of Puν satisfies the
inequality (27) with fi replaced by (gν)i. From (25) for uµ and uν , we easily find,
for a.e. t ∈ (0, T ),

1
2
d

dt

∫
Ω

|uµ − uν |2 +
∫

Ω

|∇(uµ − uν)|2 ≤
∫

Ω

(gµ − gν) · (uµ − uν)
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and, integrating in time, we obtain

sup
0<t<T

∫
Ω

|uµ(t)−uν(t)|2+
∫
Q

|∇(uµ−uν)|2 ≤
∫

Ω

|u0µ−u0ν |2+4
∫
Q

|gµ−gν |. (37)

This estimate shows that {uν}ν is a Cauchy sequence in the Banach space

W = C([0, T ];L2(Ω)N ) ∩ L2(0, T ;H1(Ω)N ) (38)

with respect to the norm

‖|v‖| =
(

sup
0<t<T

∫
Ω

|v(t)|2 +
∫
Q

|∇v|2
)1/2

(39)

and, hence, there exists a function ug ∈ W

uν −−−−→
ν

ug in W .

In addition, ug ∈ L2(0, T ; K) ∩ C([0, T ]; K̃) and, recalling (27), also Pug ∈
L1(Q)N , which implies, by (35), that ∂tug satisfies (34). Hence, using (35), we may
pass to the limit in ν in

〈Puν − gν ,v − uν〉 =
∫
Q

(Puν − gν) · (v − uν) ≥ 0

for an arbitrary v ∈ L2(0, T ; K) ⊂ L∞(Q)N , and using the formula

2〈∂tug,ug〉t =
∫

Ω

|ug(t)|2 −
∫

Ω

|u0|2, ∀ t ∈ (0, T ],

we conclude that ug = S(u0, g) is the (unique) solution of the variational inequality
(25) (or equivalently (36)) with data g ∈ L1(Q)N and u0 ∈ K̃. In particular, from
(37), we also obtain that, for fixed u0 ∈ K̃, the operator Σ : g 7→ ug = S(u0, g) is
Hölder continuous of order 1/2, from L1(Q)N into W .

Since ∂tug satisfies the property (34), it is in fact in L1(0, T ;H−s(Ω)N ), for s
sufficiently large and, by a well known compactness embedding (see [25] or Theorem
3.11 of [26]), the compactness of H1(Ω) ⊂ L2(Ω) implies that, in fact, Σ regarded
as an operator from L1(Q)N into K ⊂ L2(Q)N is, therefore, completely continuous.
Hence, Φ = Σ ◦ f fulfils the requirements of the Schauder fixed point theorem and
the proof is complete.

Remark 3.2. It is clear that if u0 ∈ K and, in (32), ϕ1 ∈ L2(Q), we obtain in
Theorem 3.1 the existence of a strong solution satisfying (23) and (24). Of course,
if we have the regularity assumptions of Theorem 2.4, i.e., ϕ1 ∈ Lp(Q), implying
by the inequalities (27) that Pu ∈ Lp(Q)N , we also obtain solutions in W 2,1

p (Q)N ,
in particular Hölder continuous solutions if p > (n+ 2)/2.

In general the problem (36)-(30) may have more than one solution, but if we
assume, in addition, that for some λ > 0, λ I − f is monotone non-decreasing in
[0, 1]N , i.e.

∃λ > 0 : λ|v −w|2

−
(
f(x, t,v)− f(x, t,w)

)
· (v −w) ≥ 0, (x, t) ∈ Q, ∀v,w ∈ [0, 1]N , (40)

in particular, if f is Lipschitz continuous in v, then there exists at most one solution
u of the variational inequality (25) in the class (33) and initial condition u0 ∈ K̃.

In order to prove the uniqueness of solution, we suppose that u1 and u2 are
two solutions of the variational inequality (25) with initial condition u0 ∈ K̃ and
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f = f(u1), f = f(u2) respectively. Then, choosing u2 and u1 as test functions,
respectively, using (40) we find

1
2

∫
Ω

|u2(t)− u1(t)|2 +
∫
Qt

|∇(u2 − u1)|2

≤
∫
Qt

(
f(u2)− f(u1)

)
·
(
u2 − u1) ≤ λ

∫
Qt

|u2 − u1|2

and so, by Grownvall inequality u1 = u2 a.e. in Q, since u1(0) = u2(0) = u0.
We redefine the variational formulation of the approximating problem (18) in the

framework of this section with Θε defined in (16) and with initial condition only in
L2(Ω)N ,∫

Q

∂tu
ε · v +

∫
Q

∇uε · ∇v +
∫
Q

Θε(uε) · v =
∫
Q

f(uε) · v,

∀v ∈ L2(0, T ;H1(Ω)N ) ∩ L∞(Q)N . (41)

Arguing as in Theorem 3.1 we may prove the existence of a solution of the
approximating problem (12), with initial condition u0 ∈ K̃ as long as f satisfies
(31) and (32). We also have uniqueness if we assume (40).

Theorem 3.3. Suppose that f satisfies (31), (32) and (40) and u0 ∈ K̃.
Let uε and u be, respectively, the unique solution of the approximating problem

(12) and of the variational inequality (25), both with initial condition u0. Then
there exists a positive constant c = c(ϕ1, T ) such that the following estimate in the
norm (39) of W = C([0, T ];L2(Ω)N ) ∩ L2(0, T ;H1(Ω)N ) holds,

‖|uε − u‖| ≤ c
√
ε. (42)

Proof. We choose in (41) v = uε − u as test function. Since u ∈K, then∫
Q

Θε(uε) · (uε − u) ≥ 0

and so ∫
Qt

∂tu
ε · (uε − u) +

∫
Qt

∇uε · (uε − u) ≤
∫
Qt

f(uε) · (uε − u). (43)

Choosing as test function in (25) vε =
(
(uε1 − ε

N )+, . . . , (uεN − ε
N )+) we get∫

Qt

∂tu · (uε − u) +
∫
Qt

∇u · ∇(uε − u)

≥
∫
Qt

f(u) · (uε − u) +
∫
Qt

[
Pu− f(u)

]
· (uε − vε) (44)

and subtracting (44) from (43) we get

1
2

∫
Ω

|uε(t)− u(t))|2 +
∫
Qt

|∇(uε − u)|2

≤
∫
Qt

(f(uε)− f(u)) · (uε − u) +
∫
Qt

[
Pu− f(u)

]
· (vε − uε)

≤ λ
∫
Qt

|uε − u|2 + ε

∫
Qt

|Pu− f(u)|, (45)
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since ‖vε − uε‖L∞(Q)N ≤ ε. Letting C = C(ϕ1, T ) = ‖Pu − f(u)‖L1(Q)N , from
(45) we obtain first, by application of the Grownwall inequality,∫

Ω

|uε(t)− u(t)|2 ≤ 2εCe2λt

and using again (45), also
|‖uε − u‖| ≤ c

√
ε.

With similar arguments we may give a continuous dependence result for solutions
of the variational inequality (36).

Suppose we have a sequence fν −−−−→
ν

f in the following sense

fν = fν(x, t,v) are continuous in v ∈ [0, 1]N , for a.e. (x, t) ∈ Q

fν(·, ·,v) −−−−→
ν

f(·, ·,v) in L1(Q)N for all fixed v ∈ [0, 1]N .

 (46)

In addition, the assumption (32) is satisfied for all f uniformly in ν, i.e., there
is a common ϕ1 such that (32) holds for all ν, and the initial data are such that

K̃ 3 uν0 −−−−→
ν

u0 in L2(Ω)N . (47)

Hence, by Theorem 3.1, it is clear that there are solutions {uν}ν∈N to the cor-
responding problems associated with fν and uν0 and, moreover, they satisfy (33)
and (34) uniformly in ν, i.e., their norms in those spaces are bounded by a constant
independent of ν. Therefore, we have a function u in the same class (33) and (34),
and a subsequence, still denoted by ν, such that

uν −−−⇀
ν

u in L2(0, T ;H1(Ω)N ) weak and in L∞(0, T ; K̃) weak-∗ (48)

uν −−−−→
ν

u a.e. in Q and in Lp(Q)N , ∀ 1 ≤ p <∞. (49)

By assumption (46) and Lebesgue Theorem, we conclude that fν(uν) −−−−−→
ν

f(u)

a.e. in Q and in L1(Q)N , as well as∫
Q

fν(uν) · uν −−−−→
ν

∫
Q

f(u) · u, (50)

∫
Q

(
fν(uν)− f(u)

)
· (uν − u) −−−−→

ν
0, (51)

since, in particular, |uν | ≤ 1 and |u| ≤ 1 a.e. in Q.
Recalling (27) for each ν, we may take the limit in∫

Q

(
Puν − fν(uν)

)
· (v − uν) ≥ 0 (52)

for a fixed v ∈ L2(0, T ; K̃). Using (50) and (48), that in particular imply, by
standard arguments, already used in the proofs of Theorems 2.3 and 3.1,

Pu ∈ L1(Q)N and lim inf
ν

∫
Qt

Puν · uν ≥
∫
Qt

Pu · u, ∀ t ∈ (0, T ),

we conclude that u is a solution of (36) with initial condition u0.
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Using v = uχ(0,t) + uνχ(t,T ) in (52) and v = uνχ(0,t) + uχ(t,T ) in (36) we find,
for a.e. t ∈ (0, T ),

1
2

∫
Ω

|uν(t)− u(t)|2 +
∫
Qt

|∇(uν − u)|2

≤
∫
Qt

[
fν(uν)− f(u)

]
· (uν − u) +

1
2

∫
Ω

|uν0 − u0|2

and, by (51), we conclude that uν −−−−→
ν

u strongly in W . Therefore, we have
proved the following result

Theorem 3.4. If uν denotes the solution to the variational inequality (36) with
fν satisfying the assumptions (46) and (32) uniformly in ν and initial condition
satisfying (47), then there exists a subsequence {uν}ν∈N such that

uν −−−−→
ν

u in C([0, T ];L2(Ω)N∩K̃)∩L2(0, T ;H1(Ω)N )∩Lp(Q)N , ∀ 1 ≤ p <∞,

where u is a solution to (36) corresponding to the limit f and the limit initial
condition u0. In addition, if f satisfies (40), by uniqueness of u, the whole sequence
{uν}ν∈N converges. �

4. The multiphases system and its characterization. In this section we con-
sider a variational solution u of (25) obtained in Theorem 3.1, i.e., satisfying (33)
and (34). Setting

wi(u) = 1−
∑
j 6=i

uj , i = 1, . . . , N, (53)

each component ui satisfies a double obstacle problem

0 ≤ ui(x, t) ≤ wi(x, t) a.e. (x, t) ∈ Q, i = 1, . . . , N. (54)

For an arbitrary nonnegative and bounded function ϕ = ϕ(x, t) defined for
(x, t) ∈ Q, such that

Kϕ
0 = {v ∈ L2(0, T ;H1(Ω)) : 0 ≤ v ≤ ϕ in Q} 6= ∅, (55)

and for a given g ∈ L1(Q), we may introduce the parabolic double obstacle scalar
problem

u ∈ Kϕ
0 :

∫
Q

∂tu(v − u) +
∫
Q

∇u · ∇(v − u) ≥
∫
Q

g(v − u) ∀v ∈ Kϕ
0 , (56)

subject to a given compatible initial condition

u(0) = u0 in Ω. (57)

For each i = 1, . . . , N , we have ui ∈ Kwi
0 and, by choosing in (25) v ∈ L2(0, T ; K),

such that vj = uj for j 6= i and vi = v ∈ Kwi
0 arbitrarily, it is clear that ui is a

solution of the scalar double obstacle problem (56) with ϕ = wi and g = fi(u).
Hence we can obtain further properties of our solution by applying the general
theory of the obstacle problem. For the sake of completeness we prove here the
result below.

Let
ϕ ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q) with ϕ ≥ 0 a.e. in Q, (58)

∂tϕ ∈ L2
(
0, T ;

(
H1(Ω)

)′) with Pϕ ∈ L1(Q),
∂ϕ

∂n
= 0 on ∂Ω× (0, T ), (59)
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and
g ∈ L1(Q), u0 ∈ L2(Ω), 0 ≤ u0 ≤ ϕ(0) in Ω. (60)

We observe that (59) means that ϕ satisfies the formula

〈∂tϕ, v〉t =
∫
Qt

v Pϕ−
∫
Qt

∇ϕ · ∇v, ∀v ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q).

Proposition 4.1. Under the assumptions (58)-(60) the unique solution u ∈ Kϕ
0 to

the scalar problem (56)-(57) is such that

u ∈ C([0, T ];L2(Ω)) ∩ L∞(Q), ∂tu ∈ L1(Q) + L2(0, T ;
(
H1(Ω)′

)
, (61)

and it satisfies the parabolic semilinear equation

Pu = g + g−χ{u=0} − (Pϕ− g)−χ{u=ϕ} a.e. in Q. (62)

Proof. Using the function θε given by (11) and defining

hε(v) = g−θε(v)− (Pϕ− g)−θε(ϕ− v) (63)

we can consider the approximating problem, for ε > 0,∫
Q

(
Puε + hε(uε)

)
v =

∫
Q

gv, ∀ v ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q), (64)

with the initial condition uε(0) = u0 in Ω. Since hε is monotone and ϕ is bounded,
arguing as in Theorem 3.1, the problem (64) has a unique solution uε in the class
(61). Moreover, it satisfies

− ε ≤ uε ≤ ϕ+ ε a.e. in Q, (65)

as we can show by choosing, in (64), v = (−uε − ε)+ and v = (uε − ϕ − ε)+,
respectively. Indeed, in the first case we have∫

Q

vPv = −
∫
Q

vPuε =
∫
{v>0}

v (h(uε)− g) =
∫
{uε<−ε}

(−g− − g) ≤ 0,

since hε(uε) = −1 and hε(ϕ − uε) = 0, because uε < −ε and ϕ − uε > ε, and, in
the second case,∫

Q

vPv =
∫
Q

vP (uε − ϕ) =
∫
{v>0}

v (g − h(uε)− Pϕ)

=
∫
{ϕ−uε>ε}

(
−(Pϕ− g)− (Pϕ− g)−

)
≤ 0,

since hε(ϕ− uε) = −1 and hε(uε) = 0 if ϕ− uε < −ε and uε > ϕ+ ε.
Hence, using the monotonicity argument, we easily conclude that u = lim

ε→0
uε ∈

Kϕ
0 is the unique solution of the variational inequality (56). Remarking that, from

(63) we have
−g− ≤ hε(uε) ≤ (Pϕ− g)− a.e. in Q,

from (64) we deduce in the limit the Lewy-Stampacchia inequalities

(Pϕ− g)− ≤ Pu− g ≤ g− a.e. in Q.

In particular, this yields Pu ∈ L1(Q) and (56) implies that u also solves∫
Q

(
Pu− g

)
(v − u) ≥ 0, ∀ v ∈ K̃ϕ

0 , (66)

where K̃ϕ
0 = {v ∈ L2(Q) : 0 ≤ v ≤ ϕ in Q} ⊂ L∞(Q).
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Let O ⊂ Q be an arbitrary measurable set and set v = u in Q \O and v = δϕ in
O, with δ ∈ [0, 1], in (66). Since O is arbitrary, we conclude the pointwise inequality(

Pu− g
)
(φ− u) ≥ 0 ∀φ ∈ [0, ϕ(x, t)] a.e. in Q, (67)

which implies, up to null measure subsets of Q,

Pu− g ≥ 0 in {u = 0}, Pu− g ≤ 0 in {u = ϕ}, (68)

Pu = g in Λ = {0 < u < ϕ}. (69)

On the other hand, arguing as in Lemma 2 of [24] and noting that V = (u,−∇u) ∈
L1(Q)n+1 and D · V = Pu ∈ L1(Q), with D = (∂t, ∂x1 , . . . , ∂xn), we have

Pu = 0 a.e. in {u = 0} and Pu = Pϕ a.e. in {u = ϕ}.

Hence, by (68), up to negligible sets, we have {u = 0} ⊂ {g ≤ 0} and {u = ϕ} ⊂
{Pϕ ≤ g}, and using also (69), we finally conclude (62).

Theorem 4.2. Any solutions u of the variational inequality (25) (or (36)) under
the conditions of Theorem 3.1 satisfy the semilinear parabolic system

Pui = fi(u) + f−i (u)χ{ui=0}

−
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(fi1(u) + · · ·+ fik(u))+χ
i1...ik a.e. in Q, (70)

where χi1...ik = χ
Ii1...ik

, for k = 1, . . . , N , denotes the characteristic function of

Ii1...ik = {(x, t) ∈ Q : ui1...ik(x, t) = 1, uij (x, t) > 0 for all j = 1, . . . , k}. (71)

Proof. We notice that the regularity (58), (59) holds for wi = 1−
∑
j 6=i

uj , so wi can

be chosen as the upper obstacle of each component ui, i = 1, . . . , N , of u, to which
we can apply the conclusions of Proposition 4.1. Since {ui = 0} ⊂ {fi(u) ≤ 0} a.e.,
for each i = 1, . . . , N , we have

Pui = fi(u) + f−i (u)χ{ui=0} − (Pwi − fi(u))−χ{ui=wi, ui>0} in Q, (72)

and the condition (70) will follow if we show that

(Pwi−fi(u))−χ{ui=wi, ui>0} =
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(
fi1(u)+· · ·+fik(u)

)+χ
i1...ik in Q,

(73)
Observe that {

ui = wi, ui > 0
}

=
⋃

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

Ii1...ik ,

and these sets are a.e. disjoint. Here the union is taken also over all the subsets
{i1, . . . , ik} of {1, . . . , N} that include i and over all k = 1, . . . , N . We remark that
Pwi = Pui in that subset and
• in the sets Ii = {ui = 1}, Pwi = 0 and (Pwi − fi(u))− = fi(u)+, for
i = 1, . . . , N ;
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• in each set Ii1...ik , for k ≥ 2, as we shall see,

(Pui − fi(u))− =
1
k

(
fi1(u) + · · ·+ fik(u)

)+
,

and this fact concludes the proof.
Let (x0, t0) ∈ Ii1...ik . Recall that {i1, . . . , ik} is the set of indexes for which we

have 0 < uij (x0, t0) (notice that i ∈ {i1, . . . , ik}). Denoting α = min{uij (x0, t0) :
j = 1, . . . , k}, the set O =

⋂k
j=1{uij > α/2} is measurable and contains (x0, t0).

Given any measurable set ω ⊂ O, choose, in (36), as test function v = (v1, . . . , vN )
defined by

vi1 = ui1 ± δχω, vij = uij ∓ δχω for a fixed j ∈ {2, . . . , k}, vl = ul ∀ l 6= i1, ij ,

observing that
N∑
j=1

vj =
N∑
j=1

uj ± δχω ∓ δχω =
N∑
j=1

uj ≤ 1

and
vj ≥ 0, j = 1, . . . , N, as long as 0 < δ ≤ α/2.

Returning to the inequality (36) and setting Sj = Puj − fj(u), we get

±δ
∫
Q

Si1
χ
ω ∓ δ

∫
Q

Sij
χ
ω ≥ 0.

Since ω ⊃ {(x0, t0)} was taken arbitrarily in O and (x0, t0) is a generic point of
Ii1...ik , we conclude that

Si1 = Sij , a.e. in Ii1...ik, for any j ∈ {2, . . . , k}. (74)

Recalling that
N∑
j=1

Puj = Pui1...ik = 0, in the set Ii1...ik we get, using (74), that

kSi1 = Si1 + · · ·+ Sik =
(
Pui1 − fi1

)
+ · · ·+

(
Puik − fik

)
= Pu1 + · · ·+ PuN − (fi1 + · · ·+ fik),

where, for simplicity, we set fj = fj(u), and so

Si = Si1 = −1
k

(
fi1 + · · ·+ fik

)
.

But in Ii1...ik we have Si ≤ 0 (recall that ui = wi and (68)) and so

(Pui− fi(u))− = −(Pui− fi(u)) = −Si =
1
k

(
fi1 + · · ·+ fik

)
=

1
k

(
fi1 + · · ·+ fik

)+
.

Corollary 4.3. Let u be the solution of the variational inequality (25) (or (36))
under the conditions of Theorem 3.1.

Then, denoting by |A| the (n+ 1)-Lebesgue measure of A ⊂ Q, we have∣∣∣{ k∑
j=1

fij (u) < 0
}
∩
{ k∑
j=1

uij = 1, uij > 0, j = 1, . . . , k
}∣∣∣ = 0 (75)

for each partial coincidence subset Ii1...ik , as well as∣∣{fi(u) > 0} ∩ {ui = 0}
∣∣ = 0, i = 1, . . . , N. (76)
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Proof. Being Ii1...ik defined in (71), using the equation (70), we obtain, for each ij
with j = 1, . . . , k, denoting fij = fij (u),

Puij = fij −
1
k

(
fi1 + · · ·+ fik

)+ a.e in Ii1...ik .

Summing these k equations, we have

0 =
k∑
j=1

Puij = fi1 +· · ·+fik−
(
fi1 +· · ·+fik

)+ =
(
fi1 +· · ·+fik

)− a.e in Ii1...ik .

So, in Ii1...ik =
{ ∑k

j=1 uij = 1, uij > 0, j = 1, . . . , k
}
we have

k∑
j=1

fij ≥ 0 a.e.

and (75) follows.
The proof of (76) is similar (recall (68)).

As a consequence of this corollary the semilinear system (70) can, in fact, be
written in the equivalent form for i = 1, . . . , N ,

Pui = fi(u)− fi(u)χ{ui=0}

−
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(fi1(u) + · · ·+ fik(u))χi1...ik a.e. in Q, (77)

since {ui = 0} ⊂ {fi(u) ≤ 0} and Ii1...ik ⊂
{ k∑
j=1

fij (u) ≥ 0
}

up to a negligible

subset of Q.
This remark combined with the continuous dependence of the variational solu-

tions obtained in Theorem 3.4 yields an interesting criteria of local stability of the
characteristic functions of the coincidence sets in the Lebesgue measure. Denote
χν
i1...ik

= χ
{uνi1...ik=1, uνij

>0 ∀j=1,...,k}, 1 ≤ i1 < · · · < ik ≤ N, k = 1, . . . , N .

Theorem 4.4. Let the assumptions and notations of Theorem 3.4 hold. Suppose
that in some subset of positive measure ω ⊆ Q the following assumption on the limit
problem holds

k∑
j=1

fij (u) 6= 0 a.e. in ω, 1 ≤ i1 < · · · < ik ≤ N, k = 1, . . . , N. (78)

Then the associated characteristic functions are such that
χ
{uνi =0} −−−−→

ν

χ
{ui=0} in Lp(ω), ∀ i = 1, . . . , N, (79)

χν
i1...ik

−−−−→
ν

χ
i1...ik in Lp(ω), ∀ i1, . . . , ik, (80)

for all p, 1 < p <∞.

Proof. We observe that each uν solves the system

Puνi = fνi −fνi χ{uνi =0}−
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(fνi1 +· · ·+fνik)χνi1...ik a.e. in Q (81)
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where, for simplicity, we set fνi = fνi (uν). By the convergence uν −−−−→
ν

u, we

have Puν −−−⇀
ν

Pu in the distributional sense. Since 0 ≤ χνi1...ik ≤ 1, there exists
χ∗
i1...ik

, with 0 ≤ χ∗i1...ik ≤ 1 in Q, such that
χν
i1...ik

−−−⇀
ν

χ∗
i1...ik

in L∞(Q) weak- ∗ .

Analogously, for some χ∗i,0, with 0 ≤ χ∗i,0 ≤ 1 in Q, we have
χ
{uνi =0} −−−⇀

ν

χ∗
i,0 in L∞(Q) weak- ∗ .

We are going to prove that, in fact,
χ∗
i,0 = χ

{ui=0} and χ∗
i1...ik

= χ
i1...ik a.e. in ω,

which concludes the proof, since the weak convergence to characteristic functions
in Lp(ω) is in fact strong, as it is well known.

Passing to the limit in (81), we obtain

Pui = fi − fiχ∗i,0 −
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(fi1 + · · ·+ fik)χ∗i1...ik a.e. in Q

where, for simplicity, we have also set fij = fij (u).
But each ui also solves the equation (77), so, by subtraction, we obtain a.e. in

Q,

−fi
(
χ
{ui=0}−χ∗i,0

)
−

∑
1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(fi1 + · · ·+fik)
(
χ
i1...ik−χ

∗
i1...ik

)
= 0. (82)

Noticing that χ{uνi =0}u
ν
i = 0, passing to the limit, we get χ∗i,0ui = 0, which

means that χ∗i,0 = 0 whenever ui > 0. To conclude that χ∗i,0 = χ
{ui=0} we only

need to prove that χ∗i,0 = 1 if ui = 0.
Recall that the sets {ui = 0} and Ii1...ik , 1 ≤ i1 < . . . < ik ≤ N , i ∈ {i1, . . . , ik},

k = 1, . . . , N , are mutually disjoint. Hence in {ui = 0} we obtain

−fi(1− χ∗i,0) +
∑

1≤ i1<. . .< ik≤ N
i ∈ {i1, . . . , ik}

1
k

(fi1 + · · ·+ fik)χ∗i1...ik = 0

and since the left hand side is nonnegative, by the assumption (78) we conclude
that

χ∗
i,0 = 1 and χ∗

i1...ik
= 0 in {ui = 0} ∩ ω.

Since χνi1...ik(1 − uνi1...ik) = 0 a.e. in Q, taking the limit in ν, we also obtain
χ∗
i1...ik

(1−ui1...ik) = 0 a.e in Q, i.e. χ∗i1...ik = 0 if ui1...ik < 1. It remains to evaluate
χ∗
i1...ik

when ui1...ik = 1 and uij > 0, for all j = 1, . . . , k or when uij = 0, for some
j = 1, . . . , k.

In this later case, where uij = 0, for some j = 1, . . . , k, we have χi1...ik = 0 and,
since we already know that χ{uij=0} = χ∗

ij ,0, from (82) for the index ij , we get∑
1≤ i1<. . .< ik≤ N
ij ∈ {i1, . . . , ik}

1
k

(fi1 + · · ·+ fik)χ∗i1...ik = 0.
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Then, by the assumption (78) we have χ∗i1...ik = 0 in
(
Q \ Ii1...ik

)
∩ ω.

Finally, in Ii1...ik ∩ ω, again from (82), we obtain

1
k

(fi1 + · · ·+ fik)
(
1− χ∗i1...ik

)
= 0

and the assumption (78) yields that χ∗i1...ik = 1, completing the proof.
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