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Monitoring of Biological Wastewater Treatment Processes using 

Indirect Spectroscopic Techniques 

Abstract 

Real-time monitoring can enhance the performance of biological wastewater treatment 

processes by preventing incidents that can lead to the imbalance of the system and 

eventually to the total loss of biological activity. For this purpose, in-situ monitoring 

techniques should not require sample pre-treatment and chemicals addition. Nowadays 

automation is still limited by poor sensor performance and high maintenance costs. Hence, 

further investigation is required in order to achieve new developments in monitoring 

techniques.  

Spectroscopic methods together with chemometrics are being presented as a powerful tool 

for process monitoring and control, since they can be fast, non-destructive and without the 

use of chemicals. 

In this work, UV-Visible and Near-Infrared (NIR) spectroscopy were used to monitor an 

activated sludge process using immersion probes connected to the respective 

spectrophotometers through optical fibbers. During two monitoring periods changes were 

induced to the system to test the ability of both probes in detecting them.  

While UV-Visible spectroscopy showed to be suitable for on-line monitoring, by detecting 

chemical oxygen demand (COD) variations in the effluent and identifying different 

nitrification status, NIR range also demonstrated potentialities, however, due to several 

experimental constrains, the results were not conclusive. 

Partial least squares (PLS) regression was performed for the prediction of COD, nitrate and 

total suspended solids (TSS) concentrations in the effluent using immersible UV-Visible 

probe and off-line spectra acquisition. The best results were obtained for the in-situ 

technique. The root mean squared error of cross validation (RMSECV) obtained for the 

estimative of each parameter was 15.4 mg O2/L for COD, 19.0 mg N-NO3
-/L for nitrate and 

35.3 mg/L for TSS.  

In-situ UV-Visible range proved to be valuable for the monitoring and control of biological 

wastewater treatment processes, although some improvements identified in this work are 

still needed to overcome its limitations. 
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Monitorização de Processos Biológicos de Tratamento de Águas 

Residuais com Técnicas de Espectroscopia Indirectas 

Resumo 

A monitorização em tempo real permite melhorar o desempenho dos processos de 

tratamento biológico de efluentes através da prevenção de incidentes que levam ao 

desequilíbrio do sistema e eventual perda da actividade biológica. Entre outras vantagens, 

as técnicas de monitorização in-situ podem ainda evitar a necessidade de efectuar o pré-

tratamento da amostra e a adição de produtos químicos. Actualmente, a automação 

encontra-se ainda limitada pelo fraco desempenho e elevados custos de manutenção dos 

sensores. Deste modo, torna-se necessária mais investigação de modo a desenvolver novas 

técnicas de monitorização. Os métodos espectroscópicos aliados à quimiometria têm sido 

apresentados como técnicas com uma enorme potencialidade para a monitorização e 

controlo de processos, uma vez que podem ser rápidos, não destrutivos e não utilizam 

produtos químicos. Neste trabalho, as regiões do UV-Visível e do Infra-Vermelho Próximo 

(Near Infra-Red – NIR) foram usadas na monitorização de um processo de lamas activadas 

através do uso de sondas ligadas, por fibras ópticas, aos respectivos espectrofotómetros. 

Durante dois períodos de monitorização foram induzidas alterações ao sistema de forma a 

testar a capacidade de ambas as sondas na detecção destas variações. A espectroscopia do 

UV-Visível demonstrou ser adequada para a monitorização em linha, ao detectar variações 

de carência química de oxigénio (CQO) no efluente e ao identificar diferentes fases do 

processo de nitrificação. Apesar de a espectroscopia na gama NIR ter mostrado 

potencialidades, devido a diversas limitações experimentais os resultados foram 

inconclusivos. A técnica de regressão dos mínimos quadrados parciais (partial least squares 

– PLS) foi utilizada com o objectivo de prever as concentrações da CQO, nitrato e sólidos 

suspensos totais (SST) no efluente através da sonda de UV-Visível submersível e da 

aquisição de espectros em diferido. Os melhores resultados foram obtidos com a técnica in-

situ. O erro médio de validação (RMSECV) obtido para a estimativa de cada um dos 

parâmetros foi de 15.4 mg O2/L para a CQO, 19.0 mg N-NO3
-/L para o nitrato e 35.3 mg/L 

para os SST. 

A técnica UV-Visível in-situ demonstrou ser adequada para a monitorização e controlo de 

processos de tratamento biológico de efluentes, apesar de ter sido identificada neste 

trabalho a necessidade de melhorias, por forma a ultrapassar as suas limitações.  
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INTRODUCTION 

1.1 Context and Motivation 

 

The recent trends on environmental protection indicate that, in the immediate future, 

regulators in Europe will increase their demands towards wastewater treatment activities. 

In fact, a number of European regulatory measures and recommendations, such as the 91-

271 EEC Directive already exist with the objective of preventing adverse effects of urban and 

industrial wastewater discharges on the environment. Hence, the development of 

wastewater monitoring tools has been an object of growing concern, and the search for a 

more complete knowledge of the treatment processes is considered an important path 

towards a higher efficiency. 

In order to comply with these regulations and to prevent possible incidents related to the 

spatial and time dependent variability of wastewater composition, on-line monitoring is 

clearly pointed out as a solution (Bourgeois et al., 2001). However, the available wastewater 

quality monitoring technologies have several drawbacks concerning the control of the 

treatment systems (Lourenço et al., 2006). 

Traditional wastewater (WW) characterization uses aggregate parameters like biological 

oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC), to 

diagnose the WW treatment status. The analytical used to measure these parameters are 

cumbersome and time consuming, what makes them difficult to adapt to real-time control, 

since sampling, sample pre-treatment and chemicals addition are needed in most of the 

cases. Hence, novel techniques or improved tools are required to meet the actual WW 

quality standards. 

Among the potential candidates for the development and application of on-line 

measurements, spectroscopy can lead to very interesting results, since it can be the basis 

for non-invasive and non-destructive measuring systems (Pons et al., 2004). 

When using spectroscopic methods, the characteristic transmission, absorption, 

fluorescence spectrum and vibrational properties of chemical species are measured in order 
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to determine its concentration or identity (Bourgeois et al., 2001). Spectroscopic techniques 

like UV-Visible, Infrared (IR, mid or Near) and Fluorescence have already been tested in-situ.  

Indirect chemometric models are used in wastewater for correlating the concentrations of 

the required parameters to spectral information, since direct models cannot be used when 

there is no linear relation between these parameters as required by the Beer- Lambert law. 

This fact is due to the kind of parameters monitored in wastewater, since there is a strong 

correlation between them, like in the case of COD with soluble COD (SCOD) and total 

suspended solids TSS (Langergraber et al., 2004a). 

Principal Component Analysis (PCA) and Partial Least Squares (PLS) are multivariate 

statistical projection methods that can be used to make data easier to understand by 

extracting relevant information and modelling it. These tools are usually used to deal with 

large amounts of data, such as spectral data. PCA and PLS make use of data directly 

collected from the process to build an empirical model, providing graphical tools easy to 

apply and to interpret (Aguado and Rosen, 2007), making them very useful for real-time 

control and monitoring. 

UV-Visible spectroscopic techniques for in-situ monitoring of a wastewater treatment plant 

(WWTP) have proven to be possible but also limited as they require calibration procedures 

and are very much dependent on matrix stability to achieve good correlations. This is due to 

the complex matrix present in the biological wastewater treatment processes, which results 

in a mixture of different organic and inorganic compounds, together with colloidal and 

suspended matter, making the identification and  determination of a single compound or 

determinant very difficult (Pons et al., 2004). It is nowadays accepted that on-site 

calibrations have to be performed in order to obtain a correct description of the system 

media (Langergraber et al. 2004b, Rieger et al., 2006; Maribas et al., 2008). 

The objective of obtaining information related to the monitoring of a lab scale activated 

sludge process for the development of a model suitable for future control is the basis of this 

work. 

Two spectroscopic ranges were selected to perform the in-situ monitoring, namely the UV-

Visible and Near-Infrared (NIR) range. The first choice is in agreement with the fact that UV 
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Visible spectroscopy has already proved to be an adequate technique for application in 

wastewater monitoring and it can be suitable for control purposes. However, this technique 

has some problems, once it is limited to the detection of compounds that can absorb in the 

UV or visible part of the electromagnetic radiation and can have other disadvantages such 

as signal saturation and necessity of dilution (Vaillant et al., 2002). NIR spectroscopy, even 

though is not so usually applied for biological wastewater monitoring, has a great 

application for quality control in food and pharmaceutical industry (Blanco and Villarroya, 

2002). This technique has several advantages related to the detection of chemical and 

physical properties and to its flexibility in terms of equipments and measuring modes (Reich, 

2005). Even though there are several interesting works using NIR spectroscopy in 

wastewater monitoring (Stephens and Walker, 2002; Hansson et al., 2003; Holm-Nielsen et 

al., 2006), the technique is still underdeveloped. More research is necessary for a better 

understanding of its applications, limitations and advantages when compared to other 

methods (Dias et al., 2008). Hence, NIR application to the monitoring of an activated sludge 

systems constitutes, by itself, an interesting opportunity of research, as suggested by the 

study performed by Dias et al. (2008). 

 

1.2 Objectives 

In-situ spectra acquisition with immersible probes together with off-line parameters analysis 

was used to study an activated sludge process with the main objective of contributing to the 

future development of an on-line real-time monitoring system. 

The following specific objectives were defined: 

• Monitor a lab scale activated sludge system in-situ using two different probes: 

UV-Visible and NIR immersible probes; 

• Perform off-line monitoring of parameters such as COD, TSS, Kjeldahl nitrogen, 

NH4
+, NO3

-, NO2
- in the effluent and mixed liquor volatile suspended solids 

(MLVSS) in the reactor; 
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• Induce imbalances to the process and analyse the spectral information obtained 

before and after the disturbance by using PCA and other statistical methods, 

evaluating the suitability of both immersion probes for real-time monitoring and 

detection of changes in the biological process; 

• Relate the spectral information with the off-line analysed parameters; 

• Construct PLS models for the prediction of parameters such as COD, TSS and 

nitrate.  

 

1.3 Activated Sludge Systems 

The use of microorganisms to degrade different kind of effluents, removing contaminants 

from wastewater by assimilating them, is effective and widespread. When considering 

biological wastewater treatment for a particular application it is important to have 

information about the wastewater composition and discharge requirements. So, with 

proper analysis and environmental control, almost all wastewaters containing 

biodegradable constituents can be treated biologically (Metcalf and Eddy, 2003).  

The principal biological processes used for wastewater treatment can be divided into two 

main categories: suspended growth and attached growth (or biofilm) processes. 

In suspended growth processes, the microorganisms are maintained in liquid suspension by 

appropriate mixing methods, and these systems can be performed in the presence of 

oxygen (aerobic) or in its absence (anaerobic, anoxic). The most common suspended 

biological process used for municipal and industrial wastewater treatment is the activated 

sludge process. The production of a very active mass of microscopic organisms capable of 

stabilizing waste under aerobic conditions is the basis for its designation (Rittmann and 

McCarty, 2001). Over the last 30 years numerous activated-sludge processes have been 

developed for the removal of organic material (BOD) and for nitrification. According to basic 

reactor configurations these processes can be grouped as: plug-flow, complete-mix and 

sequentially operated systems (Metcalf and Eddy, 2003). The complete-mix system became 
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the favorite of design engineers, since it is the simplest system to analyze (Rittmann and 

McCarty, 2001). 

A complete-mix activated sludge process is based on a continuous-flow stirred-tank reactor 

(aeration tank), where a relatively large number of microorganisms is in contact with 

dissolved oxygen, carbonaceous and nitrogenous wastes (Gerardi, 2002). In the aeration 

tank time is provided for mixing and aerating the influent wastewater with the suspended 

microorganisms, generally referred to as mixed liquor suspended solids (MLSS) or mixed 

liquor volatile suspended solids (MLVSS). This guarantees that the organic load, microbial 

suspension and oxygen demand are uniform in the aeration tank (Metcalf and Eddy, 2003). 

Usually mechanical equipment is used for mixing and to improve the transfer of oxygen into 

the process. The mixed liquor then flows to a clarifier where the microbial suspension is 

settled and thickened. The settled biomass is returned to the aeration tank to continue 

biodegradation of the influent organic material (Figure 1).  

 

 

Figure 1. Schematic diagram of an activated sludge process. Legend: Q - flowrate of influent; 
QW - waste sludge flowrate; Qr - flowrate in return line from clarifier; V - volume of aeration 
tank; S0 - influent soluble substrate concentration; S - effluent soluble substrate 
concentration; X0 -concentration of biomass in influent; XR - concentration of biomass in 
return line from clarifier; Xr - concentration of biomass in sludge drain; Xe - concentration of 
biomass in effluent (Metcalf and Eddy, 2003). 
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A large diversity of microorganisms can be found in the activated sludge process and a true 

ecosystem develops inside the aeration tank. Carbonaceous BOD removal in activated 

sludge processes is accomplished by aerobic heterotrophic microorganisms which are able 

to obtain energy and carbon from organic compounds. Nitrate production from ammonium 

is possible when strict aerobic autotrophs are present, using minerals and inorganic 

compounds to grow and reproduce, thus reducing nitrogenous BOD of wastes (Gerardi, 

2002).  

The main microorganisms responsible for most, if not all, nitrification in activated sludge 

process belong to the genera Nitrosomonas and Nitrobacter, which oxidize ammonium to 

nitrite and then to nitrate, respectively, in a two-step process, as follows:  

 2NH4 
+ + 3O2 → 2NO2 - + 4H+ + 2H2O    (1)  

2NO2
- + O2 → 2NO3

-      (2) 

Total oxidation reaction: 

NH4
+ + 2O2 → NO3

- + 2H+ + H2O    (3) 

Reaction (2) is usually very fast and nitrite concentration in the effluent of a WWTP is very 

low and around 0.1 mg/L (Rieger et al., 2004).  

All biological nitrogen-removal processes include an aerobic zone in which biological 

nitrification occurs but, to satisfy a total nitrogen discharge requirement, the wastewater 

treatment system must nitrify and denitrify, preventing eutrophication by avoiding the 

emission of inorganic nitrogen forms to water bodies (Metcalf and Eddy, 2003). 

Denitrification is the biological reduction of nitrite to nitric oxide, nitrous oxide and nitrogen 

gas, as follows: 

 NO3
-(aq) → NO2

- → NO → N2O → N2(g)   (4) 
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1.4 UV-Visible Spectroscopy 

1.4.1 Fundamentals 

Spectroscopic processes rely on the fact that electromagnetic radiation interacts with atoms 

and molecules in discrete ways to produce characteristic absorption or emission profiles 

(Burgess, 2007). 

Electromagnetic radiation is a type of energy that is transmitted through space, taking many 

forms: visible light is the most easily recognized, but it also includes X-rays, ultraviolet 

radiation, radio waves and microwave radiation. The visible region constitutes a small part 

of the electromagnetic spectrum, when compared to other spectral regions (Figure 2). The 

various types of radiation can be defined in terms of their wave frequency (Thomas et al., 

1996).  

 

Figure 2. Classification of the different spectral regions (Pons et al., 2004). 

The interaction of a photon with the electron cloud of a particular molecule causes the 

promotion of an electron from the ground to an excited state (Figure 3). The difference in 

the molecular energy levels, E2-E1, will correspond exactly to the photon energy. 
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Figure 3. Photon capture by a molecule (Burgess, 2007). 

 

The interaction between the photon and the electron cloud of matter is specific and 

discrete, being quantized and the energies associated with them related to the type of 

transition involved. The wavelength of each absorption is dependent on the difference 

between the energy levels. Hence, some transitions require less energy and consequently 

appear at longer wavelengths. 

If a molecule is only capable of a single electronic transition it will yield a sharp single 

spectral line, but molecular spectra are not solely derived from single electronic transitions 

between the ground and excited states. Quantized transitions do occur between vibrational 

states within each electronic state and between rotation sublevels. Electronic transitions 

occur at higher energies (ultraviolet) than vibrational (infrared) or rotational ones 

(microwave). Hence, the molecular spectra observed in the UV-Visible-NIR region are a 

combination of different transitions (Burgess, 2007). 

Electronic transitions related to the UV-Visible spectroscopy are only possible when the 

molecule involved in the absorption process has a chromophore (Table 1). Chromophores 

are the basic building blocks of spectra and are associated with molecular structure and the 

types of transition between molecular orbitals. Chromophores are characterized by the 

existence of electrons liable to absorb a given radiation, the energy of which corresponds 

exactly to that required for electron excitation (Thomas et al., 1996). 
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Table 1. Examples of molecules with chromophores for UV absorption and respective 
absorption band (adapted from Workman and Springsteen, 1998) 

Chromophore Absorption band (nm) 

Nitriles (R – C ≡ N) 160 

Alcohols (R – OH) 180 (170-200) 

Amines, primary (R – NH2) 190 (200-220) 

Nitrites (R – NO2) 271 

Azo group (R – N ≡ N – R) 340 

 

There are three types of ground state molecular orbitals: 

• Sigma (σ) bonding, 

• Pi (π) bonding, 

• Non-bonding (n), 

and two types of excited state: 

• Sigma star (σ*) antibonding, 

• Pi star (π*) antibonding, 

from which transitions are observed in the UV region (Figure 4). These four transitions yield 

different values for ΔE, and, hence, wavelength (Burgess, 2007). 

Possible electronic transitions of π, σ, and n electrons are: 

• σ → σ * Transitions 

An electron in a bonding σ orbital is excited to the corresponding antibonding orbital. The 

energy required is large. For example, methane (which has only C-H bonds and can only 

undergo σ → σ * transitions) shows a maximum absorbance at 125 nm. Maxima absorption 

due to σ → σ * transitions are not seen in typical UV-Visible spectra (200–700 nm). 

 



 

11 

 

INTRODUCTION 

 

Figure 4. Transitions between molecular orbitals (Burgess, 2007). 

 

• n → σ * Transitions 

Saturated compounds containing atoms with lone pairs (non-bonding electrons) are capable 

of n → σ * transitions. These transitions usually need less energy than σ → σ * transitions. 

They can be initiated by light whose wavelength is in the range 150–250 nm. The number of 

organic functional groups with n → σ * peaks in the UV region is small. 

• n →π * and π → π * Transitions 

Most absorption spectroscopy of organic compounds is based on transitions of n or π 

electrons to the π * excited state. This is because the absorption peaks for these transitions 

fall in an experimentally convenient region of the spectrum (200–700 nm). These transitions 

need an unsaturated group in the molecule to provide the π electrons.  

Since only n →π * and π → π * transitions are possible in the UV-Visible spectral range, only 

non-saturated organic compounds or ions, which contain a chromophoric group, can absorb 

directly radiation in this spectral region and thus be detected (Thomas et al., 1996). 

Hence, saturated bonds present in saturated hydrocarbons (oils, fuel), carbohydrates (sugar) 

and almost all mineral species, except oxyanions like nitrate and nitrite, are not able to 

absorb in UV-Visible region (Thomas et al., 1999; Pons et al., 2004). 
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UV-Visible spectroscopic techniques used for quantifying purposes are based on Beer-

Lambert law. According to the Beer-Lambert law for a single wavelength and a single 

component, the following relation is valid: 

A = εbc       (5) 

where 

A – Absorbance (A.U.); ε - Molar absorptivity (mol-1.cm-1); b - Path length of the cell in which 

the sample is contained (cm); c - Concentration of the absorber (mol.dm-3). 

Therefore, for a given wavelength and a single component, absorbance is a linear function 

of the concentration of the component. 

However, this equation is based on a number of assumptions, including: 

• Radiation is perfectly monochromatic; 

• There are no uncompensated losses due to scattering or reflection; 

• Radiation beam strikes the cuvette at normal incidence; 

• There are no molecular interactions between the absorber and other molecules in 

solution; 

• Temperature remains constant. 

These assumptions are not always met and cause deviations from ideal Beer-Lambert law 

behavior, like in the case of water and wastewater UV-Visible spectra (Burgess, 2007). 

The chemical nature and concentration of absorbent dissolved components together with 

the physical characteristics and concentration of heterogeneous material are the two 

phenomena responsible for the shape of the UV-Visible spectrum of a water sample. 

Consequently, direct spectroscopy involves two main phenomena: the chemical absorption 

mechanism, explained by the Beer-Lambert law, and the scattering effect and its associated 

diffusion, related to the suspended solids and colloids (Thomas et al., 1996). 
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Since anthropogenic and natural organic compounds contain chromophoric groups, 

associated to the unstable (oxydizable), condensed state or organic matter, these can be 

detected by UV-Visible spectrophotometry (Thomas et al., 1996). UV region concentrates a 

part of the relevant spectral information that can be used for wastewater characterization, 

as shown by Figure 5. 

 

Figure 5. Detection of different wastewater monitoring parameters in the UV-Visible 
spectral range (s::scan Messtechnik GmbH, Vienna, Austria). 

 

1.4.2 Instrumentation 

The general arrangement of an UV-Visible spectrometer and its usual components are 

presented in Figure 6. 

Two radiation sources are generally used in UV-Visible spectrometers which together cover 

the range from 200-800 nm. For measurements below 320 nm a deuterium or a hydrogen 

lamp at low pressure is used for emitting a continuous spectrum. If a tungsten halogen lamp 

is used to emit below 400 nm, special filters are often included in the optical path, to reduce 

the stray radiation. For measurements above 320 nm compact tungsten halogen sources in 
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quartz envelope are often used. This type of source is used in the wavelength range of 350–

2500 nm. Tungsten/halogen lamps are very efficient, and their output extends well into the 

ultraviolet region. 

 

 

Figure 6. Basic construction of a spectrophotometer (Thomas, 1996). 

 

Wavelength selectors are needed to guarantee a monochromatic radiation, since a narrow 

bandwidth is required in order to enhance the sensitivity of the absorbance measurements. 

As sample containers cuvettes are usually used and must be made of a material which is 

transparent to the radiation concerned – silica or quartz for the UV-Visible region and glass 

or plastic to the visible region.  

Since cuvettes are only feasible for off-line and at-line measurements, new materials like 

optical fibers connected to immersible probes can be more suitable for on-line 

spectroscopic analysis. Optical fibers are, along with mirrors and windows, passive optical 
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components of great interest for use in several different applications and also as optical 

data communication links (Sporea and Sporea, 2005). 

A variety of detectors is available for UV-Visible measurements. High-performance 

instruments utilize photomultiplier tube technology from the ultraviolet into the visible 

region. The more common detectors are given bellow with the useful operating ranges 

indicated (Table 2). 

Table 2. Different types of UV-Visible detectors and useful working ranges in nanometers 
(adapted from Workman and Springsteen, 1998) 

Detector Type Useful working range (nm) 

Silicon photodiode 350-1100 

Photomultiplier tubes 160-1100 

CCD’s (charge coupled devices) 180-1100 

Photodiode arrays 180-1100 

 

1.4.3 Applications 

UV-Visible spectroscopy is a mature analytical technique, basis of several established 

applications. Although it’s obvious utility, this technique is still poorly exploited in several 

fields (Thomas, 2007). However, it is not a novelty the study of UV-Visible spectroscopy as 

an alternative and rapid method to obtain information about the quality of water and 

wastewater. 

The main application of the technique is to correlate the UV-Visible response (e.g. 

absorbance) to the parameter to be estimated (Thomas et al., 1996). Considering only UV 

spectroscopy, the 200–300 nm range has been considered particularly interesting for this 

purpose (Wu et al., 2006). 

Using the absorbance at 254 nm, correlations were performed for COD (Mrkva, 1975) and 

TOC (Dobbs et al., 1972), for municipal and industrial wastewaters. Since this technique can 

be very sensitive to turbidity, a second wavelength can be used as a correction (Wu et al., 
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2006). This was performed by Matsché and Stumwöhrer (1996), where COD and TOC were 

determined using the absorbance at 254 together with the absorbance at 350 nm, for TSS 

correction. More recently, absorbance at 254 nm was also used to estimate dissolved 

chemical oxygen demand (DCOD), COD, ammonia and turbidity in a municipal wastewater, 

being this information associated to synchronous fluorescence spectroscopy results, for 

fingerprinting purposes (Wu et al., 2006). 

Even though it is very interesting to use a fast and simple UV measurement at one or two 

wavelengths instead of a usual COD or BOD measurement, frequent calibration should be 

assured to guarantee good results (Thomas et al., 1993). Moreover, a univariate approach is 

based on the fact that the organic pollution present in effluent has a peak of maximum 

absorbance. However, this value can vary, depending on the matrix composition (Fogelman 

et al., 2006). 

The increasing computational power observed during the last years allowed a shift towards 

a multiple wavelength approach (Fogelman et al., 2006). Even though the equipment 

needed can be more complex, results are more robust (Thomas et al., 1993). In fact, a 

multiwavelength approach can achieve better results when compared to the use of single-

wavelength procedures, mostly for monitoring effluents characterized by constant 

variations in composition (Rieger et al., 2004; Langergraber et al., 2004a). 

Different mathematical procedures have been used for UV spectral processing (Vaillant et 

al., 2002). Using the spectral range of 205–330 nm and a deconvolution method for the 

determination of dissolved organic carbon (DOC), COD, TOC, BOD, TSS, and nitrate Thomas 

et al. (1996) demonstrated that it is possible to obtain very good correlations for all of the 

referred parameters, with the purpose of improving WWTP control. El Khorassani et al. 

(1999) also concluded that using a deterministic deconvolution method and the UV spectral 

range it is possible to achieve good calibration results to determine COD, TOC, TSS, nitrate 

and chromium IV, present in different industrial wastewaters. Escalas et al. (2003) used a 

modified UV deconvolution method to estimate DOC of raw and diluted samples from a 

WWTP.  
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The influence of turbidity in COD quantification in grey and sewage effluents using the UV 

range and artificial neural networks (ANNs) was investigated by Fogelman et al. (2006). The 

best results were obtained between 190 and 350 nm, when comparing to the range 

between 200 and 350nm. Moreover, the authors concluded that for grey waters, better 

correlations were achieved without sample filtration only when turbidity was not higher 

than 150 NTU. 

Considering that nitrate has a maximum absorbance between 200 and 220 nm, Karlsson et 

al. (1995) used UV-Visible spectroscopy together with PLS multivariate calibration for the 

determination of nitrate concentration between 0.5 and 13.7 mg/L. Samples from three 

different WWTPs were collected during a period of more than one year. Correlation 

coefficients (R2) for the PLS calibration, for several raw spectra pre-treatments, were always 

very high and close to unity. Also with the concern of determining total nitrogen present in 

wastewaters Ferree and Shannon (2001) studied the use of a second derivative method for 

the determination of nitrate and total nitrogen, by oxidizing all nitrogenous compounds to 

nitrate by auto-claving.  A correlation coefficient of 0.99 was achieved, even though the 

results were only suitable for determination of concentrations of N-NO3
- between 0.1 and 3 

mg/L. These examples show that UV spectroscopy can be considered an alternative method 

for nitrate monitoring without the use of hazardous reagents (e.g. cadmium reduction 

technique) or expensive equipments (e.g. ion chromatography) (Ferree and Shannon, 2001). 

All the previous applications needed sampling for off-line spectral analysis, suitable only for 

in-line WWTP monitoring. Meanwhile, new developments were achieved by constructing 

submersible equipments which can perform a spectra analysis directly in liquid media. The 

use of this type of in-situ spectrometers for the determination of several parameters in the 

effluent of a WWTP, such as COD, TSS, nitrate and nitrite, has been successfully applied 

using the UV spectra range 200-400 nm (Rieger et al., 2004). The same in-situ spectrometer 

was used for UV-Visible range acquisition in the determination of COD, filtered COD and 

nitrate to monitor a paper mill WWTP (Langergraber et al., 2004a) and for quantifying 

filtered COD, TSS and nitrate values, for control of a pilot-scale sequencing batch reactor 

(Langergraber et al., 2004b). More recently, Maribas et al. (2008) used a submersible UV-

Visible spectrophotometer to monitor the rapid changes in total COD and TSS, testing three 
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different places in a WWTP pre-treatment unit. For one of the chosen locations, better 

correlations were achieved by performing a local calibration and new calibrations were 

needed every time sudden composition variation occurred. This work demonstrated that 

rapid changes difficult calibration procedures, even though it was still possible to achieve a 

good qualitative monitoring. Thus, the results show that it is not easy to take into account 

large variations in the wastewater matrix as also stated by Rieger et al. (2006), while 

studying different calibration approaches for six WWTP, using a UV-Visible spectrometer.  

In Table 3 relevant results are presented concerning some of the studies above referred, 

mainly the ones focused on a multiwavelength and/or multiparametric approach. 

 

Table 3. Concentration ranges and correlation coefficients for each of the determined 
parameters obtained in several studies using UV or UV-Visible spectroscopy 

Reference and method 

Parameters 

(Concentration range and R
2
 correlation 

coefficient) 

Thomas et al. (1996) 

UV spectrophotometry and 

deconvolution method 

0 < COD < 500 mg O2/L (R2 = 0.940) 

0 < DOC < 120 mg/L (R2 = 0.917) 

0 < TOC < 150 mg/L (R2 = 0.963) 

0 < BOD < 250 mg O2/L (R2= 0.905) 

0 < NO3
- < 15 mg/L (R2 = 0.992) 

0 < TSS < 350 mg/L (R2 = 0.938) 

El Khorassani et al. (1999) 

UV spectrophotometry and 

deconvolution method 

0 < COD < 150 mg O2/L (R2 = 0.89) 

0 < TOC < 60 mg/L (R2 = 0.91) 

0 < NO3
- < 50 mg/L (R2 = 0.99) 

0 < TSS < 100 mg/L (R2 = 0.77) 

0 < Cr IV < 300 mg/L (R2 = 0.96) 

Rieger et al. (2004) 

Submersible UV spectrometer and 

17.4 < COD < 21.4 mg O2/L (R2 = 0.905) 

2.5 < DOC < 17.5 mg/L (R2 = 0.382) 
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multivariate calibration based on PLS 

regression 

 

0 < N-NO2
-
 < 3.5 mg/L (R2 = 0.993) 

4 < N-NO3
- < 17.5 mg/L (R2 = 0.978) 

0 < TSS < 25 mg/L (R2 = 0.848) 

 

Langergraber et al. (2004a) 

Submersible UV/VIS spectrometer and 

multivariate calibration based on PLS 

regression 

700 < CODinfluent < 1600 mg O2/L (CODtotal  R
2 

= 0.95; CODfiltered R2 = 0.95) 

75 < CODeffluent < 175 mg O2/L (CODtotal R
2 = 

0.90 ; CODfiltered R2 = 0.91) 

0 < N-NO3
-
effluent < 5 mg/L (R2 = 0.87) 

Langergraber et al. (2004b) 

Submersible UV/VIS spectrometer and 

multivariate calibration based on PLS 

regression 

20 < CODfiltered< 540 mg O2/L (R2 = 0.90) 

0 < N-NO3
- < 25 mg/L (R2 = 0.98) 

0 < TSS < 15 g/L (R2 = 0.995) 

 

Fogelman et al. (2006) 

UV–Vis spectroscopy (190–350 nm) 

and artificial 

neural networks (ANNs) 

Unfiltered grey water 120 < COD < 420 mg 
O2/L (R2 = 0.93) 

Filtered grey water 80 < COD < 350 mg O2/L 
(R2 = 0.81) 

Unfiltered raw sewage effluent 400 < COD < 
1200 mgO2/L (R = 0.726) 

Filtered grey water 200 < COD < 500 mg 
O2/L (R2 = 0.88) 

 

UV-Visible spectrophotometry has several advantages when compared to other techniques 

(Thomas et al., 1993; Winiarski et al., 1995; Thomas et al., 1997; Langergraber et al., 2004a; 

Pons et al., 2004; Vargas and Buitrón, 2006; Lourenço et al., 2006), since traditional 

methods are inadequate for real-time monitoring of water quality (Bourgeois et al., 2001; 

Fogelman et al., 2006; Vargas and Buitrón, 2006). But optical techniques based on UV-

Visible radiation also have some drawbacks that need to be overcome for better acceptance 

and implementation in wastewater treatment plants (Bourgeois et al., 2001, Vaillant et al., 

2002; Pons et al., 2004; Wu et al., 2006). Table 4 resumes the main advantages and 

drawbacks of using UV-Visible spectroscopy for WW monitoring and control.  
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Table 4. Advantages and disadvantages of UV-Visible spectroscopy 

Advantages Disadvantages 

Fast and simple technique 

No sample pre-treatment is required 

No chemicals addition 

No wastes production 

Small portable equipment 

Measurement of several parameters 
using only one sample 

Short analysis time 

Non-destructive 

Non-invasive 

Low maintenance cost 

Useful for on-line monitoring 

Different types of applications 

 

Sensitive to turbidity 

No detection of compounds with 
saturated bonds 

Fouling 

Signal saturation and necessity of 
sample dilution 

Calibration stability 
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1.5 NIR Spectroscopy 

1.5.1  Fundamentals  

Near Infrared region was discovered in 1800 by Sir William Herschel being defined as 

“beyond the red”. This spectral range interfaces the visible and infrared portions of the 

electromagnetic spectrum and there is a big controversy related to the definition of its limits 

(Figure 7). The American Society of Testing and Materials (ASTM) defined the NIR region of 

the electromagnetic spectrum between 780-2526 nm (12,820 cm−1 – 3959 cm−1) (Reich, 

2005). 

 

Figure 7. Position of NIR region in the electromagnetic spectrum (Raghavachari, 2001). 

 

NIR spectroscopy employs a determined photon energy higher than necessary to promote 

molecules only to their lowest excited vibrational states (through a fundamental vibrational 

transition), but not too high for the molecules electron excitation (except for some rare 

earth compounds) (Pasquini, 2003). 

The vibrations in a molecule can be described using the harmonic oscillator model, where 

only the transitions between consecutive energy levels in a molecule that cause a change in 

dipole moment are possible. However, this model cannot explain the behavior of actual 
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molecules, which resemble the model of an anharmonic oscillator. In an anharmonic 

oscillator energy levels are not equally spaced and transitions occur between non-

contiguous vibrational states. These vibrational states yield absorption bands known as 

overtones, which are much less likely than the fundamental transitions (Blanco and 

Villarroya, 2002). 

The NIR reflecting spectra are characterized by overtone and combination bands of 

fundamental vibrations occurring in the mid infrared (Büning-Pfaue, 2003), as presented in 

Figure 8. The band of the first overtone is 10-100 times weaker than that for the 

fundamental frequency, depending on the particular bond. These bands appear between 

780 nm and 2000 nm, depending on the overtone order and the bond nature and strength. 

In polyatomic molecules, combination bands appear between 1900 and 2500 nm, when two 

or more vibrational modes interact and cause simultaneous energy changes (Blanco and 

Villarroya, 2002). The intensity of a given absorption band is associated with the magnitude 

of the dipole change during the displacement of atoms in a vibration and with its degree of 

anharmonicity (Pasquini, 2003). 

 

Figure 8. Principal analytic bands and location in NIR spectrum (according to Páscoa, 2006). 

Since hydrogen is the lightest atom and, therefore, exhibits the largest vibrations and the 

greatest deviations from harmonic behavior (Blanco and Villarroya, 2002), NIR spectroscopy 
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is essentially useful to detect components that contain hydrogen atoms bound to a 

heteroatom (e.g. C–H for aliphatics and aromatics, N–H for proteins, O–H for alcohols and 

water) (Pons et al., 2004). Due to this characteristic absorption, molecules containing bonds 

such as C=O, C–C and C–Cl give origin to much weaker or even absent bands which are 

difficult to detect by NIR spectral range (Blanco and Villarroya, 2002). All organic bonds have 

absorption bands in the NIR region, whereas minerals may only be detected in organic 

complexes and chelates or indirectly by their effect on hydrogen bonds (Büning-Pfaue, 

2003). 

The complexity of NIR absorption spectra of a substance or sample is due to the fact that in 

a given wavelength range, some frequencies will be absorbed, others will not and others will 

be only partially absorbed. Thus, a NIR spectrum is the result of a selective response that 

depends on the match between radiation energy and the energy difference between two 

vibrational levels (Pasquini, 2003). 

NIR absorption bands are typically broad, overlapping, with poor baseline resolution and of 

much lower amplitude than those found in Mid Infrared (MIR), resulting from the 

convolution of the fundamental MIR vibrations. These characteristics make spectral 

information interpretation difficult and the use of chemometrics compulsory (Vaidyanathan 

et al., 2001; Mark, 2001; Reich, 2005). However, if the fact that NIR absorptions are 

generally 10–100 times weaker than the fundamental bands of MIR can be an advantage it 

can also be a disadvantage, since it makes the method less suitable for detection of minor 

components, present in small concentrations (Pons et al., 2004). Low absorption coefficient 

of NIR radiation makes it appropriate for measurements in solids and turbid liquids, since it 

allows direct analysis of strong absorbing or even high scattering samples (Reich, 2005). 

In NIR spectroscopy the analytical signal is dependent on the chemical and physical 

properties (temperature, viscosity, turbidity, refractive index, ionic strength, etc.) of the 

sample (Pons et al., 2004), what can be a positive or a negative aspect having into account 

the sensitivity of NIR spectroscopy (Reich, 2005).  
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1.5.2 Instrumentation  

Spectrophotometers used to record NIR spectra are essentially identical to those employed 

in other regions of the electromagnetic spectrum. NIR equipment can incorporate a variety 

of devices (Figure 9), depending on the characteristics of the sample and the particular 

analytical conditions and needs (such as speed, sample complexity and environmental 

conditions) what makes this technique quite flexible (Blanco and Villarroya, 2002). 

 

 

Figure 9. Principal features of NIR spectroscopy equipment (Blanco and Villarroya, 2002). 

Samples can be analyzed directly by using cuvettes or, e.g., optical probes. The introduction 

of fiber optics contributed to an enormous expansion of NIR spectroscopy for remote 

measurements, as the case of food products or for real-time monitoring (Büning-Pfaue, 

2003). 
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The light source is usually a tungsten halogen lamp, since it is small and rugged (Reich, 

2005). Detector types include silicon, lead sulfide (PbS) and indium gallium arsenide 

(InGaAs), being able to impart a very high signal-to-noise ratio for NIR measurements, which 

will partially compensate for the lower intensities of NIR absorption bands (Pasquini, 2003). 

In multi-channel detectors several detection elements are arranged in rows (diode arrays) or 

planes (charged coupled devices - CCD’s) in order to record many wavelengths at once, so as 

to increase the speed at which spectral information can be acquired (Blanco and Villarroya, 

2002). 

Discrete-wavelength spectrophotometers can be used, irradiating only a few wavelengths, 

which makes them suitable only for applications with analytes that absorb in specific 

spectral zones.  Diffraction grating, interferometer, diode-array or acousto-optic tunable 

filter (AOTF)-based instruments can provide full spectral coverage.  

 

1.5.3  Measuring modes 

NIR spectroscopy can be used to analyze samples with different types of physical properties. 

The most appropriate measuring mode will be dictated by the optical properties of the 

samples.  

Transparent materials are usually analyzed by measuring the transmittance (Figure 10 (a)), 

as similarly to conventional UV-Visible spectroscopy. These samples can be measured in 

glass/quartz cuvettes with typical optical paths varying from 1 to 50 mm (Pasquini, 2003). 

Transflectance is a special way to obtain transmittance measurement (Figure 10 (b)) and is 

frequently applied when optical bundle probes are employed. The difference relatively to a 

simple transmittance measurement is in doubling the optical path as the radiation beam 

passes twice through the sample (Pasquini, 2003). 

In diffuse reflectance measurement of solid samples (Figure 10 (c)) the change in signal 

intensity is caused by scattering and absorbance by solid granules. 
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In the interactance mode there is a higher probability of interaction between the incident 

beam and the sample (Figure 10 (d)), thus, the emerging beam will contain more 

information regarding the sample constituents, reflecting better the actual composition of 

the sample.  

Transmittance measurement of dense solid samples (Figure 10 (e)) has proved to be useful 

for quantitative determination of certain compounds in pharmaceutical tablets since, the 

longer optical path resulting from internal scattering, can provide information which is 

better correlated with the average sample content than the surface dominated diffuse 

reflectance signal.  

 

Figure 10. Modes of measurement employed in NIR spectroscopy. (a) transmittance; (b) 
transflectance; (c) diffuse reflectance; (d) interactance and (e) transmittance through 
scattering medium (Pasquini, 2003). 

 

1.5.4 Applications 

NIR first applications are dated from the mid-1960 at the U.S.A., when Karl Norris initiated 

his work searching for new methods to determine the moisture content of agricultural 

products, becoming one of the pioneers in this field (Nicolaï et al., 2007). 
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After NIR potentialities were demonstrated in practical terms it didn’t take too long for this 

technique to meet a fast development, provided mainly by instrumental 

(spectrophotometer) and chemometrics improvements. 

Its application in food industry is still one of the most relevant, being used for several 

different purposes such as determination of oil content in hazelnut (Franco et al., 2006) and 

adulteration (Ozen and Mauer, 2002); cheese quality control assessment (Čurda and 

Kukačková, 2004); analysis of fat, protein and casein in milk (Laporte and Paquin, 1999); 

determination of soluble solid content of tea (Li et al., 2007) and assessment of fruit and 

vegetable quality (Nicolaï et al., 2007). NIR spectroscopy has been extensively applied in 

pharmaceutical analysis, both qualitatively and quantitatively, namely in process analytical 

technology (PAT), defined as systems for real-time monitoring and control (Lopes et al., 

2004). Analysis of tablets, capsules, film coating and packaging, are only some of the 

possible applications in pharmaceuticals industry processes (Reich, 2005), being also helpful 

for counterfeit drug detection (Rodionova et al., 2005). Applications in petroleum and fuel 

industry are also known, such as determination of components in crude oils (Aske et al., 

2001; Balabin et al., 2007). The latest success of this technology in many areas of application 

is related with its ability to incorporate the benefits resulting from the development of 

correlated fields such as chemometrics, new materials for optical components, new sensors 

and sensor arrays, microcomputers and micro-electronics. This partnership will allow 

continuous and fruitful research and development in NIR applications (Pasquini, 2003). 

While industrial processes are usually very well controlled, matrix composition and 

compounds concentration in a bioprocess can be subject of several variations. However, NIR 

range is gaining importance in the area of biotechnology, being considered an optical 

technique that has several features for cost-effective real-time bioprocess monitoring 

(Vaidyanathan and McNeil, 1998). Vaidyanathan et al. (2003) studied the influence of 

morphology of mycelial biomass in NIR spectra. Many examples of applications to 

suspended cultures using off-line or at-line measurements for bioprocess real-time 

monitoring have been described (Vaidyanathan et al., 2001; Arnold et al., 2002; Giavasis et 

al., 2003).  
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Despite all the mentioned applications, the use of NIR technology in environmental 

processes is still underdeveloped, especially due to the limitations resulting from the 

complexity of the matrix (Pons et al., 2004). However, the search for more suitable 

techniques in environmental monitoring and control using NIR range has been the subject of 

several studies. Regarding anaerobic processes, the monitoring of the dynamics of biogas 

production using NIR spectroscopy and electronic gas sensors has been performed by 

Nordberg et al. (2000). Concerning volatile fatty acids production, the NIR model developed 

for acetate achieved a root mean square error for prediction (RMSEP) of 0.20 g/l within the 

range of 0.14-1.72 g/l. Hansson et al. (2003) monitored an anaerobic digester using NIR 

spectroscopy and PCA. A PLS regression was also achieved for the prediction of propionate 

concentration (concentration range of 0.1-3.6 g/l, RMSEP of 0.53 g/l and correlation 

coefficient of 0.85), being considered suitable for real-time monitoring. COD, total solids (TS) 

and volatile solids (VS) concentrations were predicted by at-line NIR spectroscopy and image 

analysis for monitoring an industrial anaerobic process, being the best predictions obtained 

for VS (R2 = 0.91), followed by TS (R2 = 0.81) and COD (R2 = 0.77) (Holm-Nielsen et al., 2006). 

Stephens and Walker (2002) tested a NIR-Visible spectroscopic method to rapidly evaluate 

BOD5 in a wastewater treatment plant. Transmission spectral measurements were 

performed in wastewater samples and PLS and principal component regression (PCR) 

models were used for BOD5 prediction. Sousa et al. (2007) proposed a method based on NIR 

reflectance of seston for determination of COD in domestic wastewater. In-situ NIR 

spectroscopy was also used to monitor a lab scale activated sludge system, showing 

promising results for NIR applications in this type of biological processes (Dias et al., 2008). 

In this work a PCA was performed, showing that it is possible to extract relevant qualitative 

information for process monitoring. More recently, Páscoa et al. (2008) monitored a 

sequential batch reactor (SBR) on-line for aerobic treatment of dairy residues, using a NIR 

in-situ transflectance probe, performing calibration models for TS, TSS and COD using PLS 

regression. 
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Some of the advantages exhibited by this method are also shared by other spectroscopic 

techniques, such as UV-Visible spectroscopy (Laporte and Paquin, 1999; Arnold et al., 2000; 

Blanco and Villarroya, 2002; Büning-Pfaue, 2003; Chen et al., 2004a; Pons et al., 2004; Reich, 

2005; Franco et al., 2006; Qu et al., 2008), but others can be adressed only to NIR, due to 

the intrinsic particularities characterizing this spectroscopic range (Blanco and Villarroya, 

2002; Büning-Pfaue, 2003; Reich, 2005; Rodionova et al., 2005; Blanco et al., 2006). On the 

other hand, some disadvantages should be considered, in order to achieve new 

developments and decrease the technique’s limitations (Vaidyanathan, 2001; Blanco and 

Villarroya, 2002; Büning-Pfaue, 2003; Reich, 2005; Franco et al., 2006; Uddin et al., 2006). 

Table 5 resumes the main advantages and disadvantages of NIR range. 

 

Table 5. Common advantages between NIR and UV-Visible spectroscopy and NIR particular 
advantages and disadvantages  

Common advantages Particular advantages Disadvantages 

Fast and simple technique 

No sample pre-treatment 

Non-destructive 

No chemicals addition  

No wastes production 

More economical  

Suitable for on-line 
monitoring (optical fibers) 

Simultaneous analysis of 
several components 

Suitable for highly-scattering 
and strongly absorbing  

matrices (culture media) 

Determination of chemical 
and physical properties 

simultaneously (e.g. 
temperature, density, 

viscosity or particle size) 

Records spectra for solid and 
liquid samples 

NIR instruments have a very 
high signal to noise ratio 

(typically 10000:1) 

Chemometrics use is 
compulsory 

Laborious calibration 
procedures 

Reference method is 
obligatory 

Not very sensitive to minor 
components 

Physical properties can 
interfere with chemical 

characteristics 
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1.6 Chemometrics 

Spectroscopic techniques can deliver a large amount of data when several spectra, with 

several wavelengths, are recorded in order to have as much information as possible related 

to a process. Considering bioprocess applications, the matrix complexity can difficult 

compounds identification. Therefore, data-reduction techniques such as chemometric tools 

are essential to rapidly extract the relevant information, presenting the data in a more clear 

way. 

According to the International Chemometrics Society “Chemometrics is the science of 

relating measurements made on a chemical system or process to the state of the system via 

application of mathematical or statistical methods”. Chemometrics can not only be used to 

design or select optimal measurement procedures and experiments, but also to provide the 

maximum relevant information by analyzing all sorts of data, having many different possible 

applications. Chemometrics has developed considerably in the past decades, being this 

related to the advances in intelligent instruments, laboratory automation, powerful 

computers and user-friendly software (Einax et al., 1997). 

Regarding environmental analytical methods, chemometrics is becoming a very important 

tool to understand the complexity of pollutants pathways and effects, since 

multicomponent and multielement analytical methods available produce an enormous flood 

of data (Einax et al., 1997). As a consequence, it is often necessary to model results that are 

more difficult to obtain with results more easily obtained to better understand the process 

(Geladi et al., 1999). 

There are several different chemometric tools available and its use is defined by the nature 

of the data to be analyzed and the final purpose (mainly correlation or tendencies 

identification). 

PCA is the multivariate statistical method most frequently used for environmental data 

analysis (Christensen et al., 2004; Peré-Trepat et al., 2004; Nake et al., 2005). Considering 

wastewater monitoring it has already been applied in some cases (Winiarski et al., 1995; 
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Rosen and Lennox, 2001; Miettinen et al., 2004; Lourenço et al., 2006; Aguado and Rosen, 

2007). 

For quantitative analysis PLS regression is frequently performed. PLS regression has been 

applied for several purposes in wastewater monitoring, namely for in-situ monitoring of a 

WWTP using UV-Visible spectroscopy (Langergraber et al., 2004a, Rieger et al., 2004; Rieger 

et al., 2006) and in-situ SBR monitoring applications (Langergraber et al., 2004b); Vargas and 

Buitrón, 2006). 

PCA and PLS application in NIR spectroscopy is very usual, since these kind of statistical tools 

are essential for NIR spectral information extraction (Heikka et al. 1997; Aske et al., 2001; 

Vaidyanathan et al., 2003; Qu et al., 2007). NIR spectroscopy applications in the 

environmental field using PLS regression were also recently reported in the literature (Holm-

Nielsen et al., 2006; Sousa et al. 2007). 

A more detailed description of these and other chemometric tools used for this study will be 

presented in what follows. 

 

1.6.1 Spectral preprocessing 

Spectral preprocessing techniques are used to remove irrelevant information from raw data, 

making processing more feasible.  This step is quite usual in defects removal (Büning-Pfaue, 

2003) and to eliminate interferences that cause spectral variations during its acquisition, 

which can disturb precision of prediction models (Chen et al., 2004a). Since there are many 

different types of mathematical methods for pre-treatment, it is necessary to understand 

which method can be the most suitable.  

Several types of the pre-processing methods used for this study are described as follows. 
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1.6.1.1 Derivatives - Savitzky-Golay Algorithm  

Derivative computation is used to remove baseline shifting and to help in the resolution of 

overlapping peaks, being the first and second derivatives the most commonly used (Büning-

Pfaue, 2003). However, derivative spectra of order two are most popular as they can correct 

for both additive and multiplicative effects. Derivation is accomplished after filter 

application to remove noise and spectra incongruence. This is usually calculated according 

to a discrete form of filter namely the Savitzky–Golay algorithm (Savitzky and Golay, 1964). 

The Savitzky–Golay filter is a simplified least squares-fit convolution for smoothing and 

computing derivatives of a set of consecutive values (a spectrum) (Chen et al., 2004b). These 

filters are essentially local functions that are applied to each spectrum and to use them it is 

necessary to specify some parameters, which define the local function resolution.  

The convolution can be understood as a weighted moving average filter with weighting 

given as a polynomial of a certain degree. The weight coefficients when applied to a signal 

perform a polynomial least-squares fit within the filter window. This polynomial is designed 

to preserve higher moments within the data and to reduce the bias introduced by the filter. 

This filter can be applied to any consecutive data when the points of the data are at a fixed 

and uniform interval along the chosen abscissa, and the curves formed by graphing the 

points must be continuous and more or less smooth. The filter consists in the determination 

of a sequence of steps: 

� Definition of the filter’s order; 

� Definition of the dimension of the filter (window’s dimension); 

� Obtain the coefficients according to the tabled values and divide them by a constant 

which depends on the order and size of the filter window (Páscoa, 2006). 
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1.6.1.2 Mean-Centering 

Mean centering is usually applied to remove constant background contributions, which are 

considered of little interest for data variance interpretation. However, the use of this pre-

treatment must be carefully analyzed given that data mean centering can result in a loss of 

quantitative information that may be important in environmental studies (Peré-Trepat et 

al., 2004). 

Mean centering is commonly applied on any multivariate calibration model, which involves 

calculating the average spectrum of all the spectra in the training set and then subtracting 

the result from each spectrum. In addition, the mean concentration value for each 

constituent is calculated and subtracted from the concentrations of every sample (Franco et 

al., 2006). This operation ensures that results will be interpretable in terms of variation 

around the mean, being recommended for all practical applications (Nicolaï et al., 2007). 

The mean-centering operation can be represented by equation 6: 

xxx
icenti
−=,        (6)   

Where 

centix , - centered value of i
x  and x  - mean value of variable x , the original feature.  

The mean of the variable x  after centering is zero point on the new centix , - axis. Mean 

centering is only possible if the variances of the different features are similar. Otherwise 

autoscaling is necessary (Einax et al., 1997). 

 

1.6.1.3 Standard Normal Variate  

Standard normal variate (SNV) was developed by Barnes et al. (1989). This method is used 

for centering and scaling individual spectra. Processing according to SNV is given by 

equation (9) (Naes et al., 2002): 
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i

iik

ik
s

mx
x

−
=ˆ        (7) 

where, 

 xik – spectra measurement at the kth wavelength for the ith sample; 

mi – mean of the k spectral measurements for sample i;  

si – standard deviation of the same k measurements. 

This kind of pre-treatment is used in many spectroscopic applications. SNV makes an 

additive and multiplicative adjustment. It is performed without a reference spectrum, 

improving predicting precision but not simplifying the model. SNV standardizes each 

spectrum using only the data from that spectrum and not using the mean spectrum of any 

set. This method cannot reduce the influence of water (in the case of NIR spectra) neither 

the systematic interference.  

 

1.6.2 Principal Component Analysis  

One problem regarding multivariate data is that its sheer volume makes it difficult to see 

patterns and relationships. The amount of intensity measurements obtained in a spectrum 

is directly related to the amount of values that a correlation matrix would have. There is 

frequently some correlation between the variables which makes some information 

redundant.  

Principal Component Analysis (PCA) is aimed at finding and interpreting hidden complex and 

possibly causally determined relationships between features in a data set. Correlating 

features are converted to factors which are non correlated (Einax et al., 1997). PCA can 

reduce the amount of data when there is correlation present. However it is not a useful 

technique if the variables are uncorrelated (Miller and Miller, 2000). 
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The method can be mathematically explained as follows (Carvalho et al., 2006): 

Considering a matrix X , where each row in the matrix represents the spectrum at one point 

in time and each column represents the absorbance at a given wavelength, the central point 

of PCA is to reduce the original data matrix X  to factor loadings and factor scores. 

This matrix X  (dimensions JI × ) can be decomposed into a product of two matrices: 

EPTX +×=        (8) 

The T  matrix contains the scores of I  objects on K  principal components. The P  matrix is a 

square matrix and contains the loadings of J  variables on the K principal components. E  is 

the error matrix. If the original data matrix is dimension JI × , no more than J  principal 

components can be calculated if J ≤ I . PC1 (Principal Component #1) represents the 

direction in the data, containing the largest variation. PC2 (Principal Component #2) is 

orthogonal to PC1 and represents the direction of the largest residual variation around PC1 

and so on. These will contain less and less variation and therefore less information. Hence, 

when significant correlation occurs, the number of useful PCs is much less that the number 

of original variables. It is often found that PC1 and PC2 account between them for most of 

the variation on the data set. As result, the data can be represented only in two dimensions 

instead of the original n (Miller and Miller, 2000). The first scores vector and the first 

loadings vector are often called the eigenvectors of the first principal component. Each 

successive component is characterized by a pair of eigenvectors. 

The information provided by the monitoring algorithm can be used to classify the current 

operational state of the process, being able to identify different locations in a multivariate 

space which describe different operational states. Thus, a cluster represents similar process 

behavior and different clusters usually characterize different operational states. Many 

clustering techniques are available and can be applied either to the original data or to the 

scores from a multivariate projection method (Aguado and Rosen, 2007).  

Once two or more groups have been identified by using PCA, it may be possible to explain 

the differences between them in terms of chemical structure. The ultimate objective is to 

identify and give a physical interpretation to the principal components. For this reason, 
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principal components are sometimes referred to as latent (i.e. hidden) variables (Miller and 

Miller, 2000). 

1.6.3 Outlier Detection 

Outliers may derive from all sorts of mistakes or problems, such as interface errors, sensor 

malfunctions, fouling or bad sample. But an outlier is not necessarily an erroneous 

observation, but merely an observation that is different from the rest and may possibly have 

a strong influence on the results. One of the reasons for an observation to be considered an 

outlier is when a sample, either a calibration or a prediction sample, belongs to another 

population than the “normal” samples (Naes et al., 2002). A sample may be outlying 

according to the x  - variables only, to the y - variables only, or to both. Alternatively, the 

leverage of a spectrum may be calculated as the distance to the centre of all spectra relative 

to the variability in its particular direction. If the leverage exceeds a certain threshold value 

the spectrum may be considered as an outlier. In practice, however, only those outliers 

which have an effect on the regression model are to be removed. Excessive pruning of the 

data set for outliers should be avoided because important information can be rejected 

(Nicolaï et al., 2007). 

 

1.6.4 Residuals Statistics (Q) 

Residuals statistics (Q) is used to analyze the deviation between each sample and the model.  

The vector for prediction error for each sample is given by PLSiii bxye −= . The Q statistic for 

each sample i is: 

 t

iii eeQ =        (9) 

The confidence level for Q statistic is estimated through X
2 distribution if residues are 

independent and normally distributed (Páscoa, 2006). 

The samples with a Q statistic value higher than the estimated confidence level are 

considered outliers. 



 

37 

 

INTRODUCTION 

1.6.5 Partial Least Squares  

To establish a relation between a spectrum and a chemical property it is necessary to 

perform a model calibration. The achievement of an optimal calibration is an essential step 

for applying spectroscopic techniques. The calibration emerges from previous analysis of a 

lot of samples, which must be representative of the expected variability in unknown 

samples (Franco et al., 2006). 

Partial Least Squares (PLS) regression is a major regression technique for multivariate data 

used for calibration (Carvalho et al., 2006). PLS has been applied to many fields in science 

with great success. One important feature of PLS is that it takes into account errors in both 

the concentration estimates and spectra.  In a manner similar to PCA, PLS extracts linear 

combinations of essential features which model the original data. But, compared with PCA 

method, PLS can also model the dependence of the two data sets. In contrast with other 

methods of multivariate data analysis the PLS algorithm is an iterative algorithm which 

makes it possible to treat data with more features that objects. This type of model is well 

suited for modelling and simulating environmental relationships or for multivariate 

calibration (Einax et al., 1997). The four steps for the application of PLS (Carvalho et al., 

2006), are described as follows: 

1. A calibration design is built with a training set; 

2. The optimum number of PLS components is selected using cross-validation; 

3. The prediction capacity of this model is assessed with an additional group of samples 

called a test set; 

4. The model is then applied to predict the concentration profiles during the reaction 

period. 

There are different algorithms to calculate PLS, namely NIPALS algorithm (Rosen, 2001). 

Given a matrix of cause data, X (of size m×nx, where m is the number of observations and nx 
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is the number of cause variables), and effect data, Y (of size m×ny, where ny is the number of 

effect variables), a factor of the cause data, tk (length m), and effect data, uk (length m), is 

evaluated, such that 

 

EptX
T

k

nxnp

k

k += ∑
<

=1

      (10) 

FquY T

k

nxnp

k

k += ∑
<

=1

      (11) 

The tk and the uk vectors are selected to maximize the covariance between each pair (tk, uk). 

The matrix E and F are errors and pk and uk are referred to as loading vectors. Linear 

regression is performed between the pk and the uk vectors, to produce the inner 

relationship: 

kkkk tbu ε+=        (12) 

where bk is a regression coefficient, and εk refers to the prediction error. 

It is important to determine how many significant PLS components should be used to obtain 

an accurate and robust model. A model accuracy assessment is accomplished by using 

validation procedures. These procedures can also avoid over fitting. Cross-validation is 

usually employed for this purpose. In leave-one-out cross validation, one sample is removed 

from the dataset, and a calibration model is constructed for the remaining subset. The 

removed samples are then used to calculate the prediction residual. The process is repeated 

with other subsets until every sample has been left out once and in the end the variance of 

all prediction residuals is estimated. After selecting the proper number of latent variables, 

the robustness of the model is finally tested by analyzing the predictive ability of a model 

created on part of a dataset (training set) and evaluating how well it predicts the remainder 

of the data (test set). 
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Once the PLS model has been applied to the training set, validated using the test set and 

demonstrated to have good predictive abilities, it can be applied to new datasets where the 

concentration profiles are unknown. 

 

1.6.6 Bootstrapping – Wavenumber selection 

Regarding spectroscopic applications, usually not all the spectrum is equally relevant. It is 

possible to select the wavenumber regions that contain the required information, in order 

to improve the model robustness and prediction ability. Bootstrapping can be used for this 

purpose.  Bootstrapping is a statistical method that generates a set of samples by sampling 

with replacement from the original data set. A typically large number of “new” data sets are 

generated, each one with the same size of the original data set (Wehrens and Van der 

Linden, 1997). 

From each bootstrap sample the statistical parameter of interest is calculated. This yields an 

ensemble of estimates that is used to obtain, for example, the mean, standard error, or 

confidence intervals for different model statistical parameters (Wehrens and Van der 

Linden, 1997). In spectral data, this procedure can be used to assess the statistical 

significance and the standard deviation of regression coefficients (confidence intervals). If 

the interval encloses the zero value then that corresponding wavenumber is discarded.  

After bootstrapping, the group of wavelengths which was not discarded is used to perform a 

final PLS regression.  

In the regression context two types of bootstrapping methods can be used: bootstrap 

objects (BO) and bootstrap residuals (BR). In BO the new data sets are generated by 

randomly drawing objects (original variables) with replacement, while BR performs the 

resembling of the uncertainty estimates (residuals) from the regression model (Faber, 

2002). 
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1.6.7 Model Accuracy  

The prediction error of a calibration model is defined as the root mean square error for 

cross validation (RMSECV) when cross validation is used (Nicolaï et al., 2007): 

 

RMSECV 
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with np the number of validated objects, and 
i

ŷ  and yi the predicted and measured value of 

the ith observation in the test set, respectively. This value gives the average uncertainty that 

can be expected for predictions of future samples. The number of latent variables in the 

calibration model is typically determined as that which minimizes the RMSECV. In some 

publications the standard error of prediction (SEP) is reported: 
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with b the model bias.  

Another useful statistic is the R2 value. It essentially represents the proportion of explained 

variance of the response variable in de calibration (R2
c) or validation (R2

v) set. 

 

1.6.8 Model robustness 

Calibration models are called robust when the prediction accuracy is relatively insensitive 

towards unknown changes of external factors. The main factors which may affect model 

performance are (Wang et al., 1991): (i) the calibration model developed on one instrument 

is transported to another instrument that produces instrumental responses that differ from 

the responses obtained on the first instrument; (ii) the instrumental responses measured on 
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a single instrument drift because of temperature fluctuations, electronic drift, and changes 

in wavelength or detector stability over time; and (iii) the samples belong to different 

batches. Clearly model robustness increases at the expense of model accuracy. 
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2.1 Activated sludge system  

A complete-mix activated-sludge reactor with both populations of microorganisms present 

in suspension (heterotrophic microorganisms and nitrifying bacteria), was monitored 

considering only the nitrification process. By promoting disturbances to the system it was 

possible to follow the consequent phenomena with spectroscopic techniques. 

The lab scale system used in this work is based on a 25 L total volume tank with 17 L of 

suspended biomass, followed by a 2.5 L cylindrical settler (Figure 11).  

The system was fed with a synthetic wastewater based on peptone and meat extract as 

carbon sources. Every two days new feed solution was prepared according to Marquéz et al. 

(2004) (Table 6). The synthetic wastewater solution was kept in the fridge to avoid 

degradation inside the reservoir. Tap water was used to prepare the feed solution and was 

pumped to dilute twice this solution before entering the system. 

To maintain pH values between 7.2 and 7.5 the system was controlled with a pH meter and 

control pump (Model BL 7916 – BL 7917, Hanna Instruments), by pumping a NaOH solution 

into the system to increase pH.  When nitrification process was significantly disturbed a HCl 

diluted solution was dosed to the reactor to decrease the pH.  

The complete mix inside the reactor was guaranteed by a continuous inflow of air bubbles 

by using an air diffuser which covered its bottom. This system maintained the dissolved 

oxygen above 7 mg O2/L being the concentration in the reactor measured by a TriOxmatic 

690 dissolved oxygen probe (WTW) connected to an Oxi 296 R/RS monitor (WTW). Sludge 

recirculation from the settler to the reactor was guaranteed by an air pump. Reactor was 

inoculated with activated sludge from Frossos WWTP (Braga), diluted with feed solution. 
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Figure 11. Activated sludge system layout. Legend: 1 – concentrated synthetic wastewater; 2 
– tap water; 3 – peristaltic pump; 4 – metering pump; 5 – pH meter and control pump; 6 – 
base/acid solution; 7 – pH sensor; 8 – dissolved oxygen sensor; 9 - dissolved oxygen 
monitor; 10 – aerated completed mix reactor; 11 – aeration system; 12 – settler; 13 – air 
pump; 14 – effluent; 15 – immersible probe; 16 – light source; 17 – spectrometer; 18 – 
computer. 
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Table 6. Composition of concentrated synthetic wastewater 

Component 
Mass concentration 

(mg/L) 

Peptone 1900 

Meat extract 110 

Urea 30 

K2HPO4 28 

NaCl 7 

CaCl2.2H2O 4 

MgSO4.7H2O 2 

 

2.2 UV-Visible and NIR equipments 

UV-Visible and NIR spectra were acquired with immersion probes in the ranges from 230 to 

700 nm and 900 to 1700 nm, respectively. The operating mode is the same in both cases. 

Light travels from the light source through a lens near the end of the probe.  The light is 

then transmitted through the sample compartment to a second-surface mirror. The light 

reflects and travels back through the sample compartment a second time and is then 

focused by the lens onto the read fibber and through the spectrometer. The returned beam 

is sent to the portable detectors connected to a computer, allowing the immediate spectra 

visualization and acquisition.  

The optical path was twice the value of the mechanical gap of the probes. It is adaptable 

and depends on the characteristics of the reactor content. In this work the optical path was 

equal to 1 cm, for both probes. 

The Ocean Optics USB4000 portable dispersive UV-Visible equipment was used to spectra 

acquisition in the UV-Visible range. The instrument is a high-performance 3648-element 

linear CCD-array detector equipped with a grating for the UV range, connected to a DH-2000 

deuterium tungsten halogen light source that combines the continuous spectrum of 

deuterium and tungsten halogen light sources in a single optical path. The immersion probe 
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is connected to the light source and to the spectrometer by means of two TP300-UV-Visible 

solarization-resistant optical fibers.  

Ocean Optics NIR 512 portable dispersive NIR equipment including a PDA cooling detector 

was used for spectra acquisition in the NIR range. A transflectance probe (Ocean 

Optics/T300RT) is connected through optical fibers (OceanOptics/QP400-2-VISNIR) to a light 

source (Stellarnet/SL1) and to the NIR spectrometer. 

In both cases spectra were acquired using the OOIBase32/Ocean Optics software. This 

software allows the configuration of certain parameters like the integration time, average 

spectra, filter type (to avoid noise mostly when low integration times are used) and the 

temperature of the detector in the case of the NIR equipment. 

The MatLab version 6.5 Release 13 (The Mathworks, Inc) was used for data treatment, 

calibration and validation of the chemometric models. The chemometric functions included 

in the PLS MatLab Toolbox (PLS Toolbox, Eigenvector Research, Inc) were used to generate 

the PCA model. 

 

2.3 In-situ process monitoring 

For in-situ monitoring the probes were immersed in the settler at the same time, acquiring 

spectra simultaneously. The spectra acquisition was performed during not more than 45 

minutes, every monitoring day (2-3 times a week). The amount of spectra acquired varied 

according to the integration time, which was selected to give an average of 15 spectra in the 

settler, in each monitoring day. 

The usual procedure performed for both probes is described in Appendix A. 
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2.4 Off-line process monitoring 

Several analytical parameters were monitored off-line during activated sludge process 

operation: 

• COD in the influent and in the effluent (2-3 times a week); 

• TSS and volatile suspended solids (VSS) in the reactor and in the effluent (2-3 

times a week); 

• Kjeldahl nitrogen in the influent and in the effluent (once a week); 

• Nitrate and nitrite concentration in the effluent (2-3 times a week); 

• Ammonium in the effluent (2-3 times a week).  

COD, TSS, VSS, Kjeldahl nitrogen and nitrite were analyzed according to Standard Methods 

for the Examination of Water and Wastewater (20th Edition). 

Samples were collected from the settler and were analyzed after pre-treatment (centrifuged 

and filtered) and with no pre-treatment (TSS and VSS determination). Feed samples were 

analyzed after being pre-treated. Samples were collected from the reactor for solids 

analysis. 

In order to obtain a comparison between in-situ and off-line UV-Visible spectra acquisition, 

samples from the settler without pre-treatment were analyzed in a quartz cell with 1 cm 

path length with a Jasco V-560 UV-VIS spectrophotometer. 

 

2.4.1 COD determination 

COD determination was based on a colorimetric method, in closed reflux, according to 

method 5220 D from Standard Methods.  

For COD calibration potassium hydrogen phthalate (KHP) solutions were prepared with the 

following concentrations in terms of COD: 20, 50, 100, 200, 400, 600, 800 and 1000 mg O2/L. 
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Solutions were prepared in triplicate. Digester was connected to reach the temperature of 

148ºC.  2.5 mL of sample or standard solution was added to a digestion tube, where 1.5 mL 

of digestion solution and 3.5 mL of sulfuric acid solution were carefully added after. The 

tubes were carefully mixed and digested at 148ºC for 2 hours. After digestion, the tubes 

were taken from the digester to cool down and reach room temperature. The absorbance at 

620 nm was measured for each tube (standard, sample or blank).  

With the absorbance measurements from standard solutions a calibration curve was 

calculated, with a correlation coefficient close to unit, and used for sample’s COD 

calculation. 

COD samples from the activated sludge process were analyzed immediately after being 

collected and pre-treated. Thus, only soluble COD was measured. COD analysis was 

performed in duplicate in the inlet and in triplicate in the outlet. 

Reagents preparation is presented in Appendix A. 

 

2.4.2 TSS and VSS determination 

TSS and VSS were determined according to methods 2540 D and 2540 E from Standard 

Methods, respectively.  

Whatman glass-fiber filter disks type AP40 were washed in a filtration apparatus with 

distilled water. The filter disks were transferred to an aluminum weighting dish and ignited 

at 550ºC during 30 min in a muffle furnace. The disk and aluminum dish were cooled in a 

desiccator and then weighted (m1). 

Homogeneous samples were taken from the reactor (V = 5 mL) and from the settler (V = 40 

mL). These samples were filtered in a filtration apparatus and the glass-fiber disk, aluminum 

dish and residue retained on the filter (set) were dried at 105ºC during one day.  After, the 

set was cooled in a desiccator and then weighed (m2). 

TSS were calculated according to the following equation: 
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 TSS (g/L) = 1000
)( 12
×

−

V

mm
    (15)   

After TSS determination, VSS were determined. The residue from later procedure was 

ignited at 550ºC in a muffle furnace during 2 hours (m3). 

The following equation was used to calculate VSS: 

 VSS (g/L) = 100032
×

−

V

mm
    (16)   

TSS and VSS were analyzed in triplicate. 

 

2.4.3 Kjeldahl nitrogen determination 

Kjeldahl nitrogen was determined according to Macro-Kjeldahl method 4500-Norg-B, from 

Standard Methods. Kjeldahl method was used for determining organic nitrogen (Norg) and 

ammonium in the feed and effluent samples.  

A detailed description of reagents preparation and digestion and distillation procedure is 

presented in Appendix A. 

In each digestion tube 10 mL of concentrated H2SO4 were added to 10 mL of sample or 

ultrapure water (blank), followed by the addition of one Kjeltab with selenium. The tubes 

were carefully mixed and digested at 400ºC connected to a system for vapors aspiration. 

An automatic distillation system (Tecator Kjeltec 1026) was used to rapidly distillate all the 

samples and blanks after digestion. After distillation each solution is titrated with a solution 

of H2SO4 (0.025 mol/L) until the color changes from green to grey. 

N-Kjeldahl concentration was calculated according to the following equation: 

 N-Kj (mg/L) = 422100001.14 SOH

sample

acidblankacid C
V

VV
××××

−
 (17) 

where,  
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Vacid sample – Volume of acid used for sample titration; 

Vacid blank – Volume of acid used for blank titration; 

Vsample –   Initial sample volume (in this case 10 mL); 

CH2SO4 – Concentration of acid solution used for titration in mol/L. 

Samples for Kjeldahl nitrogen analysis were pre-treated and previously acidified and frozen 

for future analysis.  

 

2.4.4 Nitrate determination 

Nitrate was determined by using high performance liquid chromatography (HPLC) 

equipment (Jasco, Japan) with automatic injection. 

HPLC operational conditions are presented in Appendix A. 

For calibration curve a stock solution of 100 mg N-NO3
-/L was used to prepare a 50 mg N-

NO3
-/L to be used for subsequent dilutions. KNO3 was previously dried at 105ºC during 24h 

for stock solution preparation. 

To avoid interferences resulting from the presence of nitrite, samples, standards and blank 

solutions were diluted on a ratio of 1:1 with a sulfamic acid solution (0.05 mol/L).   

Nitrate calibration curve was performed using the following concentrations: 0, 1, 2.5, 5, 10, 

15, 20 and 25 mg N-NO3
-/L. Correlation coefficient was close to unit. 

 Samples for nitrate analysis were pre-treated, acidified with HCl and frozen for analysis.  

A software (Varian Star Workstation) was used to integrate the resulting peaks for standards 

and samples. 
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2.4.5 Nitrite determination 

Nitrite was determined with Griess-Hosvay method, similar to the colorimetric method 

4500-NO2
--B, from Standard Methods. 

100 μl of sulfanilamide reagent were added to 5 mL of sample, standard or blank and mixed. 

After 2 minutes 100 μl NEDD reagent was added and mixed. After 10 minutes absorbance at 

543 nm was recorded in a Jasco V-560 UV-Visible spectrophotometer with a quartz cell with 

1 cm path length.  

For calibration curve a stock solution of 50 mg N-NO2
-/L was used to prepare a 0.5 mg N-

NO2
-/L to be used for subsequent dilutions. NaNO2 was previously dried at 105 ºC during 1h 

for stock solution preparation. 

Nitrite calibration curve was performed using the following concentrations: 0, 0.05, 0.1, 

0.15, 0.2, 0.25 and 0.5 mg N-NO2
-/L. Correlation coefficient was close to unit. 

Samples for nitrite analysis were pre-treated, acidified with HCl and frozen for future 

analysis.  

Reagents preparation is presented in Appendix A. 

 

2.4.6 Ammonium determination 

Ammonium was determined according to Nessler’s method.  

Reagents 

• Nessler reagent (commercial reagent); 

For calibration curve a stock solution of 1 g N-NH4
+/L was used to prepare a 10 mg N-NH4

+/L 

to be used for subsequent dilutions. NH4Cl was previously dried at 105 ºC during 1h for 

stock solution preparation. 

Ammonium calibration curve was performed using the following concentrations: 0, 1, 2, 3, 

5, 10 and 15 mg N-NH4
+/L. Correlation coefficient was close to the unity. 
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0.25 mL of Nessler reagent was added to standards, blank and samples. After 15 minutes 

absorbance at 425 nm was recorded in a Jasco V-560 UV-Visible spectrophotometer with a 

quartz cell with 1 cm path length. 

Samples for ammonium analysis were pre-treated and analyzed after sample collection. 
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The main objective of this work was to detect different kind of variations related to the 

operation of a lab scale activated sludge system using UV-Visible and NIR immersion probes 

able to detect those changes through on-line monitoring. Most of the disturbances were 

induced to the system. Even though the main purpose of a wastewater treatment system is 

a good stability and efficiency in terms of pollutants degradation, for this study this was not 

always the objective. Many situations that are usually avoided in a real activated sludge 

process were promoted in this work as a source of important information regarding what 

can and cannot be detected by in-situ spectroscopy. 

Motivated by some observations made during this work and information collected from the 

literature, it was also found important to optimize the spectra acquisition process which 

included comprehending how the spectra can change during a long acquisition period 

without cleaning, while immersed in the settler. 

 

3.1 Synthetic wastewaters study 

On-line monitoring is of great interest for fault prevention (e.g. toxic pollutants inlet, 

variations in influent composition or in certain compounds concentration, etc.) hence, it is 

important to know if the immersible probes can detect when something different is present 

in the influent of the treatment system. It is known that biological wastewater treatment 

processes like activated sludge process can be quite sensitive to changes in the influent, 

which can disturb the process so dramatically that can lead to a total loss of the biological 

activity. 

Focusing on inlet composition and concentration variations, a test was performed to 

investigate which information can be obtained by the two probes when immersed in 

solutions of different composition and concentration.  

The selection of the different solutions intends to accomplish two main objectives: to 

compare the results between the two probes in terms of distinction between the solutions 

and to compare the ability of the probes to distinguish different concentrations of the same 

solution.  
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For that purpose, three different stock solutions were prepared with COD concentrations 

between 1 and 1.3 g O2/L, with a composition according to Table 7. Dilutions from the stock 

solution were prepared. Three spectra were acquired for the stock solutions. The dilutions 

were prepared in triplicate to analyze the reproducibility of each probe. Measured COD 

concentrations of the tested solutions are presented in Table 8. 

Table 7. Composition of the studied solutions 

Solution Composition 

# 1 Peptone, meat extract, urea, K2HPO4,  NaCl, CaCl2.2H2O and MgSO4.6H2O 

# 2 Glucose, meat extract, urea, K2HPO4,  NaCl, CaCl2.2H2O and MgSO4.6H2O 

# 3 Skim milk 

 

Table 8. Average COD concentrations of stock and diluted solutions 

Solution  COD (mg O2/L)  

Solution #1  1187.9 

1 A 1057.7 1051.4 1057.7 

1 B 802.8 810.7 826.4 

1 C 585.6 585.6 588.7 

Solution #2  1074.5 

2 A 988.4 982.1 975.8 

2 B 747.7 751.6 751.6 

2 C 532.0 535.2 535.2 

Solution #3  1313.2 

3 A 1183.7 1208.9 1196.3 

3 B 924.9 924.9 917.0 

3 C 667.5 664.3 665.4 
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The first solution was already tested as a synthetic effluent used for the study related to the 

removal of organic pollutants on an activated sludge system similar to the one used in this 

work (Márquez et al., 2004). This feed solution consists in a very nutritive medium which 

avoids biomass growth limiting problems. Its composition based on peptone and meat 

extract, as carbon sources, is also rich in nitrogen and should be detected by both 

spectroscopic techniques.   

Since glucose cannot be directly detected by UV-Visible spectroscopy it was found 

interesting to study if NIR spectroscopy could be more effective in the detection of a 

solution with glucose as the main constituent. With this in mind, instead of peptone, glucose 

was added to a solution with the same compounds present in solution #1. Meat extract and 

urea can be detected by UV-Visible probe but since these were added in very small amounts 

it was expected a low absorbance spectrum for these solutions using UV-Visible probe, 

probably close to its detection limit.  

Milk proteins (e.g. casein) can be detected by UV-Visible spectroscopy, however, sugar 

present in milk (e.g. lactose) is not possible to detect directly by UV-Visible spectroscopy, 

being an important constituent of milk. The idea was to investigate if an effluent of a dairy 

industry could be better detected by the NIR or the UV-Visible probe, knowing that NIR as 

been studied as a alternative method for determination of main constituents of milk, such 

as fats, proteins and lactose (Laporte and Paquin, 1999; Šašić and Ozaki, 2001). In this case 

the content of fat is expected to be low. 

In Figure 12 UV-Visible and NIR raw spectra of the solutions above described are presented. 

By analyzing the different spectra is already possible to detect the main differences between 

the UV-Visible and the NIR spectra. While for UV-Visible a variation in the composition can 

be visually detected by a change of the spectra’s shape, giving already some information, in 

NIR spectra the changes are very difficult to be noticed with naked eye. An expressive shift 

in the baseline is observed for skim milk solution in UV-Visible spectra and for peptone in 

NIR spectra. In the first case, the baseline shifts are suggested to be due to the milk 

solution’s characteristic turbidity and its natural decrease along the dilutions, what could be 

detected by the visible part of the spectrum. 
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Figure 12. UV-Visible (a) and NIR (b) raw spectra acquired for all the measured solutions. 
Green line – peptone; red line – glucose; blue line – skim milk. 

Several spectral ranges and raw spectra pre-treatments were selected and studied to 

investigate which combination could achieve the best clustering results with PCA. For NIR 

probe the studied ranges were: 900-1700 nm, 1000-1600 nm and 1100-1400 nm. For UV-

Visible the following ranges were investigated: 235-500 nm, 250-380 nm and 270-310 nm. In 

the case of the NIR spectra analysis, the objective was to compare the entire spectral range 

with smaller ranges, where some differences between the three solutions could be 

observed with naked eye. The selection proposed for UV-Visible is related to the fact that 

UV region concentrates a great amount of information, regarding a wastewater spectrum 

(Figure 5), being interesting to compare two different ranges inside de UV region to the 

entire UV-Visible region in order to analyze the amount and relevance of the information 

that each specific range can represent. 

 Table 9 shows the optimal ranges and pre-treatments selected for NIR and UV-Visible 

spectra. 

 

 

(a) (b) 
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Table 9. Selected spectral ranges and pre-treatments for solutions study by PCA 

Probe 
PCA 

(solutions) 

Spectral range 

(nm) 
Pre-treatment 

NIR 

#1, #2, #3 900 - 1700 Savitzky-Golay (15,2,1) and MNCN 

#1 900 - 1700 Savitzky-Golay (15,2,2), SNV and MNCN 

#2 900 - 1700 Savitzky-Golay (15,2,2), SNV and MNCN 

#3 900 - 1700 Savitzky-Golay (15,2,1) and MNCN 

UV-
Visible 

#1, #2, #3 235 - 500 SNV and MNCN 

#1 270 - 310 Savitzky-Golay (15,2,1), SNV and MNCN 

#2 270 - 310 Savitzky-Golay (15,2,1) and MNCN 

#3 270 – 310 Savitzky-Golay (15,2,1) and MNCN 

Legend: SNV – Standard Normal Variate; MNCN - Mean Centering.  

 

The entire NIR spectral range was selected for the study, being the results quite 

approximated to the ones obtained for the 1000-1600 nm range. For UV-Visible probe the 

best results were achieved using the ranges 235-500 nm and 250-380 nm for solutions 

composition differentiation, being the results here presented relative to the first range 

selected. The selection of the range 270-310 nm was crucial for solution #2 concentration’s 

differentiation. For solution #1 and solution #3 good results were achieved with any of the 

spectral ranges, being selected the score plot for spectral range of 270-310 nm for results 

presentation. 

Analyzing the PCA score-plots (Figure 13) it is possible to identify the differences between 

the solutions using two principal components, for both probes. In both cases a clear 

distinction is observed with the formation of three independent clusters in the score plot. It 

is also possible to observe that UV-Visible probe can already differentiate between the 

dilutions of skim milk, what could be expected by the visual indication of spectra variations 

(Figure 12).  
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Figure 13. Score plots representing the two principal components used to differentiate 
among the different feed solutions. Results obtained with the UV-Visible (a) and NIR (b) 
probes for solutions #1 (green ♦), #2 (red ▼) and #3 (blue ■). 

 

For this first study it was not essential that all stock solutions had exactly the same 

concentration in terms of COD in order to be compared, since a PCA using two principal 

components can only describe the highest variance contained in the data. In fact, with both 

probes, what is mainly revealed by the score-plots is the expected composition difference 

that exists between the different solutions. Additional principal components would be 

necessary to achieve a more complete analysis of the existing differences between the three 

solutions.  

For solution #1 analysis (Figure 14, a, b), it is possible to notice that UV-Visible probe can 

detect more efficiently the different concentrations, when compared to the NIR probe. 

While PC1 accounts for the variation of concentration, PC2 accounts for the variation 

between replicates. 

For solution #2, the UV-Visible range is better than the NIR range detecting the different 

concentrations. The NIR results suggest that this probe doesn’t detect so well the lower 

concentrations. Regarding solution 2B, there are some reproducibility problems (Figure 14, 

c, d). 

(a) (b) 
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For solution #3 also better results can be achieved by using the UV-Visible probe. By 

analyzing the score plot from the NIR range it is possible to suggest that this probe has more 

difficulties in differentiating solutions with lower concentration (Figure 14, e, f) as in the 

previous case.   

 

 

        (a)        (b)

    

                                                  (c)                   (d) 
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        (e)                   (f) 

Figure 14. Score plots representing the two principal components used to discriminate 
among the different concentrations in the solutions with peptone (a,b), glucose (c,d) and 
skim milk (e,f). Results obtained with the UV-Visible (a, c, e) and with the NIR (b, d, f) probe. 
Stock solution samples (light blue +); samples A (blue ■); samples B (green ♦) and samples C 
(red ▼). 

 

Since it was possible to use the entire UV-Visible range and also the region between 270 and 

310 nm to separate the different concentrations of solution #3, this suggests that turbidity 

was not the most important characteristic of these solutions, being the most determinant 

amount of information detected by the UV range.  Some conclusions can be drawn from this 

study, namely: 

• Both probes can distinguish between different solution’s composition; 

 

• UV-visible probe demonstrated to detect more efficiently different 

concentrations within the studied synthetic solutions, being suggested a 

difficulty of NIR probe in detecting lower concentrations;  

 

• Even though solution with glucose (solution #2) was not supposed to be 

better detected using the UV-Visible probe, this was possible due to the fact 

that the solution had small concentrations of meat extract and urea, which 
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could be detected by the UV region of the spectra. This means that UV-Visible 

probe can detect very small concentrations of organic compounds in solution, 

what is an advantage; 

 

• Skim milk dilutions (solution #3) differentiation was better detected by the 

UV-Visible probe;  

 

• UV-Visible probe is probably more sensitive to the absence or presence of 

compounds, what can explain its ability to distinguish between different 

concentrations of the same solution composition. It is suggested that in this 

spectral range “concentration” effect can be easier detected; 

 

• In NIR spectroscopy, the different properties of the synthetic solutions, 

physical and chemical, can cause more variability and difficult, somehow, the 

differentiation between them, making this spectroscopic technique more 

sensitive to possible interferences; 

 

• The combination between the selected spectral ranges and the pre-

treatment methods can be determinant in terms of final results. 

 

 

Solution #1 presents the necessary characteristics to be used for monitoring the activated 

sludge process, since it has the needed composition to be used as a synthetic effluent and 

can be detected by the probes. The possibility of following up the biological process more 

easily using UV-Visible direct spectra observation (by using a UV-visible detectable 

composition) could also be interesting for direct comparison with the NIR probe. These are 

the main reasons for the choice of solution #1 composition as feed solution for the system 

studied in this work.  
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3.2 Location of the in-situ monitoring probes 

During the first monitoring period several studies were performed in order to better 

understand were the probes should be placed for accurate monitoring. The acquisition of 

spectra inside the reactor was performed as it could be interesting to monitor the process in 

real-time, avoiding the need to wait enough time (at least the residence time) for the effects 

of the biological reaction to be noticed in the outlet, every time a disturbance was applied 

to the process. The high concentration of biomass (> 1.5 g MLVSS/L) and the continuous 

bubbling inside the reactor limited strongly the information that could be acquired with the 

probes when immersed in the reactor. Hence, this possibility was discarded. Since the 

settler offered optimal conditions for in-situ monitoring with no bubbles formation and no 

high suspended solids in solution (< 100 mg TSS/L) this location was selected for the 

monitoring. 

Spectra from the influent were acquired every time the feed solution was changed, in order 

to have a better insight of the spectra of the feed, mainly by UV-Visible spectra direct 

observation. Since the feed composition and concentration were not often modified along 

this work, its continuous monitoring was not essential for the study. By comparison with the 

UV-Visible effluent spectra, it was possible to notice that the compounds leaving the system 

were different from the initial ones (Figure 15), showing that degradation was taking place, 

as expected. Langergraber et al. (2004a) also compared the spectra from the influent and 

the effluent of an activated sludge treatment of a paper mill wastewater treatment plant, to 

search for an indication of biological degradation. 
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Figure 15. Comparison between influent and effluent spectra from monitoring period I. 
Continuous line - feed; dashed line – effluent. 

 

3.3 Influence of fouling  

Taking into account that one of the main problems associated with in-situ measurements is 

related to the accumulation of solids in the probe’s sample window, being responsible for 

interferences, probes fouling was taken into consideration. Some observations made along 

this work, related to the detection of changes in the spectra after monitoring during long 

periods, made it clear the necessity of optimizing the spectra acquisition process.  

A test was conducted focusing on exposure time of the probes in the settler, during a 

stationary period of the activated sludge process, to guarantee that no changes in the 

process could be the source of the obtained results. For both probes the same procedure 

was performed, which is explained as follows: 

� The probes were immersed in the settler during an entire night and in the 

morning spectra were acquired; 

� The probes were cleaned and immersed again in the settler. New spectra were 

acquired; 
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� During a space time of three hours spectra were acquired after periods of one 

hour, without any cleaning procedure between them; 

� The probes were cleaned; 

� In the evening spectra were acquired during one hour. 

 

Table 10 shows the tasks performed after overnight probe’s immersion till the evening of 

the same day, showing the moment when the probes were manually cleaned and spectra 

were acquired. 

 

Table 10. Description of spectra acquisition and cleaning procedure moments 

Time Procedure Monitoring Period 

Probes immersed during night - 

9:30 Spectra acquisition I 

10:00 
Probe cleaning and 
spectra acquisition 

II 

10:00-11:00 Spectra acquisition III 

11:00-12:00 Spectra acquisition IV 

12:00-13:00 Spectra acquisition V 

18:30 
Probe cleaning and 
spectra acquisition 

VI 

18:30-19:30 Spectra acquisition VII 

 

Different results were obtained for each probe (Figure 16 and Figure 17) by performing PCA 

of the acquired spectra.  

Different pre-treatments methods were applied to the UV-Visible and NIR spectra: Savitzky-

Golay (15, 2, 2) method, standard normal variate  and mean-centering for UV-Visible spectra 

and Savitzky-Golay (15, 2, 2) method and mean-centering for NIR spectra. For both probes 

the entire spectra was analyzed. In this case the selection and optimization of smaller 

spectral ranges for the analysis was not desired since the main objective was to study the 

influence of fouling taking into account all the acquired information and not only a part, 

since the changes in the spectra due to deposition of solids would probably affect the entire 

spectral range. 
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It is possible to identify clusters of NIR probe spectra throughout the several moments of 

analysis (Figure 16). The fact that spectra from monitoring period I are apart from the rest 

indicate that the night period was determinant to influence the spectra shape. 

 

 

Figure 16. PCA scores plot for NIR spectra throughout the test. Roman numbers identify the 
different acquisition moments. 

 

The similarity between the spectra acquired after cleaning in the morning and the spectra 

acquired after cleaning in the afternoon (II and VI, respectively) indicates that after the 

cleaning procedure the probe has the same conditions, however along with the time 

immersed in the settler these characteristics seem to change rapidly. After one hour inside 

the settler the probe is not cleaned and spectra are acquired in intervals of one hour. In this 

period spectra are alike (III, IV and V) but different from the spectra acquired at 10 h after 

cleaning (II). Since after 1 h it is possible to detect different spectra, it seems that one hour 

may be sufficient to promote changes in the spectra due to probe’s fouling.  
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Regarding the UV-Visible probe, it is obvious that an entire night of immersion in the settler 

affected the conditions in the sample window, since the first spectra are different from the 

rest (taken after cleaning). However, these changes appear not to be so clear throughout 

the different monitoring moments of this study, since it is not very obvious the identification 

of distinct clusters (Figure 17). This may suggest that the night period, being much longer 

than the day monitoring period, was the main factor affecting the spectra acquisition.  

 

Figure 17. PCA scores plot for UV-Visible spectra throughout the test. Monitoring period I is 
contained in the left ellipse and the remaining periods are contained in the right ellipse. 

 

This study allowed achieving some conclusions regarding the different behavior of the 

probes when submitted to the described conditions. It indicates that NIR probe, due to its 

ability in detecting physical properties in solution, is much more sensitive to small particles 

accumulation inside the sample window. UV-Visible probe may suffer less influence when 

immersed for not very long periods of monitoring. 
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This study was important to understand how the spectra acquisition should be performed 

during monitoring moments.  

In regular monitoring moments the probes were immersed in the settler after being 

carefully cleaned and the acquisition was performed in the settler during a period of not 

longer than 45 minutes, so the conditions could be as much identical as possible for 

comparison between monitoring days. Hence, fouling is not expected to influence that 

much the monitoring of short periods. The same could not be assured every time a night or 

a long monitoring period was performed. 

Although chemometric tools are essential to eliminate interferences related to scattering 

due to the presence of solids, they may not be sufficient to remove the influence of solids 

accumulation characterizing a washout period.  

The best option is to clean the immersible probes in a regular basis and preferably with an 

automatic mechanism, being this solution already applied in studies where the submersible 

probe is equipped with an auto-cleaning pressurized air system (Langergraber et al., 2004a; 

Rieger et al., 2004). 

 

3.4 Activated Sludge Process Monitoring 

With the main objective of collecting as much data as possible regarding the activated 

sludge process variations, two different monitoring periods were performed: monitoring 

period I and monitoring period II.  

 

3.4.1 Off-line monitoring 

3.4.1.1 Monitoring Period I  

Inflow variations  

The first monitoring period was performed during 70 days with a 16 L sludge bulk in the 

reactor (sludge collected at Frossos WWTP, Braga). A first variation induced to the process 
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after 21 days of operation was due to a decrease in COD in the feed (CODin) and 

subsequently in organic loading rate (OLR), as a necessary adjustment in terms of influent 

flow (by correcting the inflow from the concentrated synthetic wastewater). After this 

moment, operational conditions were not modified (Table 11). Even though this was not 

considered a very significant disturbance to the biological process, this variation was 

monitored in-situ with the immersible probes to check if any deviation from the previous 

days could be detected. This disturbance is designated as disturbance I. 

Table 11. Inflow (Qin), hydraulic retention time (HRT), CODin, OLR, COD removal and Kjeldahl 
nitrogen values obtained during monitoring period I, before and after inflow adjustment 

Time 

period 

(days) 

Qin (L/d) HRT (h) 
CODin 

(g O2/L) 

OLR 

(g COD/L.d) 

COD 

removal (%) 

 

[N–Kj]in 

mg/L 

0-21 11.7±0.4 33.6±0.9 0.78±0.12 0.56±0.08 94.3±2.5 125.9±2.6 

21-70 13.2±0.6 29.1±1.5 0.95±0.05 0.79±0.06 94.2±3.1 158.1±4.8 

 

Biomass concentration variations 

Biomass concentration in the reactor (MLVSS) was subject of several changes throughout 

this monitoring period. Concentrations between 1.9 and 3.1 g MLVSS/L were present in the 

reactor during operation, being more stable around 2.8 g MLVSS/L after day 15. Initially the 

biomass was not purged from the reactor. After day 15, the removal of biomass was carried 

out with the purpose of improving settleability and control biomass population fluctuations.  

To effectively decrease MLVSS concentration and detect all possible variations in the system 

that could derivate from a disorder in nitrification process and COD degradation, an 

intensive removal of biomass from the reactor was performed from day 55. An average 

value of 1.6 g MLVSS/L was achieved. This severe removal of biomass from the system was 

significant in terms of disturbance to the process and was designated as disturbance II. 
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COD variations 

At the beginning of the experiment some variations were observed in CODin and also in the 

effluent (CODout) (Figure 18). Till day 21 CODin was decreasing as previously referred, being 

more stable after this day. CODout was always below 150 mg O2/L and obtained values 

varied between 20 mg O2/L and 120 mg O2/L. The inflow adjustment applied after day 21 

was, as expected, not considered a significant disturbance regarding heterotrophic bacteria 

activity and, hence, COD removal. Considering that heterotrophic bacteria can be 

approximately 90 to 97 percent of the bacterial population in the activated sludge process 

(Gerardi, 2002), the high biomass concentration (between 2-3 g/L) could be able to degrade 

large amounts of organic matter. This can be explained by the average values of food-to-

microorganism ratio (F/M) obtained after day 21 of 0.29 ± 0.03 gCOD/gMLVSS.d or 0.23 ± 

0.03 gBOD/gMLVSS.d - if we consider BOD/COD=0.8 for a substrate easily degradable by 

biological means (Metcalf&Eddy, 2003). This F/M ratio value is not considered high for a 

complete mix activated sludge process, which can go from 0.2 to 0.6 gBOD/gMLVSS.d, as 

typical values (Metcalf&Eddy, 2003). 

After MLVSS concentration decrease to 1.6 gMLVSS/L an average F/M value of 0.47 ± 0.04 

gCOD/gMLVSS.d (0.39 ± 0.01 gBOD/gMLVSS.d) was achieved, not affecting COD removal, 

which was of 94.4 ± 3.6 % throughout this monitoring period. 
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Figure 18. COD efficiency removal and influent and effluent fluctuations during monitoring 
period I (Legend: ▲ – CODin; ■ – CODout; × - COD removal efficiency). 

 

Nitrogen variations  

Kjeldahl nitrogen (organic and ammonium nitrogen) was monitored in the inlet and in the 

outlet.  According to the disturbances applied to the system this parameter also suffered 

variations. 

Inflow adjustment affected inlet concentration of Kjeldahl nitrogen (N-Kj) in a similar way to 

CODin, since peptone is the main source of carbon and organic nitrogen to the system.  

MLVSS decrease in the reactor after day 55 affected tremendously N-NH4
+ oxidation in the 

system, what was expected, being all the organic nitrogen only hydrolyzed into ammonium 

ions but not oxidized to nitrite. As a result, nitrate concentration in the outlet dropped to 

values close to zero (Figure 19). Nitrifying bacteria population was immediately affected by 

the biomass purges, being removed from the system. With the lack of ammonia-oxidizing 

bacteria in the system, organic nitrogen was hydrolyzed to ammonium nitrogen but no 

nitrite was produced and, consequently, no nitrite oxidation to nitrate occurred. Nitrifying 

bacteria have a much lower maximum specific growth rate (µnm) when compared to 

heterotrophic microorganisms (Metcalf&Eddy, 2003), being this the main reason why these 

bacteria need high solids retention time (SRT) for good population growth and stability in an 

activated sludge system.  
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Nitrite concentration along most of the monitoring period was very close to zero (0.014 ± 

0.011 mg N-NO2
-/L). The second step of nitrification is usually very fast and nitrite 

concentration is around 0.03 mg N-NO2
-/L in the outlet of a WWTP (Rieger et al., 2004). 

Possible denitrification due to the existence of “dead” zones in the reactor and of biomass 

retained bellow air diffusing system, nitrogen assimilated by heterotrophic bacteria and/or 

experimental errors may explain the difficulty in closing nitrogen mass balance. 

Kjeldahl nitrogen was used to monitor the process only once a week, since it is a very time 

consuming analytical technique. To rapidly detect changes in the system, determination of 

N-NH4
+ in the effluent was performed using the Nessler method (2-3 times a week). 

 

Figure 19. Nitrogen variations during monitoring period I, for the same monitoring days, and 
N-Kj removal efficiency (Legend: ▲ – N-Kjin; ■ – N-Kjout t; ◊ – N-NO3

-; × - N-NO2
-). 

 

3.4.1.2  Monitoring Period II 

HRT sudden decrease 

The second monitoring period was performed during 49 days with a 17 L sludge bulk in the 

reactor (sludge collected at Frossos WWTP, Braga). 
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During this monitoring period many parameters were maintained constant throughout the 

study (Table 12), except for a HRT sudden decrease from 31 h to 15 h, during day 35 – 

disturbance I (Figure 20). This disturbance was induced to obtain variations in terms of COD 

concentration in the outlet.  

An incident occurred at day 21, when the aeration and mixing stopped for some hours. 

During that day the probes were immersed in the settler in order to detect any possible 

variation. Besides TSS increase in the outlet, no other parameters suffered changes after 

this episode.  

Table 12. Average values of several monitoring parameters during the monitoring period II 

Time 

period 

(days) 

Qin (L/d) HRT (h) 
CODin 

(g O2/L) 

OLR 

(g COD/L.d) 

COD 

removal 

(%) 

 

[N–Kj]in 

mg/L 

 

0-49 13.1±0.4 31.1±1.0 0.10±0.06 0.77±0.06 91.0±3.4 143.2±12.4 

 

Operational conditions were maintained as close as possible to the ones applied during the 

more stable part of the first monitoring period. 
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Figure 20. Variations of HRT and OLR during monitoring period II (Legend: ■ – HRT; ▲- OLR; 
dashed line indicates the moment when the HRT was decreased). 

 

Biomass concentration variations 

After one week of operation MLVSS concentration was kept between 1.2 and 1.8 g/L, by 

weekly biomass removal directly from the reactor.  

The sudden HRT decrease affected MLVSS concentration, being a great part of the biomass 

lost together with scum resulting from peptone higher concentration in the reactor. The 

final concentration of MLVSS after the disturbance was around 0.5 g/L, which rapidly 

increased to values above 1.2 g/L after one week of operation.  

 

COD variations 

COD degradation was high (91.0 ± 3.4 %), in a similar way to what was found in the 

monitoring period I (Figure 21). The only moment when COD efficiency was lower (day 35) 

was due to the MLVSS decrease in the reactor, immediately after the disturbance. CODout 

was very variable throughout all the monitoring period (between 30 and 160 mg O2/L), 

except for day 35 when a value of 620 mg O2/L was achieved. 
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Figure 21. COD efficiency removal and influent and effluent fluctuations during monitoring 
period II (Legend: ▲ – CODin; ■ – CODout; × - COD removal efficiency. Dashed line indicates 
the moment when the HRT was decreased). 

 

During days 35 and 36 CODout was monitored in a more frequent basis. Results obtained 

after the disturbance are presented in Figure 22. It was noticed that after not more than 

one day the system could rapidly recover from the disturbance in terms of COD 

degradation. 
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Figure 22. COD concentration variation in the effluent after the disturbance induced to the 
system. 

 

Nitrogen variations  

Kjeldahl nitrogen concentration in the feed was maintained more or less constant 

throughout this monitoring period (143.2 ± 12.4 mg/L). Regarding the weekly purges from 

the reactor during this study, nitrification process was not feasible. Nitrate concentrations 

ranged from 20 mg N-NO3
-/L to zero concentration, after two weeks of operation, thus, NH4

+ 

was not oxidized after this moment, being accumulated in the system. No nitrite was 

accumulated (Figure 23). Since nitrification process was already inexistent at the moment of 

the disturbance, no variations were observed in terms of nitrogen forms present in the 

effluent after the decrease of HRT. 
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Figure 23. Nitrogen forms variations during monitoring period II, for the same monitoring 
days, and N-Kj removal efficiency (Legend: ▲ – N-Kjin; ■ – N-Kjout t; ● – N-NO3

-; x - N-NO2
-). 

 

3.4.2 In-situ monitoring  

During monitoring period I and II the process was monitored in the settler by using UV-

Visible and NIR immersible probes, focusing essentially in the detection of the disturbances 

applied to the process by comparison with the more stable periods. All spectra from both 

probes were pre-treated and PCA was carried out. 

 

3.4.2.1 UV-Visible in-situ monitoring 

3.4.2.1.1 Monitoring period I 

A PCA was performed to spectra from monitoring period I. A pre-treatment was applied by 

using a first derivative according to the method of Savitzky-Golay (1984) and mean 

centering the data, after the filter adjustment. Almost the entire UV-Visible spectra range 

was used to perform the analysis (230-700 nm). The two PCs describe 88.4 % of the total 

variance in the spectra (Figure 24). 
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It is possible to notice that day 0 is apart from the rest of the spectra, being this possibly 

related to the start-up of the system and, thus, to some instability. Some time is required for 

the system to acclimate to the new conditions. 

Considering the disturbances applied to the process, UV-Visible probe was able to detect 

both variations: disturbance I – after day 21; disturbance II – during day 55. The PCA shows a 

cluster formed for days 28 and 30. Since after day 22 no variations in the concentration of 

COD and/or nitrogen forms in the outlet were noticed after the disturbance, the visible 

change in spectra form during these days (28 and 30), presenting an extra peak around 350 

nm when compared to the previous UV-Visible spectra (Figure 25), was not expected and 

could not be explained. However, since the variation occurred after the disturbance it is 

suggested that it could only be due to it. Spectra from days 34 and 36 still have a small peak 

at 350 nm, meaning that the compound or compounds that appeared in the effluent after 

the disturbance started to disappear after day 30. Spectra returned to the initial cluster, 

which corresponds to the stationary stage of the system. 

Regarding disturbance II, this was more effective in disturbing the system by disabling the 

nitrification process. Spectra changed due to the absence of nitrate in the effluent and a 

different cluster was formed (days 62, 64 and 70). If nitrifiers had enough time and 

conditions to increase its population, probably the new spectra would form new clusters 

with time till returning to the initial cluster (stationary system). 
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Figure 24. Score-plot representing UV-Visible spectra variations during monitoring period I.  

 

Fouling of the probe’s sample window occurred during some monitoring days, due to 

biomass washout related to bulking problems. Bulking phenomena was related to the 

presence of filamentous bacteria in the reactor. Its occurrence was noted by the occasional 

release of concentrated portions of solids from the settled biomass. Thus, some solids were 

deposited in the probe’s sample window and changed the spectra form, through a baseline 

shift. This occurrence was easily detected by PCA, since spectra tended to describe a line in 

the score plot. Some examples of this situation are also present in Figure 24. On days 21 and 

22 (morning and afternoon) bulking problems were observed and spectra variations allowed 

to detect it perfectly. Fouling can be a disadvantage if it induces changes in spectra which 

are not related to biochemical reactions in the process. But when considering short 

monitoring periods the establishment of a continuous line may indicate solids washout 

derived from settleability problems. 

Days 28 and 30 

Day 22  

Days 34 and 36 

Stationary System 

Days 62,64 and 70 

Start up 
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Figure 25. Spectra variation after disturbance I. Continuous line – day 20; dashed line – day 
28. 

 

3.4.2.1.2 Monitoring period II 

During monitoring period II, a disturbance was induced to the system during day 35, by 

performing a sudden decrease of the HRT. This perturbation led to an increase of COD in the 

effluent, which was monitored along day 35 and 36. 

A first derivative (Savitzky-Golay method) and mean-centering were performed to the 

acquired spectra before PC analysis.  

In the score plot (Figure 26) it is possible to notice the existence of three clusters. The start-

up of the system is clearly identified. After this moment, spectra have similar characteristics 

till the disturbance. During day 35, spectra have some variations, being apart from the 

previous. 

On day 36, COD values are already close to the usual values found before the disturbance. 

After day 35 spectra seem to return to their initial characteristics, what was expected since 

besides COD no other significant changes were detected.  
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Figure 26. Score-plot representing UV-Visible spectra variations during monitoring period II.  

 

As main conclusions, UV-Visible probe was able to detect a COD increase in the outlet, 

during the disturbance. These results are in agreement with the ones obtained for the 

complementary test of the synthetic wastewaters study, showing that the “concentration 

effect” is efficiently detected by the UV-Visible probe during the monitoring of an activated 

sludge system. 

 

3.4.2.1.3 Global analysis  

Spectra from monitoring period I and monitoring period II were analyzed together with PCA. 

Spectra were pre-treated by applying a first derivative and mean centering the raw data. 

With two PCs it was possible to explain 92.5 % of the data (Figure 27).  

Start up 

Day 35, during the 

disturbance  
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Two groups were clearly distinguished - Group I and Group II.  Group I is characterized by a 

higher nitrification rate, before disturbance II in the first monitoring period, while Group II is 

associated to a low or even inexistent nitrification process, after disturbance II of monitoring 

period I and most part of the second monitoring period. 

It was also possible to distinguish perfectly the spectra obtained due to disturbances applied 

in the different periods - disturbance I of monitoring period I and disturbance I of 

monitoring period II - which are indicated in the score plot as A and B, respectively. 

Some samples corresponding to the monitoring period I are present in group II. This is due 

to the low nitrification rate promoted after the induction of disturbance II what decreased 

the levels of nitrate to the similar ranges maintained during the second monitoring period. 

By gathering the information related to both monitoring periods it was possible to collect 

enough information regarding periods with high nitrification and with low or inexistent 

nitrification process. This allows the possibility of having information about nitrification 

performance by analyzing some spectra in the settler before checking nitrate concentration 

in the outlet through an off-line analysis. 

 

3.4.1.1.4 Study of variables relations  

Since in monitoring periods I and II it was possible to detect several variations in the 

measured parameters, it was found interesting to realize how this parameters were related 

among them, considering both monitoring periods. With that purpose, PCA was applied to 

the auto-scaled set of nine variables measured in this study (Qin, CODin, CODout, OLR, MLVSS, 

TSSout, F/M, pHreactor and N-NO3
-
out). With two PCs it was possible to explain 71.70 % of the 

variation in the data. 

A biplot was obtained presenting in the same graph the samples and the measured variables 

(Figure 28). 
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The major advantage of the biplot representation is the possibility of establishing relations 

between samples and variables. Moreover it is possible to identify how the different 

variables are related with each other.  

After PCA samples were divided in two main groups – I and II. As considered previously, two 

groups were distinguished, being the first group composed of spectra related to high nitrate 

concentration in the effluent and Group II composed of spectra acquired when low nitrate 

concentration was present in the system outlet. 

According to Figure 28 it is also possible to identify how nitrate concentration in the outlet is 

closely related to the MLVSS concentration and inversely related to pH in the reactor. These 

results confirm also expected relations, since nitrification is more feasible when MLVSS 

concentration is high and pH values in the reactor decrease with high nitrification rate, rising 

when this process is disturbed. Monitored samples were placed along the arrows #2 or #3, 

depending if they correspond to a high or low nitrification period, respectively. 

This study pointed out that it is possible to follow-up variations in the system in an 

equivalent way to the use of different monitoring parameters.  
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Figure 27. Score plot representing the UV-Visible spectra variation during the monitoring 
period. Legend: ▲– samples from monitoring period I; o – samples from monitoring period 
II. 

 

Figure 28. Biplot representing simultaneously the samples and the variables measured 
during both monitoring periods. Legend: * - parameters; ▲– samples from monitoring 
period I; o – samples from monitoring period II. 
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3.4.1.1.5 Disturbances detection  

In order to have a better insight regarding how well the UV-Visible probe can detect a 

disturbance applied to the system, residuals statistics (Q) was used to analyze the results 

obtained from PCA. This is a statistical parameter that can easily inform, even a non-expert 

person, when some deviation is being observed in the monitored system. Monitoring period 

II was selected for this study. 

For residuals statistics (Q) analysis, a PCA was performed using as pre-treatment methods: 

standard normal variate, first derivative (Savitzky-Golay method) and mean-centering. 

From Figure 29, it is possible to notice that the UV-Visible probe can detect four different 

moments: at the start-up, on day 21 and during day 35. 

A line is represented in the plot corresponding to the 95 % confidence range for the 

measured data, when compared to the model. In this way, all samples bellow this line are 

considered regular with 95 % of confidence and those located in the upper part of the line 

are considered to represent a variation to the normal conditions.  

This statistical parameter allowed the detection of the system’s start up as a different 

period. 

During day 21, the aeration stopped for some hours and no mixing inside the reactor was 

performed. In order to detect some modification in the process due to this incident, the 

probes were immersed in the settler for monitoring. The only monitored parameter that 

changed after the incident was TSS concentration, which increased. Regarding that solids in 

the settler can modify the spectra shape by rapidly fouling the tip’s probes, it is suggested 

that TSS increase and the exposure time explain the variation detected on day 21. 

During day 35 the sudden decrease of HRT induced a rapid increase of COD in the outlet. 

This was detected by the UV-Visible probe, what could be expected since this probe is able 

to detect variations in COD concentration. PCA score-plot for UV-Visible monitoring period II 

(Figure 26), already detected a different cluster for spectra from day 35. As indicated in 

Figure 29, initially the spectra are different because of the COD change, but when COD 

starts to decrease spectra start to change its characteristics again, not being detected as 
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“irregular” by residuals statistics, what is in agreement with PCA for this monitoring period. 

Fouling could not explain this spectra change, since the change is detected immediately 

after the probe is immersed in the settler for monitoring.  

However, the monitoring proceeded during most of the day, and the probe was kept in the 

settler till the evening. Again, something that should be expected happened: fouling of the 

probe’s sample window. Once more, and after analyzing all the samples for COD and other 

parameters determination, this could be the only reason for spectra variation after the COD 

decrease. 

As main conclusion, it was demonstrated that it is possible to detect real-time variations of 

COD concentration using in-situ UV-Visible spectroscopy. This can be considered an 

important achievement, since a rapid detection of changes in the effluent’s quality should 

be detected as soon as possible. 

However, the data must be carefully analyzed now that fouling is clearly identified as an 

obstacle for monitoring. The cleaning of the tips probe must be performed in a regular basis, 

although it is not very feasible to do it manually.  
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Figure 29. Residuals statistics obtained when PCA is applied to spectra acquired with UV-
Visible probe immersed in the settler. The blue line represents the 95 % confidence limit. 

 

3.4.2.2 NIR in-situ monitoring  

3.4.2.2.1 Monitoring period I 

During monitoring period I the NIR probe was damaged. Since the damage only affected the 

mirror which reflected the radiation back, decreasing only a part of the radiation that 

arrived to the spectrophotometer, it was still possible to get satisfactory spectra with the 

probe. Considering that this incident happened after day 28, some days after disturbance I 

was applied, NIR monitoring was maintained till the end of this monitoring period, since 

some interesting results were obtained related to disturbance II. The periods before and 

after this occurrence are referred as period A and B, respectively.   

Day 35 morning 

Day 35 afternoon 

Day 21 
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The spectra obtained during monitoring period I were pre-processed using Savitzky-Golay 

filter (15,2,2) and mean centering and analyzed with PCA, using the entire spectral range 

(900-1700 nm). 

Figure 30 shows how spectra acquired in both periods are contained in separate clusters, 

confirming that the incident changed the shape of the measured spectra. In this way, data 

analysis was also divided in two different periods, for monitoring period I. Unless something 

happens to the system performance, external factors such as those inherent to the 

spectroscopic equipment must be taken into consideration when different clusters are 

formed as results show, indicating an obvious change in spectra shape. After the damage, 

the direct observation of the NIR spectra was not sufficient to detect the incident without 

the results obtained from chemometric analysis.  

 

Figure 30. PCA scores plot regarding monitoring period I. A represents the period before NIR 
probe damage and B represents the period after the incident.   

Concerning disturbance I which was applied after day 21 during period A, regarding an 

inflow adjustment, NIR probe was able to identify the changes in the system (Figure 31). 

During day 22, spectra were continuously dislocated to form a separate cluster, as indicated 

by the arrow. At day 23 spectra variation was less and still close to the cluster formed at day 
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22. At day 28 spectra were already close to the initial location, indicating that the system 

was returning to its initial equilibrium state. 

 

 

Figure 31. PCA scores plot representing data regarding disturbance I, during monitoring 
period A, for NIR probe. 

 

During period B, the sudden decrease of MLVSS applied on day 55 (disturbance II) was 

detected by NIR probe at day 56 (Figure 32). Spectra from days 62 and 64 indicate the 

return to the initial characteristics. On day 70 some disturbance was detected by the NIR 

probe, which was not identified. Even though the principal variation after this disturbance 

was the decrease of nitrate and the increase of ammonium in the outlet, the analysis of all 

parameters for this particular day suggest that what is detected by NIR probe may not be 

related to the absence or presence, respectively, of these compounds.  

Comparing the results between both probes, it is possible to notice that NIR monitoring 

suggests that the system returns to its initial conditions, after the disturbance was applied. 

The same did not happen with UV-Visible probe (Figure 24). This can easily be explained by 
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the fact that nitrate presence or absence is naturally detected by UV spectral region. Since 

inorganic compounds are not detected by NIR radiation, nitrate should not be directly 

detected. 

 

 

Figure 32. PCA scores plot representing data regarding disturbance II, during monitoring 
period B, for NIR probe. 

 

3.4.2.2.2 Monitoring II 

The damaged tip of the NIR probe was substituted before starting the monitoring period II. 

In this second period, a disturbance was applied to the system, related to the sudden 

decrease o HRT during less than a day, during day 35 (night and day). NIR probe was able to 

detect a disturbance that is coincident to the period when disturbance I is applied and also 

fouling during day 21, when occurred the stop of mixing and aeration in the reactor. 

A first derivative (Savistzky-Golay method) and mean centering were performed before the 

PCA. Two PCs can explain 83 % of the total variation in the spectra (Figure 33). 
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Figure 33. Score-plot representing NIR spectra variations during monitoring period II. 

 

By analyzing the score plot it is possible to notice that spectra before and after the 

disturbance form two different clusters. On day 5 the spectra were different from the rest, 

what can be explained by the system’s start up. A cluster is formed by the spectra from day 

7 till day 26. Another cluster is formed by spectra including day 34 till day 41. Even though 

the disturbance induced to the system was only applied during day 35, the spectra from day 

34 (morning) are already present in the same cluster as the next acquired spectra. This was 

not expected and by spectra direct observation it was noticed a displacement that was 

maintained till day 41. Probably the NIR probe was detecting this change and not the 

disturbance. 

 

Start up 

After the disturbance  

Day 34 morning 

Before the disturbance  
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Fouling is perfectly noticed every time the spectra form a line in the PCA score-plot, being 

day 21 a clear example of this type of occurrence, having a similar response to this events as 

the UV-Visible probe. 

Spectra from day 44, the last monitoring day for NIR probe are different from all the rest. 

This fact was not also possible to explain, since no disturbances in the process were 

observed by analyzing the monitoring parameters off-line. 

 

3.4.3 Parameters Modelling  

Since UV-Visible spectra acquired in-situ and off-line (spectrophotometer Jasco) presented 

satisfactory data for parameters modelling, the accuracy of the different methods was 

compared for parameters prediction. As for in-situ procedures no pre-treatment of the 

samples was performed for off-line spectral acquisition. NIR spectra could not be used for 

parameters modelling as it was thought initially, due to limitations encountered along the 

work.  

COD, nitrate concentration and TSS were modelled, by performing PLS regression, selecting 

the best spectral ranges, the best pre-processing tools and by considering a bootstrap 

variable selection.  

The number of latent variables (LV) was chosen by performing a cross-validation leave-one-

out (LOO). By plotting RMSEVC against the number of latent variables it is possible to 

identify the number of latent variables that is necessary to have a good PLS model. If 

increasing the number of latent variables will not decrease RMSEVC, then the minimum 

number of latent variables with the lower RMSEVC should be selected, since considering a 

higher number of latent variables would probably make the model more complex and less 

robust. 

As observed in score plot presented in Figure 27, it is feasible to gather all the data from 

monitoring periods I and II, for UV-Visible probe, since samples distribution is according to 

their nitrate concentration, being the matrix differences not sufficient to separate 

monitoring period I from period II. This situation was expected, since the activated sludge 
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system was operated in similar conditions in both periods. Assuming that the same can be 

applied for off-line analysis, the data from both monitoring periods was used for off-line 

parameters calibration. 

In this analysis two spectral ranges were used: 250-380 nm and 250-500 nm. As previously, 

the objective of this selection is to compare results when using most of the UV-Visible range 

or just the UV spectral range, since UV region concentrates the largest part of the 

information (Figure 5). 

After selecting the best spectral range for analysis, the use of the entire spectra or a 

selection of wavelengths was also considered for PLS regression, by using bootstrap objects 

or bootstrap residuals as variables selection methods. 

A pre-processing procedure was performed for variables selection and for PLS regression. 

The results will be presented according to the selected pre-processing method for each 

situation. 

The uncertainty of the determination of COD, nitrate and TSS, by the reference methods, 

was calculated according to the following equation: 

n

st
xx

n 1,2/05.0ˆ −

±=       (18) 

Where 

x – Real value of the measurement; 

x̂  – Estimated value of the measurement (average value of the replicates); 

s – Standard deviation of the replicates; 

t0.05/2,n-1 – Critical value for the student’s t-distribution, for 95 % of confidence and n-1 

degrees of freedom; 

n – Number of samples. 
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3.4.3.1 In-situ UV-Visible parameters modelling 

3.4.3.1.1 COD modelling 

The best correlation achieved for COD was obtained for the range between 250 and 500 nm. 

A bootstrap object variables selection was performed ( 

Figure 34). The bootstrap object selected a part of the variables (wavelengths), taking into 

account only the wavelengths that better correlate with the measured COD. 
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Figure 34. Wavelength selection for COD calibration by performing bootstrap object (X – Wavelength 
(nm); Y – Absorbance (A.U.)). 

 

The variables selection minimizes the number of wavelengths used for PLS regression, 

making the calibration process faster and, hence, more suitable for real-time monitoring 

and control purposes. 

This procedure was quite effective for obtaining a significant improvement in the results in 

terms of RMSECV and correlation coefficient (Table 13). Variables selection enabled the 

reduction of several interferences, by reducing the necessary wavenumbers for the 
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correlation. The R2 value obtained for PLS B indicates that UV-Visible immersion probe can 

be suitable for COD determinations, what is in agreement with the results from literature. 

Table 13. Results obtained for COD calibration with UV-Visible immersible probe, by 
performing PLS regression without (PLS A) and with variables selection (PLS B)   

COD mg O2/L 

PLS A 

PP SNV 

LV 6 

RMSECV 25.0 

R2 0.5420 

Variables Selection 
PP SNV 

LV 8 

PLS B 

PP SNV 

LV 6 

RMSECV 15.4 

R
2
 0.8239 

Legend: PP – Pre-processing method; LV – Latent variables; RMSECV – Root Mean Square 
Error of Cross Validation; R2 – Correlation coefficient; SNV – Standard Normal Variate. 

 

RMSECV value obtained for PLS B can be considered acceptable (15.4 mg O2/L) if the model 

is not used for a very precise quantification.  Considering the COD Portuguese limit 

discharge of 150 mg O2/L (DL n. º 236/98, 1 August) this value of RMSECV is satisfactory. 

Taking into account the COD concentration range used in this work (20 – 160 mg O2/L), only 

the highest values are feasible of being used with better prediction. 

The highest errors for the determination of COD by the reference method can be 

exemplified by the error for one of the lowest obtained concentrations: 30.16 ± 3.07 mg 

O2/L. This error is around 10 % of the average concentration, what means that even though 

lower concentrations should have been measured with more accuracy to obtain a better PLS 

model, this error is lower than the obtained RMSECV. 
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The COD measured values were plotted against the COD values predicted by the model 

(Figure 35).  It was possible to achieve a good COD distribution between 20 mg O2/L and 120 

mg O2/L. However, it is important to refer that lower COD values were subject of a greater 

dispersion and experimental error. 

 

 

Figure 35. Regression curve for COD with variables selection (bootstrap object). 

 

Higher correlation coefficients were obtained in several in-situ UV-Visible spectroscopic 

studies, however, for a COD range bellow 200 mg O2/L, more usual in the effluent, 

calibration coefficients may be lower than the ones achieved for the concentrations found 

in the influent (Langergraber et al., 2004a). In this study, Langergraber et al. (2004) 

modelled COD for the range between 75 and 175 mg O2/L, not obtaining very low COD 

values in the effluent. This may have contributed to the achievement of better results. 

An increase in the number of COD analysis and spectra acquisition, with a broader range of 

concentrations, would help to improve the PLS calibration. Nevertheless, the results 

obtained can already be very useful for monitoring purposes, by indicating changes in the 

system in terms of COD in the outlet. 
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Considering that spectroscopic techniques are not yet prepared to completely substitute 

reference analytical methods, for more quantitative purposes, the possibility of using a 

system to monitor  and detect major variations, can avoid a number of analysis. In fact, this 

is already an important achievement. The kind of hazardous residues produced and its 

management, the sampling and the time spent to perform a COD analysis, are reasons 

enough to consider the substitution of traditional for these spectroscopic methods that can 

indicate the periods when is worth to measure COD values decreasing the frequency of 

measurements.  

 

3.4.3.1.2 Nitrate modelling 

The best correlation achieved for nitrate modelling was obtained for the range between 250 

and 380 nm, not being expected a great influence of the visible region in its determination. 

A bootstrap object variables selection was performed ( 

Figure 36), improving the results, although not in a greater extend as achieved for COD 

modelling (Table 14). It is suggested that for nitrate determination, most of the UV region 

was important, being less affected by interferences. 

In fact, a great part of the UV region of the spectra can be used for nitrate calibration, what 

can originate better correlation results. 

Comparing to the COD calibration results, nitrate determination achieved the best 

correlation coefficient but the RMSECV value must be analyzed in a different perspective. 

This error will affect more the determination of lower N-NO3
- concentration values, 

regarding that the working range is 0-160 mg/L (Figure 37). However, this value of RMSECV 

cannot be acceptable when taking into account the Portuguese legislation discharge limit for 

this parameter – 11.3 mg N-NO3
- /L (DL n. º 236/98, 1 August). Though, this model can be 

more suitable for nitrification process monitoring, since it is expected higher nitrate 

concentrations in the system outlet. 
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Figure 36. Wavelength selection for N-NO3
- calibration by performing bootstrap object (X – 

Wavelength (nm); Y – Absorbance (A.U.)). 

 

Nitrate concentration values measured during the monitoring periods are not well 

distributed along the regression curve, and the lack of more middle values can be at the 

origin of this RMSECV lower value.  

The error of determination of nitrate by HLPC can be considered quite low, regarding the 

greater error found for the concentration of 12.08 ± 0.15 mg N-NO3
-/L, which corresponds 

to less than 2 % of the average concentration. 

In several multiparametric spectroscopic studies the nitrate calibration achieved better 

correlation coefficients than COD or TSS (Thomas et al., 1996; El Khorassani et al., 1999; 

Rieger et al., 2004), what can be explained by the fact that both COD and TSS are aggregate 

parameters, not having a defined maximum absorbance peak as nitrate has. 
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Table 14. Results obtained for N-NO3
- calibration with UV-Visible immersible probe, by 

performing PLS regression without (PLS A) and with variables selection (PLS B)   

N-NO3
-
  mg/L 

PLS1 

PP SG(31,2,1) 

LV 3 

RMSECV 20.53 

R2 0.8527 

Variables Selection 
PP SG(15,2,1) 

LV 2 

PLS B 

PP MNCN 

LV 3 

RMSECV 18.96 

R2 0.8705 

Legend: PP – Pre-processing method; LV – Latent variables; RMSECV – Root Mean Square 
Error of Cross Validation; R2 – Correlation coefficient; SG(x,y,z) – Savitzky-Golay (window 
range, polynomial order, derivative order), MNCN – Mean Centering. 

 

 

Figure 37. Regression curve for N-NO3
- with variables selection (bootstrap object). 
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3.4.3.1.3 TSS modelling 

The best correlation achieved for TSS modelling was obtained for the range between 250 

and 380 nm. However only a very small number of wavelengths were selected, by 

performing bootstrap objects for the PLS regression (Figure 38), showing that TSS had a 

poorer correlation to the acquired UV-Visible spectra. This is probably in the basis for the 

unsatisfactory results obtained for this parameter (Table 15). 
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Figure 38. Wavelength selection for TSS calibration by performing bootstrap object (X – 
Wavelength (nm); Y – Absorbance (A.U.)). 

 

However, since the correlation coefficient only indicates a good correlation between the 

real and the predicted values, this coefficient alone may not be the best way to evaluate the 

prediction ability of the model. In fact, Rieger et al. (2004), achieved a relatively good R2 

value of 0.845 for TSS modelling with a mean value of 13.5 mg/L and a precision of 5.5 mg/L. 

This precision compromises the model, once it is a large error when considering the studied 

TSS range of 0-25 mg/L. The possible explanation for the results obtained in this later work 

can be related to the spectra range used: 210–400 nm. As a matter of fact, according to 

Figure 5, TSS are usually detected in the visible spectral range and thus, better correlations 

could be expected using this spectroscopic range. 
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Table 15. Results obtained for TSS calibration with UV-Visible immersible probe, by 
performing PLS regression without (PLS A) and with variables selection (PLS B)   

TSS  mg/L 

PLS A 

PP SG(31,2,1) 

LV 2 

RMSECV 36.70 

R2 0.4700 

Variables Selection 
PP SG(15,2,1) 

LV 5 

PLS B 

PP MNCN 

LV 4 

RMSECV 35.30 

R2 0.5117 

 

Legend: PP – Pre-processing method; LV – Latent variables; RMSECV – Root Mean Square 
Error of Cross Validation; R2 – Correlation coefficient; SG(x,y,z) – Savitzky-Golay (window 
range, polynomial order, derivative order); MNCN – Mean Centering. 

 

Even though it was possible to achieve good TSS distribution between 20 and 190 mg/L 

(Figure 39), dispersion for higher concentrations is noticed. In terms of RMSECV, the value 

of 35.30 mg/L can be acceptable, when considering only the higher concentrations. 

One of the major sources of errors related to the obtained results for this parameter can be 

due to the used reference method. When considering the lowest concentrations of TSS 

measured in the settler, the error can be quite significant: 28.33 ± 4.87 mg/L. This error 

corresponds to 17.2 % of the estimated concentration, being considered high.  For increased 

concentrations the error is still high, corresponding to 12 % of the estimated concentration 

(165.0 ± 19.5 mg/L). 
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Figure 39. Regression curve for TSS with variables selection (bootstrap object). 

 

Some other suggestions can be made to try to explain the lack of correlation between the 

visible region of the spectrum and the suspended solids content. Possible sampling errors 

could be the cause for these results, namely related to the representativeness of the sample 

taken from the settler and to lower solids concentration. Since very small particles of 

suspended solids present in the settler supernatant sometimes made the filtration process 

difficult, maybe the volume of sample, for TSS lower concentrations, was not sufficient, 

even though it was considered the minimum weight of solid residues required for TSS 

measurement. However, a system imbalance could happen if larger volume of samples were 

collected.  

 

Another hypothesis which can be in the basis of the problem related to the UV-Visible 

determination of TSS, can be due to fouling. In fact, even though, in a regular monitoring 

day, the probe was not kept in the settler for very long periods, the particles accumulation 

in the sample window could interfere with the visible radiation transmitted to the detector.  
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3.4.3.2 Off-line UV-Visible parameters modelling 

3.4.3.2.1 COD modelling 

The best correlation for COD was achieved for the spectral range of 250-500 nm, being 

performed a bootstrap residuals variable selection (Figure 40). 
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Figure 40. Wavelength selection for COD calibration by performing bootstrap residuals (X – 
Wavelength (nm); Y – Absorbance (A.U.)). 

 

Although the results improvement after the wavenumber selection were significant in terms 

of R2 and RMSECV (Table 16), these were not so good as the results obtained with in-situ 

immersion probe.  

In this case, errors caused by sampling, that could modify the sample, being less 

representative of the system status, and also the possibility of solids settling during the 

spectra acquisition, could affect the measurements.  However, a R2 of 0.77 and a RMSECV of 

18.2 mg O2/L, cannot be considered as a bad result. In the absence of in-situ techniques, an 
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off-line spectroscopic analysis can also indicate COD concentration values in the sample, 

without performing any pre-treatment. 

A satisfactory COD values distribution was also achieved in a similar way to the in-situ 

technique (Figure 41). 

Table 16. Results obtained for COD calibration with UV-Visible off-line spectra acquisition, 
by performing PLS regression without (PLS A) and with variables selection (PLS B)   

COD mgO2/L 

PLS A 

PP SG(31,2,2) 

LV 3 

RMSECV 24,0 

R2 0.6084 

Variables Selection 
PP SG(15,2,1) 

LV 3 

PLS B 

PP MNCN 

LV 9 

RMSECV 18,2 

R2 0.7719 

Legend: PP – Pre-processing method; LV – Latent variables; RMSECV – Root Mean Square 
Error of Cross Validation; R2 – Correlation coefficient; SG(x,y,z) – Savitzky-Golay (window 
range, polynomial order, derivative order); MNCN – Mean Centering. 
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Figure 41. Regression curve for COD with variables selection (bootstrap residuals). 

 

3.4.3.2.2 Nitrate modelling 

As for in-situ measurements, the best correlation was achieved for the range 250 – 380 nm, 

without pre-processing the spectra. Wavenumber selection was performed using bootstrap 

objects (Figure 42). When compared to the variables selection performed for the immersible 

probe, it is possible to notice that the number of wavelengths selected is lower.  

Even though this selection improved the obtained results (Table 17), these are not so good 

when compared to the in-situ technique. 

It is important to refer that for off-line spectral acquisition, a lower number of spectra were 

acquired. In order to have an accurate PLS model, it could be important to increase the 

amount of spectra measured. 

The nitrate modelling results are the best obtained for off-line spectral acquisition, but not 

so different from COD results. Once more, regarding effluent discharge limits, the RMSECV 

value is not satisfactory, but for the nitrification process monitoring, with higher nitrate 

concentrations, it can be acceptable. 
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Figure 43 presents the obtained regression curve for nitrate.  
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Figure 42. Wavelength selection for N-NO3
- calibration by performing bootstrap objects (X – 

Wavelength (nm); Y – Absorbance (A.U.)). 
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Table 17. Results obtained for N-NO3
- calibration with UV-Visible off-line spectra acquisition, 

by performing PLS regression without (PLS A) and with variables selection (PLS B)   

N-NO3
-
  mg/L 

PLS A 

PP MNCN 

LV 5 

RMSECV 25,82 

R2 0.7578 

Variables Selection 
PP SG(15,2,2) 

LV 3 

PLS B 

PP MNCN 

LV 3 

RMSECV 23,77 

R2 0.7935 

Legend: PP – Pre-processing method; LV – Latent variables; RMSECV – Root Mean Square 
Error of Cross Validation; R2 – Correlation coefficient; SG(x,y,z) – Savitzky-Golay (window 
range, polynomial order, derivative order), MNCN – Mean Centering. 

 

 

Figure 43. Regression curve for N-NO3
- with variables selection (bootstrap object). 
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3.4.3.2.3 TSS modelling 

The best correlation for TSS was obtained for the spectral range of 250-380 nm. This was the 

only case were the variables selection did not improve the results. Table 18 presents the 

obtained final results. 

Table 18. Results obtained for TSS calibration with UV-Visible off-line spectra acquisition, by 
performing PLS regression without variables selection (PLS A) 

TSS  mg/L 

PLS A 

PP SG(5,2,2) 

LV 5 

RMSECV 33.60 

R2 0.6308 

Legend: PP – Pre-processing method; LV – Latent variables; RMSECV – Root Mean Square 
Error of Cross Validation; R2 – Correlation coefficient; SG(x,y,z) – Savitzky-Golay (window 
range, polynomial order, derivative order). 

 

Even though the data distribution can be satisfactory (Figure 44), the results are still far 

from what was expected. However, compared to TSS calibration results obtained for the in-

situ technique, these results are improved, mainly in terms of correlation coefficient. 
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Figure 44. Regression curve for TSS without variables selection. 
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The results obtained in this work permitted to conclude that the investigated monitoring 

system allowed correctly following of the status of an activated sludge process. Different 

tests and system imbalances were performed in order to obtain the maximum information 

about the system response and ability of the probes to detect them. 

It was possible to conclude that UV-Visible and NIR probe can distinguish between solutions 

with different composition, being able to detect variations in composition at the inlet of a 

wastewater treatment system. Regarding the discrimination of solutions with different COD 

concentrations, UV-Visible probe was more effective than NIR probe in its identification. 

PCA results showed that the different concentration and variability among replicates were 

easily detected by the UV-Visible probe, in all tested solutions. NIR probe could differentiate 

among the different concentrations, although this was not as clear as for the UV-Visible 

probe, probably due to physical interferences. 

During in-situ monitoring of the activated sludge process, UV-Visible achieved better 

performances in both monitoring periods. However, several experimental problems affected 

the NIR probe and because of that a fair comparison would only be possible by performing 

more measurements with both probes in similar conditions.  

The UV-visible probe could detect changes in the spectra due to variations in the 

composition of the effluent. These changes could be visually identified, helping in the 

differentiation of diverse effluent characteristics in terms of composition. Nitrate and COD 

concentration variations were clearly detected by UV-Visible probe. Regarding the 

nitrification process, UV-Visible probe can be quite suitable for the identification of the 

system status before performing off-line analysis.  

Relations between nitrate concentration, MLVSS and pH were confirmed using the UV-

Visible spectra, showing that a spectra acquisition can provide information identical to the 

use of different monitoring parameters. Other associations were possible related to the 

COD degradation process, but not as evident as for nitrification, mainly due to the lack of 

broader range of outlet concentrations. 

COD largest variation in the process (disturbance I – monitoring period II), was easily 

detected by the UV-Visible probe in real-time, showing that UV-Visible probe can be a fast 
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monitoring technique and very suitable for control purposes. COD variations in the outlet 

were not so easily obtained as for nitrate, since the COD degradation by the activated 

sludge system, was always very effective, recovering very fast after disturbances.  

In-situ NIR probe results were not as satisfactory as for UV-Visible probe, mainly due to an 

incident (monitoring period I) that limited the amount of data obtained in the same 

conditions. PCA showed the differences between the spectra acquired before and after the 

incident, which could not be detected by visual spectra comparison. Even though, NIR probe 

was able to detect the disturbances occurred during monitoring period I (inflow adjustment 

and MLVSS decrease), showing that this spectroscopic range has potentialities for in-situ 

monitoring. The disturbance applied during monitoring period II (HRT sudden decrease) was 

not able to be detected by NIR probe, mostly due to a variation in the spectra acquisition in 

the moment before the disturbance. Further spectra processing will be needed to conclude 

about this event. The limitations and possible interferences, due to physical variations found 

in the biological process, limited a better insight of the potentialities of this range for 

wastewater monitoring. 

During in-situ monitoring, fouling was detected as an obstacle as it could mask the 

identification of biochemical variations in the process that could occur at the same time. 

Spectra displacement in PCA scores-plot were easily identified as indicators of solids 

accumulation in the sample window. Complementary tests showed that the spectra 

variation due to exposure time while immersed in the settler was more obvious in NIR 

range, although in reality the effect was similar to both probes. 

The results obtained from residuals statistics (Q) for UV-Visible probe, in the detection of 

the disturbance applied in monitoring period II, needed a careful interpretation, since 

fouling occurred more than once during this period. Spectra variation due to fouling can 

lead to a misleading since these events are identified as outliers by residuals statistics (Q). 

However, during bulking events fouling can be an important indicator. An automated 

cleaning system can be a good option to reduce problems due to fouling, for longer 

immersion periods. 
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COD, nitrate and TSS modelling using PLS regression was promissory using UV-Visible probe, 

and better than for off-line spectra acquisition. For COD, a RMSECV of 15.4 mg O2/L was 

obtained for a concentration range between 20.0 and 160.0 mg O2/L. For nitrate, a RMSECV 

of 19.0 mg N-NO3
-/L was obtained for a concentration range between zero and 170.0 mg/L. 

For TSS, a RMSECV of 35.3 mg/L was obtained for a concentration range between 20.0 and 

190.0 mg/L. Considering the lower concentration values, for each parameter, the errors 

obtained were not acceptable. Even though, these results can be considered satisfactory 

since they indicate that the in-situ probe is able of establishing differences between lower 

and higher values. The errors obtained by the reference methods for COD and TSS, 

regarding the lowest concentrations, could have limited the achievement of better results. 

For nitrate concentration prediction, the lack of a broader range of concentrations can be 

one possible explanation for the high RMSECV obtained. 

The better results obtained for in-situ acquisition when compared to off-line spectra 

acquisition confirm that UV-Visible probe is the most suitable technique for wastewater 

monitoring. 

The conclusions obtained help in the understanding of the limitations and benefits of in-situ 

UV-Visible wastewater monitoring. NIR application in this work showed promissory results, 

even though it was affected by problems that limited the achievement of better results.  

This work allowed to recognize that all steps of in-situ spectroscopic applications can be 

determinant for the final results, existing all sort of factors and variables that must be 

considered during the spectra acquisition, system monitoring and also during spectra 

processing. Nevertheless, very good perspectives for future use of in-situ UV-Visible 

technique have been shown through these results, namely for the application in real time 

control of wastewater treatment systems.  
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Regarding the importance of this type of studies for the development of more suitable 

techniques for monitoring and control of biological processes, the following ideas are 

suggested as future research: 

• Improvement and validation of the obtained models by continuing to use the in-

situ UV-Visible probe in the lab scale activated sludge system; 

• To perform more studies where UV-Visible and NIR ranges may be more 

comprehensively compared; 

• The extent of the actual work to other biological wastewater treatment systems;  

• Selection of other parameters for calibration purposes; 

• The application of immersible probes to real wastewater monitoring. 
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Immersible probes in-situ monitoring procedure 

 

1 – The equipments (light sources and detectors) were turned about 10 minutes before in-

situ monitoring for the light sources to stabilize. 

2 – Probes tips and sample windows were rinsed with distilled water and the sample 

window was cleaned with smooth paper sheet. NIR probe sample window was dry before 

starting spectra acquisition. 

3 – NIR detector’s temperature was calibrated to – 4 ºC. Only after this temperature was 

reached the reference spectrum was acquired. 

4 – UV-Visible probe was immersed in tap water and NIR probe was positioned in contact 

with air in a stable position for acquisition of the reference spectrum. During this procedure 

locations were always the same for both probes. 

5 – After starting the Ocean Optics software (OOIBase32/Ocean Optics) integration time was 

adjusted till the peak for UV-Visible between 550 and 600 was close to 60 000 intensity 

units, as recommended by the manufacturer. The same procedure was done for NIR probe 

where integration time was increased till the peak between 1100 and 1200 nm was around 

60 000 units of intensity (Figure 45). For this work it was chosen a value of 10 scans to make 

a spectral average, a boxcar width of 5 and electric dark correction for both probes. A 

reference and dark spectra were saved. The reference spectrum was saved with the amount 

of light intensity that was selected. A dark spectrum was acquired when no light passed 

through the probe (light source was disconnected). New reference and dark spectra were 

saved each time it was decided to perform a new calibration during probes operation, by 

defining new integration time values. 
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Figure 45. Intensity spectra for both probes during parameters adjustment, using Ocean 
Optics SpectraSuite software. 

 

6 – Before initializing in-situ or sample spectra acquisition for both reference spectra (UV-

Visible and NIR) were close to zero (within ± 0.05)  absorbance units, throughout the entire 

wavelength range. Every time baseline was not close to zero absorbance units, new 

reference and dark spectra were performed.  

7 – Probes were immersed in the settler and acquisition started after defining the period of 

time for automatic spectra acquisition (45 minutes). When necessary, spectra were saved 

manually. An example of simultaneous spectra acquisition is presented in Figure 46. 

 

UV-Visible 
NIR 
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Figure 46. Instantaneous visualization of both spectra acquired in the settler. 

 

COD determination – Reagents 

 

• 1 L Digestion solution (500 mL distilled water + 10.216 g K2Cr2O7 (previously dried 

at 103ºC during 2 hours) + 167 mL H2SO4 conc. + 33,3 g HgSO4); 

• 1 L Sulfuric Acid Reagent ( 9.715 g Ag2SO4 + 1 L H2SO4 concentrated); 

• 1 L Potassium hydrogen phthalate (KHP) stock solution – 1000 mg CQO/L (425 mg 

KHP (previously dried at 105 ºC during one day) + distilled water). 

 

 

 

 

UV-Visible 

NIR 
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N-Kjeldahl determination – Reagents and detailed procedure description 

 

• NaOH solution (400 g/L); 

• NaOH solution (40 g/L); 

• NaOH solution (4 g/L); 

• Bromocresol green indicator solution (1 g/L : 100 mg of bromocresol green in 100 

mL of 96 % ethanol);  

• Metil red indicator solution (1 g/L: 100 mg of metal red in 100 mL of 96 % 

ethanol); 

• Boric acid solution (40 g/L: 40 g of boric acid were added to 600 mL of boiled 

ultrapure water and well dissolved; 300 mL of the same water were added. After the 

solution has reached room temperature 10 mL bromocresol green and 7 mL of metil 

red were added and the solution was diluted to 1000 mL. 25 mL of this solution were 

pipeted to a beaker and 100 mL of ultrapure water were added. Since this solution 

remained red, it was titrated with NaOH (4 g/L) to obtain a grey color, by adding 10 

μL each time. A volume of NaOH (40 g/L) solution four times the volume of NaOH (4 

g/L) spent for titration, was added to the solution. This solution lasted only one 

month); 

• Concentrated H2SO4; 

• H2SO4 (200 mL/L); 

• H2SO4 (0.025 mol/L); 

• Kjeltabs with selenium. 

All the solutions were prepared with ultrapure water. 

The digestion tubes were previously washed with H2SO4 (200 mL/L), followed by washing 

with ultrapure water and then were completely dried. In each digestion tube 10 mL of 
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concentrated H2SO4 were added to 10 mL of sample or ultrapure water (blank), followed by 

the addition of one Kjeltab with selenium. The tubes were carefully mixed and digested at 

400 ºC connected to a system for vapors aspiration. The digestion was usually prolonged for 

1 hour till the moment when white vapors appeared and the samples were limpid.  After the 

digestion was considered finished, the digestion equipment was turned off, the tubes were 

cooled down outside the digester with vapors aspiration on for some minutes. After 

reaching room temperature 50 mL of ultrapure water were added to each tube.  

An automatic distillation system (Tecator Kjeltec 1026) was used to rapidly distillate all the 

samples and blanks after digestion. For the distillation system it was necessary to supply 

ultrapure water and a very concentrated NaOH solution (400 g/L). A beaker with 25 mL of 

acid boric solution receives the distilled solution which results from each digestion tube. 

After distillation each solution in a beaker is titrated with a solution of H2SO4 (0.025 mol/L) 

until the color changes from green to grey. 

 

Nitrate determination – HPLC operational conditions 

 

HPLC Jasco  

• Column: Varian Metacarb 87H; 

• Column temperature: 60 ºC; 

• Eluent composition: H2SO4 ( 0.005 mol/L); 

• Eluent inflow : 0.70 mL/min; 

• Eluent inflow pressure: 70-80 kg/cm2; 

• Detector: UV at 210 nm; 

• Analysis time: 12 min. 
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Nitrite determination – Reagents 

 

• Sulfanilamide reagent (in a hood 50 mL of concentrated HCl were added slowly in 

300 mL of distilled water, in a volumetric flask; 5 g of sulfanilamide were 

dissolved in this solution which was completed with distilled water to 1000 mL); 

• N(1-naftil) etilenodiamine-dihydrochloride reagent (NEDD) (500 mg of N(1-naftil) 

etilenodiamine dihydrocloride were dissolved in 500 mL of distilled water; this 

solution was kept in a dark place lasting only 1 month); 
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