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Abstract

Here we present a primal-dual interior point three-dimensional filter line search
method for nonlinear programming. The three components of the filter aim to
measure adequacy of feasibility, centrality and optimality of trial iterates. The
algorithm also relies on a monotonic barrier parameter reduction and it includes a
feasibility/centrality restoration phase. Numerical experiments with a set of well-
known problems are carried out and a comparison with a previous implementation
that differs on the optimality measure is presented.
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1 Introduction

The filter technique of Fletcher and Leyffer [6] is used to globalize the primal-dual
interior point method for solving nonlinear constrained optimization problems. This
technique incorporates the concept of nondominance to build a filter that is able to
reject poor trial iterates and enforce global convergence from arbitrary starting points.
The filter replaces the use of merit functions, avoiding therefore the update of penalty
parameters that are associated with the penalization of the constraints in merit func-
tions.

The filter technique has already been adapted to interior point methods. In Ulbrich,
Ulbrich and Vicente [12], a filter trust-region strategy based on two components is
proposed. The two components combine the three criteria of the first-order optimality
conditions: the first component is a measure of quasi-centrality and the second is an
optimality measure combining complementarity and criticality. Global convergence to
first-order critical points is also proved. In [1, 14, 15, 16], a filter line search strategy
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that defines two components for each entry in the filter is used. The components are
the barrier objective function and the constraints violation. The global convergence
is analyzed in [14]. Numerical experiments with a three-dimensional filter based line
search strategy are shown in [2, 3]. The three components of the filter measure feasibility,
centrality and optimality and are present in the first-order KKT conditions of the barrier
problem. The optimality measure relies on the norm of the gradient of the Lagrangian
function. Convergence to stationary points has been proved, although convergence to a
local minimizer is not guaranteed [4].

The algorithm herein presented is a primal-dual interior point method with a three-
dimensional filter line search approach that considers the barrier objective function as
the optimality measure. The algorithm also incorporates a restoration phase that aims
to improve either feasibility or centrality. In the paper, a performance evaluation is also
carried out using a benchmarking tool, known as performance profiles [5], to compare
different practical details.

The paper is organized as follows. Section 2 briefly describes the interior point
method and Section 3 is devoted to introduce the 3-D filter line search method. Section
4 describes the numerical experiments that were carried out in order to analyze the
performance of the new algorithm and to compare its behavior with a previous imple-
mentation that differs on the optimality measure. Conclusions are made in Section 5.

2 The interior point method

The formulation of the nonlinear constrained optimization problem that is considered
in the paper is the following:

minx∈IRn F (x)
s.t. h(x) ≥ 0

(1)

where hi : IRn → IR for i = 1, . . . , m and F : IRn → IR are nonlinear and twice
continuously differentiable functions.

In this interior point paradigm, problem (1) is transformed into an equality con-
strained problem by using nonnegative slack variables w, as follows:

minx∈IRn,w∈IRm ϕµ(x, w) ≡ F (x)− µ
m∑

i=1
log(wi)

s.t. h(x)− w = 0
w ≥ 0,

(2)

where ϕµ(x,w) is the barrier function and µ is a positive barrier parameter [11, 13].
This is the barrier problem associated with (1). Under acceptable assumptions, the
sequence of solutions of the barrier problem converges to the solution of the problem
(1) when µ ↘ 0. Thus, primal-dual interior point methods aim to solve a sequence of
barrier problems for a positive decreasing sequence of µ values. The first-order KKT
conditions for a minimum of (2) define a nonlinear system of n+2m equations in n+2m
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unknowns 


∇F (x)−AT y = 0
−µW−1e + y = 0
h(x)− w = 0

(3)

where ∇F is the gradient vector of F , A is the Jacobian matrix of the constraints h,
y is the vector of dual variables, W = diag(wi) is a diagonal matrix, and e is an m
vector of all ones. Applying the Newton’s method to solve (3), the following system,
after symmetrization, appears



−H 0 AT

0 −µW−2 −I
A −I 0






4x
4w
4y


 =




σ
−γµ

ρ


 (4)

where

H = ∇2F (x)−
m∑

i=1

yi∇2hi(x)

is the Hessian matrix of the Lagrangian function (L = ϕµ(x,w)− yT (h(x)− w)) and

σ = ∇xL = ∇F (x)−AT y, γµ = µW−1e− y and ρ = w − h(x).

Since the second equation in (4) can be used to eliminate ∆w without producing any
off-diagonal fill-in in the remaining system, one obtains

∆w = µ−1W 2 (γµ −∆y) , (5)

and the resulting reduced KKT system
[ −H AT

A µ−1W 2

] [
∆x
∆y

]
=

[
σ
π

]
(6)

where π = ρ + µ−1W 2γµ, to compute the search directions ∆x, ∆w, ∆y. Given initial
approximations to the primal, slack and dual variables x0, w0 > 0 and y0 > 0, this
interior point method implements a line search procedure that chooses iteratively a
step size αk, at each iteration, and defines a new approximation by

xk+1 = xk + αk∆xk

wk+1 = wk + αk∆wk

yk+1 = yk + αk∆yk.

The choice of the step size αk is a very important issue in nonconvex optimization and
in the interior point context aims:

1. to ensure the nonnegativity of the slack and dual variables;

2. to enforce progress towards feasibility, centrality and optimality.

To decide which trial step size is accepted, at each iteration, a backtracking line search
framework combined with a three-D filter method is used. This is the subject of the
next section.



A Three-D Filter Line Search Method

3 Three-D filter line search method

The methodology of a filter as outline in [6] is adapted to this interior point method.
We use a three-dimensional filter. In the sequel, we use the vectors:

u = (x,w, y), u1 = (x,w), u2 = (w, y),
∆ = (∆x,∆w, ∆y), ∆1 = (∆x,∆w), ∆2 = (∆w, ∆y).

To define the three components of the filter, we make use of the first-order optimality
conditions (3) and the barrier objective function. The first component of the filter
measures feasibility, the second measures centrality and the third represents optimality,
and they are defined as follows:

θf (u1) = ‖ρ‖2 , θc(u2) = ‖γµ‖2 and ϕµ(u1).

We remark that our previous work [2, 3] considered the norm of the gradient of
the Lagrangian function in the optimality measure, therein denoted by θop = 1

2‖∇xL‖2.
While promoting convergence to stationary points [4], the algorithm did not enforce a
sufficient decrease in the barrier function. Nonetheless, the practical implementation
of the algorithm has shown convergence to minimizers even when saddle points and
maximizers are present.

At each iteration k, a backtracking line search framework generates a decreasing
sequence of step sizes

αk,l ∈ (0, αmax
k ] , l = 0, 1, ...,

with liml αk,l = 0, until a set of acceptance conditions are satisfied. Here, l denotes
the iteration counter for the inner loop. αmax

k is the longest step size that can be taken
along the search directions to ensure the nonnegativity condition u2

k ≥ 0. Assuming
that the initial approximation satisfies u2

0 > 0, the maximal step size αmax
k ∈ (0, 1] is

defined by
αmax

k = max{α ∈ (0, 1] : u2
k + α∆2

k ≥ (1− ε)u2
k} (7)

for a fixed parameter ε ∈ (0, 1).
In this interior point context, the trial iterate uk(αk,l) = uk + αk,l∆k is acceptable

by the filter, if it leads to sufficient progress in one of the three measures compared to
the current iterate,

θf (u1
k(αk,l)) ≤

(
1− γθf

)
θf (u1

k) or θc(u2
k(αk,l)) ≤ (1− γθc) θc(u2

k)
or ϕµ(u1

k(αk,l)) ≤ ϕµ(u1
k)− γϕθf (u1

k)
(8)

where γθf
, γθc , γϕ ∈ (0, 1) are fixed constants. However, to prevent convergence to a

feasible but nonoptimal point, and whenever for the trial step size αk,l, the following
switching conditions

mk(αk,l) < 0 and [−mk(αk,l)]
so [αk,l]

1−so > δ
[
θf (u1

k)
]sf

and [−mk(αk,l)]
so [αk,l]

1−so > δ
[
θc(u2

k)
]sc (9)
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hold, with fixed constants δ > 0, sf > 1, sc > 1, so ≥ 1, where

mk(α) = α∇ϕµ(u1
k)

T ∆1
k,

then the trial iterate must satisfy the Armijo condition

ϕµ(u1
k(αk,l)) ≤ ϕµ(u1

k) + ηomk(αk,l), (10)

instead of (8), to be acceptable. Here, ηo ∈ (0, 0.5) is a constant. A trial step size αk,l

is called a ϕ-step if (10) holds. Similarly, if a ϕ-step is accepted as the final step size
αk in iteration k, then k is referred to as a ϕ-type iteration (see also [14]).

To prevent cycling between iterates that improve either the feasibility, or the cen-
trality, or the optimality, at each iteration k, the algorithm maintains a filter that is a
set F k that contains values of θf , θc and ϕµ, that are prohibited for a successful trial
iterate in iteration k [12, 14, 15, 16]. Thus, a trial iterate uk(αk,l) is acceptable, if

(
θf (u1

k(αk,l)), θc(u2
k(αk,l)), ϕµ(u1

k(αk,l))
)

/∈ F k.

The filter is initialized to

F 0 ⊆
{

(θf , θc, ϕµ) ∈ IR3 : θf ≥ θmax
f , θc ≥ θmax

c , ϕµ ≥ ϕmax
µ

}
, (11)

for the nonnegative constants θmax
f , θmax

c and ϕmax
µ ; and is updated whenever the ac-

cepted step size satisfies (8) by

F k+1 = F k ∪
{
(θf , θc, ϕµ) ∈ IR3 : θf ≥

(
1− γθf

)
θf (u1

k) and θc ≥ (1− γθc) θc(u2
k)

and ϕµ ≥ ϕµ(u1
k)− γϕθf (u1

k)
}

.
(12)

We remark that the filter remains unchanged whenever (9) and (10) hold for the accepted
step size.

Finally, when the backtracking line search cannot find a trial step size αk,l that
satisfies the above criteria, we define a minimum desired step size αmin

k , using linear
models of the involved functions,

αmin
k = γα





min
{

γθf
,

γϕθf (u1
k)

−mk(αk,l)
,

δ[θf (u1
k)]sf

[−mk(αk,l)]so ,
δ[θc(u2

k)]sc

[−mk(αk,l)]so

}
, if mk(αk,l) < 0

and (θf (u1
k) ≤ θmin

f or θc(u2
k) ≤ θmin

c )

min
{

γθf
,

γϕθf (u1
k)

−mk(αk,l)

}
, if mk(αk,l) < 0

and (θf (u1
k) > θmin

f and θc(u2
k) > θmin

c )
γθf

, otherwise
(13)

for positive constants θmin
f , θmin

c and a safety factor γα ∈ (0, 1]. Whenever the backtrack-
ing line search finds a trial step size αk,l < αmin

k , the algorithm reverts to a restoration
phase. Here, the algorithm tries to find a new iterate uk+1 that is acceptable to the cur-
rent filter, i.e., (8) holds, by reducing either the constraints violation or the centrality
within an iterative process.
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3.1 Restoration phase

The task of the restoration phase is to compute a new iterate acceptable to the filter by
decreasing either the feasibility or the centrality, whenever the backtracking line search
procedure cannot make sufficient progress and the step size becomes too small. Thus,
the restoration algorithm works with the new functions

θ2,f (u1) =
1
2
‖ρ‖2

2 and θ2,c(u2) =
1
2
‖γµ‖2

2

and the steps ∆1 and ∆2 that are descent directions for θ2,f (u1) and θ2,c(u2), respec-
tively (as shown in Theorem 2 below).

3.2 Descent properties

While the search directions are computed from solving the reduced KKT system (6),
we need for subsequent analysis the explicit formulas for ∆x and ∆w. Let N(u) =
H + µAT W−2A denote the dual normal matrix.

Theorem 1 If N is nonsingular, then (4) has a unique solution. In particular,

∆x = −N−1∇F (x) + µN−1AT W−1e + µN−1AT W−2ρ
∆w = −AN−1∇F (x) + µAN−1AT W−1e− (

I − µAN−1AT W−2
)
ρ.

Proof. Solving the second block of equations in (6) for ∆y and eliminating ∆y from
first block of equations yields a system involving only ∆x whose solution is

∆x = N−1
(−σ + AT (µW−2ρ + γµ)

)
= N−1

(−∇F (x) + AT y + AT (µW−2ρ + µW−1e− y)
)

= −N−1∇F (x) + N−1AT y + µN−1AT W−2ρ + µN−1AT W−1e−N−1AT y
= −N−1∇F (x) + µN−1AT W−2ρ + µN−1AT W−1e

where we used the definitions of σ and γµ. Using this formula of ∆x, we can then solve
for ∆y and finally for ∆w.

The resulting formula for ∆w is:

∆w = µ−1W 2 (γµ −∆y)
= µ−1W 2γµ − µ−1W 2

(
µW−2ρ + γµ − µW−2A∆x

)
= µ−1W 2γµ − ρ− µ−1W 2γµ + A∆x
= −ρ + AN−1

(−σ + AT (µW−2ρ + γµ)
)

= −ρ−AN−1σ + AN−1AT (µW−2ρ + γµ)
= −ρ + µAN−1AT W−2ρ−AN−1σ + AN−1AT γµ

= − (
I − µAN−1AT W−2

)
ρ−AN−1

(∇F (x)−AT y
)

+ AN−1AT
(
µW−1e− y

)
= −AN−1∇F (x) + µAN−1AT W−1e− (

I − µAN−1AT W−2
)
ρ.
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Theorem 2 The search directions have the following properties: (i) If the dual matrix
N is positive definite and ρ = 0, then

∇ϕT
µ∆1 ≤ 0.

ii) Furthermore
∇θT

2,f∆1 ≤ 0 and ∇θT
2,c∆

2 ≤ 0.

Proof. First we prove (i). It is easy to see that ∇xϕµ = ∇F and ∇wϕµ = −µW−1e.
Let y = µW−1e and σ = ∇F − AT y. From the expressions for ∆x and ∆w given in
Theorem 1, and assuming that ρ = 0, we get

( ∇F
−y

)T (
∆x
∆w

)
= ∇F T ∆x− yT ∆w

= ∇F T
(−N−1∇F (x) + µN−1AT W−1e

)−
−yT

(−AN−1∇F (x) + µAN−1AT W−1e
)

= ∇F T
(−N−1∇F (x) + N−1AT y

)−
−yT

(−AN−1∇F (x) + AN−1AT y
)

= ∇F T
(−N−1(∇F (x)−AT y)

)−
−yT A

(−N−1(∇F (x)−AT y
)
))

= ∇F T
(−N−1σ

)− yT A(−N−1σ)
=

(∇F T − yT A
) (−N−1σ

)
= −σT N−1σ ≤ 0,

which completes the proof of the first property. To prove (ii), we star by addressing the
the feasibility measure θ2,f . It is easy to see that ∇xθ2,f = −AT ρ and ∇wθ2,f = ρ, and
from (4) we get

( ∇xθ2,f

∇wθ2,f

)T (
∆x
∆w

)
=

( −AT ρ
ρ

)T (
∆x
∆w

)

=
(−ρT A

)
∆x +

(
ρT

)
∆w

= −ρT (A∆x−∆w)
= −ρT ρ ≤ 0.

We now address the centrality measure θ2,c. It is easy to see that ∇wθ2,c =
−µW−2γµ and ∇yθ2,c = −γµ, and from (4) we get

( ∇wθ2,c

∇yθ2,c

)T (
∆w
∆y

)
=

( −µW−2γµ

−γµ

)T (
∆w
∆y

)

= γT
µ (−µW−2)∆x− γT

µ ∆y

= γT
µ

(−µW−2∆x−∆y
)

= γT
µ (−γµ)

= −γT
µ γµ ≤ 0.
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3.3 The algorithm

Next, we present the proposed primal-dual interior point 3-D filter line search algorithm
for solving constrained optimization problems.

Algorithm 1 (Interior Point 3-D Filter Line Search Algorithm)

1. Given: Starting point x0, u2
0 > 0;

constants θmax
f ∈ (θf (u1

0),∞]; θmin
f ∈ (0, θf (u1

0)]; θmax
c ∈ (θc(u2

0),∞]; θmin
c ∈

(0, θc(u2
0)]; ϕmax

µ ∈ (ϕµ(u1
0),∞]; γθf

, γθc , γϕ ∈ (0, 1); δ > 0; sf > 1; sc > 1;
so ≥ 1; ηo, ηθ2,f

, ηθ2,c ∈ (0, 0.5]; εtol ¿ 1; ε ∈ (0, 1); δµ, κµ ∈ [0, 1); ε ∈ (0, 1);

compute µ0 > 0 using (14).

2. Initialize the filter using (11) and set k ← 0.

3. Stop if termination criterion is satisfied (see (15)).

4. If k 6= 0 compute µk using (14).

5. Compute the search direction ∆k from the linear system (6), and (5).

6. 6.1 Compute the longest step size αmax
k using (7) to ensure positivity of slack and

dual variables. Set αk,l = αmax
k , l ← 0.

6.2 If αk,l < αmin
k , go to restoration phase in step 10. Otherwise, compute the

trial iterate uk(αk,l).

6.3 If
(
θf (u1

k(αk,l)), θc(u2
k(αk,l)), ϕµ(u1

k(αk,l))
) ∈ F k, reject the trial step size and

go to step 6.6.

6.4 If αk,l is a ϕ-step size ((9) holds) and the Armijo condition (10) for the ϕµ

function holds, accept the trial step and go to step 7.

6.5 If (8) holds, accept the trial step and go to step 7. Otherwise go to step 6.6.

6.6 Set αk,l+1 = αk,l/2, l ← l + 1, and go back to step 6.2.

7. Set αk ← αk,l and uk+1 ← uk(αk).

8. If k is not a ϕ-type iteration, augment the filter using (12). Otherwise, leave the
filter unchanged.

9. Set k ← k + 1 and go back to step 3.

10. Use the Restoration Algorithm to produce a point uk+1 that is acceptable to the
filter, i.e.,

(
θf (u1

k+1), θc(u2
k+1), ϕµ(u1

k+1)
)

/∈ F k. Augment the filter using (12)
and continue with the regular iteration in step 9.

In the restoration phase, a sufficient reduction in one of the measures θ2,f and θ2,c is
required for a trial step size to be acceptable. The Restoration Algorithm is as follows.
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Algorithm 2 (Restoration Algorithm)

1. Set αmax
k,0 = αmax

k , uk,0 = uk, l = 0 and start with step 5.

2. If uk,l is acceptable to the filter then set uk+1 = uk,l and stop.

3. Compute ∆k,l from the linear system (6), and (5) (with uk = uk,l)

4. (Define the vectors ∆1
k,l, ∆2

k,l which are used as search directions for the variables
u1

k,l, u2
k,l.) Compute αmax

k,l

5. Set αk = αmax
k,l .

6. Compute the trial iterate uk,l(αk),

If θ2,f (u1
k,l (αk)) ≤ θ2,f (u1

k,l) + αkηθ2,f
∇θ2,f (u1

k,l)
T ∆1

k,l or

θ2,c(u2
k,l (αk)) ≤ θ2,c(u2

k,l) + αkηθ2,c∇θ2,c(u2
k,l)

T ∆2
k,l

then set uk,l+1 = uk,l (αk), l = l + 1, and return to step 2. Otherwise αk ← αk/2,
and repeat step 6.

4 Numerical experiments

To analyze the performance of the proposed interior point 3-D filter line search method,
as well as to compare with our previous implementation of the algorithm [2], we used
111 constrained problems from the Hock and Schittkowski test set [8]. The tests were
done in double precision arithmetic with a Pentium 4. The algorithm is coded in the C
programming language and includes an interface to AMPL to read the problems that
are coded in the AMPL modeling language [7].

4.1 Implementation details

Next, we report some computational details that were undertaken during our numerical
experimentation, such as, for example, the initialization of the variables, the barrier
parameter evaluation and the termination criterion.

Initial quasi-Newton approximationOur algorithm is a quasi-Newton based method
in the sense that a symmetric positive definite quasi-Newton BFGS approximation, Bk,
is used to approximate the Hessian of the Lagrangian H, at each iteration k [9]. In the
first iteration, we may set B0 = I or B0 = positive definite modification of ∇2F (x0),
depending on the characteristics of the problem to be solved.

Monotonic reduction of the barrier parameter To guarantee a positive decreasing
sequence of µ values, the barrier parameter is updated by a formula that couples the
theoretical requirement defined on the first-order KKT conditions (3) with a simple
heuristic. Thus, µ is updated by
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µk+1 = max

{
ε, min

{
κµµk, δµ

wT
k+1yk+1

m

}}
(14)

where the constants κµ, δµ ∈ (0, 1) and the tolerance ε is used to prevent µ from be-
coming too small so avoiding numerical difficulties at the end of the iterative process.

Reevaluation of centrality and optimality measures in the filter We further
remark that each time the barrier parameter is updated, the θc component, as well as
the barrier objective function value, of points in the filter may be reevaluated using the
new µ so that a fair comparison of the current point with points in the filter is made.
In practice, only θmax

c and ϕmax
µ need to be reevaluated.

Initialization of variables Two possible ways to initialize the primal and dual vari-
ables consider:

1. the usual published initial x0, and the dual variables are initialized to one;

2. the published x0 to define the dual variables and modified primal variables by
solving the simplified reduced system:

[ −(B0 + I) AT (x0)
A(x0) I

] [
x̃0

y0

]
=

[ ∇F (x0)
0

]
.

Further, if ‖y0‖∞ > 103 then we set (component-wise) y0 = 1. Similarly, if
‖x̃0‖∞ > 103‖x0‖∞, we set x̃0 = x0.

The nonnegativity of the initial slack variables are ensured by computing w0 =
max{|h(x0)|, εw}, for the previously defined x0, and a fixed positive constant εw.

Termination criterion The termination criterion considers dual and primal feasibility
and centrality measures

max
{‖σ‖∞

s
, ‖ρ‖∞,

‖γµ‖∞
s

}
≤ εtol, (15)

where
s = max

{
1, 0.01

‖y‖1

m

}

and εtol > 0 is the error tolerance.

4.2 Parameter settings

The chosen values for the parameters involved in the Algorithms 1 and 2 are:
θmax
f = 104 max

{
1, θf (u1

0)
}
, θmin

f = 10−4 max
{
1, θf (u1

0)
}
, θmax

c = 104 max
{
1, θc(u2

0)
}
,

θmin
c = 10−4 max

{
1, θc(u2

0)
}
, ϕmax

µ = 104 max
{
0, ϕµ(u1

0)
}
, γθf

= γθc = γϕ = 10−5,
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Figure 1: Profiles on the number of iterations: using ϕµ (on the left); using θop (on the
right)

δ = 1, sf = 1.1, sc = 1.1, so = 2.3, ηo = ηθ2,f
= ηθ2,c = 10−4, ε = 0.95, , δµ = κµ = 0.1,

ε = 10−9, εw = 0.01 and εtol = 10−4.
We carried out a set of experiments considering the two alternatives for setting

the initial B0 (as previously described) and the two ways of primal and dual variables
initialization. For the subsequent analysis and comparisons we combined the overall
results for each problem and selected the one which yields the smallest number of
iterations.

4.3 Dolan-Moré performance profiles

To compare the performance of the reevaluation of the centrality and optimality mea-
sures in the filter for each updated µ value, we use the performance profiles as outline in
[5]. These profiles represent the cumulative distribution function of a performance ratio,
computed from a predefined metric. For this analysis we choose the number of iterations
required to achieve the desired accuracy, as reported in (15). A brief explanation of the
Dolan-Moré performance profiles follows.

Let P be the set of problems and C the set of codes used in the comparative study.
Let tp,c be the performance metric - number of iterations required to solve problem p
by code c. Then, the comparison relies on the performance ratios

rp,c =
tp,c

min{tp,c, c ∈ C} , p ∈ P, c ∈ C

and the overall assessment of the performance of a code c is given by ρc(τ) = nPτ
nP

,
where nP is the number of problems in the set P and nPτ is the number of problems
in the set such that the performance ratio rp,c is less than or equal to τ ∈ IR for code
c ∈ C. Thus, ρc(τ) gives the probability (for code c) that rp,c is within a factor τ of
the best possible ratio. The function ρc is the cumulative distribution function for the
performance ratio.
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Figure 2: Profiles on the number of iterations: comparison between θop and ϕµ

First, we examine the practical performance of the reevaluation of the filter for each
new µ value within the herein proposed algorithm - where ϕµ is used as the optimality
measure. The performance plots on the left of Figure 1 show that the version that
does not implement the reevaluation of the filter is the most efficient on 85% of the
problems (see the corresponding value of ρ(1)). Next, the filter reevaluation process
was implemented in our previous implementation of the algorithm - when θop was used
as the optimality measure. The performance plots on the right of Figure 1 definitely
show that the filter reevaluation yields the worst performance.

From the previous analysis, we decided to disable the reevaluation filter process
from both algorithms and plot the performance profiles together. Figure 2 represents
the performance profiles of the number of iterations. The use of the barrier function to
measure the trial iterate optimality adequacy did not improve the performance of this
interior point based method, at least when the number of iterations is the metric used
in these performance profiles.

Finally, to further compare the convergence of both interior point 3-D filter line
search algorithms we include Table 1 that records the objective function values at the
found solutions. Only the problems that were solved at least by one of the versions
in comparison are listed. While the previous implementation did not converge to the
required solution on 3 problems (hs046, hs105, hs111), within 100 iterations, the new
algorithm did not reach the solution on the following problems: hs064, hs083, hs101,
hs106 and hs118. In all the other problems, both algorithms reach the same solution
with the desired accuracy.
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Table 1: Objective function values at the solution

Prob with θop with ϕµ Prob with θop with ϕµ Prob with θop with ϕµ

hs001 8.9525e-13 6.5934e-12 hs038 1.0359e-11 6.6804e-14 hs077 2.4151e-01 2.4151e-01
hs002 5.0426e-02 5.0426e-02 hs039 -1.0000e00 -1.0000e00 hs078 -2.9197e00 -2.9197e00
hs003 1.0000e-04 1.0000e-04 hs040 -2.5000e-01 -2.5000e-01 hs079 7.8777e-02 7.8777e-02
hs004 2.6667e00 2.6667e00 hs041 1.9999e00 1.9999e00 hs080 5.3949e-02 5.3949e-02
hs005 -1.9132e00 -1.9132e00 hs042 1.3858e01 1.3858e01 hs081 5.3950e-02 5.3950e-02
hs006 1.6997e-12 1.6997e-12 hs043 -4.4000e01 -4.4000e01 hs083 -3.0666e04 -
hs007 -1.7321e00 -1.7321e00 hs044 -1.5000e01 -1.5000e01 hs086 -3.2349e01 -3.2349e01
hs008 -1.0000e00 -1.0000e00 hs045 1.0000e00 1.0000e00 hs087 8.8276e03 8.8276e03
hs009 -4.9999e-01 -4.9999e-01 hs046 2.1089e-02 6.2703e-07 hs088 1.3626e00 1.3626e00
hs010 -1.0000e00 -1.0000e00 hs047 1.1658e-07 1.1658e-07 hs089 1.3626e00 1.3626e00
hs011 -8.4985e00 -8.4985e00 hs048 1.6555e-12 1.6555e-12 hs090 1.3626e00 1.3626e00
hs012 -3.0000e01 -3.0000e01 hs049 1.17559e-06 1.1756e-06 hs091 1.3626e00 1.3626e00
hs014 1.3934e00 1.3934e00 hs050 3.1993e-10 3.1993e-10 hs092 1.3627e00 1.3627e00
hs015 3.0650e02 3.0650e02 hs051 3.5090e-10 3.5090e-10 hs093 1.3508e02 1.3508e02
hs016 2.5000e-01 2.5000e-01 hs052 5.3266e00 5.3266e00 hs095 1.5620e-02 1.5620e-02
hs017 1.0000e00 1.0000e00 hs053 4.0930e00 4.0930e00 hs096 1.5620e-02 1.5620e-02
hs018 4.9999e00 5.0000e00 hs054 1.9286e-01 1.9286e-01 hs097 3.1358e00 3.1358e00
hs019 -6.9618e03 -6.9618e03 hs055 6.6667e00 6.6667e00 hs098 4.0712e00 4.0712e00
hs020 3.8199e01 3.8199e01 hs056 -1.0788e-10 -1.0788e-10 hs100 6.8063e02 6.8063e02
hs021 -9.9960e01 -9.9960e01 hs057 3.0648e-02 3.0648e-02 hs101 1.8098e03 -
hs022 1.0000e00 1.0000e00 hs059 -7.8028e00 -7.8028e00 hs102 9.1188e02 9.1188e02
hs023 2.0000e00 2.0000e00 hs060 3.2568e-02 3.2568e-02 hs103 5.4367e02 5.4367e02
hs024 -1.0000e00 -1.0000e00 hs061 -1.4365e02 -1.4365e02 hs104 3.9512e00 3.9512e00
hs025 1.8361e-10 2.7269e-11 hs062 -2.6273e04 -2.6273e04 hs105 - 1.1363e03
hs026 7.6064e-07 1.9872e-07 hs063 9.6172e02 9.6172e02 hs106 7.0492e03 -
hs027 3.9999e-02 3.9999e-02 hs064 6.2998e03 - hs108 -5.0000e-01 -5.0000e-01
hs028 1.0270e-09 1.0270e-09 hs065 9.5354e-01 9.5354e-01 hs110 -4.5778e01 -4.5778e01
hs029 -2.2627e01 -2.2627e01 hs066 5.1816e-01 5.1816e-01 hs111 - -4.7761e01
hs030 1.0002e00 1.0002e00 hs067 -1.1620e03 -1.1620e03 hs112 -4.7761e01 -4.7761e01
hs031 5.9999e00 6.0000e00 hs070 2.7971e-01 2.7971e-01 hs113 2.4306e01 2.4306e01
hs032 1.0000e00 1.0000e00 hs071 1.7014e01 1.7014e01 hs114 -1.7688e03 -1.7688e03
hs033 -4.5858e00 -4.5858e00 hs072 7.2760e02 7.2767e02 hs117 3.2349e01 3.2349e01
hs034 -8.3403e-01 -8.3403e-01 hs073 2.9894e01 2.9894e01 hs118 6.6482e02 -
hs035 1.1116e-01 1.1116e-01 hs074 5.1265e03 5.1265e03 hs119 2.4490e02 2.4490e02
hs036 -3.3000e03 -3.3000e03 hs075 5.1744e03 5.1744e03
hs037 -3.4560e03 -3.4560e03 hs076 -4.6818e00 -4.6818e00
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5 Conclusions

A primal-dual interior point method based on a filter line search approach is presented.
The novelty here is that each entry in the filter has three components that represent
the feasibility, centrality and optimality of the iterate. Using the barrier objective
function as the optimality measure, the algorithm is able to enforce a sufficient decrease
of the barrier function and converge to stationary points that are minimizers. The new
algorithm is tested with a set of well-known problems and compared with our previous
implementation of an interior point three-dimensional filter line search [2, 3], using a
benchmarking tool with performance profiles. The numerical results show that both
algorithms have similar practical behaviors.

We would like to remark that the performance profiles reflect only the performance
of the tested codes on the data being used. Definitive conclusions could be made if
different test sets, including larger academic problems and real engineering problems
[10], were used. This will be a matter of future research.
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