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Abstract

Here we incorporate a four-dimensional filter line search method into an infea-
sible primal-dual interior point framework for nonlinear programming. Each entry
in the filter has four components measuring dual feasibility, complementarity, pri-
mal feasibility and optimality. Three measures arise directly from the first order
optimality conditions of the problem and the fourth is the objective function, so
that convergence to a stationary point that is a minimizer is guaranteed. The
primary assessment of the method has been done with a well-known collection of
small problems.
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1 Introduction

In this paper we consider a nonlinear constrained optimization problem in the following
form:

minx∈IRn F (x)
s.t. h(x) ≥ 0

(1)

where hi : IRn → IR for i = 1, . . . , m and F : IRn → IR are nonlinear and twice
continuously differentiable functions. Interior point methods based on a logarithmic
barrier function have been widely used for nonlinear programming [9, 11, 12]. To al-
low convergence from poor starting points, barrier and augmented Lagrangian merit
functions may be used [7]. Some line search frameworks use penalty merit functions
to enforce progress toward the solution. As an alternative to merit functions, Fletcher
and Leyffer [4] proposed a filter method as a tool to guarantee global convergence in
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algorithms for nonlinear optimization. This technique incorporates the concept of non-
dominance to build a filter that is able to accept trial points if they improve either the
objective function or the constraints violation, instead of a combination of those two
measures defined by a merit function. The filter replaces the use of merit functions,
so avoiding the update of penalty parameters that are associated with the penalization
of the constraints in a merit function. The filter technique has already been adapted
to interior point methods. In [13, 14, 15], a filter line search strategy incorporated in
a barrier type method is used. The two components of each entry in the filter are the
barrier objective function and the constraints violation. In [10], a two-dimensional filter
is used in a primal-dual interior point method context. The two entries, measuring
quasi-centrality and optimality, combine the three criteria of the first order optimality
conditions. A three-dimensional filter based line search strategy has already been tested
in [2, 3]. The three components of the filter measure feasibility, centrality and optimal-
ity and are present in the first order KKT conditions of the barrier problem associated
with the problem (1). The optimality measure relies on the norm of the gradient of
the Lagrangian function. Convergence to stationary points may been proved, although
convergence to a local minimizer is not guaranteed.

In this paper we propose a four-dimensional filter line search method to incorpo-
rate into a primal-dual interior point framework. The three criteria of the first order
optimality conditions are used separately to define three measures, and the objective
function, F (x), is the other so that convergence to a stationary point that is a minimizer
is guaranteed.

The paper is organized as follows. Section 2 presents the interior point paradigm
and Section 3 introduces the novel filter line search method that relies on four compo-
nents and presents the acceptance conditions used to accept a point in the filter. The
experimental results and the conclusions make Section 4.

2 The primal-dual interior point paradigm

In this interior point paradigm, problem (1) is reformulated as an equality constrained
problem by using nonnegative slack variables w, as follows:

minx∈IRn,w∈IRm F (x)
s.t. h(x)− w = 0

w ≥ 0,
(2)

and the first order or Karush-Kuhn-Tucker (KKT) optimality conditions for a minimum
of (2) are written as

∇xL(x, w, y, v) = 0
y − v = 0
Wy = 0

h(x)− w = 0
w ≥ 0, v ≥ 0

(3)

where y, v ∈ IRm are the vector of Lagrange multipliers, W = diag(wi) is a diagonal
matrix, and ∇xL is the gradient with respect to x of the Lagrangian function defined
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by
L(x,w, y, v) = F (x)− yT (h(x)− w)− vT w.

The system (3) is equivalent to the system

∇F (x)−A(x)T y = 0
Wy = 0

h(x)− w = 0
w ≥ 0, y ≥ 0

(4)

where A(x) is the Jacobian matrix of the constraint functions h(x). If the second
equation of conditions (4) is perturbed, we get the KKT perturbed system of equations

∇F (x)−A(x)T y = 0
Wy − µe = 0
h(x)− w = 0
w ≥ 0, y ≥ 0

(5)

where e is a vector of unit m elements and µ is a positive parameter called barrier
parameter [9, 12]. This perturbed system is equivalent to the KKT conditions of the
barrier problem associated with problem (2), in the sense that they have the same
solution,

minx∈IRn,w∈IRm ϕµ(x,w)
s.t. h(x)− w = 0

(6)

where ϕµ(x,w) ≡ F (x)−µ
m∑

i=1
log(wi) is the logarithmic barrier function. Applying the

Newton’s method to solve (5), the following system, after symmetrization, arises



−H 0 A(x)T

0 −W−1Y −I
A(x) −I 0







∆x
∆w
∆y


 =



∇F (x)−A(x)T y
−µW−1e + y

w − h(x)


 (7)

where Y = diag(yi) is a diagonal matrix,

H = ∇2F (x)−
m∑

i=1

yi∇2hi(x)

is the Hessian matrix of the Lagrangian function.
Since the second equation in (7) can be used to eliminate ∆w without producing

any off-diagonal fill-in in the remaining system, one obtains

∆w = WY −1
(
µW−1e− y −∆y

)
, (8)

and the resulting reduced KKT system
[ −H A(x)T

A(x) WY −1

] [
∆x
∆y

]
=

[ ∇F (x)−A(c)T y
w − h(x) + WY −1(µW−1e− y)

]
(9)
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to compute the search directions ∆x, ∆w, ∆y. This interior point based method im-
plements a line search procedure combined with a backtracking strategy to compute a
step size αk, at each iteration k, and define a new approximation by

xk+1 = xk + αk∆xk

wk+1 = wk + αk∆wk

yk+1 = yk + αk∆yk

where equal step sizes are used with primal and dual directions. The choice of the step
size αk is a very important issue in nonconvex optimization and in the interior point
context aims:

1. to ensure the nonnegativity of the slack and dual variables;

2. to enforce progress towards feasibility, complementarity and optimality.

Here we propose a four-dimensional filter method combined with a backtracking strategy
to define new approximations to the primal, slack and dual variables that give a sufficient
reduction in one of the filter measures. The backtracking strategy defines a decreasing
sequence of step sizes

αk,l ∈ (0, αmax
k ] , l = 0, 1, . . . ,

with limlαk,l = 0, until a set of acceptance conditions are satisfied. Here, the index
l denotes the iteration counter for the inner loop. The parameter αmax

k represents the
longest step size that can be taken along the direction before violating the nonnegativity
conditions wk ≥ 0, yk ≥ 0. If the initial approximations for the slack and dual variables
satisfy w0 > 0, y0 > 0, the maximal step size αmax

k ∈ (0, 1] is defined by

αmax
k = min

{
1, ε min{−wi

k(∆wi
k)
−1,−yi

k(∆yi
k)
−1}} (10)

for all i such that ∆wi
k < 0 and ∆yi

k < 0, and ε ∈ (0, 1) is a fixed parameter.

3 Four-dimensional filter line search method

In order to define the components of each entry in the filter and the corresponding
acceptance conditions, the following notation is used:

u = (x,w, y), ∆ = (∆x,∆w, ∆y),
u1 = (x, w), ∆1 = (∆x,∆w),
u2 = (w, y), ∆2 = (∆w, ∆y),
u3 = (x, y), ∆3 = (∆x,∆y).

The optimality conditions (4) define a set of natural measures to assess the algorithm
progress. Some combinations of these measures may be used to define the components
of each entry in the filter, see for example [10]. We use the three conditions separately.
Further, to be able to guarantee convergence to stationary points that are minimizers,
we introduce F as the fourth measure in the filter [5]. Table 1 lists the four components
for the herein proposed filter.
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Table 1: Components of the four-dimensional filter
measure

primal feasibility θpf (u1) ≡ ‖h(x)− w‖2

complementarity θc(u2) ≡ ‖Wy‖2

dual feasibility θdf (u3) ≡ ∥∥∇F (x)−A(x)T y
∥∥

2
optimality F (x)

3.1 The acceptance conditions

In this algorithm, the trial point uk(αk,l) = uk + αk,l∆k is acceptable by the filter, if it
leads to sufficient progress in one of the four measures compared to the current iterate,

θpf (u1
k(αk,l)) ≤ (1− γ1) θpf (u1

k) or θc(u2
k(αk,l)) ≤ (1− γ2) θc(u2

k)
or θdf (u3

k(αk,l)) ≤ (1− γ3) θdf (u3
k) or F (xk(αk,l)) ≤ F (xk)− γ4θpf (u1

k)
(11)

where γ1, γ2, γ3, γ4 ∈ (0, 1) are fixed constants.
However, to prevent convergence to a point that is nonoptimal, and whenever for

the trial step size αk,l, the following switching conditions

mk(αk,l) < 0 and [−mk(αk,l)]
so [αk,l]

1−so > δ
[
θpf (u1

k)
]s1

and [−mk(αk,l)]
so [αk,l]

1−so > δ
[
θc(u2

k)
]s2 and [−mk(αk,l)]

so [αk,l]
1−so > δ

[
θdf (u3

k)
]s3

(12)
hold, with fixed constants δ > 0, s1, s2, s3 > 1, so ≥ 1, where

mk(α) = α∇F (xk)T ∆xk,

then the trial point must satisfy the Armijo condition with respect to the optimality
measure

F (xk(αk,l)) ≤ F (xk) + η1 mk(αk,l), (13)

instead of (11) to be acceptable. Here, η1 ∈ (0, 0.5) is a constant.
According to previous publications on filter methods (for example [13]), a trial step

size αk,l is called a F -step if (13) holds. Similarly, if a F -step is accepted as the final
step size αk in iteration k, then k is referred to as a F -type iteration.

3.2 The four-dimensional filter

The filter is a set that contains combinations of the four measures θpf , θc, θdf and F
that are prohibited for a successful trial point and is initialized to

F 0 ⊆
{

(θpf , θc, θdf , F ) ∈ IR4 : θpf ≥ θmax
pf , θc ≥ θmax

c , θdf ≥ θmax
df , F ≥ Fmax

}
, (14)

for the nonnegative constants θmax
pf , θmax

c , θmax
df and Fmax. The filter is updated accord-

ing to

F k+1 = F k ∪
{
(θpf , θc, θpf , F ) ∈ IR4 : θpf ≥ (1− γ1) θpf (u1

k) and θc ≥ (1− γ2) θc(u2
k)

and θdf ≥ (1− γ3) θdf (u3
k) andF ≥ F (xk)− γ4θpf (u1

k)
}

,
(15)
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whenever the accepted step size satisfies (11). However, when for the accepted step size
the conditions (12) and (13) hold, the filter remains unchanged.

Finally, when the backtracking line search cannot find a trial step size αk,l that
satisfies the above criteria, we define a minimum desired step size αmin

k , using linear
models of the involved functions,

αmin
k = ξ





min {γ1, π1, π2, π3, π4} , if mk(αk,l) < 0
and (θpf (u1

k) ≤ θmin
pf or θc(u2

k) ≤ θmin
c or θdf (u3

k) ≤ θmin
df )

min {γ1, π1} , if mk(αk,l) < 0
and (θpf (u1

k) > θmin
pf and θc(u2

k) > θmin
c and θdf (u3

k) > θmin
df )

γ1, otherwise
(16)

where

π1 =
γ4θpf (u1

k)
−mk(αk,l)

, π2 =
δ
[
θpf (u1

k)
]s1

[−mk(αk,l)]
so

, π3 =
δ
[
θc(u2

k)
]s2

[−mk(αk,l)]
so

, π4 =
δ
[
θdf (u3

k)
]s3

[−mk(αk,l)]
so

for positive constants θmin
pf , θmin

c , θmin
df and a safety factor ξ ∈ (0, 1].

Like in [15] and whenever the backtracking line search finds a trial step size αk,l <
αmin

k , the algorithm reverts to a restoration phase. Here, the algorithm tries to find a
new iterate uk+1 that is acceptable to the current filter, i.e., (11) holds, by reducing
either the primal feasibility measure or the complementarity within an iterative process.

3.3 Restoration phase

The task of the restoration phase is to compute a new iterate acceptable to the filter by
decreasing either the primal feasibility or the complementarity, whenever the backtrack-
ing line search procedure cannot make sufficient progress and the step size becomes too
small. Thus, the restoration algorithm works with the new functions

θ2
pf (u1) =

1
2
‖h(x)− w‖2

2 and θ2
c (u

2) =
1
2
‖Wy‖2

2

and the steps ∆1 and ∆2 that are descent directions for θ2
pf (u1) and θ2

c (u
2), respectively.

Using a backtracking strategy, the algorithm selects, at each iteration k, a step size
αk ∈ (0, αmax

k ] to define a new trial point uk(αk) = uk + αk∆k that satisfies either

θ2
pf (u1

k (αk)) ≤ θ2
pf (u1

k) + αkη2∇θ2
pf (u1

k)
T ∆1

k

or

θ2
c (u

2
k (αk)) ≤ θ2

c (u
2
k) + αkη3∇θ2

c (u
2
k)

T ∆2
k

for constants η2 and η3 in the set (0, 0.5).
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3.4 Setting the barrier parameter

To guarantee a positive decreasing sequence of µ values, the barrier parameter is updated
by a formula that couples the theoretical requirement defined on the first order KKT
conditions (5) with a simple heuristic. Thus, µ is updated by

µk+1 = max

{
ε, min

{
κµµk, δµ

wT
k+1yk+1

m

}}
(17)

where the constants κµ, δµ ∈ (0, 1) and the tolerance ε is used to prevent µ from be-
coming too small so avoiding numerical difficulties at the end of the iterative process.

3.5 Termination criteria

The termination criteria consider dual and primal feasibility and complementarity mea-
sures

max
{‖∇F (x)−A(x)T y‖∞

s
, ‖h(x)− w‖∞,

‖Wy‖∞
s

}
≤ εtol, (18)

where
s = max

{
1, 0.01

‖y‖1

m

}

and εtol > 0 is the error tolerance.

4 Experimental results and conclusions

To test this interior point framework with the herein proposed four-dimensional filter line
search technique we selected 109 constrained problems from the Hock and Schittkowski
(HS) collection [8]. This preliminary selection aims to consider small and simple to code
problems. The tests were done in double precision arithmetic with a Pentium 4. The
algorithm is coded in the C programming language and includes an interface to AMPL
to read the problems that are coded in the AMPL modeling language [6].

Our algorithm is a quasi-Newton based method in the sense that a symmetric
positive definite quasi-Newton BFGS approximation, Bk, is used to approximate the
Hessian of the Lagrangian H, at each iteration k. In the first iteration, we may set B0 =
I or B0 = positive definite modification of ∇2F (x0), depending on the characteristics
of the problem to be solved.

4.1 Initial approximations

The algorithm implements two alternatives to initialize the primal and the dual vari-
ables. One uses the usual published initial values, x0, as mentioned in [8], and sets all
the dual variables to one. The other uses the published x0 to define the initial dual
variables, y0, and new primal variables, x̃0, by solving the simplified reduced system:

[ −(B0 + I) AT (x0)
A(x0) I

] [
x̃0

y0

]
=

[ ∇F (x0)
0

]
.
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Further, if ‖y0‖∞ > 103 then y0 is component by component set to one. However, if
‖x̃0‖∞ > 103‖x0‖∞ then x̃0 = x0.

The nonnegativity of the initial slack variables are ensured by computing w0 =
max{|h(x0)|, εw}, for the previously defined x0, and a fixed positive constant εw.

4.2 Setting user defined parameters

The chosen values for some of the constants are similar to the ones proposed in [15]:
θmax
pf = 104 max

{
1, θpf (u1

0)
}
, θmin

pf = 10−4 max
{
1, θpf (u1

0)
}
, θmax

c = 104 max
{
1, θc(u2

0)
}
,

θmin
c = 10−4 max

{
1, θc(u2

0)
}
, θmax

df = 104 max
{
1, θdf (u3

0)
}
, θmin

df = 10−4 max
{
1, θdf (u3

0)
}
,

Fmax = 104 max {1, F (x0)}, γ1 = γ2 = γ3 = γ4 = 10−5, δ = 1, s1 = s2 = s3 = 1.1,
so = 2.3, η1 = η2 = η3 = 10−4, ξ = 0.05.

The other parameters are set as follows: ε = 0.95, δµ = κµ = 0.1, ε = 10−9,
εw = 0.01 and εtol = 10−6.

4.3 Comparative results

Table 2 summarizes the results obtained with the herein proposed four-dimensional filter
line search interior point method. The table reports the number of iterations required
to obtain a solution according to the termination criteria in (18), Nit, and the objective
function value, F (x∗). Except in 11 problems, the number of function evaluations was
Nit+1. Results inside parentheses were obtained with the parameter εtol set to = 10−4.
In all problems, our algorithm converges to the solution within a reasonable number of
iterations.

For a comparative purpose we compare our results with the IPOPT, a filter line
search barrier based method [13, 14, 15]. The results obtained by IPOPT are reported
in the file "Ipopt-table.pdf" under
http://www.research.ibm.com/people/a/andreasw/papers/Ipopt-table.pdf.

We noticed differences, some are rather small, in the objective function value in 32
problems. They are listed in Table 3. For the remaining problems used in this study,
the herein proposed filter line search interior point method converges to the solutions
reported in "Ipopt-table.pdf". The table reveals that we were able to get better solutions
in eight problems. They are emphasized in the table. We may then conclude that the
four-dimensional filter line search interior point based method is effective in reaching the
solution of small nonlinear constrained optimization problems. In the future, different
combinations of the criteria involved in the first order optimality conditions (4) will be
analyzed, tested and compared with the present proposal.
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