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Abstract— Visually-guided locomotion is important for au-
tonomous robotics. However, there are several difficulties,
for instance, the head shaking that results from the robot
locomotion itself that constraints stable image acquisition and
the possibili ty to rely on that information to act accordingly.

In this ar ticle, we propose a controller architecture that is
able to generate locomotion for a quadruped robot and to
generate head motion able to minimizethe head motion induced
by locomotion itself. The movement controllers are biologically
inspired in the concept of Central Pattern Generators (CPGs).
CPGs are modelled based on nonlinear dynamical systems,
coupled Hopf oscill ators. This approach allows to explicitly
specify parameters such as ampli tude, offset and frequency of
movement and to smoothly modulate the generated oscill ations
according to changes in these parameters. We take advantage
of this par ticular ity and propose a combined approach to
generate head movement stabili zation on a quadruped robot,
using CPGs and a global optimization algor ithm. The best set
of parameters that generates the head movement are computed
by the electromagnetism-like algor ithm in order to reduce the
head shaking caused by locomotion.

Experimental resultson a simulated AIBO robot demonstrate
that the proposed approach generates head movement that does
not eliminate but reduces the one induced by locomotion.

I . INTRODUCTION

Robot locomotion is a challenging task that involves
several relevant subtasks, not yet completely solved. The
motion of quadruped, biped and snake-like robots, for in-
stance, with cameras mounted in their heads, causes head
shaking.This kind of disturbances, generated by locomotion
itself, makes it difficult to keep the visual frame stable and,
therefore, to act according to the visual information. Head
stabili zation isvery important for achievingavisually-guided
locomotion, a concept which has been suggested from a
considerable number of neuroscientific findings in humans
and animals [18].

As a basic research to realize visually-guided quadruped
locomotion, we aim in this article at head stabili zation of
a quadruped robot that walks with a walking gait. In our
research, we propose a motion stabili zation system of an
ers-7 AIBO quadruped robot, which performs its own head
motion according to a feedforward controller. Several similar
works have been proposed in literature [4], [7], [6], [5].
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But these methods consider that the robot moves according
to a scheduled robot motion plan, which imply that space
and time constraints on robot motion must be known before
hand as well as robot and environment models. As such,
control is based on this scheduled plan. Other works have
successfully achieved gazestabili zation [5], that consists on
image stabili zation during head movements in space. The
overall of the gazestabili zation approaches can be divided
into two types of techniques. One uses specific hardware,
like accelerometersand gyroscopeto estimate the3D posture
of the head, and complex control algorithms to compensate
the oscill ations. The use of inertial information was already
proposed by several authors [5], [16], [17]. Typically this
kind of techniques is used in binocular robot heads, where
gazeis implemented throughthe coordination of the two eye
movements. Most of the approachesare inspired in biological
systems, specifically in the human Vestibular-Ocular Reflex
(VOR). In robotswith fixed eyes, thefixation point procedure
isachieved bycompensatory head or bodymovements, based
on multisensory information of the head.

In this work, a combined approach to generate head
movement stabili zation ona quadruped robot, using Central
Pattern Generators (CPGs) and the electromagnetism-like
algorithm is proposed. We intend to use a head controller,
based on Central Pattern Generators (CPGs), that generates
trajectories for tilt , pan and nod head joints. CPGs are neural
networks located in the spine of vertebrates, able to generate
coordinated rhythmic movements, namely locomotion [11].
These CPGs are modelled as coupled oscill ators and solved
using numeric integration. These CPGs have been applied in
drumming [1] and postural control [3]. This dynamical sys-
tems approach model for CPGs presents multiple interesting
properties, including: low computation cost which is well -
suited for real time; robustness against small perturbations;
thesmooth onlinemodulation of trajectories throughchanges
in the dynamical systems parameters and phase-locking
between the different oscill ators for different DOFs.

In order to achieve the desired head movement, opposed
to the one induced by locomotion, it is necessary to ap-
propriately tune the CPG parameters. This can be achieved
by optimizing the CPG parameters using an optimization
method. The optimization process is done offline according
to the head movement induced by the locomotion when no
stabili zation procedure was performed.

Some algorithms for solving this type of problem require
substantial gradient information and aim to improve the
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solution in a neighborhood of a given initial approximation.
When the problem hasmore than one local solution, the con-
vergence to the global solution may depend onthe provided
initial approximation. Thus, searching for a global optimum
is a difficult task that could be done by using stochastic-
type algorithms. The stochastic methods can be classified
in two main categories, namely, the point-to-point search
strategies and the population-based search techniques. From
the population-based techniques, we would like to emphasize
three particular algorithms, the electromagnetism-like algo-
rithm (EM) [12], the particle swarm optimization [13] and
genetic algorithms (GA) [2] that despite employing different
strategies, they are easy to implement and computationally
inexpensivein termsof memory requirement. TheGA iswell
suited and hasalready been applied to solve thisoptimization
problem because it can handle both discrete and continuous
variables, nonlinear objective andconstrain functionswithout
requiring gradient information [14]. Recently, EM algorithm
appeared as a promising algorithm for handling optimization
problems with simple bounds. This technique is finding
popularity within research community as design tools and
problem solvers because of their versatilit y and abilit y to
optimize in complex multimodal search spaces applied to
nondifferentiable objective functions [15]. In this paper, we
are interested in the application of the EM algorithm, pro-
posed in [12], to optimizethe CPG parameters of amplitude,
offset and frequency of each head oscill ator to head motion
stabili zation during quadruped robot locomotion.

The remainder of this paper is organized as follows. In
Section II , the system architecture and how to generate
locomotionand head movement is described. The main ideas
concerning the optimization system, namely the problem
statement that evaluates the head movement, the EM mecha-
nism to optimizethe CPG parametersandsome experimental
results, are described in Section III . Simulated results are
described in Section IV. Conclusions are made in Section V.

II . SYSTEM ARCHITECTURE

Our aim is to propose a control architecture that is able to
generate locomotion for a quadruped robot and to generate
head motionsuch as to minimizethehead movement induced
by the the locomotion itself.

The overall system architecture is depicted in Figure 1.

Fig. 1. Overall system architecture

The proposed movement controllers are biologically in-
spired in the concept of CPGs. A locomotion controller

generates hip and knee trajectories. A head controller spec-
ifies the planned neck tilt , pan and nodjoint values. These
trajectories are used as input for the PID controllers of these
joints.

The head controller parameters have to be tuned such
that the resultant movement is as desired. Using our CPG
approach allows us to assign explicit parameters for each
of the nonlinear oscill ators, independently controlli ng the
amplitude, offset and frequency of themovement. We apply a
stochastic optimization method, the EM algorithm, in order
to determine the best set of CPG control parameters that
results in, or close to the desired movement. This set of
parameters constitute the Model module in Fig. 1.

A. Locomotion Generation

In this section we present the network of CPGs used to
generate locomotion. A CPG for a given degree-of-freedom
(DOF) is modelled as coupled Hopf oscill ators, that generate
a rhythmic movement.

1) Rhythmic Movement Generation: Rhythmic move-
ments are generated by the following Hopf oscill ator

ẋi = β
(

µi − r2
i

)

(xi −Oi)−ωzi, (1)

żi = β
(

µi − r2
i

)

zi + ω (xi −Oi) , (2)

where r i =
√

(xi −Oi)
2 +z2

i , ω specifies the oscill ations

frequency (in rad s−1), peak-to-peak amplitude of the os-
cill ations are given by Ai = 2

√µi and relaxation to the limit
cycle is given by 1

2β µi
.

This Hopf oscill ator contains a bifurcation from a stable
fixed point at xi = Oi (when µi < 0) to a structurally stable,
harmonic limit cycle, for µi > 0. The fixed point xi has an
offset given by Oi .

Thus, this Hopf oscill ator exhibits limit cycle behaviour
and describes a stable rhythmic motion where parameters
Ai , ω and Oi control the desired amplitude, frequency and
offset of the resultant oscill ations.

2) Locomotion Controller Architecture: We have to cou-
ple the oscill ators in order to ensure phase-locked synchro-
nization between the hip and knee DOFs of the robot, and
generate locomotion with a desired gait.

Fig. 2 depicts the network structure used to generate
locomotion for a quadruped robot. Hopf oscill ators of the

Fig. 2. Locomotion controller architecture depicting coupling structure
among the CPGs for a walking gait. The footfall sequence is: HL-FL-HR-
FR, with each foot lagging a quarter of a cycle from the previous.

hips are bilaterally coupled, these couplings being ill ustrated
by right-left arrows, and hip Hopf oscill ators are unilaterally
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coupled to the corresponding kneeHopf oscill ators. For the
hip joints, this is achieved by modifying (1) and (2) as
follows:

[

ẋi[1]

żi[1]

]

=
[

β µi ω
−ω β µ i

][

xi[1] −Oi[1]

zi[1]

]

−β r2
i[1]

[

xi[1] −Oi[1]

zi[1]

]

+ ∑
j 6=i

R(θ j[1]
i[1]

)
[

xj[1]−Oj[1]

zj[1]

]

For the kneejoints, we modify (1) and (2) as follows:
[

ẋi[3]

żi[3]

]

=
[

β µ i ω
−ω β µ i

][

xi[3]−Oi[3]

zi[3]

]

−β r2
i[3]

[

xi[3]−Oi[3]

zi[3]

]

+
1
2

R(ψ j[1]
i[3]

)
[

xj[1]−Oj[1]

zj[1]

]

where r i [k] is the norm of vector (xi[k]−Oi[k],zi [k])T (k =
1,3, that is hip and knee joints) and i, j = Fore Left (FL),
Fore Right (FR), Hind Left (HL) and Hind Right (HR)
limbs. The linear terms are rotated onto each other by the
rotation matrices R(θ j[1]

i[1]
) and R(ψ j[1]

i[3]
), where θ j[1]

i[1]
is the

relative phase among the i[1]’s and j[1]’s hip oscill ators and
represents bidirectional couplings between these oscill ators
such that θ j[1]

i[1]
=−θ i[1]

j[1]
and ψ j[1]

i[3]
is the required relativephase

amongthe i[3]’s and j[1]’s oscill ators (seeFig. 2). We assure
that closed-loop interoscill ator couplings have phase biases
that sum to a multiple of 2 π .

Each hip oscill ator lags a quarter of a cycle from the
previous. The relative phases between hips and knees, ψ j[1]

i[3]
,

were all set to 180.
Due to thepropertiesof these coupled Hopf oscill ators, the

generated trajectoriesare always smooth and thus potentially
useful for trajectory generation in a robot.

This network structure constitutes the locomotion con-
troller that generates desired trajectories, xi , obtained by
integrating the CPGs dynamical systems. These are sent
online for the PID controllers of each hip and knee joints
and result in the actual trajectories x̃i .

3) Generating a walking gait: A gait event sequence is
specified using theduty factorsandthe relativephases, where
the first event, and the start of the stride, is chosen as the
event when the fore left leg (reference leg) is set down. We
have set a non-singular, regular and symmetric gait with a
FL-HR-FR-HL gait even sequence {ϕFL, ϕHR, ψFR, ψHL,
ϕFR, ϕHL, ψFL, ψHR}), a duty factor of 0.73 and a velocity
of 19mms−1 (measured in the Z direction, seeFig. 3).

We have implemented in webots [8] this locomotion
controller (simulation results and the experiment description
is detailed explained in section).

B. Head Movement Generation

Head movement is generated similarly to locomotion, but
a CPG for a given DOF is modelled as an Hopf oscill ator,
not coupled to any other oscill ator. Each CPG, therefore,
generates a rhythmic movement according to

[

ẋi

żi

]

=

[

β µi ω
−ω β µ i

][

xi −Oi

zi

]

−β r2
i

[

xi −Oi

zi

]

, (3)

where i =tilt ,pan,nod.

The control policy is the xi variable, obtained by integrat-
ing the CPGs dynamical systems, and represents tilt , pan and
nod joint angles in our experiments. These are sent online
for the corresponding PID controllers.

Note that the final movement for each of these joints is a
rhythmic motion which amplitude of movement is specified
by µi , offset by Oi and its frequency by ω .

The differential equations for locomotion and head move-
ment aresolved usingEuler integrationwith afixed timestep
of 1ms. Thexi trajectoriesrepresent angular positionsandare
directly sent to the PID controllers of the joint servomotors.

III . OPTIMIZATION SYSTEM

In this section, we explain how the head CPGs are
optimized in order to reduce the camera (head) movement
induced by locomotion itself. We will optimize the distance
between the generated head movement for a set of head CPG
control parameters and the one induced by locomotion.

In order to implement the head motion it is necessary
one or several optimal combinationsof amplitude, offset and
frequency of each head oscill ator. This is possible because
we can easily modulate amplitude, offset and frequency of
the generated trajectories according to changes in the Ai ,
Oi and ω CPG parameters and these are represented in an
explicit way by our CPG. Therefore, we have to tune the
head CPG parameters: amplitude Ai , offset Oi and common
frequency ω . In order to optimize the combinations of the
different head CPG control parameters the EM algorithm is
used.

The multitude of parameter combinations is large, and it is
difficult to derive an accurate model for the tested quadruped
robot and for the environment. Besides, such a model based
approach would also require some post-adaptation of results
(because of backlash, friction, etc).

In this study, the search of parameters suitable for the
implementation of the required head motion was carried
out based on the data from a simulated quadruped robot.
The (X,Y,Z) head coordinates, in a world coordinate system
(Fig. 3), are recorded when a simulated robot walks during
30s and no head stabili zation is performed. We are interested
in the oppositeof this movement aroundthe (X,Y,Z) coordi-
nates. This data was mathematically treated such as to keep
only the oscill ations in the movement and remove the drift
that the robot has in the X coordinate and also the forward
movement in the Z coordinate. From now on, this data is
referred to as (X,Y,Z)observed.

In thesimulation, wehaveset a cycle timeof 30ms, that is,
the timeneeded to perform sensory acquisitions, calculate the
planned trajectories (integrating the differential equations)
and send this data to the servomotors. The (X,Y,Z)observed

data is sampled with a sample time of 30ms, meaning we
have atotal of 1000samples. A simulated time of 30s corre-
sponds to 10strides of locomotion. This time is arbitrary and
could have been chosen differently but seems well suited to
find a model representative of the head movement induced
by the locomotion controller.
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Fig. 3. World coordinate system.

The basic idea is to combine the CPG model for head
movement generationwith the optimizationalgorithm. Fig. 4
ill ustrates a schematics of the overall optimization system.

Fig. 4. Schematics of the optimization system.

Three head CPGs (3) generate during 30s rhythmic mo-
tions for the tilt , pan and nod joints. By applying forward
kinematics, we calculate the resultant set of 1000 samples
of (X,Y,Z)calculated head coordinates in the world coordinate
system.

A. Problem Definition

The sum of the distances between each sample of the
observed and calculated head coordinates is used as fitness
function in order to evaluate the resulting head movement.
Thus, the fitnessof the ith point is given by

fi =
n

∑
j=1

√

(

Xj −X′
j

)2
+

(

Yj −Y′
j

)2
+

(

Zj −Z′
j

)2
(4)

where j is an head position sample (because the points are
generated and acquired in a discrete manner); n is the total
number of samples originated during the evaluation time;
(X′,Y′,Z′) represent the calculated head coordinateswith the
CPG parameters and (X,Y,Z) represent the offline observed

head coordinates. Only head position errors are computed in
the fitnessfunction, because we only control threeDOFs and
as such cannot control head orientation.

In the optimization processeach point is evaluated accord-
ing to its fitnessfunction value. Since we have apopulation
of points the one with the smallest distance is denoted as
the best point. Then, in the EM algorithm, each point is
directed for a better position, inside of the allowed limits.
The search ranges of the head CPG control parameters were
set beforehandas shown in Table I for thepurposeof efficient
learning and according to the limits of the tilt , pan and
nod DOFs. Search for optimal parameters is carried out by
performing the overall optimization system over a preset
number of iterations.

TABLE I

SEARCH RANGES OF CPG PARAMETERS

Parameter Range Unit

Atilt [0,75] (o)

ωtilt [1,12] (rads−1)

Otilt

[

−75+ Atilt
2 ,0− Atilt

2

]

(o)

Apan [0,(88+88)] (o)

ωpan [1,12] (rads−1)

Opan

[

−88+ Atilt
2 ,88− Atilt

2

]

(o)

Anod [0,(45+15)] (o)

ωnod [1,12] (rads−1)

Onod

[

−15+ Atilt
2 ,45− Atilt

2

]

(o)

The combinations of amplitude, offset and frequency of
each tilt , pan and nod oscill ators, that are necessary to
generate the desired head movement, form each point of the
population. Each coordinate of the point consists in 9 CPG
freeparameters that span our vector xi for the optimization,
as follows

xi
1 xi

2 xi
3 xi

4 xi
5 xi

6 xi
7 xi

8 xi
9

Atilt ωtilt Otilt Apan ωpan Opan Anod ωnod Onod

B. Electromagnetism Algorithm

The EM algorithm starts with a population of randomly
generated points from the feasible region. Analogous to
electromagnetism, each point is a charged particle that is
released to the space. The charge of each point is related
to the fitness function value and determines the magnitude
of attraction of the point over the population. The better the
fitnessfunction value, the higher the magnitude of attraction.
The charges are used to find a direction for each point to
move in subsequent iterations. The regions that have higher
attraction will signal other points to move towards them.
In addition, a repulsion mechanism is also introduced to
explore new regions for even better solutions. Thus, the
EM algorithm comprises 3 procedures: Initialize that will
run only once in the start of the EM algorithm, CalcF and
Move, these latter running sequentially every iteration. A
more detailed explanation of the EM algorithm follows.

Initialize is a procedure that aims to randomly generate a
population of points, xi , from the feasible region, where each
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coordinate of a point is assumed to be uniformly distributed
between the corresponding upper and lower bounds. Note
that in order to guaranteethe feasibilit y of the initial points
andall pointsgenerated duringthesearch arepair mechanism
was implemented. Thus, an infeasible solution is repaired
exploring the relationsamong variablesexpressed by the box
constraints.

Then to compute the fitness function value for all the
points in the population, they will be the input of the head
movement generation process (see Fig. 4) and by applying
forward kinematics the resultant (X,Y,Z)calculated head coor-
dinates are computed. With them the fitness function value
for all the points is calculated and the best point, which is
the point with the best fitness function value, is identified.

For the CalcF procedure, the Coulomb’s law of the
electromagnetism theory is used. Thus, the force exerted ona
point via other points is inversely proportional to the square
of the distance between the points and directly proportional
to theproduct of their charges. Then, we computethe charges
of the points according to their fitness function values. The
charge of each point determines the power of attraction or
repulsionfor that point. In thisway thepoints that havebetter
fitnessfunction valuespossesshigher charges. Thetotal force
vector exerted oneach point is then calculated by adding the
individual component forces between any pair of points.

The Move procedure uses the total force vector to move
the point in the direction of the force by a random step
length. The best point is not moved and is carried out
to the subsequent iterations. To maintain feasibilit y, the
force exerted on each point is normalized and scaled by
the allowed range of movement towards the lower or the
upper bound, for each coordinate. To ensure feasibilit y in
this movement algorithm we define the projection of each
coordinate of the point to the feasible region, according to
the range presented in Table I.

After the EM algorithm, each point should be evaluated
in terms of fitness function value, so they should go to the
head movement generation process. Then this algorithm is
repeated.

C. Experimental Results

The optimization system was implemented in Matlab
(Version 6.5) running in an AMD Athlom XP 2400+ 2.00Gz
(512 MB of RAM) PC. The system of equations was
integrated using the Euler methodwith 1ms fixed integration
steps (similarly to the simulated robotic experiments). The
evaluation time for head movement generation is 30s.

In our implementation, the optimizationsystem endswhen
thenumber of iterationsexceeds2000iterations. In this study
the number of points in the population was set to 20. When
stochastic methods are used to solve problems, the impact of
the random number seeds has to be taken into consideration
andeach optimization process should beruna certain number
of times. In this experience we set it to 10.

Table II contains the Best, Mean and standard deviation
(SD) values of the solutions found (in terms of fitness
function and time) over the 10 runs. We can seethat the SD

TABLE II

PERFORMANCE OF EM ALGORITHM IN THE OPTIMIZATION SYSTEM

Best Mean SD Best Mean SD
fitness fitness fitness time time time
(mm) (mm) (mm) (hours) (hours) (hours)
4261 5325.53 870.6349 6.1047 6.5089 0.4120

value, in terms of fitnessfunction, is a large value. It denotes
that fitnessvalues obtained in each run are not similar. It can
be seen by Fig. 5 that shows the evolution of the best (solid
line) and mean (dashed line) fitness function value over the
2000iterations. Thebest point hasafitnessvalueof 4261that
was achieved at iteration 1150. The best run took 6h18min
(CPU time) andeach iteration took in average11.16seconds.

500 1000 1500 2000
0.4261

2

3

4

5

6

7

x 10
4

Iterations

F
it

n
es

s

Fig. 5. Best (solid) and mean (dashed) fitness evolution.

Table III shows the tuned CPG parameters representing
the best point found, over 2000iterations, in the 10 runs.

TABLE III

BEST POINT CPG PARAMETERS

Parameter Value Unit

Atilt 0.0001 (o)

ytilt −6×10−5 (o)

wtilt 6.707 (rads−1)

Apan 7.77 (o)

ypan 0.072 (o)

wpan 2.12 (rads−1)

Anod 0.0001 (o)

ynod −1.18 (o)

wnod 1 (rads−1)

A better understanding of the evolution of the fitness
function can be seen in Fig. 6 where the distance between
observed and calculated values of the head movement at
the beginning and at the end of the optimization system is
displayed. We can observe that this distance, in each sample
time for time ranging between t = 5 and 15s, is smaller at
the end of the process. In average, we can also conclude that
after 2000iterations of the optimization system, a reduction
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5 15
0

113.8

time (s)

m
m

Fig. 6. Distance between observed and calculated values of the head
movement at the beginning (dotted line) and at the end (solid line) of the
optimization system, for time ranging from 5 to 15 seconds.

of 22,17% of the head movement is verified.
Fig. 7 depicts the time courses of the (X,Y,Z) calculated

(solid line) head movement according to the head CPG
control parameters of the best solution found. The observed
(dotted line) head movement is also ill ustrated. Table IV
gives the maximal movement variation in the (X,Y,Z) co-
ordinates for the calculated and observed movements. We
conclude that the generated movements are quite similar in
the X coordinate. The calculated movement is quite different
in theY andZ coordinate. This results from the fact that only
the pan joint controls movement in the X coordinate, while
both the tilt and nodjoints control the Y and Z coordinates.

0 5 10 15 20 25 30

−5

0

5

X
(m

m
)

Y
(m

m
)

Z
(m

m
)

0 5 10 15 20 25 30

226

228

230

0 5 10 15 20 25 30

−155

−150

−145

Fig. 7. (X,Y,Z) calculated (solid line) and observed (dotted line) head
movement, during 30s, according to the head CPG control parameters from
best point on the final of optimization system.

Fig. 8 depicts 3D calculated (solid line) and observed
(dotted line) head movement for the best point.

We have also made another experiment, where we have
changed the size of the population to 50 points, maintaining
the number of 2000 iterations to terminate the process.

TABLE IV

MAX IMAL MOVEMENT VA RIATION IN (X,Y,Z)

Max ∆X Max ∆Y Max ∆Z
(mm) (mm) (mm)

Calculated Movement 11.47 0 0.2
Observed Movement 13.42 5.9 11.3

−156 −154 −152 −150 −148 −146 −144
−6

0

6
225

227

230

X(mm)
Z(mm)

Y(mm)

START FINAL

startfinal

Fig. 8. 3D calculated (solid line) and observed (dotted line) head
movement according to the CPG parameters of the 1150th iteration best
point. START (FINAL) and start (final) indicate where the observed and
calculated movement started (ended), respectively.

Running the optimization system we obtained a best fitness
function value of 3991at iteration 1760.

IV. SIMULATION RESULTS

Our aim was to build a system able to eliminate or reduce
thehead motion of a robot that walks in the environment. For
that, we set a dynamical controller generating trajectories for
the head joints such that the final head movement is opposite
to the one induced by locomotion.

In this section, we describe the experiment done in a
simulated ers-7 AIBO robot using Webots [8]. Webots is a
software for the physic simulation of robots based on ODE,
an open sourcephysics engine for simulating 3D rigid body
dynamics. The model of the AIBO is as close to the real
robot as the simulation enable us to be. Thus, we simulate
the exact number of DOFs, massdistributions and the visual
system.

The ers-7 AIBO dogrobot is a 18 DOFs quadruped robot
made by Sony. The locomotion controller generates the joint
angles of the hip and knee joints in the sagittal plane, that
is 8 DOFs of the robot, 2 DOFs in each leg. Only walk gait
is generated and tested.

The head controller generates the joint angles of the 3
DOFs: tilt , pan and nod. The other DOFs are not used for
the moment, and remain fixed to an appropriately chosen
value during the experiments.

The AIBO has a camera built i nto its head.
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At each sensorial cycle (30ms), sensory information is
acquired. The dynamics of the CPGs are numerically inte-
grated using the Euler methodwith a fixed time step of 1ms
thus specifying servo positions. Parameters were chosen in
order to respect feasibilit y of the experiment and are given
in Table V and VI.

TABLE V

PARAMETER VA LUES FOR GENERATING LOCOMOTION

β ω (rad s−1) µi
1

2β µi
(s)

Front Limbs 0.1 2.044 6.25 0.8
Hind Limbs 0.025 2.044 25 0.8

TABLE VI

PARAMETER VA LUES FOR GENERATING HEAD MOTION

β ω (rad s−1) µi
1

2β µi
(s)

tilt 1.25×109 4.19 2.5×10−9 0.8
pan 0.041 2.09 15.13 0.8
nod 1.25×109 4.19 2.5×10−9 0.8

Because we are working in a simulated environment, we
are able to build a GPS into the AIBO camera, that enable
us to verify how the head effectively moves in an external
coordinate system. Two simulations are performed: the robot
walks during 30s with and without the feedforward solution
and its GPScoordinates are recorded. Results are compared
for these two simulations. Fig. 9 shows the GPScoordinates
for the experimentswith (solid line) and without the feedfor-
ward solution (dotted line). The overall experiment can be
seen in the attached video.
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Fig. 9. (X,Y,Z) coordinates of the GPSpositioned in the AIBO head when
the robot walks during 30s. Solid and dotted lines indicate the experiment
in which the feedforward solution is and is not implemented, respectively.

We expect that the proposed feedforward solution mini-
mizes the variation of the GPScoordinates, meaning that the
head remains near the same position during the experiment.

We observe that the X coordinates of the marker position
oscill ate less. Note that there is some drift in the X coor-
dinates, meaning the robot slightly deviates towards its side
whilewalking. Theobserved peaks in theY coordinatereflect
the final stage of the swing phase and the begin of the stance
phases of the fore legs, corresponding to an accentuated
movement of the robot center of mass. This problem will
be addressed in current work, by improving the locomotion
controller and take into account balance control [3].

V. CONCLUSIONS AND FUTURE WORKS

In this article, we have addressed head stabili zation of a
quadruped robot that walks with a walking gait. A locomo-
tion controller based on dynamical systems, CPGs, generates
quadruped locomotion. The required head motion needed to
eliminate or reducethe head shaking induced by locomotion,
is generated by CPGs built -in in the tilt , pan and nod
joints. These CPG parameters are tuned by an optimization
system. This optimization system combines CPGs and the
EM algorithm. As a result, set of parameters obtained by
the EM allows to reduce the head movement induced by the
locomotion.

Currently, we are using other optimization methods, like
the particle swarm optimization, and testing other fitness
functions. We will extend this optimization work to address
other locomotion related problems, such as: the generation
and switch among different gaits according to the sensorial
information and the control of locomotion direction. We
further plan to extend our current work to online learning
of the head movement similarly to [9].
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