
8th World Congress on Structural and Multidisciplinary Optimization
June 1-5, 2009, Lisbon, Portugal

Self-Adaptive Penalties in the Electromagnetism-like Algorithm for
Constrained Global Optimization Problems

Ana Maria A.C. Rocha1 & Edite M.G.P. Fernandes2

Department of Production and Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal

email: 1arocha@dps.uminho.pt; 2emgpf@dps.uminho.pt

1. Abstract
A well-known approach for solving constrained optimization problems is based on penalty functions. A
penalty technique transforms the constrained problem into an unconstrained problem by penalizing the
objective function when constraints are violated and then minimizing the penalty function using meth-
ods for unconstrained problems. In this paper, we analyze the implementation of a self-adaptive penalty
approach, within the electromagnetism-like population-based algorithm, in which the constraints that
are more difficult to be satisfied will have relatively higher penalty values. The penalties depend upon
the level of constraint violation scaled by the average of the objective function values. Numerical results
obtained with a collection of well-known global optimization problems are presented and a comparison
with other stochastic methods is also reported.
2. Keywords: Global optimization, electromagnetism-like algorithm, penalty technique, adaptive
penalty

3. Introduction
This paper aims to illustrate the behavior of self-adaptive penalty techniques combined with the electroma-
gnetism-like algorithm for solving nonlinear global optimization problems of the form:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . ,m
x ∈ Ω,

(1)

where f : Rn → R, g : Rn → Rp and h : Rn → Rm are nonlinear continuous functions and Ω = {x ∈
Rn : l ≤ x ≤ u}. We do not assume that the objective function f is convex. There may be many local
minima in the feasible region. This class of global optimization problems arises frequently in engineering
applications. Specially for large scale problems of type Eq.(1), derivative-free and stochastic methods are
the most well-known and used methods. The two main categories of methods to handle constraints in
these algorithms are listed below.

1. Methods based on penalty functions. The constraints violation is combined with the objective func-
tion to define a penalty function. This function aims to penalize infeasible solutions by increasing
its fitness value proportionally to their level of constraints violation. The reader is referred to the
papers [1, 2, 4, 10, 11] and the references therein reported.

2. Methods based on biasing feasible over infeasible solutions. They seem to be nowadays interesting
alternatives to penalty methods for handling constraints. In this type of methods, constraints
violation and the objective function are used separately and optimized by some sort of order, being
the constraints violation the most important. This approach is possible in population-based methods
but cannot be used with classical point-to-point search methods. See, for example, [5, 12, 13, 14].

Here, we are interested in the electromagnetism-like (EM) algorithm proposed in [2, 3]. This is a stochastic
population-based algorithm that simulates the electromagnetism theory of physics by considering each
point in the population as an electrical charge. The method uses an attraction-repulsion mechanism to
move a population of points towards optimality. The EM algorithm was specifically designed for solving
optimization problems with bound constraints. In [2], classical penalty and barrier methods are proposed
and tested. We propose the introduction of a self-adaptive penalty technique to handle the equality and
inequality constraints of the problem described in Eq.(1).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55610414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The remainder of this paper is organized as follows. Section 4 briefly introduces the adaptive penalty
framework and Section 5 describes the modifications that are introduced in the EM algorithm to handle
the constraints by a penalty framework. Section 6 contains the results of all the numerical experiments,
including comparisons with other methods, and we conclude the paper with the Section 7.

4. Penalty functions in stochastic algorithms
Most stochastic methods for global optimization are developed primarily for unconstrained or simple
bound constrained problems. Then they are extended to constrained optimization problems using, for
example, a penalty technique. This technique transforms the constrained problem into an unconstrained
problem by penalizing the objective function when constraints are violated. The objective penalty func-
tion, in the unconstrained problem, depends on a positive penalty parameter that must be updated
throughout the iterative process. The parameter updating rule that gives the best performance of a
penalty technique is still nowadays an open issue.
Here, we introduce self-adaptive penalties in the original procedures of the EM algorithm, proposed in [3],
to easily handle equality and inequality constraints. The original EM method was developed for bound
constrained optimization problems. The equality constraints of the problem are converted into inequality
constraints, |hj | ≤ ε, j = 1, . . . ,m for ε > 0. For simplicity, the problem in Eq.(1) is rewritten as

minimize f(x)
subject to c(x) ≤ 0

x ∈ Ω,
(2)

where the vector of the inequality constraints is defined by

c(x) = (g1(x), . . . , gp(x), |h1(x)| − ε, . . . , |hm(x)| − ε) ,

and the level of constraints violation is measured by the vector

vj(x) = max{0, cj(x)}, j = 1, . . . , p + m . (3)

In the sequel, a point x with
∑

j vj(x) = 0 is feasible, whereas if
∑

j vj(x) > 0 then the point is infeasible.
The basic penalty approach defines a fitness for each point x, herein denoted by Φ(x), by adding to the
objective function value a penalty term, P (x), that aims to penalize infeasible solutions. Making use of a
suggestion presented in [9], we adopt a more elaborated definition of fitness that sets an average function
value to infeasible points that have rather small objective function values,

Φ(x) =
{

f(x), if x is feasible
F(x) + P (x), otherwise (4)

where
F(x) =

{
f(x), if f(x) > 〈f(x)〉
〈f(x)〉, otherwise

and

〈f(x)〉 =
∑psize

i=1 f(xi)
psize

is the average of the function values over the population of size psize. Different penalties may emerge
depending on the way penalties vary throughout the minimization process. A brief summary of the most
used penalties follows.

4.1. Static penalties
In static penalties, a typical penalty term P (x) depends on user defined positive parameters and has the
following form

P (x) =
p+m∑
j=1

µj,l(vj(x))2

where µj,l are the penalty parameters and l = 1, . . . , lv, being lv the number of levels of violation defined
by the user. This strategy uses deterministic rules to define different parameter values for each constraint
in order to balance constraints separately. When the parameter values are too large, the method mostly
rejects infeasible solutions. If the penalty parameters are too small, the method might converge to an

2

infeasible solution. The reader is referred to [4] and the references therein reported.

4.2. Dynamic penalties
Penalties that change over time, denoted as dynamic penalties, have been used for some time and are
summarized in [8] as

P (x) = µ(it)
p+m∑
j=1

(vj(x))γ(vj(x))

where µ(it) is a dynamically modified penalty parameter and "it" represents the iteration counter. In-
teresting and quite efficient rules found in the literature are: µ(it) = (c it)α, where c and α are user
defined constants [10], and µ(it) = it

√
it [11]. The penalty parameter does not depend on the number

of constraints although the pressure on infeasible solutions increases as "it" increases. The power of the
constraint violation, γ(.), is a violation dependent constant: γ(z) = 1 if z ≤ 1, and γ(z) = 2, otherwise.
See, for example, in [10, 11].

4.3. Adaptive penalties
In the adaptive penalty methods, the user does not need to specify any parameter values to define the
penalty updating. The penalties are updated for every iteration according to information gathered from
the population, in particular the average of the objective function and the level of constraint violation
during the iterative process. In this paper, the penalty term in this self-adaptive penalty context is
written as below

P (x) =
p+m∑
j=1

µj(vj(x))γ(vj(x)). (5)

The idea of penalizing the most difficult constraints using the γ(.) function in the penalty term, as
described above, is also used. Further, constraints which are more difficult to be satisfied will have a
relatively higher penalty value. Adapting the ideas presented in [9], we propose the following formula for
µj :

µj = K

∑psize

i=1 vj(xi)∑m+p
k=1

∑psize

i=1 vk(xi)
, j = 1, . . . , p + m (6)

where

K =

∣∣∣∣∣
psize∑
i=1

f(xi)

∣∣∣∣∣
is a problem dependent factor based on the function values of the population, and xi represents the
ith point of the population. The numerator in Eq.(6)

∑psize

i=1 vj(xi) measures the violation of the jth
constraint and the penalty for each constraint reflects the fraction of its violation over the total violation
of the current population. The proposal in [9, 1] uses the square of each violation vk in the denominator
of Eq.(6). In both cases, the penalty values for each iteration depend on the level of violation of each
constraint and are scaled by a factor that depends on objective function values.
A different formula to penalize differently constraint violations may be used. Defining a zero penalty
for constraints that are not violated and increasing penalties as violation increases is the property of the
herein proposed formula:

µj = K

exp

(∑psize

i=1 vj(xi)∑m+p
k=1

∑psize

i=1 vk(xi)

)l

− 1

 , j = 1, . . . , p + m (7)

where l ∈ {1, 2}. Figure 1 illustrates the behavior of the penalty values µj obtained by Eq.(6) and Eq.(7)
(l = 1, 2), as a function of the argument "frac" =

∑psize

i=1 vj(xi)/
∑m+p

k=1

∑psize

i=1 vk(xi). We remark that in
the two cases defined in Eq.(7) the penalty increases faster with the argument "frac" than that of case
Eq.(6).

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

frac

µ

Self−adaptive penalties µ with K = 1

µ = K frac

µ = K (exp(frac) − 1)

µ = K (exp(frac)2 − 1)

Figure 1: Behavior of self-adaptive penalties µj .

5. The self-adaptive penalty electromagnetism-like algorithm
In this section, we briefly describe how the self-adaptive penalty approach is incorporated into the main
procedures of the original EM algorithm, so that equality and inequality constraints are easily handled.
In the first step of the EM algorithm [3], a population of psize points is randomly generated in the set
Ω. The best point of the population, xbest, is then identified. We use the following notation: xi denotes
the ith point in the population, xi

k represents the kth coordinate of point xi, where k = 1, . . . , n. In the
second step, the algorithm computes the total force exerted on each point by the other points of the popu-
lation, using the Coulomb’s law. The third step is used to move the points according to the corresponding
total forces. Finally, a local search procedure to accelerate the convergence speed in the final stage of
each iteration is implemented. The main procedures of our self-adaptive penalty electromagnetism-like
algorithm are described below.

5.1. Initialization of the population
The initial population of psize points is randomly generated. Each point xi in the population is compo-
nentwise computed by

xi
k = lk + λ(uk − lk), for k = 1, . . . , n

where λ ∼ U(0, 1). The fitness of each point is evaluated, Φ(xi), i = 1, . . . , psize, using Eq.(4), and the
best point, xbest is identified, where xbest = arg mini Φ(xi).

5.2. Charge and force vector calculation
According to Coulomb’s law, the force exerted on the point xi, by other point xj , is directly proportional
to the product of their charge and is inversely proportional to the square of the distance between the
points.
The charge qi of point xi aims to determine the power of attraction or repulsion for that point. Points
that have better fitness should possess higher charges and attract points with worst fitness values. Here,
each charge relies on a scaled distance of the fitness value at xi to the fitness of the best point in the
population:

qi = exp
(
−n(Φ(xi)− Φ(xbest))
Φ(xworst)− Φ(xbest)

)
(8)

for i = 1, . . . , psize. The distance is scaled by the range of fitness of all points of the population, where
xworst = arg maxi Φ(xi). Since the charges qi and qj are positive, the direction of each individual
component force F i

j is defined using the fitness at xi and xj . Thus, if Φ(xj) < Φ(xi) then the point
xj attracts xi, whereas if Φ(xj) ≥ Φ(xi) then xj repels xi. Finally, the total force vector F i exerted
on each point xi (i = 1, 2, . . . , psize) by the other psize − 1 points is calculated by adding the individual

4

component forces, F i
j , between any pair of points xi and xj :

F i =
psize∑
j 6=i

F i
j ≡


(xj − xi) qiqj

‖xj−xi‖3 if Φ(xj) < Φ(xi) (xj attracts xi)

(xi − xj) qiqj

‖xj−xi‖3 if Φ(xi) ≥ Φ(xj) (xj repels xi)
. (9)

Figure 2 illustrates an example with a population of 3 points. The total force F 1 exerted on x1, by x2

and x3, is given by F 1 = F 1
2 + F 1

3 . Since Φ(x3) is better than Φ(x1), F 1
3 is an attractive force exerted on

x1 by x3. On the other hand, Φ(x2) is worse than Φ(x1), and F 1
2 is a repulsive force exerted on x1 by x2.

F1

F2
1

F3
1

x3

x1x2

Figure 2: The total force F 1 exerted on x1 by x2 and x3.

5.3. Movement along the total force
The total force is used to move the point xi in the direction of the force by a random step length λ. The
best point, xbest, is not moved and is carried out to the subsequent iteration. There are two alternative
and common ways of moving a point along a search direction while satisfying the bound constraints. One
uses the normalized direction and a scaling factor that defines the allowed range movement towards the
bounds of the set Ω. The other takes the step along the direction and projects the new point onto the
feasible set Ω. Both are described below and tested with a benchmark set of constrained problems.

5.3.1. Movement scaled by the allowed range
Here, we describe the equations that are used to move the points according to the normalized total force,
scaling by the allowed range movement towards the lower bounds lk and upper bounds uk:

xi
k =


xi

k + λ
F i

k

‖F i‖ (uk − xi
k) if F i

k > 0

xi
k + λ

F i
k

‖F i‖ (x
i
k − lk) otherwise

(10)

for k = 1, 2, . . . , n, i = 1, 2, . . . , psize and i 6= best, and λ ∼ U(0, 1). At the end of this step, the fitness of
all points in the population are required so that the best point could be identified. We remark that the
above defined movement may not allow xi to reach the bounds.

5.3.2. Movement followed by projection
Another well-known strategy relies on the movement along the total force followed by a projection of the
new point onto the set Ω:

xi = xi + λ F i

xi
k =

 lk if xi
k < lk

uk if xi
k > uk

xi
k otherwise

(11)

for k = 1, 2, . . . , n, i = 1, 2, . . . , psize and i 6= best (λ ∼ U(0, 1)).

5

5.4. Elitist descent search
As a local search, we use an elitist approach by refining a predefined region of xbest, in order to improve
accuracy of the best solution found so far. The search relies on an approximate descent direction for the
fitness function.
First, two exploring points xrand

i , i = 1, 2, in a neighborhood of the best point xbest, of ray εr (positive), are
randomly generated. Based on these 2 points, we use an idea proposed in [7] to generate an approximate
descent direction, d, for Φ, at the best point xbest,

d = − 1∑2
j=1 |∆Φj |

2∑
i=1

∆Φi
xbest − xrand

i

‖xbest − xrand
i ‖

, (12)

where ∆Φj = Φ(xbest) − Φ(xrand
j). A new trial point y ∈ Ω, is computed using the normalized descent

direction with a prescribed step size α ∈ (0, 1]. If Φ(xbest) < Φ(y) then y is discarded, the step size is
halved (i.e., α ← α/2) and a new point is evaluated along that descent direction. This classical back-
tracking strategy is implemented, for at least LsItmax iterations. Otherwise, an approximate descent
direction for f , at y, is computed, the step size, α, is reset to 1 and the process is repeated. We refer to
[12, 13] for details.

6. Numerical results
In this section, we report the numerical results obtained by running a set of 13 benchmark constrained
global problems, described in full detail in the Appendix of [16]. The problems are known as g01, g02, . . .,
g13. We remark that g02, g03, g08 and g12 are maximization problems while the others are minimization
ones. The former were solved as minimization problems. The algorithm is coded in the C programming
language and it contains an interface to connect to AMPL so that the problems coded in AMPL could
be easily solved [6]. The computational tests were performed on a PC with a 3GHz Pentium IV micro-
processor and 1Gb of memory. Details of the selected problems are reported in Table 1, where "Prob"
identifies the problem, "Type of f" lists the characteristic of the objective function, n represents the
number of variables, p and m are the number of inequality and equality constraints respectively, nact is
the number of active constraints at the solution and fglobal is the best solution known in the literature.

Table 1: Details of the selected problems.

Prob Type of f n p m nact fglobal

g01 quadratic 13 9 0 6 -15.000000
g02 nonlinear 20 2 0 1 0.803619
g03 polynomial 10 0 1 1 1.000500
g04 quadratic 5 6 0 2 -30665.539
g05 cubic 4 2 3 3 5126.497
g06 cubic 2 2 0 2 -6961.814
g07 quadratic 10 8 0 6 24.30621
g08 nonlinear 2 2 0 0 0.095825
g09 polynomial 7 4 0 2 680.630
g10 linear 8 6 0 6 7049.248
g11 quadratic 2 0 1 1 0.749900
g12 quadratic 3 1 0 0 1.000000
g13 nonlinear 5 0 3 3 0.053942

6.1. Setting general parameters
When stochastic methods are used to solve problems, the impact of the random number seeds has to be
taken into consideration, and each algorithm should be run on each problem a certain number of times,
herein denoted by nruns. The values stated to the general parameters are as below:

• to convert equality constraints into inequalities, ε = 0.001 is used;

• the used ray of the neighborhood of xbest is εr = 0.001;

6

• the maximum number of iterations in the local search is LsItmax = 10.

During the execution of each run, the best feasible solution is registered f j
best, j = 1, . . . , nruns. The

values reported in the subsequent tables are

best = min
j=1,...,nruns

f j
best, average =

∑nruns

j=1 f j
best

nruns
,

which are the best solution and the average solution obtained after the specified runs, respectively.

6.2. Comparison between different self-adaptive penalties
In order to analyze the practical performance of both alternatives for moving points along the total
force, see Eq.(10) and Eq.(11), in this self-adaptive penalty electromagnetism-like algorithm, we solved
the 13 problems using the 3 versions of adaptive penalties Eq.(6) and Eq.(7) with l = 1, 2. In these
experiments, a population of 50 points is used, each algorithm was executed until it reached 350000
function evaluations, and nruns = 30.
Table 2 reports the best and average results obtained after the 30 runs with the point movement based
on Eq.(10). We mark with bold typeface the best solutions found in each study. Table 3 contains the
obtained results when using the Eq.(11) to move the points. Comparing the results in both tables, we
may conclude that Eq.(10) gives better solutions in 9 problems: g01, g02, g03, g06, g08, g10, g11, g12,
g13. It seems that Eq.(6) is able to provide solutions with higher accuracy, followed by the Eq.(7) with
l = 1.

Table 2: Results for the self-adaptive penalties Eq.(6) and Eq.(7), for l = 1, 2, considering movement
in Eq.(10).

µj in Eq.(6) µj in Eq.(7) for l = 1 µj in Eq.(7) for l = 2
Prob best average best average best average

g01 -14.981720 -13.364670 -14.992800 -12.188632 -14.977760 -12.031448
g02 -0.797711 -0.751747 -0.783135 -0.727828 -0.774127 -0.712425
g03 -0.999807 -0.964702 -0.999794 -0.997730 -0.999212 -0.994997
g04 -30614.3 -30567.4 -30596.9 -30516.7 -30611.4 -30541.6
g05 5127.90 5320.67 5128.22 5287.70 5127.25 5358.54
g06 -6961.71 -6961.14 -6961.64 -6960.71 -6961.60 -6960.51
g07 40.58663 51.73630 33.09758 58.38708 38.124170 54.523665
g08 -0.095825 -0.095821 -0.095825 -0.095816 -0.095825 -0.095812
g09 680.8360 681.2683 680.9865 682.0359 680.8002 681.9273
g10 7081.32 7790.85 7176.04 7822.19 7103.26 7691.32
g11 0.749000 0.749001 0.749000 0.749004 0.749001 0.749004
g12 -0.999925 -0.999524 -0.999916 -0.998960 -0.999913 -0.999020
g13 0.082410 0.885214 0.079990 0.930806 0.0945563 1.168597

6.3. Comparison with other penalty stochastic-based methods
In this final part of the paper, we compare the results obtained with the proposed self-adaptive penalty
electromagnetism-like algorithm with those reported in the paper [1], where an adaptive penalty is im-
plemented in a genetic algorithm context. The authors test their adaptive penalty algorithm with the
problems g01, . . ., g11. The authors propose five variants of the algorithm. The results listed in the
Table 4 are from the original version which is the most similar to the adaptive penalty version herein pro-
posed. The table contains the best and the average solutions found with the following set of parameters:

• the algorithms were allowed to run for 5000 iterations;

• the population has 100 points;

7

• nruns = 25 ;

that are the same as those used in [1]. The first two columns of results correspond to the movement that
uses the normalized force scaled by the allowed range, see Eq.(10). The next two columns correspond to
the well-known move and project onto the bounds strategy, see Eq.(11). Our reported results correspond
to the best solutions found after running the three adaptive formulae for µ (see Eq.(6) and Eq.(7) for
l = 1, 2). It seems that in general the best results are obtained with Eq.(10), contradicting some user’s
suggestions. For problems g04 and g07 the version based on Eq.(11) gives much better solutions, and
for problems g06 and g09 gives slightly better solutions. When comparing our results with Barbosa and
Lemonge’s results ([1]) we note that our self-adaptive penalty algorithm gives better results in problems
g05, g08, g10 and g11, and is competitive in problems g01, g06 and g09.

Table 3: Results for the self-adaptive penalties Eq.(6) and Eq.(7), for l = 1, 2, considering movement
in Eq.(11).

µj in Eq.(6) µj in Eq.(7) for l = 1 µj in Eq.(7) for l = 2
Prob best average best average best average

g01 -11.18420 -8.49607 -11.701710 -8.982671 -12.070230 -8.789214
g02 -0.380851 -0.309595 -0.360710 -0.298674 -0.387869 -0.300699
g03 -0.999571 -0.994274 -0.999526 -0.959930 -0.999155 -0.975950
g04 -30665.39 -30655.23 -30665.25 -30656.93 -30665.14 -30657.80
g05 5128.90 5341.72 5126.54 5284.06 5126.50 5222.61
g06 -6961.557 -6960.709 -6961.633 -6960.378 -6961.627 -6960.799
g07 26.986460 30.529847 25.957410 30.486127 27.679550 30.556134
g08 -0.095823 -0.095795 -0.095825 -0.093585 -0.095824 -0.091350
g09 680.6794 681.8607 680.7594 681.5287 680.7005 681.6833
g10 8287.77 10096.51 7572.76 9769.70 7753.54 9981.89
g11 0.749000 0.749004 0.749000 0.749007 0.749001 0.749005
g12 -0.997125 -0.989470 -0.998174 -0.990618 -0.997586 -0.989686
g13 0.099175 0.914603 0.090531 1.630516 0.155731 1.509456

To further examine the performance of the proposed self-adaptive penalty EM algorithm, we compare
the results of 5 problems reported in [2], where classical penalty and barrier methods are incorporated
into the EM algorithm. For a fair comparison we use the therein reported conditions:

• TP1 – psize = 30; maximum number of iterations= 75, and fglobal = −30665.539

• TP2 – psize = 40; maximum number of iterations= 100, and fglobal = −310

• TP3 – psize = 20; maximum number of iterations= 50, and fglobal = −5.508013

• TP4 – psize = 30; maximum number of iterations= 50, and fglobal = −83.254

• TP5 – psize = 20; maximum number of iterations= 75, and fglobal = −5.7398.

The results are reported in Table 5, where we use "TP#" to identify the problem, in the first column. In
the next four columns we list our best results, and register the formulae used to get them. In the table,
nfeavg corresponds to the average number of function evaluations computed over the nruns = 10 runs.
The last four columns of the table include the results reported in [2], where "P" means penalty method
and "B" stands for barrier method.

8

Table 4: Best and average results from our study and [1].

our study with Eq.(10) our study with Eq.(11) in [1]
Prob best average best average best average

g01 -14.996420 -14.459611 -12.120460 -8.995533 -14.999980 -14.952633
g02 -0.788632 -0.751887 -0.403694 -0.315550 -0.8015556 -0.772480
g03 -0.999471 -0.998131 -0.998764 -0.978430 -1.000490 -1.000404
g04 -30631.430 -30556.277 -30665.480 -30661.708 -30665.523 -30665.095
g05 5126.508 5290.027 5126.654 5289.862 5127.3606 5321.5714
g06 -6961.563 -6960.594 -6961.726 -6960.783 -6961.796 -6742.343
g07 38.813650 62.912459 26.944410 30.732890 24.416253 26.457358
g08 -0.095825 -0.095819 -0.095824 -0.095805 -0.095825 -0.087690
g09 680.8378 681.9545 680.8213 681.4629 680.6334 680.7851
g10 7068.0150 7857.3535 7971.2070 10254.4451 7205.1436 8392.4000
g11 0.749000 0.749002 0.749000 0.749003 0.752354 0.855617

Table 5: Best and average results from our study and [2].

our study in [2]
Prob best average nfeavg best average nfeavg

TP1 -30389.66 -30350.36 3095 Eq.(7)+Eq.(10) -30563.29 -30374.47 2534 "P"
-30596.78 -30447.68 2264 "B"

TP2 -293.1590 -280.9349 5128 Eq.(7)+Eq.(10) -297.7095 -293.9035 4311 "P"
-307.2018 -297.8254 3969 "B"

TP3 -5.498888 -5.498888 1571 Eq.(6)+Eq.(10) -5.5036 -5.4256 886 "P"
-5.4756 -5.4245 885 "B"

TP4 -82.8625 -82.8652 2067 Eq.(7)+Eq.(10) -83.0960 -82.5450 1597 "P"
-83.1574 -81.9877 1347 "B"

TP5 -5.682180 -5.665284 2332 Eq.(7)+Eq.(10) -5.6450 -5.4857 1092 "P"
-5.6346 -5.0523 1251 "B"

7. Conclusions and future work

This paper presents a new EM type algorithm for solving constrained global optimization problems.
The equality and inequality constraints are easily handled by a self-adaptive penalty technique aiming at
penalizing constraints that are more difficult to be satisfied. The penalty parameters do not depend on
user supplied values, are computed from information gathered from the population and depend on the
level of violation of each constraint and on a factor that relies on objective function values.
Computational tests carried out with a set of well-known global optimization problems show that the
proposed self-adaptive penalty electromagnetism-like algorithm is able to effectively solve constrained
problems till optimality. A comparison with a similar adaptive penalty framework is also included. The
preliminary results reported in the paper seem to show that this approach is competitive with other
algorithms, although some modifications are required to improve accuracy.

8. References

[1] H.J.C. Barbosa and A.C.C. Lemonge, An adaptive penalty method for genetic algorithms in con-
strained optimization problems, Frontiers in Evolutionary Robotics, H. Iba (ed.) 34 pp. 2008
(ISBN: 978-3-902613-19-6).

9

[2] S.I. Birbil, Stochastic Global Optimization Techniques, PhD thesis, (2002) North Carolina State Uni-
versity.

[3] S.I. Birbil and S.-C. Fang, An electromagnetism-like mechanism for global optimization, Journal of
Global Optimization, 25, 263–282, 2003.

[4] C.A. Coello Coello, Use of a self-adaptive penalty approach for engineering optimization problems,
Computers in Industry, 41(2), 113–127, 2000.

[5] K. Deb, An efficient constraint handling method for genetic algorithms, Computer Methods in Applied
Mechanics and Engineering, 186, 311–338, 2000.

[6] R. Fourer, D.M. Gay, and B.W. Kernighan, A modeling language for mathematical programming,
Management Science, 36(5), 519–554, 1990.

[7] A.-R. Hedar and M. Fukushima, Derivative-free filter simulated annealing method for constrained
continuous global optimization, Journal of Global Optimization, 35, 521–549 (2006).

[8] J. Joines and C. Houck, On the use of non-stationary penalty functions to solve nonlinear constrained
optimization problems with GAs, Proceedings of the first IEEE Conference on Evolutionary Com-
putation D. Fogel (ed.), IEEE Press, 579–584, 1994.

[9] A.C.C. Lemonge and H.J.C. Barbosa, An adaptive penalty scheme for genetic algorithms in structural
optimization, Internacional Journal for Numerical Methods in Engineering, 59(5), 703–736, 2004.

[10] J.-L. Liu and J.-H. Lin, Evolutionary computation of unconstrained and constrained problems using
a novel momentum-type particle swarm optimization, Engineering Optimization, 39(3), 287– 305,
2007.

[11] Y.G. Petalas, K.E. Parsopoulos and M.N. Vrahatis, Memetic particle swarm optimization, Annals
of Operations Research, 156, 99–127, 2007.

[12] A.M.A.C. Rocha and E.M.G.P. Fernandes, Feasibility and dominance rules in the electromagnetism-
like algorithm for constrained global optimization problems, Lecture Notes in Computer Science,
Computational Science and Its Applications (O. Gervasi et al. (eds.)), 5073, 768–783, 2008.

[13] A.M.A.C. Rocha and E.M.G.P. Fernandes, Implementation of the electromagnetism-like algorithm
with a constraint-handling technique for engineering optimization problems, 2008 Eighth Interna-
tional Conference on Hybrid Intelligent Systems, ISBN: 978-0-7695-3326-1, IEEE Computer Society,
690-695, 2008.

[14] T.P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE
Transactions on Evolutionary Computation, 4(3), 284–294, 2000.

[15] Y. Shi and R.C. Eberhart, Empirical study of particle swarm optimization, Proceedings of the 1999
Congress on Evolutionary Computation, 1945–1950, 1999.

[16] A.E.M. Zavala, A.H. Aguirre, and E.R.V. Diharce, Constrained optimization via particle evolution-
ary swarm optimization algorithm (PESO). GECCO’05, 209–216, 2005.

10

