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Abstract – A series of heterocyclic azo dyes was synthesized by diazotation of several

substituted anilines and coupling with 5-N,N-dialkylamino-2,2´-bithiophenes to give 4-

phenylazo-5-N,N-dialkylamino-2,2´-bithiophenes 4-7. This reaction contrasts with the

behavior of 5-alkoxy-2,2´-bithiophenes towards aryldiazonium salts which gave 5-

phenylazo-5-alkoxy-2,2´-bithiophenes. The thermal stability of the derivatives was

evaluated using thermogravimetric analysis. The solvatochromic behaviour of the novel

bithiophene azo dyes was investigated in several solvents of different polarity. The

experimental results indicate that, the heterocyclic azo dyes 4-7 could be used as

thermally stable solvatochromic probes.

Keywords: Bithiophenes, 5-N,N-Dialkylamino-2,2´-bithiophene couplers, Heterocyclic

azo dyes, Solvatochromic probes, Thermal stability.

1. Introduction

N,N-Dialkylamino-2,2´-bithiophenes are among the most interesting building blocks for

the synthesis of more complex heterocyclic conjugated systems with several interesting

optical applications [1-2]. When these bithiophene derivatives are substituted with

strong acceptor groups at 5´-position, they exhibit enhanced nonlinear optical (NLO)

properties which significantly exceed those of the corresponding dialkylaniline

derivatives. Moreover, 5-N,N-dialkylamino-2,2´-bithiophenes substituted with acceptor
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groups at the 5´- position are excellent indicators of the solvent polarity due to their

positive solvatochromism [1c-d, g, i, 2]. This type of compounds can therefore find

applications in electro-optical devices [3] and sensors.

Arylazo heterocycles are a versatile class of colored organic compounds that have

recently attracted, the interest of many research groups due to their diverse applications

not only as classical synthetic dyes and pigments but also as solvatochromic probes and

thermally stable organic second-order nonlinear optical (NLO) chromophores [4].  Other

recent applications, include memory and recording devices, molecular switches,

thermochromic, photovoltaic and fluorescent devices, supramolecular systems,

holographic data storage materials, acid–base and metal sensors and active ligands in

Pd-catalyzed cross-coupling reactions [4b, 5].

We have recently reported the synthesis and the characterization of donor-acceptor

substituted heterocyclic azo dyes containing either thienylpyrrole [6] or 5-alkoxy-2,2´-

bithiophene moieties [7]. These new π -conjugated systems exhibit interesting

electrochemical properties, high thermal stability, excellent solvatochromic behavior

and NLO activity, and good photochromic properties [6-7].

These previous studies motivated us to explore the potential of conjugated 5-N,N-

dialkylamino-2,2´-bithiophenes as π-conjugated heterocyclic bridges functionalized

with phenylazo groups. This paper reports the synthesis, solvatochromic properties and

the thermal stability of 4-arylazo-2,2´-bithiophenes 4-7 which have meta CO2H or para

CO2Me, CN and NO2 groups as electron-withdrawing groups substituted on the

phenylazo moiety and the conjugated 5-N,N-dialkylamino-2,2´-bithiophenes, as strong

!-electron donor moieties.

To the best of our knowledge, no similar dyes containing 5-N,N-dialkylamino-2,2´-

bithiophene conjugated bridges linked to arylazo moieties, have been reported in the

literature.

2. Results and discussion

2.1. Synthesis
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In the last three decades, N,N-disubstituted amino-thiophenes received a lot of interest.

As heterocyclic analogues of the well-known N,N-dialkylanilines they could be used as

important precursors for the synthesis of organic dyes. Thus, N,N-disubstituted 2-

aminothiophenes and N,N-disubstituted 5-amino-2,2´-bithiophenes could be

successfully transformed, especially if they are unsubstituted at their 5 position (2-

aminothiophenes) for example into azo dyes [8], or into other derivatives which

involved the functionalization of the unsubstituted 5´-position (N,N-disubstituted 5-

amino-2,2´-bithiophenes), through electrophilic aromatic substitutions or other methods

of synthesis [1b-f,i].

Recently we have developed an efficient method for the synthesis of 5-N,N-

dialkylamino-2,2´-bithiophenes [1a]. These compounds have proved to be versatile

substrates in formylation, dicyanovinylation and tricyanovinylation reactions [1b] and

also in Stille cross-coupling reactions [1c-d] allowing the preparation of several new

donor-acceptor substituted oligothiophenes. Therefore, it was decided to use 5-N,N-

dialkylamino-2,2´-bithiophenes 2 as coupling components which will react with

diazonium salts functionalized with acceptor groups in order to obtain new bithiophene

azo dyes.

2.1.1. Synthesis of 5-N,N-dialkylamino-2,2´-bithiophenes 2a-d

The 5-N,N-dialkylamino-2,2´-bithiophenes 2 a -d  were synthesized through a

combination of the Friedel-Crafts and the Lawesson reaction [1a,9] from the N,N-

dialkylamino-4-(2´-thienyl)-4-oxobutanamides 1a-d (Scheme 1). Amides 1a-b, 1d and

bithiophene derivatives  2a-b and 2d have been reported by us recently [1a]. In order to

compare the effect of the electronic nature of the 5-N,N-dialkylamino groups on the

optical properties of phenylazo-bithiophenes 4-7, 5-pyrrolidino-2,2´-bithiophene 2c was

also synthesized from the new pyrrolidino-4-(2´-thienyl)-4-oxobutanamide 1c using the

same synthetic methodology [1a]. Direct amidation of 4-oxo-(2´-thienyl)butanoic acid

[1a,9-10] with pyrrolidine was carried out through a DCC-BtOH mediated reaction.

Amide 1c was obtained as a colourless solid in good yield (80%). Treatment of amide

1c with an equimolar amount of Lawesson´s reagent (LR) in toluene gave bithiophene

2c in 47% yield. The synthesis of 5-pyrrolidino-2,2´-bithiophene 2c has been reported
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earlier by Effenberger et al [2b]  through two different methods of synthesis. Pd-

catalyzed coupling reaction via an organotin intermediate gave a mixture of two

compounds in 43% yield. These two compounds were obtained in a ratio 2c: phenyl-5-

pyrrolidinothiophene = 70:30 (determined by HPLC and 1H NMR). Neither by

chromatography nor by recrystallization could compound 2c  and phenyl-5-

pyrrolidinothiophene be separated. Therefore, an alternative route for the synthesis of 2c

was performed by the same investigators through the lithiation of 2,2´-bithiophene

followed by reaction with sulfur giving 5-mercapto-2,2´-bithiophene in 40% yield,

subsequent reaction with pyrrolidine allowed the preparation of 2c in 25-37% yield. In

comparison to Effenberger´s methods the 5-pyrrolidino-2,2´-bithiophene 2c was

obtained by us, through the combination of the Friedel-Crafts and Lawesson reactions,

in higher yield from low cost commercially available reagents and  using simple work-

up procedures allowing the good yielding preparation and easy of isolation of this

derivative.

2.1.2. Synthesis of 5-N,N-dialkylamino-2,2´-bithiophene azo dyes 4-7

In our recent work, 5-alkoxy- and 5-N,N-dialkylamino-2,2´-bithiophenes were

demonstrated to be highly reactive towards electrophilic reagents. Moreover, the

position of substitution on the bithiophene moiety, depends on the size of the

electrophile. For example, with tetracyanoethylene (TCNE) 5-alkoxy-2,2´-bithiophenes

and 5-N,N-dialkylamino-2,2´-bithiophenes yield deeply coloured 5´-tricyanovinyl-2,2´-

bithiophenes [1b].

More recently the synthesis and characterization of 5´-phenylazo-5-alkoxy-2,2´-

bithiophenes using as coupling components 5-alkoxy-2,2´-bithiophenes and

aryldiazonium salts was described [7]. On the other hand the azo coupling reaction of 5-

N,N-dialkylamino-2,2´-bithiophenes 2 with aryldiazonium salts 3 , using the same

experimental conditions reported for the synthesis of 5´-phenylazo-5-alkoxy-2,2´-

bithiophenes, gave selectively, 4-phenylazo-5-N,N-dialkylamino-2,2´-bithiophenes 4-7

in fair to good yields (10-62 %), (Scheme 2, Table 1).

<Scheme 2>
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<Table 1>

N,N-Disubstituted 2-aminothiophenes as heterocyclic analogues of the N,N-

dialkylanilines exhibit a similar reactivity towards electrophilic reagents. Thus, with

aryldiazonium salts they are transformed as long as their 5-position is unsubstituted,

into N,N-disubstituted 2-amino-5-arylazothiophenes [11]. Otherwise, e.g. if N,N-

disubstituted 2-aminothiophenes are substituted by a phenyl group in 5-position, they

yield, N,N-disubstituted 2-amino-3-arylazothiophenes [12].

The reactivity of 5-N,N-dialkylamino-2,2´-bithiophenes contrasts to the behavior of 5-

alkoxy-2,2´-bithiophenes towards aryldiazonium salts [7]. The results showed that, in

the case of the coupling reaction of the 5-N,N-dialkylamino-2,2´-bithiophenes 2 with

aryldiazonium salts 3 , the reaction occurs in the most activated 4-position.

Monosubstitution at 5´ position and/or dissubstitution on both 4- and the 5´- positions is

never observed. Despite the steric hindrance, the 4 position is still favored for the

electrophilic reaction, compared to the 5´-position.

In order to interpret these results we must consider several factors:

i) an increase of the electron density at the 4-position of the bithiophene moiety due to

the 5-N,N-dialkylamino- substituents;

ii) the diazonium salts are not sterically bulky species;

iii) the steric hindrance of an ortho-dialkylamino substituent to the attack of an

electrophilic aryldiazonium salt is significantly lower for the five-membered thiophene

ring than for the six-membered benzene ring.

Therefore, our reactivity studies on 5-alkoxy- and 5-N,N-dialkylamino-2,2´-

bithiophenes 2  with electrophiles showed that the position for the electrophilic

substitution depends not only on the size of the electrophile but also on the electronic

nature of the group substituted on 5-position of the bithiophene moiety (alkoxy or

dialkylamino) [1b,7].

The structures of bithiophene azo dyes 4-7 were unambiguously confirmed by their

analytical and spectral data. For example, in the 1H NMR spectrum of 5-N,N-
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dialkylamino-4’’-cyanophenylazo-2,2´-bithiophene derivatives 4c-7c, in acetone-d6, one

signal at about 7.52-7.59 ppm was detected as a singlet indicating the presence of only

one proton in a trisubstituted thiophene ring. This signal was attributed to the 3-H

proton. For the same bithiophene azo dyes, 4c-7c, three signals at about 7.09-7.13 ppm

(multiplet), 7.22-7.24 ppm (double doublet) and 7.45-7.48 ppm (double doublet) were

detected. These signals were attributed respectively, to the 4’, 3’ and 5’-H protons in the

second thiophene ring.

2.2. UV-visible study of 5´-N,N-dialkylamino-2,2´bithiophene azo dyes 4-7

The electronic absorption spectra of all the push-pull compounds 4-7 show an intense

lowest energy charge-transfer absorption band in the UV-visible region. The position of

this band is strongly influenced by the structure of the compounds, for example by the

type of substitution pattern in the donor and the acceptor moieties. Dramatic differences

in energy occur upon arylazo substitution of bithiophenes 2. For example, bithiophene

2d (λmax = 353.0 nm) has bathochromic shift of 232.5 nm upon arylazo substitution

(bithiophene azo dye 7e, λmax = 585.5 nm) (Table 1, entries 9 and 13 respectively). The

impact of the electronic nature of the N,N-dialkylamino substituent at the 5-position on

the bithiophene moiety can be seen by comparing the absorption maxima of compounds

4a and 7a as the longest wavelength transition is shifted from 473.0 nm in azo dye 4a to

483.0 nm for azo dye 7a (Table 1, entries 1 and 9 and respectively). The influence of

the strength of the acceptor group substituted on the arylazo moiety is demonstrated by

comparison of the absorption maxima of compounds 4b, 4c and 4d in DMSO (Figure 1)

as the longest wavelength transition is shifted from 510.0 nm in 4-

carboxymethylphenylazo-bithiophene 4b  to 558.0 nm for 4-cyanophenylazo-

bithiophene 4d.

In general, the stronger the donor and/or acceptor group, the smaller the energy

difference between ground and excited states, and the longer the wavelength of

absorption [1g]. We suspect that this effect can be attributed to a stabilization of LUMO

by the electron-withdrawing groups, but it would be interesting to confirm through a

quantum computation, e.g. the semi-empirical Pariser–Parr–Pople method.
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<Figure 1>

2.3. Solvatochromic study of 5´-N,N-dialkylamino-2,2´bithiophene azo dyes 4-7

In agreement with other solvatochromic studies for heteroaryl-azo dyes, the increase of

the electron-withdrawing strength of the substituent of the diazo component and/or the

increase of the electron-donating strength of the coupling moiety was found to cause

pronounced bathochromism [6a-b,7,13]. These red shifts in absorption were always

accompanied by positive solvatochromic shifts. Especially noteworthy is the extremely

large positive solvatochromism exhibited by acceptor-substituted 2-N,N-dialkylamino-

(oligo)thiophenes making these compounds good indicators for measuring the polarity

of solvent [1c-d,e,i,2].

In view of these facts and having in mind our recent results, we decide to study the

solvatochromic properties of azo dyes 4-7. Initially a preliminary study of the

absorption spectra of bithiophene azo dyes compounds 4-7 was performed in 4 selected

solvents of different solvation character (diethyl ether, ethanol, chloroform and DMSO).

For all azo dyes the highest energy transitions were found with less polar solvents such

as diethyl ether. More polar solvents such as DMSO resulted in lower energy

transitions. This behavior has been defined as a positive solvatochromic response that is

related to a greater stabilization of the excited state relative to the ground state with

increasing polarity of the solvent. Moreover, compounds 4c (Δνmax = 1020 cm-1), 4d

(Δνmax = 1310 cm-1) and 7c  (Δ νmax = 981 cm-1) showed the longest shifts in

wavenumber maxima. Therefore, compounds 4c and 4d  were submitted to a full

solvatochromic study involving 12 solvents (Table 2). Due to their pronounced

solvatochromism, (4c, Δνmax = +1271 cm-1; 4d Δνmax = + 1115 cm-1), good correlation

with π* values by Kamlet et al [14] for the solvents investigated and the long

wavelength absorption in the visible range, 4c and 4d seemed to be very appropriate

solvent polarity indicating dyes.

<Table 2>
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The thermal properties of the chromophores 4-7 were investigated by

thermogravimetric analysis under a nitrogen atmosphere, measured at a heating rate of

20 º C min –1 (Table 1). All the dyes are thermally stable with decomposition

temperatures varying from 201 to 262 ºC. For the piperidino and the N,N-

dimethylamino-bithiophene azo dyes 4 and 7, the acceptor groups substituted on the

phenylazo moiety do seem to have some impact on the thermal stability of the

compounds (e.g. 4a, R2=CO2H, Td = 209 ºC;  4b, R2=CO2Me, Td = 248 ºC) showing that,

the carboxymethyl azo dyes are the most stable.

3. Conclusions

In summary, we have achieved the first synthesis of a series of 5-N,N-dialkylamino-

2,2´-bithiophene azo dyes 4 -7 from easily available 5-N,N-dialkylamino-2,2´-

bithiophenes 2 and inexpensive commercially available anilines. Simple work-up

procedures produce fair to good yields of these derivatives.

Compounds 4-7 exhibit dramatic changes in their optical properties in comparison to 5-

N,N-dialkylamino-2,2´-bithiophenes 2. By comparing the synthesized derivatives, it can

be shown that the linear optical properties of these compounds is significantly

influenced by the withdrawing group on the phenylazo moiety as well as the type of

substituent on the 5´-position of the bithienyl π-conjugated bridge.

The solvatochromic behavior of compounds 4-7 was determined by regression analyses

of absorption maxima in several solvents of different polarity. Due to their pronounced

solvatochromic properties azo dyes 4-7 could be used as solvatochomic probes.

4. Experimental

4.1. General

Reaction progress was monitored by thin layer chromatography (0.25 mm thick

precoated silica plates: Merck Fertigplatten Kieselgel 60 F254), while purification was

effected by silica gel column chromatography (Merck Kieselgel 60; 230-400 mesh).

NMR spectra were obtained on a Varian Unity Plus Spectrometer at an operating

frequency of 300 MHz for 1H NMR and 75.4 MHz for 13C NMR using the solvent peak
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as internal reference. The solvents are indicated in parenthesis before the chemical shift

values (δ relative to TMS and given in ppm). Mps were determined on a Gallenkamp

apparatus and are uncorrected. Infrared spectra were recorded on a BOMEM MB 104

spectrophotometer. UV-vis absorption spectra (200-800 nm) were obtained using a

Shimadzu UV/2501PC spectrophotometer. Elemental analyses were carried out on a

Leco CHNS 932 instrument. Mass spectrometry analyses were performed at the

“C.A.C.T.I. -Unidad de Espectrometria de Masas” at the University of Vigo, Spain.

Light petroleum refers to solvent boiling in the range 40-60 ºC.

3-Carboxyaniline, 4-carboxymethylaniline, 4-cyanoaniline, 4-nitroaniline and 2-cyano-

4-nitroaniline used as precursors for the synthesis of aryldiazonium salts 3a-d  were

purchased from Aldrich and Fluka and used as received.

4.2. Synthesis of 5-N,N-dialkylamino-2,2´-bithiophenes 2

The synthesis of N,N-dialkylamino-4-(2´-thienyl)-4-oxobutanamides 1a-b and 1d and 5-

N,N-dialkylamino-2,2´-bithiophenes 2a-b, d has been described elsewhere [1a].

4.2.1. Synthesis of pyrrolidino-4-(2´-thienyl)-4-oxobutanamide (1c)

Amide 1c was obtained using the experimental method described in refs. [1a] and [9],

by reacting 4-oxo-(2-thienyl)butanoic acid (5.4 mmol) in CH2Cl2 with 1,3-

dicyclohexylcarbodiimide (DCC) (7.1 mmol) and 1-hydroxybenzotriazole (BtOH) (7.1

mmol) and adding pyrrolidine (5.4 mmol) at rt during 24 h.

Pyrrolidino-4-(2´-thienyl)-4-oxobutanamide Beige solid (80%). Mp 95.6-97.0 oC (ethyl

ether). IR (KBr) ν 1660 (C=O), 1629 (C=O), 1461, 1414, 768 cm-1. 1H NMR (Acetone-

d6) 1.90 (t, 2H, J=6.3 Hz CH2) 2.00 (t, 2H, J=6.3 Hz CH2), 2.69 (t, 2H, J=6.3 Hz CH2),

3.28 (t, 2H, J = 6.3 Hz, CH2), 3.36 (t, 2H, J = 6.3 Hz, NCH2), 3.56 (t, 2H, J = 6.3 Hz,

NCH2), 7.24-7.27 (m, 1H, 4´-H), 7.89 (dd, 1H, J = 5.1 and 1.2 Hz, 5´-H), 7.96 (dd, 1H,

J = 3.9, 1.2 Hz, 3´-H). 13C NMR (Acetone-d6) δ 24,11, 25.75, 28.24, 33.83, 45.49,

46.26, 127.84, 131.81, 133.17, 143.67, 169.72, 191.90. Anal. Calcd for C12H15NO2S: C,

60.70; H, 6.33; N, 5.90; S, 13.50. Found: C, 60.45; H, 6.32; N, 5.85; S, 13.50.

4.2.2. Synthesis of 5-pyrrolidino-2,2´-bithiophene (2c)
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Bithiophene 2c was obtained using the experimental method described in refs. [1a] and

[9], by heating the amide 1c (2.3 mmol) in toluene (12 ml) with the Lawesson reagent

(2.3 mmol) at reflux during 150 min.

5-Pyrrolidino-2,2´-bithiophene (2c). Yellow solid (47%). Mp 88.0-88.5 oC (lit. [2b]

88.0 oC, n-hexane) UV (acetone): λmax nm (ε/M-1 cm-1) 364.5 (46,122). IR (liquid film)

ν 3102, 2964, 2932, 2874, 1508, 1470, 1430, 1383, 1345, 1299, 1234, 1201, 1108,

1070, 941, 896, 844, 783, 711, 613 cm-1. 1H NMR (CDCl3) δ 1.90-2.00 (m, 4H,

2xCH2), 3.15-3.25 (m, 4H, 2xNCH2), 5.67 (d, 1H, J=4.2 Hz, 4-H), 6.90-6.98 (3H, m, 3-

4´- and 3´-H), 7.24 (1H, dd, J = 4.5 and 1.5 Hz, 5´-H).

4.3. General procedure for azo coupling of bithiophenes 2 with 3-carboxy-, 4-

carboxymethyl-, 4-cyano-, 4-nitro-, and 2-cyano-4-nitro- substituted aryldiazonium

salts (3a-e)

4.3.1. Diazotisation of 3-carboxy-, 4-carboxymethyl-, 4-cyano-, 4-nitro- and 2-cyano-4-

nitroaniline.

Primary amine (4.0 mmol) was pasted with NaNO2 (4.0 mmol) and water (10 ml) to a

smooth slurry and it was added to a well-stirred mixture of HCl (d = 1.18; 3 ml) and ice

(3 g) at 0 - 5 ºC. The reaction mixture was stirred for 30min.

4.3.2. Coupling reaction with 5´-N,N-diakylamino-2,2´-bithiophenes (2)

The diazonium salt solution previously prepared (4.0 mmol) was added drop wise to the

solution of bithiophenes 2 (4.0 mmol) in acetonitrile (50 ml) and some drops of acetic

acid. The combined solution was maintained at 0 ºC for 1 h while stirred and afterwards

was left over night at room temperature. After this time the resulting mixture was

diluted with petrol ether (20 ml) and water (40 ml) and the formed product was isolated

by filtration. The crude 5-N,N-dialquilamino-4-phenylazo-bithiophenes 4-7  were

purified by column chromatography on silica with dichoromethane as eluent.

4.3.2.1. 5-N,N-Dimethylamino-4-(3´´-carboxyphenylazo)-2,2´-bithiophene (4a)
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Pink reddish solid (27%). Mp > 211 oC (with decomposition). UV (acetone): λmax nm

(ε/M-1 cm-1) 473.0 (19,496). IR (KBr) ν 542, 600, 615, 634, 662, 682, 701, 736, 758,

811, 834, 882, 910, 923, 997, 1014, 1062, 1147, 1165, 1200, 1241, 1267, 1282, 1305,

1355, 1384, 1407, 1420, 1446, 1477, 1542, 1567, 1604, 1622, 1689 (C=O), 2386-3429

(OH) cm-1. 1H NMR (DMSO-d6) δ 3.47 (s, 6H, 2xCH3), 7.07-7.10 (m, 1H, 4’-H), 7.23

(d, 1H, J=3.6, 1.2 Hz, 3’-H), 7.46 (s, 1H, 3-H), 7.48 (dd, 1H, J=5.1, 1.2 Hz, 5’-H), 7.57

(t, 1H, J=7.8 Hz, 5’’-H), 7.81-7.86 (m, 2H, 4’’ and 6’’-H), 8.14 (m, 1H, 2’’-H). 13C

NMR (DMSO-d6) δ 45.2, 112.7, 120.2, 122.1, 123.3, 124.9, 125.0, 128.2, 128.4, 129.5,

132.1, 135.8, 136.5, 153.5, 160.0, 167.3. MS (EI) m/z (%): 357 (M+, 53), 221 (100), 193

(18), 149 (16), 129 (8), 78 (41), 63 (41). HRMS: m/z (EI) for C17H15N3O2S2; calcd

357.0606; found: 357.0616. Anal. Calcd for C17H15N3O2S2: C, 57.12; H, 4.23; N, 11.76.

Found: C, 57.35; H, 4.12; N, 11.93.

4.3.2.2 . 5-N,N-Dimethylamino-4-(4”-carboxymethylphenylazo)-2,2’-bithiophene (4b)

Red solid  (58%). Mp 171.5-172.4 oC. UV (acetone): λmax nm (ε/M-1 cm-1) 498.0

(27,200), 343.0 sh (15,320). IR (Nujol) ν  510, 525, 566, 645, 697, 722, 773, 826, 842,

857, 896, 920, 965, 1017, 1096, 1108, 1141, 1202, 1272, 1310, 1341, 1548, 1598, 1709

(C=O), 2672, 2728 cm-1. 1H NMR (CDCl3) δ 3.52 (s, 6H, 2xNCH3), 3.93 (s, 3H,

OCH3), 7.00 (m, 1H, 4’-H), 7.08 (dd, 1H, J=3.6, 1.2 Hz, 3’-H), 7.20 (dd, 1H, J=5.1, 1.2

Hz, 5’-H), 7.57 (s, 1H, 3-H), 7.69 (d, 2H, J= 8.4 Hz, 2”-H and 6”-H), 8.10 (d, 2H, J=

8.7 Hz, 3”-H and 5”-H). MS (EI) m/z (%): 371 (M+, 44), 222 (14), 221 (100), 209 (9),

164 (6), 132 (6), 127 (7), 69 (8). HRMS: m/z (EI); for C18H17N3O2S2; calcd: 371.0762;

found: 371.0762. Anal. Calcd for C18H17N3O2S2: C, 58.20; H, 4.61; N, 11.31; S, 17.26.

Found: C, 58.41; H, 4.31; N, 11501; S, 17.49.

4.3.2.3. 5-N,N-Dimethylamino-4-(4”-cyanophenylazo)-2,2’-bithiophene (4c)

Dark red solid with metallic luster (49%). Mp > 167 oC (with decomposition). UV

(acetone): λmax nm (ε/M-1 cm-1) 502.0 (16,162). IR (KBr) ν  687, 831, 1100, 1144, 1313,

1419, 1545, 1595, 2214 (CN), 2922 cm-1. 1H NMR (acetone-d6) δ 3.61 (s, 6H, 2xCH3),

7.10-7.13 (m, 1H, 4’-H), 7.24 (dd, 1H, J=3.5, 1.2 Hz, 3’-H), 7.46 (dd, 1H, J=5.1, 1.2

Hz, 5’-H), 7.59 (s, 1H, 3-H), 7.78-7.86 (m, 4H, 4xAr-H). 13C NMR (acetone-d6) δ 45.9,

110.3, 113.6, 119.7, 122.7, 124.2, 125.5, 126.5, 128.9, 133.9, 137.7, 138.2, 157.3,

162.6. MS (EI) m/z (%): 338 (M+, 57), 310 (3), 208 (12), 221 (100), 193 (12), 180 (7),
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127 (13), 102 (10). HRMS: m/z (EI); for C17H14N4S2; calcd: 338.0660; found: 338.0656

Anal. Calcd for C17H14N4S2: C, 60.33; H, 4.17; N, 16.55; S, 18.95. Found: C, 60.53; H,

4.47; N, 16.80; S, 18.55.

4.3.2.4. 5-N,N-Dimethylamino-4-(4”-nitrophenylazo)-2,2’-bithiophene (4d)

Dark red solid (36%). Mp 184.7-185.9 oC. UV (acetone): λmax nm (ε/M-1 cm-1) 537.0

(23,890), 343 sh (15,700). IR (Nujol) ν 755, 809, 830, 850, 857, 896, 921, 995, 1017,

1097, 1146, 1164, 1202, 1252, 1281, 1294, 1337, 1401, 1415, 1505, 1553, 1584 cm-1.
1H NMR (Acetone-d6) δ 3.61 (s, 6H, 2xCH3), 7.10-7.13 (m, 1H, 4’-H), 7.27 (dd, 1H,

J=3.6, 1.2 Hz, 3’-H), 7.48 (dd, 1H, J=5.4, 1.2 Hz, 5’-H), 7.61 (s, 1H, 3-H), 7.84 (d, 2H,

J= 9.0 Hz, 2”-H and 6”-H), 8.34 (d, 2H, J= 9.0 Hz, 3”-H and 5”-H). 13C NMR (acetone-

d6) δ 46.1, 110.6, 113.5, 122.4, 122.5, 124.4, 125.5, 125.7, 129.0, 137.6, 138.8, 146.5,

159.0. MS (EI) m/z (%): 358 (M+, 49), 236 (8), 222 (15), 221 (100), 208 (14), 193 (19),

180 (9), 170 (7), 137 (11), 127 (11), 111 (10), 97 (18), 83 (18), 81 (29), 69 (34). HRMS:

m/z  (EI); for C16H11N4O2S2; calcd: 358.0558; found: 358.0566. Anal. Calcd for

C16H11N4O2S2: C, 53.61; H, 3.94; N, 15.63; O, 8.93; S, 17.89. Found: C, 53.41; H, 3.74;

N, 15.33; S, 17.69.

4.3.2.5. 5-N,N-Diethylamino-4-(3´´-carboxyphenylazo)-2,2´-bithiophene (5a)

 Dark red solid with metallic luster (62%). Mp > 207 oC (with decomposition). UV

(acetone): λmax nm (ε/M-1 cm-1) 478.0 (15,733). IR (KBr) ν 508, 569, 599, 610, 682,

692, 735, 756, 787, 813, 835, 906, 950, 998, 1010, 1079, 1143, 1162, 1185, 1208, 1229,

1260, 1295, 1339, 1399, 1430, 1443, 1484, 1528, 1566, 1583, 1683 (C=O), 2357-3429

(OH) cm-1. 1H NMR (acetone-d6) δ  1.45 (t, 6H, J=7.0 Hz, 2xCH2CH3), 3.96-3.98 (q,

4H, J=7.0 Hz, 2xCH2CH3), 7.10-7.14 (m, 1H, 4’-H), 7.21 (dd, 1H, J=3.8, 1.2 Hz, 3’-H),

7.43 (dd, 1H, J=5.1, 1.2 Hz, 5’-H), 7.59 (s, 1H, 3-H), 7.65 (t, 1H, J=7.8 Hz, 5’’-H),

7.94-8.00 (m, 2H, 4’’ and 6’’-H), 8.38-8.40 (m, 1H, 2’’-H). 13C NMR (acetone-d6) δ

12.9, 50.7, 114.1, 120.8, 122.7, 123.7, 125.0, 126.9, 128.8, 129.1 130.1, 132.5, 136.3,

138.0, 155.0, 159.3, 167.5. MS (EI) m/z (%): 385 (M+, 18), 357 (8), 249 (100), 220 (16),

207 (32), 195 (9), 180 (8), 163 (22), 137 (21), 127 (16), 121 (12), 108 (11), 96 (8), 92

(7), 65 (24). HRMS: m/z (EI) for C19H19N3O2S2; calcd: 385.0919; found: 385.0922.

Anal. Calcd for C19H19N3O2S2 C, 59.20; H, 4.97; N, 10.90; S, 16.64. Found C, 59.40; H,

5.10; N, 11.13; S, 16.83.
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4.3.2.6. 5-N,N-Diethylamino-4-(4”-cyanophenylazo)-2,2’-bithiophene (5c)

 Dark red solid with metallic luster (53%). Mp >177 oC (with decomposition). UV

(acetone): λmax nm (ε/M-1 cm-1) 509.0 (26,386); 360 sh (14,580). IR (KBR) ν 574, 680,

837, 1006, 1075, 1206, 1256, 1319, 1394, 1526, 2214 (CN), 2972 cm-1. 1H NMR

(acetone-d6) δ  1.44 (t, 6H, J=7.2 Hz, 2xCH2CH3), 3.98-4.00 (q, 4H, J=7.2 Hz,

CH2CH3), 7.10-7.12 (m, 1H, 4’-H), 7.23 (dd, 1H, J=3.6, 1.2 Hz, 3’-H), 7.45 (dd, 1H,

J=5.1, 1.2 Hz, 5’-H), 7.57 (s, 1H, 3-H), 7.79-7.86 (m, 4H, 4xAr-H .). 13C NMR

(acetone-d6) δ 12.7, 50.9, 110.3, 113.8, 119.7, 121.5, 122.6, 124.1, 125.4, 128.9, 133.9,

137.4, 137.7, 157.5, 160.8. MS (EI) m/z (%): 366 (M+, 46), 308 (5), 249 (100), 220 (17),

209 (27), 102 (18). HRMS: m/z (EI); for C 19H18N4S2; calcd: 366.0973; found: 366.0963.

Anal. Calcd for C19H18N4S2 C, 62.27; H, 4.95; N, 15.29; S, 17.50. Found C, 62.60; H,

4.70; N, 15.10; S, 17.80.

4.3.2.7. 5-Pyrrolidino-4-(3´´-carboxyphenylazo)-2,2´-bithiophene (6a)

Dark red solid (40%). Mp > 210 oC (with decomposition). UV (acetone): λmax nm (ε/M-

1cm-1) 474.5 (18,276). IR (KBr) ν  506, 537, 618, 647, 661, 686, 717, 737, 756, 762,

817, 834, 880, 921, 966, 997, 1016, 1048, 1075, 1152, 1164, 1186, 1239, 1272, 1300,

1324, 1348, 1370, 1416, 1441, 1466, 1531, 1587, 1602, 1623, 1698 (C=O), 2500-3429

(OH) cm-1. 1H NMR (DMSO-d6) δ  2.78-2.81 (m, 4H, 2x NCH2CH2), 3.77-3.81 (m, 4H,

2xNCH2), 7.07-7.10 (m, 1H, 4´-H), 7.24 (dd, 1H, J=3.0, 1.2 Hz, 3’-H), 7.47-7.50 (m,

2H, 3-H and 5´-H), 7.56 (t, 1H, J=7.8 Hz, 5’’-H), 7.80-7.84 (m, 2H, 4’’-H and 6’’-H),

8.13 (m, 1H, 2’’-H). 13C NMR (DMSO-d6) δ 25.3, 53.7, 112.3, 120.6, 122.4, 123.2,

124.5, 124.8, 127.8, 128.3, 129.4, 131.8, 135.4, 136.6, 153.6, 157.0, 167.2.  MS (EI)

m/z (%): 383 (M+, 16), 247 (100), 247 (72), 219 (16), 196 (13), 187 (9), 120 (13), 92

(15), 69 (13). HRMS: m/z (EI) for C19H17N3O2S2; calcd: 383.0762; found: 383.0771.

Anal. Calcd for C, 59.51; H, 4.47; N, 10.96; S, 16.72. Found C, 59.80; H, 4.66; N,

10.90; S, 16.89.

4.3.2.8. 5-Pyrrolidino-4-(4”-cyanophenylazo)-2,2’-bithiophene (6c)

Dark red solid (23%). Mp 198.1-199.0 oC. UV (acetone): λmax nm (ε/M-1 cm-1) 504.0

(22,381). IR (Nujol) ν 543, 680, 831, 1125, 1175, 1282, 1307, 1375, 1538, 1595, 2214

(CN) cm-1. 1H NMR (acetone-d6) δ 2.80-2.84 (m, 4H, 2x NCH2CH2), 3.88-3.92 (m, 4H,
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2xNCH2), 7.10-7.12 (m, 1H, 4'-H), 7.24 (dd, 1H, J=3.6, 1.2 Hz, 3’-H), 7.45 (dd, 1H,

J=5.1, 1.2 Hz, 5'-H), 7.57 (s, 1H, 3-H), 7.81-7.85 (m, 4H, 4xAr-H ). (EI) m/z (%): 364

(M+, 33), 297 (4), 247 (100), 219 (15), 118 (88), 91 (22). HRMS: m/z (EI) for

C19H16N4S2; calcd: 364.0819; found: 364.0816. Anal. Calcd for C19H16N4S2 C, 62.61;

H, 4.42; N, 15.37; S, 17.59. Found C, 62.75; H, 4.30; N, 15.46; S, 17.80.

4.3.2.9. 5-Piperidino-4-(3´´-carboxyphenylazo)-2,2´-bithiophene (7a)

Brown reddish solid (55%). Mp > 207 oC (with decomposition). UV (acetone): λmax nm

(ε/M-1 cm-1) 483.0 (14,738). IR (KBr) ν 506, 520, 541, 561, 582, 609, 646, 664, 680,

701, 739, 758, 810, 836, 852, 884, 911, 934, 955, 997, 1024, 1041, 1071, 1126, 1154,

1214, 1232, 1242, 1272, 1290, 1336, 1360, 1384, 1445, 1509, 1565, 1575, 1605, 1683

(C=O), 2357-3257 (OH) cm-1. 1H NMR (acetone-d6) δ 1.85-1.88 (m, 6H, 3xNCH2CH2),

3.99 (m, 4H, 2xNCH2), 7.01-7.04 (m, 1H, 4’-H), 7.21 (dd, 1H, J=3.8, 1.2 Hz, 3’-H),

7.43 (dd, 1H, J=5.1, 1.2 Hz, 5’-H), 7.54 (s, 1H, 3-H), 7.63 (t, 1H, J=8.1 Hz, 5’’-H),

7.92-8.04 (m, 2H, 4’’-H and 6’’-H), 8.37 (m, 1H, 2’’-H). 13C NMR δ 24.7, 26.3, 54.7,

114.1, 121.7, 123.6, 123.8, 125.1, 125.9, 128.8, 129.8, 129.9, 133.8, 137.7, 138.0,

151.2, 154.7, 168.8. MS (EI) m/z (%): 397 (M+, 21), 261 (100), 137 (4), 69 (4). HRMS:

m/z  (EI) for C20H19N3O2S2; calcd: 397.0919; found: 397.0922. Anal. Calcd for

C20H19N3O2S2 C, 60.43; H, 4.82; N, 10.57; S, 16.13. Found C, 60.77; H, 5.21; N, 10.30;

S, 16.40.

4.3.2.10. 5-Piperidino-4-(4”-carboxymethylphenylazo)-2,2’-bithiophene (7b)

Dark red solid (16%). Mp 132.7-134.6 oC. UV (acetone): λmax nm (ε/M-1 cm-1) 504.0

(22,460), 360.0 sh (15,330). I R (Nujol) ν  697, 718, 772, 817, 853, 917, 967, 1002,

1019, 1095, 1115, 1143, 1165, 1216, 1245, 1275, 1311, 1337, 1352, 1395, 1419, 1451,

1512, 1566, 1599, 1698, 1709, 1719 (C=O) cm-1. 1H NMR (CDCl3) δ 1.78-1.82 (m, 6H,

3xNCH2CH2), 3.91-3.93 (m, 4H, 2xNCH2), 3.94 (s, 3H, OCH3), 7.0 (dd, 1H, J=5.1, 1.2

Hz, 4’-H), 7.06 (dd, 1H, J=3.9 Hz, 1.5 Hz, 3’-H), 7.19 (dd, 1H, J=5.1, 1.2 Hz, 5’-H),

7.50 (s, 1H, 3-H), 7.69 (d, 2H, J= 8.4 Hz, 2”-H and 6”-H), 8.10 (d, 2H, J= 8.4 Hz, 3”-H

and 5”-H). 13C NMR δ 24.1, 25.6, 52.1, 54.1, 113.5, 121.3, 121.4, 122.85, 124.0, 127.6,

128.6, 130.6, 137.5, 137.8, 156.8, 161.0, 167.0. MS (EI) m/z (%): 411 (M+, 19), 263

(11), 262 (18), 261 (100). HRMS: m/z (EI) for C21H21N3O2S2; calcd: 411.1075; found:
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411.1079. Anal. Calcd for C21H21N3O2S2 C, 61.29; H, 5.14; N, 10.21; S, 15.58. Found

C, 61.47; H, 5.10; N, 10.35; S, 15.80.

4.3.2.11. 5-Piperidino-4-(4”-cyanophenylazo)-2,2’-bithiophene (7c)

Dark red solid (55%). Mp > 162.4-163.3 oC. UV (acetone): λmax nm (ε/M-1 cm-1) 510.5

(25,069), 339.0 sh (17,679). IR (KBr) ν 543, 630, 699, 837, 1131, 1162, 1206, 1313,

1519, 1588, 2214 (CN), 2853, 2934 cm-1. 1H NMR (acetone-d6) δ 1.80-1.87 (m, 6H,

3xNCH2CH2), 4.04-4.07 (m, 4H, 2xNCH2), 7.09-7.12 (m, 1H, 4’-H), 7.22 (dd, 1H,

J=3.6, 1.2 Hz, 3’-H), 7.45 (dd, 1H, J=5.1, 1.2 Hz, 5’-H), 7.52 (s, 1H, 3-H), 7.78-7.88

(m, 4H, 4xAr-H ). 13C NMR δ 24.0, 25.7, 54.2, 109.9, 113.3, 119.4, 121.9, 121.9, 123.1,

124.3, 125.6, 127.7, 132.8, 133.1, 137.2, 138.0. MS (EI) m/z (%): 378 (M+, 23), 311 (9),

261 (100), 127 (7), 102 (7). HRMS: m/z (EI) for C20H19N4S2; calcd: 378.0973; found:

378.0966. Anal. Calcd for C20H19N4S2 C, 63.46; H, 4.79; N, 14.80; S, 16.94. Found C,

63.24; H, 4.90; N, 14.70; S, 16.65.

4.3.2.12. 5-Piperidino-4-(4”-nitrophenylazo)-2,2’-bithiophene (7d)

Dark red solid (32%). Mp 178.2-178.9 oC. UV (acetone): λmax nm (ε/M-1 cm-1) 544.0

(24,270), 423.0 sh (6663). IR (Nujol) ν 695, 705, 723, 753, 811, 828, 850, 881, 910,

998, 1018, 1082, 1101, 1146, 1162, 1197, 1262, 1197, 1216, 1240, 1254, 1281, 1299,

1332, 1377, 1399, 1462, 1499, 1538, 1583, 1596 cm-1. 1H NMR (CDCl3) δ 1.82-1.88

(m, 6H, 3xNCH2CH2), 4.02-4.04 (m, 4H, 2xNCH2), 7.01-7.03 (m, 1H, 4’-H), 7.08 (dd,

1H, J=3.6, 1.2 Hz, 3’-H), 7.22 (dd, 1H, J=5.1, 1.2 Hz, 5’-H), 7.49 (s, 1H, 3-H), 7.70 (d,

2H, J= 9.0 Hz, 2”-H and 6”-H), 8.28 (d, 2H, J= 9.0 Hz, 3”-H and 5”-H). 13C NMR δ

24.0, 25.7, 54.3, 113.2, 121.5, 121.9, 123.3, 124.5, 124.9, 127.7, 137.1, 138.5, 145.9,

157.9, 162.4. MS (EI) m/z (%): 398 (M+, 21), 263 (9), 262 (17), 261 (100), 219 (5), 84

(5). HRMS: m/z (EI) for C19H18N4O2S2; calcd: 398.0871; found: 398.0866. Anal. Calcd

for C19H18N4O2S2 C, 57.27; H, 4.55; N, 14.06; S, 16.09. Found C, 57.30; H, 4.25; N,

14.36; S, 16.33.

4.3.2.13. 5-Piperidino-4-(2”-cyano-4”-nitrophenylazo)-2,2’-bithiophene (7e)

Dark blue solid (10%). Mp > 194.5 oC (with decomposition). UV (acetone): λmax nm

(ε/M-1 cm-1) 585.5 (16,309), 344.0 sh (12,000). IR (Nujol) ν 693, 718, 831, 906, 1012,

1069, 1156, 1225, 1294, 1507, 1569, 2220 (CN) cm-1. 1H NMR (acetone-d6) δ 1.86 (m,
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6H, 3x CH2), 4.10 (m, 4H, 2xNCH2), 7.01-7.04 (m, 1H, 4’-H), 7.12 (dd, 1H, J=3.6, 1.2

Hz, 3’-H), 7.28 (dd, 1H, J=5.1 Hz, 1.2 Hz, 5’-H), 7.55 (s, 1H, 3-H), 7.58 (d, 1H, J=9.0

Hz, 6''-H), 8.31 (dd, J=9.3 Hz, 2.4 Hz, 5''-H), 8.55 (d, 1H, J=2.4 Hz, 3''-H). 13C NMR

(CDCl3) δ 23.8, 25.9, 54.7, 108.8, 113.3, 116.4, 117.1, 123.3, 124.3, 125.5, 127.9,

128.0, 129.7, 136.3, 140.9, 141.0, 143.9, 159.5. MS (EI) m/z (%): 423 (M+, 26), 281 (5),

261 (100), 234 (7), 163 (8), 90 (5). HRMS: m/z (EI) for C20H17N5O2S2; calcd: 423.0824;

found: 423.0807. Anal. Calcd for C20H17N5O2S2 C, 56.72; H, 4.05; N, 16.54; S, 15.14.

Found C, 56.90; H, 4.10; N, 16.30; S, 15.25.

4.4. Thermogravimetric analysis of compounds (4-7)

Thermogravimetric analysis of samples was carried out using a TGA instrument model

Q500 from TA Instruments, under high purity nitrogen supplied at a constant 50 mL

min-1 flow rate. All samples were subjected to a 20 ºC min–1 heating rate and were

characterized between 25 and 500 ºC.
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Captions
Scheme 1. Synthesis of 5-N,N-dialkylamino-2,2´-bithiophenes 2 through reaction of

N,N-dialkylamino-4-(2´-thienyl)-4-oxobutanamides 1 with the Lawesson´s reagent.

Scheme 2. Synthesis of azobithiophenes 4-7  through azo coupling of 5-N,N-

dialkylamino-2,2´-bithiophenes 2 with aryldiazonium salts 3.

Table 1. Yields, UV-visible, IR absorption spectra and Td data of 5-N,N-dialkylamino-

2,2´-bithiophenes 2 and 5-N,N-dialkylamino-2,2´-bithiophenes azo dyes 4-7.
a All the UV-visible spectra were recorded in acetone.
b The IR spectra were recorded in KBr.
c The IR spectra were recorded in Nujol.
d Decomposition temperature (Td) measured at a heating rate of 20 ºC min–1 under a

nitrogen atmosphere, obtained by TGA.

Table 2. Solvatochromic data [λmax (nm) and υmax (cm-1) of the charge-transfer band]

for azobithiophenes 4c and 4d in 14 solvents with !* values by Kamlet et al [14].

a Solvent used as received.

b The correlation coefficient r obtained for the linear solvatation energy relationship

with !* values by Kamlet et al. for solvents was r = 0.9069 for 4c and r = 0.9812 for

4d.

Figure 1. UV-visible absorption spectra of compounds 4b , 4c  and 4d in DMSO.
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Schemes

Scheme 1

  a   R1 = NMe2
  b   R1 = NEt2
  c   R1 = pyrrolidino
  d   R1 = piperidino

Lawesson´s reagent/ toluene/ reflux

S
S

S
R1

O

O

R1

1 2

Scheme 2

2a   R1 = NMe2
  b   R1 = NEt2
  c   R1 = pyrrolidino
  d   R1 = piperidino

N

3a   R2 = 3-CO2H
3b   R2 = 4-CO2Me
3c   R2 = 4-CN
3d   R2 = 4-NO2
3e   R2 = 2-CN,4-NO2

CH3CN/CH3COOH

            0 OC
S

S
R1

S
S

R1

NN

R2

+
R2

N
+

4a   R1 = NMe2, R2 = 3-CO2H
4b   R1 = NMe2, R2 = 4-CO2Me
4c   R1 = NMe2, R2 = 4-CN
4d   R1 = NMe2, R2 = 4-NO2

5a   R1 = NEt2, R2 = 3-CO2H
5c   R1 = NEt2, R2 = 4-CN

6a   R1 = pyrrolidino, R2 = 3-CO2H
6c   R1 = pyrrolidino, R2 = 4-CN

7a   R1 = piperidino, R2 = 3-CO2H
7b   R1 = piperidino, R2 = 4-CO2Me
7c   R1 = piperidino, R2 = 4-CN
7d   R1 = piperidino, R2 = 4-NO2
7e   R1 = piperidino, R2 = 2-CN,4-NO2
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Figure 1
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