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Abstract— The SAFE kernel software implementation was 

born as an inexpensive alternative from the original 

implementation which uses a field programmable gate array 

(FPGA). This paper proposes to replace the FPGA with a 

microprocessor, which will drastically reduce the cost of the 

implementation. The new implementation includes the 

MIMXRT1170 EVK that integrates two microprocessors, a 

Cortex M4 running at 400 MHz and a Cortex M7 running at 1 

GHz. After the software implementation, the multicore 

environment met the required time deadlines and achieved the 

desire performance, keeping the CAN FD bus occupation at 100% 

and the encryption and decryption time less than 50 microseconds, 

which represents 25% of the microprocessor overhead. In future 

works the implementation could be adjusted to one 

microprocessor, such as the cortex M7 due to it is powerful 

capability to process data which also reduces the cost and the 

complexity of the implementation.  
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I. INTRODUCTION 

Electronic control units (ECUs), such as anti-lock braking 
system (ABS), air bags and the main computer are embedded 
systems that control the vehicle’s functionalities and 
communicate with each other through a communication 
protocol. The communication between all ECUs was usually 
implemented over the control area network (CAN) protocol but 
the most recent secure requirements include the CAN flexible 
data rate (CAN FD) protocol instead by allowing a higher data 
transfer rate and message size than the CAN protocol. 

The advanced encryption standard (AES) algorithm is a 
well-known data cipher algorithm adopted by the National 
Institute of Standards and Technology (NIST) as a Federal 
Information Processing Standard (FIPS) that is used in several 
cybersecurity applications to ensure confidentiality of shared 
information. AES needs 3 inputs: a key which can be 128, 192 
or 256 bits, an initialization vector (IV) of 16 bytes, and the 
message. Then the output is a ciphered message which can only 
be deciphered with the key. 

The SAFE kernel is a security software module created to 
add encryption functionalities using the CAN FD protocol, and 
its main functionalities include adding a different 128-bit private 
key to every sent message, cipher the message, read the 128-bit 
private key from every received message and decipher the 
message. Any of these 2 processes plus the required time to 

communicate both cores must be performed by the SAFE kernel 
in 50 micro-seconds or less.  

The existing SAFE kernel implementation is based on a 
microprocessor Cortex M7 and a Field-Programmable Gate 
Array (FPGA) which is more expensive than a microprocessor 
and faster for data processing. The purpose of this paper is to 
reduce the cost of the current implementation by using a 
multicore approach while meeting the 50 micro-second 
deadline.  

The document was divided in three sections, the first contain 
the introduction to the paper, the second section describe the 
methodology used to achieve the development and 
implementation for the SAFE kernel, and the third section that 
shows the results obtained.  

II. METHODOLOGY  

In this paper we propose to replace the FPGA used in a 
security module for SAFE Kernel implementation with a 
microprocessor to reduce the implementation cost and meet time 
deadlines.  

Both cores start synchronously and run a non-preemptive 
scheduler. A communication mechanism called messaging unit 
(MU) was implemented to avoid memory access collisions 
between the cores. 

The described time deadline originates from the CAN bus 
constraints, assuming that the CAN protocol is capable of 
sending uninterrupted messages, each message requires at least 
200 microseconds (minimal message) on the bus to be sending 
so this time is assumed to be 100% utilization of the bus. The 
acceptable level of microprocessor overhead was set at 25% or 
less (50 microseconds) while the use of the CAN FD bus 
remains at 100% to optimize the implementation of the SAFE 
kernel and allow the M4 cortex to execute other tasks. 

A. Non-preemptive scheduler 

A non-preemptive scheduler was implemented in both cores 
using the system clock (systick) to trigger a hardware timer 
interruption every 500 microseconds as base time. This is the 
available time in every thread to perform the assigned tasks, so 
if this time is exceeded, the schedule will have an erratic 
behavior. The scheduler provides 4 execution threads (1, 10, 50 
and 100 milliseconds) and 2 more independent threads (2-A and 
2-B milliseconds), which have the following interconnections 
(Table II.1): 



Table 1. Sheduler interconnection threads. 

PRIMARY THREAD  DEPENDENT THREAD  

1MS THREAD  100MS THREAD  

2MS A THREAD  50MS THREAD  

2MS B THREAD  10MS THREAD  
 

The scheduler initialization, functionalities and interaction 
with the hardware and the user are described in the following 
sequence diagram: 

 

Figure 1. Scheduler architecture. 

B. Messaging Unit 

 The message unit is a mechanism to communicate both cores 
by using hardware flags. This software module was provided by 
NXP Semiconductors as a part of the software development kit 
(SDK). Application programming interfaces (APIs) were 
created, and the module was modified to write and read data 
from shared memory, implementing the needed logic to avoid 
collisions while accessing the shared memory. The MU has 4 
channels for general purpose as shown in Figure 2 and channel 
0 (CH0) was used to communicate both cores. 

 

 

Figure 2.  Message unit structure. 

C. Cortex M4 

The system clock signal in this core and its peripherals was 

configured to maximum speed, which is 400 MHz, to achieve 

the best performance and improve the task execution times for 

the non-preemptive scheduler and the CAN FD 

communication, reducing the microprocessor overhead and 

making possible to the microprocessor unit (MCU) to keep the 

CAN FD bus usage at 100%. 

 

This core manages the CAN FD communication protocol, 

which was provided by NXP Semiconductors with the SDK. 

The CAN FD peripheral was configured as follows: 

• Data rate: 2000000. 

• Baud rate: 1000000. 

• Message ID format: Standard (11 bits length). 

• Message TX ID: 0xAAA 

• Message RX ID: 0xAAA 

• DLC: 16 

 

The following APIs were created: 

• CANFD_init: Perform the initial configuration for 

CAN FD peripheral, set the multiplexed pines and 

clock signal. 

• CANFD_trigger_standard_tx: Trigger the 

transmission of the standard ID buffer through the 

CAN FD bus. 

• CANFD_trigger_standard_rx: Trigger the 

listening mode and reception of a standard ID 

buffer through the CAN FD bus. 

• CANFD_trigger_extended_TX: Trigger the 

transmission of the extended ID buffer through the 

CAN FD bus. 

• CANFD_trigger_extended_RX: Trigger the 

listening mode and reception of an extended ID 

buffer through the CAN FD bus. 

• CANFD_set_Baudrate: Set baud rate speed into 

CAN FD configuration structure. 

• CANFD_set_Datarate: Set data rate speed into 

CAN FD configuration structure. 

• CANFD_set _RX_ID: Set ID to reception buffer 

into CAN F configuration structure. 

• CANFD_set_TX_ID: Set ID to transmission 

buffer into CAN FD configuration structure. 

• CANFD_set_message_format: Set CAN FD 

message ID format. 

• CANFD_print_TX_buffer: Print CAN FD 

transmitted payload buffer. 

• CANFD_print_RX_buffer: Print CAN FD 

received payload buffer. 

• CANFD_print_config: Print CAN FD current 

configuration. 

D. Cortex M7 

The system clock signal in this core and its peripherals was 

configured to maximum speed, which is 1 GHz, to achieve the 

best performance and improve the task execution times for the 



non-preemptive scheduler and the SAFE kernel reducing the 

microprocessor overhead and keeping it below 25%. 

The implemented functions of the SAFE kernel are as 

follows: 

• Initialization: AES-192 hardware is initialized; a 

random number of 4 bytes is generated which will be 

the public key, and the lookup table is loaded to RAM 

memory. From this internal process, the private key 

will be acquired for each message. 

• Send a message: to send a message, a random number 

is calculated and used as an index to extract a private 

key from the lookup table; with this key and the public 

key the message is ciphered, then the public key, 

private key and the ciphered message are joined 

together in a buffer that is sent through the MU to the 

Cortex M4 to be later sent by CAN FD. 

• Receive a message: when receiving a message through 

the messaging unit, the private key must be extracted, 

set in the AES algorithm to decipher the message, and 

return a pointer to the buffer where the deciphered 

message is stored. 

The AES algorithm is performed by the Cortex M7 as well; this 

software package was provided by NXP Semiconductors with 

SDK.  The CAN FD peripheral was configured as follows: 

• 128 bits key length. 

• MBEDTLS version: 2.27.0. 

• Cryptographic accelerator and assurance module 

(CAAM) hardware accelerated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Physical implementation of the SAFE kernal and digital osciloscope 

to analize the CAN FD. 

The following APIs were created: 

• AES_init: Perform the initial configuration for AES 

peripheral, set the multiplexed pines and clock signal. 

• AES_print_features: Print the current AES 

configuration. 

• AES_cipher: Cipher a message. 

• AES_Decipher: Decipher a message. 

• AES_set_key_length: Update or set the key length. 

• AES_set_cipher_key: Update or set the key to cipher 

a message. 

• AES_set_DEcipher_key: Update or set the key to 

decipher a message. 

 

The physical implementation was made as shown in Figure 

3. Each MIMXRT1170 was connected to a different computer 

in this way each computer has an emulated serial terminal that 

connects each card to the computer. 

The CAN bus (CAN high and CAN low) was connected 

between the boards using the black and red braided cable shown 

at the bottom of the figure, this cable uses 2 resistors of 120 

ohms at each end as required in the protocol to function properly. 

The logic analyzer is connected to the general-purpose pins 

used to measure the time periods required for the project by 

setting the logical level to 1 when the process to be measure start 

and setting the logical level to 0 when the process ends. The 

grounds of the boards are independent, but this does not affect 

the measurement since we are only interested in the time that the 

logic 1 persists and not its magnitude.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III. RESULTS 

The test frame applied to the software implementation 
developed in this paper was as follows: 

• Node A: the cortex M7 was configured to cipher 10 
messages and use the MU to transfer the messages 
to the cortex M4; the cortex M4 was configured to 
send the ciphered messages through CAN FD. 

• Node B: the cortex M4 was configured to receive 
ciphered messages through CAN FD and use the 
MU to transfer the messages to the cortex M7 
where the SAFE kernel will read, decipher and 
print the messages on the screen. 

 

A logical analyzer was used to measure the spent time for 
the following process: 

1. For the SAFE kernel to cipher every message. 

2. For the MU to transfer every message from cortex 
M7 to cortex M4. 

3. For the CAN FD to transfer every message through 
the physical bus. 

4. For the MU to transfer every message from cortex 
M4 to cortex M7. 

5. For the SAFE kernel to decipher every message. 

6. For the scheduler to run on time the 4 execution 
threads. 

 

The success criteria included the achievement of the 
following requirements: 

• The test frame should not have any warnings or 
errors in the compilation. 

• The 10 messages must be successfully transmitted 
and received by CAN FD.  

• The 10 messages printed on the screen must be 
identical to the 10 original messages. 

• The time spent on message encryption and 
transmission over the MU between cores must be 
equal to or less than 50 microseconds for all 
messages. 

• The time used by the CAN FD protocol to transmit 
messages over the physical bus should be around 
280 micro-seconds. 

• The messages must be transmitted over CAN FD 
one after the other, which means that the bus is 
100% occupied. 

The time was averaged over the 10 sent messages and the 
results are shown in (Table 2). 

 

 

Table 2.  Comparison of software vs FPGA implementations. 

Criteria software 
implementation 

Software 
implementation 
(micro-seconds) 

FPGA 
implementation 
(micro-seconds) 

Transmission process 

Time spent by the SAFE 
kernel to cipher 

9.06 0.41 

Time spent by the MU to 
transfer message from M7 to 

M4 
12.86 183 

SUM 21.92 183.41 

Reception process 

Time spent by SAFE kernel to 
decipher. 

12.60 0.41 

Time spent by the MU to 
transfer message from M4 to 

M7. 
12.86 183 

SUM 25.46 183.41 

Time spent by the CAN FD 
protocol to transmit a message 

through the physical bus 
293 291 

 

IV. CONCLUSIONS 

 The results obtained in this paper show that software 

implementation of the SAFE kernel is a feasible option. Using 

the multicore approach, the cost of using the SAFE kernel 

message encryption as a security mechanism was reduced by 

90%, making an available solution for production volumes in the 

automotive industry. Finally, the time deadlines were met and 

the overhead of the microprocessor hosting the SAFE kernel was 

calculated at 23.69%, which is below than the 25% limit. The 

CAN FD bus remained at 100% occupancy and the test frame 

was successfully executed and tested. The actual 

implementation could be improved by using just one 

microprocessor and thus reduce the complexity and the cost. 

This approach should be analyzed to guarantee a microprocessor 

overhead below 25%, which is an allowed percentage in the 

automotive industry. 
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