
Instituto Tecnológico

y de Estudios Superiores de Occidente

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018,
publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

Software-based implementation of Secure AES

Frame Encryption (SAFE) for CAN FD in multicore

environment

TRABAJO RECEPCIONAL que para obtener el GRADO de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: ALBERTO CONTRERAS ESTRADA E IVAN EDGAR REYES

OLVERA

Asesor ABRAHAM OTERO TEZMOL

Tlaquepaque, Jalisco. agosto de 2022.

Software-based implementation of Secure AES Frame

Encryption (SAFE) for CAN FD in multicore

environment
Reyes Olvera Ivan Edgar

Guadalajara, Mexico

edgar.reyes@iteso.mx

Contreras Estrada Alberto

Guadalajara, Mexico

a.contreras@iteso.mx

Abraham Tezmol Otero

Guadalajara, Mexico

ATEZMOL@iteso.mx

Abstract— The SAFE kernel software implementation was

born as an inexpensive alternative from the original

implementation which uses a field programmable gate array

(FPGA). This paper proposes to replace the FPGA with a

microprocessor, which will drastically reduce the cost of the

implementation. The new implementation includes the

MIMXRT1170 EVK that integrates two microprocessors, a

Cortex M4 running at 400 MHz and a Cortex M7 running at 1

GHz. After the software implementation, the multicore

environment met the required time deadlines and achieved the

desire performance, keeping the CAN FD bus occupation at 100%

and the encryption and decryption time less than 50 microseconds,

which represents 25% of the microprocessor overhead. In future

works the implementation could be adjusted to one

microprocessor, such as the cortex M7 due to it is powerful

capability to process data which also reduces the cost and the

complexity of the implementation.

Keywords— Cybersecurity, AES algorithm, Multicore, Cortex

M7, Cortex M4, CAN FD, MIMX RT1170-EVK

I. INTRODUCTION

Electronic control units (ECUs), such as anti-lock braking
system (ABS), air bags and the main computer are embedded
systems that control the vehicle’s functionalities and
communicate with each other through a communication
protocol. The communication between all ECUs was usually
implemented over the control area network (CAN) protocol but
the most recent secure requirements include the CAN flexible
data rate (CAN FD) protocol instead by allowing a higher data
transfer rate and message size than the CAN protocol.

The advanced encryption standard (AES) algorithm is a
well-known data cipher algorithm adopted by the National
Institute of Standards and Technology (NIST) as a Federal
Information Processing Standard (FIPS) that is used in several
cybersecurity applications to ensure confidentiality of shared
information. AES needs 3 inputs: a key which can be 128, 192
or 256 bits, an initialization vector (IV) of 16 bytes, and the
message. Then the output is a ciphered message which can only
be deciphered with the key.

The SAFE kernel is a security software module created to
add encryption functionalities using the CAN FD protocol, and
its main functionalities include adding a different 128-bit private
key to every sent message, cipher the message, read the 128-bit
private key from every received message and decipher the
message. Any of these 2 processes plus the required time to

communicate both cores must be performed by the SAFE kernel
in 50 micro-seconds or less.

The existing SAFE kernel implementation is based on a
microprocessor Cortex M7 and a Field-Programmable Gate
Array (FPGA) which is more expensive than a microprocessor
and faster for data processing. The purpose of this paper is to
reduce the cost of the current implementation by using a
multicore approach while meeting the 50 micro-second
deadline.

The document was divided in three sections, the first contain
the introduction to the paper, the second section describe the
methodology used to achieve the development and
implementation for the SAFE kernel, and the third section that
shows the results obtained.

II. METHODOLOGY

In this paper we propose to replace the FPGA used in a
security module for SAFE Kernel implementation with a
microprocessor to reduce the implementation cost and meet time
deadlines.

Both cores start synchronously and run a non-preemptive
scheduler. A communication mechanism called messaging unit
(MU) was implemented to avoid memory access collisions
between the cores.

The described time deadline originates from the CAN bus
constraints, assuming that the CAN protocol is capable of
sending uninterrupted messages, each message requires at least
200 microseconds (minimal message) on the bus to be sending
so this time is assumed to be 100% utilization of the bus. The
acceptable level of microprocessor overhead was set at 25% or
less (50 microseconds) while the use of the CAN FD bus
remains at 100% to optimize the implementation of the SAFE
kernel and allow the M4 cortex to execute other tasks.

A. Non-preemptive scheduler

A non-preemptive scheduler was implemented in both cores
using the system clock (systick) to trigger a hardware timer
interruption every 500 microseconds as base time. This is the
available time in every thread to perform the assigned tasks, so
if this time is exceeded, the schedule will have an erratic
behavior. The scheduler provides 4 execution threads (1, 10, 50
and 100 milliseconds) and 2 more independent threads (2-A and
2-B milliseconds), which have the following interconnections
(Table II.1):

Table 1. Sheduler interconnection threads.

PRIMARY THREAD DEPENDENT THREAD

1MS THREAD 100MS THREAD

2MS A THREAD 50MS THREAD

2MS B THREAD 10MS THREAD

The scheduler initialization, functionalities and interaction
with the hardware and the user are described in the following
sequence diagram:

Figure 1. Scheduler architecture.

B. Messaging Unit

 The message unit is a mechanism to communicate both cores
by using hardware flags. This software module was provided by
NXP Semiconductors as a part of the software development kit
(SDK). Application programming interfaces (APIs) were
created, and the module was modified to write and read data
from shared memory, implementing the needed logic to avoid
collisions while accessing the shared memory. The MU has 4
channels for general purpose as shown in Figure 2 and channel
0 (CH0) was used to communicate both cores.

Figure 2. Message unit structure.

C. Cortex M4

The system clock signal in this core and its peripherals was

configured to maximum speed, which is 400 MHz, to achieve

the best performance and improve the task execution times for

the non-preemptive scheduler and the CAN FD

communication, reducing the microprocessor overhead and

making possible to the microprocessor unit (MCU) to keep the

CAN FD bus usage at 100%.

This core manages the CAN FD communication protocol,

which was provided by NXP Semiconductors with the SDK.

The CAN FD peripheral was configured as follows:

• Data rate: 2000000.

• Baud rate: 1000000.

• Message ID format: Standard (11 bits length).

• Message TX ID: 0xAAA

• Message RX ID: 0xAAA

• DLC: 16

The following APIs were created:

• CANFD_init: Perform the initial configuration for

CAN FD peripheral, set the multiplexed pines and

clock signal.

• CANFD_trigger_standard_tx: Trigger the

transmission of the standard ID buffer through the

CAN FD bus.

• CANFD_trigger_standard_rx: Trigger the

listening mode and reception of a standard ID

buffer through the CAN FD bus.

• CANFD_trigger_extended_TX: Trigger the

transmission of the extended ID buffer through the

CAN FD bus.

• CANFD_trigger_extended_RX: Trigger the

listening mode and reception of an extended ID

buffer through the CAN FD bus.

• CANFD_set_Baudrate: Set baud rate speed into

CAN FD configuration structure.

• CANFD_set_Datarate: Set data rate speed into

CAN FD configuration structure.

• CANFD_set _RX_ID: Set ID to reception buffer

into CAN F configuration structure.

• CANFD_set_TX_ID: Set ID to transmission

buffer into CAN FD configuration structure.

• CANFD_set_message_format: Set CAN FD

message ID format.

• CANFD_print_TX_buffer: Print CAN FD

transmitted payload buffer.

• CANFD_print_RX_buffer: Print CAN FD

received payload buffer.

• CANFD_print_config: Print CAN FD current

configuration.

D. Cortex M7

The system clock signal in this core and its peripherals was

configured to maximum speed, which is 1 GHz, to achieve the

best performance and improve the task execution times for the

non-preemptive scheduler and the SAFE kernel reducing the

microprocessor overhead and keeping it below 25%.

The implemented functions of the SAFE kernel are as

follows:

• Initialization: AES-192 hardware is initialized; a

random number of 4 bytes is generated which will be

the public key, and the lookup table is loaded to RAM

memory. From this internal process, the private key

will be acquired for each message.

• Send a message: to send a message, a random number

is calculated and used as an index to extract a private

key from the lookup table; with this key and the public

key the message is ciphered, then the public key,

private key and the ciphered message are joined

together in a buffer that is sent through the MU to the

Cortex M4 to be later sent by CAN FD.

• Receive a message: when receiving a message through

the messaging unit, the private key must be extracted,

set in the AES algorithm to decipher the message, and

return a pointer to the buffer where the deciphered

message is stored.

The AES algorithm is performed by the Cortex M7 as well; this

software package was provided by NXP Semiconductors with

SDK. The CAN FD peripheral was configured as follows:

• 128 bits key length.

• MBEDTLS version: 2.27.0.

• Cryptographic accelerator and assurance module

(CAAM) hardware accelerated.

Figure 3. Physical implementation of the SAFE kernal and digital osciloscope

to analize the CAN FD.

The following APIs were created:

• AES_init: Perform the initial configuration for AES

peripheral, set the multiplexed pines and clock signal.

• AES_print_features: Print the current AES

configuration.

• AES_cipher: Cipher a message.

• AES_Decipher: Decipher a message.

• AES_set_key_length: Update or set the key length.

• AES_set_cipher_key: Update or set the key to cipher

a message.

• AES_set_DEcipher_key: Update or set the key to

decipher a message.

The physical implementation was made as shown in Figure

3. Each MIMXRT1170 was connected to a different computer

in this way each computer has an emulated serial terminal that

connects each card to the computer.

The CAN bus (CAN high and CAN low) was connected

between the boards using the black and red braided cable shown

at the bottom of the figure, this cable uses 2 resistors of 120

ohms at each end as required in the protocol to function properly.

The logic analyzer is connected to the general-purpose pins

used to measure the time periods required for the project by

setting the logical level to 1 when the process to be measure start

and setting the logical level to 0 when the process ends. The

grounds of the boards are independent, but this does not affect

the measurement since we are only interested in the time that the

logic 1 persists and not its magnitude.

III. RESULTS

The test frame applied to the software implementation
developed in this paper was as follows:

• Node A: the cortex M7 was configured to cipher 10
messages and use the MU to transfer the messages
to the cortex M4; the cortex M4 was configured to
send the ciphered messages through CAN FD.

• Node B: the cortex M4 was configured to receive
ciphered messages through CAN FD and use the
MU to transfer the messages to the cortex M7
where the SAFE kernel will read, decipher and
print the messages on the screen.

A logical analyzer was used to measure the spent time for
the following process:

1. For the SAFE kernel to cipher every message.

2. For the MU to transfer every message from cortex
M7 to cortex M4.

3. For the CAN FD to transfer every message through
the physical bus.

4. For the MU to transfer every message from cortex
M4 to cortex M7.

5. For the SAFE kernel to decipher every message.

6. For the scheduler to run on time the 4 execution
threads.

The success criteria included the achievement of the
following requirements:

• The test frame should not have any warnings or
errors in the compilation.

• The 10 messages must be successfully transmitted
and received by CAN FD.

• The 10 messages printed on the screen must be
identical to the 10 original messages.

• The time spent on message encryption and
transmission over the MU between cores must be
equal to or less than 50 microseconds for all
messages.

• The time used by the CAN FD protocol to transmit
messages over the physical bus should be around
280 micro-seconds.

• The messages must be transmitted over CAN FD
one after the other, which means that the bus is
100% occupied.

The time was averaged over the 10 sent messages and the
results are shown in (Table 2).

Table 2. Comparison of software vs FPGA implementations.

Criteria software
implementation

Software
implementation
(micro-seconds)

FPGA
implementation
(micro-seconds)

Transmission process

Time spent by the SAFE
kernel to cipher

9.06 0.41

Time spent by the MU to
transfer message from M7 to

M4
12.86 183

SUM 21.92 183.41

Reception process

Time spent by SAFE kernel to
decipher.

12.60 0.41

Time spent by the MU to
transfer message from M4 to

M7.
12.86 183

SUM 25.46 183.41

Time spent by the CAN FD
protocol to transmit a message

through the physical bus
293 291

IV. CONCLUSIONS

 The results obtained in this paper show that software

implementation of the SAFE kernel is a feasible option. Using

the multicore approach, the cost of using the SAFE kernel

message encryption as a security mechanism was reduced by

90%, making an available solution for production volumes in the

automotive industry. Finally, the time deadlines were met and

the overhead of the microprocessor hosting the SAFE kernel was

calculated at 23.69%, which is below than the 25% limit. The

CAN FD bus remained at 100% occupancy and the test frame

was successfully executed and tested. The actual

implementation could be improved by using just one

microprocessor and thus reduce the complexity and the cost.

This approach should be analyzed to guarantee a microprocessor

overhead below 25%, which is an allowed percentage in the

automotive industry.

V. REFERENCES

Lugo-Meneses, C.A. & Peralta-Reynoso, D. (2019). Secure

AES Frame Encryption for CAN FD. Trabajo de obtención de

grado, Especialidad en Sistemas Embebidos. Tlaquepaque,

Jalisco: ITESO. https://rei.iteso.mx/handle/11117/5973.

[Accessed September 15, 2021].

Abraham Tézmol, Francisco Martínez “Scheduler specification

– Embedded System” DESI ITESO A.C. (September 2, 2018),

[Accessed September 20, 2021].

NXP B.V. 2020-2021 “i.MX RT1170 Processor Reference

Manual” Date of Release (5/2021), document identifier -

IMXRT1170RM. https://www.nxp.com/design/development-

boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-

evaluation-kit:MIMXRT1170-EVK. [Accessed September 21,

2021].

https://rei.iteso.mx/handle/11117/5973
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK

Eiza, M. Hashem, and Q. Ni. “Driving with Sharks: Rethinking

Connected Vehicles with Vehicle Cybersecurity.” IEEE

Vehicular Technology Magazine 12, no. 2 (June 2017): 45–51.

[Online], available: IEEE,

https://doi.org/10.1109/MVT.2017.2669348. [Accessed

February 3, 2022].

[Hartwich, Florian, and Robert Bosch GmbH. “CAN with

Flexible Data-Rate,” 2012, 9. [Online], available:

https://www.can-

cia.org/fileadmin/resources/documents/proceedings/2012_hart

wich.pdf [Accessed March 8, 2022].

Microchip, “Atmel-44003-32-Bit-Cortex-M7-Microcontroller-

SAM-V71Q-SAM-V71N-SAM-V71J_Datasheet.Pdf.”,

February 2015 [Revised October 2016]. [Online], available:

Microchip,

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-

44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-

V71N-SAM-V71J_Datasheet.pdf.

D. Schneider. “Jeep Hacking 101.” IEEE Spectrum:

Technology, Engineering, and Science News, August 6, 2015.

[Online], available: IEEE, https://spectrum.ieee.org/cars-that-

think/transportation/systems/jeep-hacking-101. [Accessed

March 9, 2022].

D. S. Moeller, R. W. Pashby, C. Joe Holmes. “Method for OTA

Updating vehicle Electronic Control Unit”, U.S. patent

2016/0364232, Dec. 15, 2016. [Online], Available: Google

Patents,

https://patentimages.storage.googleapis.com/40/08/8d/3686dcff

8f03da/US20160364232A1.pdf. [Accessed March 10, 2022].

J. Daemen, and V. Rijmen, The Rijndael Block Cipher, n.d., 47.

NIST. [Online], available: NIST,

https://csrc.nist.gov/csrc/media/projects/cryptographic-

standards-and-guidelines/documents/aes-development/rijndael-

ammended.pdf.

https://doi.org/10.1109/MVT.2017.2669348
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-V71N-SAM-V71J_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-V71N-SAM-V71J_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-V71N-SAM-V71J_Datasheet.pdf
https://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
https://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
https://patentimages.storage.googleapis.com/40/08/8d/3686dcff8f03da/US20160364232A1.pdf
https://patentimages.storage.googleapis.com/40/08/8d/3686dcff8f03da/US20160364232A1.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf

