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Abstract. Genetic engineering was used to produce an elastin-like polymer (ELP) with precise 

amino acid composition, sequence and length, resulting in the absolute control of MW and 

stereochemistry. A synthetic monomer DNA sequence encoding for (VPAVG)20, was used to build 

a library of concatemer genes with precise control on sequence and size. The higher molecular 

weight polymer with 220 repeats of VPAVG was biologically produced in Escherichia coli and 

purified by hot and cold centrifugation cycles, based on the reversible inverse temperature 

transition property of ELPs. The use of low cost carbon sources like lactose and glycerol for 

bacteria cells culture media was explored using Central Composite Design approach allowing 

optimization of fermentation conditions. Due to its self-assembling behaviour near 33 ºC stable 

spherical microparticles with a size ~ 1µm were obtained, redissolving when a strong undercooling 

is achieved. The polymer produced showed hysteresis behaviour with thermal absorbing/releasing 

components depending on the salt concentration of the polymer solution. 

Introduction 

Elastin-like polymers (ELPs) are repetitive polypeptides inspired on the mammalian elastin 

structure that consists of a pentapeptide repeat, VPGXG, where X, termed the guest residue, is any 

natural amino acid except proline [1]. The most striking feature of the ELPs is their Inverse 

Temperature Transition (ITT) behavior. Below a certain critical temperature, the transition 

temperature (Tt), and in the presence of water they are soluble, with the polymer chains relatively 

extended in a disordered state and fully hydrated mainly by hydrophobic hydration [2]. Above Tt, 

the polymer chains hydrophobically fold and adopt a dynamic structure, called β-spiral, involving 

one type II β-turn per pentamer, stabilized by intraspiral inter-turn and inter-spiral hydrophobic 

contacts [2,3]. 

The polymer poly(VPAVG), an ELP where the central glycine (G) is substituted by a L-alanine 

(A), was described as exhibiting similar properties to synthetic thermoplastic elastomers [4,5] and 

was previously chemically synthesized by Rodríguez-Cabello and co-workers [3,6]. The same 

group reported its characterization, demonstrating its extreme biocompatibility both in vitro and in 
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vivo, as well as its ability to self-assemble, forming microparticles that can entrap active substances 

during the self-assembling process [3,6].  

Advances in recombinant DNA technology has allowed the biological synthesis of large Molecular 

Weight (MW) engineered protein polymers containing repeating blocks of amino acids with precise 

composition, sequence and length, resulting on an absolute control of MW and stereochemistry. 

The present work describes the biological production of the poly(VPAVG) using standard 

molecular genetic tools. A higher molecular weight polymer containing 220 repeats of VPAVG 

sequence, with an estimated MW of 96kDa was expressed in Escherichia coli pET25 vector, 

followed by purification and characterization. The fermentation conditions were optimized using a 

Central Composite Design (CCD) approach to design the culture media. 

Materials and Methods 

Gene construction. The DNA coding for a peptide monomer containing 20 repetitions of VPAVG 

and flanked by Eam1104I recognition sites was subjected to concatenation in order to obtain a 

multimeric unit. The multimeric block genes were obtained by recursive directional ligation in the 

cloning vector and the cloning strategy used was previously described and reported as the 

“Gutenberg Method” [7,8]. The design of the monomeric DNA sequence took into account 

Escherichia coli codon usage and DNA-repetitive sequences were avoided. All the 

constructions/concatenation were performed in a modified cloning vector, pDrive (Qiagen) and 

transformed into E. coli strain XL1 Blue (Novagen). Constructions were confirmed with the 

restriction enzymes Eam1104I and EcoRI (Fermentas). Taq DNA polymerase, LguI restriction 

enzyme and GENERULER
TM

 1kb DNA ladder were obtained from Fermentas. 100bp DNA ladder 

was purchased from Invitrogen and high marker from Bioventures. Vector dephosphorylation by 

anthartic phosphatase (New England Biolab) was performed prior to ligation with T4 DNA ligase 

(Roche). The plasmid extraction was performed with GENELUTE
TM

 Plasmid Miniprep Kit (Sigma-

Aldrich) and the DNA purification from agarose gel by NUCLEOSPIN
TM

 Extract (Macherey-

Nagel). Plasmids were selected based on their insert length and subcloned into a modified pET25b 

(+) expression vector (Novagen) without any tags. The construction was confirmed by sequencing 

and restriction with endonucleases NdeI and XhoI (Fermentas). Agarose gel images were acquired 

with Eagle Eye II system and Eagle Sight software (Stratagene). The plasmid construct was verified 

by DNA sequencing. The sequencing was performed following the method of Sanger et al. [9], 

using an ABI PRISM 310 Genetic Analyzer. The vector carrying (VPAVG)220 gene was used to 

transform E. coli strain XL1 Blue, according to the SEM method [10]. DNA cloning and 

manipulation were performed according to standard protocols [11]. The recombinant plasmids were 

then transformed into the expression strain E. coli BL21(DE3) (Novagen), followed by protein 

production with optimized medium.  

Central composite design (CCD) and data analysis. The culture medium was formulated based 

on the recipes of several media, namely: Luria Bertani (LB), Terrific Broth with Phosphate Buffer 

and Glycerol (TB+PBG) [11] and salt medium from Teich and co-workers[12]. 

To analyze the production of (VPAVG)220, a central composite design with five coded levels was 

used for exploring the sub-region of the response surface in the neighborhood of the optimum. The 

three tested factors, glycerol, lactose and yeast extract concentrations (Table 1) were submitted to a 

2
3
 factorial design, with values fluctuating from a central point (0) to a lower level (-1) and a higher 

level (+1). The three level combinations of the three factors define our experiment “nucleus” with 

three additional central points (where all the variables adopt the central value zero) in order to 

minimize the risk of losing the non-linear relations in the intervals and to allow the calculation of 

confidence intervals due to repetition [13,14]. The factors with negative values were considered as 

zero. The two responses considered were the concentrations of biomass and polymer obtained. The 

analysis of the obtained data, were performed using the software Design-Expert 6.0.6 (Stat-Ease, 

USA). The model adequacy was analyzed by the F value and the goodness of fit was expressed by 
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the coefficient of determination R
2
. The significance levels were determined by values of “Prob > 

F” less than 0.05. 

 

Coded factors used in the CCD 

Run 
Glycerol 

[g L
-1

] 

Lactose 

[g L
-1

] 

Yeast Extract 

[g L
-1

] 

1 -1 1 1 

2 0 0 -1,68 

3 1 -1 -1 

4 -1 -1 -1 

5 0 0 0 

6 0 0 0 

7 0 0 1,68 

8 0 0 0 

9 1 -1 1 

10 1 1 -1 

11 0 -1,68 0 

12 1 1 1 

13 0 1,68 0 

14 -1,68 0 0 

15 -1 -1 1 

16 -1 1 -1 

17 1,68 0 0 

Table 1. Experimental range in coded factors of the three independent variables used in the CCD. 

 

Polymer production and purification. Bacterial cultures were grown at 37 ºC in optimized 

medium, containing 100mg/ml ampicilin. After fermentation time of 16 hours, cells were harvested 

by centrifugation, washed with TBS (20mM Tris, 140mM NaCl at pH 8.0), ressuspended in TE 

buffer (50mM Tris, 1mM EDTA at pH 8.0) and lysed by ultrasonic disruption. The insoluble cell 

debris was removed by centrifugation at 4 ºC and 10000xg for 20 minutes, preceded by a cooling 

step at 4 ºC for 2-3 hours. As this polymer does not respond to pH, the solution was adjusted to 3.5 

with HCl in order to precipitate most of E. coli endogenous proteins, followed by a clearing 

centrifugation of 20 minutes at 10000xg and 4 ºC. The cleared supernatant was submitted to a 

heating stage (HS) of 30 minutes at 60 ºC, followed by a centrifugation at 40 ºC to collect the 

aggregated polymer. The pellet was then ressuspended in 10-15mL of cold deionised water and left 

at 4 ºC for 2 hours, in a cooling stage (CS), in order to solubilize the aggregates. The HS and CS 

were repeated two more times followed by freeze-drying. Polymer fractions were analysed by SDS-

PAGE and stained with 0.3M Copper Chloride. SDS-PAGE gel images were acquired with 

Molecular Imager ChemiDoc XRS system and Quantity One software from Bio-Rad. 

Maldi MS and MS/MS analysis of (VPAVG)220. The purity and amino acid sequence of 

(VPAVG)220 was confirmed by mass spectrometry with previously digested polymer solutions. 

Possible cleavable enzymes were found by using the “PeptideCutter” application from ExPASy 
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website (www.expasy.ch/tools/peptidecutter/). The digestion was carried out using proteinase K 

and standard protocols. 

Turbidity and Differential Scanning Calorimeter (DSC). The turbidity experiments were 

conducted in a UV-Visible Thermo Spectronic Helios gamma spectrophotometer with a 

thermostatised sample chamber. The turbidity was assessed by the change in absorbance at 300nm 

for a 3mg/mL polymer in water solution. The Tt was identified as the temperature at which 50% of 

turbidity had occurred. DSC experiments were performed on a Mettler Toledo DSC822e. Liquid 

nitrogen was used as cooler and the calibration of enthalpy and temperature was performed with 

Indium and Zinc. The analyses were carried in a solution of 25mg/mL of polymer, either on 

deionised water, NaCl (0.2M, 0.4M, 0.6M and 0.8M) and urea (1M, 3M and 6M). In a typical DSC 

run, 25μl of polymer solution were placed in a hermetically sealed aluminium pan and studied 

under a four-stage thermal program. First, the sample is treated 15 minutes at 4 ºC, followed by a  

heating stage (HS) from 4 to 60 ºC with a constant heating rate of +5 ºC/min. The sample is 

maintained at 60 ºC for 3 minutes and cooled down in a cooling stage (CS) to -10 ºC with a constant 

cooling rate of -5 ºC/min. The onset and enthalpy (ΔH) values were calculated with the provided 

STARe software. 

Preparation and morphological characterization of (VPAVG)220 particles. A solution of 

6mg/ml of (VPAVG)220 in water was treated at 40 ºC over 40 minutes. Particles were formed by 

polymer self-aggregation from aqueous solution. The solution was then centrifuged at 11000xg and 

the supernatant discarded. The pellet was finally dried at 37 ºC overnight. The mean size and 

distribution of (VPAVG)220 was measured by Dynamic Light Scattering (DLS) with a Zetasizer 

Nano equipped with Dispersion Technology Software v5.02 from Malvern Industries. The 

morphological examination was performed on dried particles by Scanning Electron Microscopy 

(SEM). 

Results and Discussion 

Construction of poly VPAVG. The DNA monomer coding for 20 repetitions of the sequence 

VPAVG, including the Eam1104I recognition sites, with 300 nucleotides long was subjected to a 

concatenation reaction, creating a library of multimeric DNA units. The products of this reaction 

were cloned directly into pDrive vector, linearized with LguI. Fig. 1 represents the n-mer 

constructions obtained, n = 1, n = 2, n = 4, n = 7 and n = 11, where n represents the number of 

(VPAVG)20 repetitions. The correct constructions were confirmed by restriction analysis with 

EcoRI and Eam1104I. Restriction with Eam1104I resulted on fragments with 300, 600, 1200, 2100 

and 3300 bp, corresponding to the different multimeric blocks plus additional bands generated by 

Eam1104I vector digestion. EcoRI cuts pDrive in the flanking regions near the gene originating two 

fragments, one corresponding to the cloning vector (approximately 3900bp) and another one that 

varies depending on the size of the concatemer. A 220 repeats construct, coding for a polymer with 

an estimated molecular mass of 93kDa, was obtained and subcloned into a modified pET25b (+) 

expression vector. The correct construct (pET-220) was confirmed by DNA sequencing and 

restriction with NdeI and XhoI endonucleases (data not shown), and used to transform E. coli strain 

BL21(DE3).  
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Fig. 1. A – Schematic representation of pDrive vector originating a library of n-mer VPAVG coding 

sequence. ▪▪▪ corresponds to the restriction site for Eam1104I in the multiple cloning site. ●●● 

corresponds to the restriction site for EcoRI. B – Agarose gel electrophoresis of DNA constructions 

containing n (lanes 1, 2), 2n (3, 4), 4n (5, 6), 7n (9, 10) and 11n (11, 12), being n a 300 nucleotides 

long molecule coding for 20 repetitions of the sequence VPAVG, including the Eam1104I 

recognition sites. Lanes 1, 3, 5, 9, 11 – DNA restriction with EcoRI; lanes 2, 4, 6, 10, 12 – DNA 

restriction with Eam1104I; lane 7, 8 and 13 – molecular weight marker. The arrow indicates the 

respective cloned fragments. 

 

CCD optimization. Preliminary fermentations with E. coli transformed with pET-220 in LB 

medium (induction at DO600=0.6 with 1mM IPTG and fermentation times of 5 and 24 hours) 

resulted in a production of ~2mg/L and showed that the biomass and polymer productions were 

closely related (data not shown), suggesting that an optimization of biomass production would be 

an approach to enhance the polymer production. In order to increase the production of (VPAVG)220 

and biomass formation, the levels of the variables glycerol (A), lactose (B) and yeast extract (C) 

were selected according to the results of previous experiments. Fig. 2 shows the response surface 

plots for the biomass production indicating that the higher of this parameter were achieved for 

glycerol and yeast extract concentrations at the middle and maximum of the experimental range, 

respectively and in the absence of lactose. The model for the polymer response was not significant 

statistically and therefore could not undergo validation. A first order coded model was established 

describing the biomass concentration as a function of glycerol, lactose and yeast extract 

concentrations: 

 

Biomass = 3.38 + 0.056A – 0.17B + 0.63C.  (1) 

 

The goodness of fit was expressed by the coefficient of determination R
2
 calculated to be 0.55, 

indicating that 55 % of the variability of the response biomass could be explained by this model. 

The tests of lack of fit were not significant indicating that the model fits to the experimental results. 

The statistical significance of the second order model function was evaluated by the F-test analysis 

of variance which revealed that this regression is statistically significant. Based on the CCD results, 

the optimum medium composition for growing E. coli consisted of: 7.39g.L
-1

 of glycerol, 23.25g.L
-

1
 of yeast extract, 0.5g.L

-1
 of glucose, 12g.L

-1
 of tryptone, 2.31g.L

-1
 of KH2PO4, 12.54g.L

-1
 of 

K2HPO4.3H2O, 0.5g.L
-1

 of MgSO4.7H2O, 1.5g.L
-1

 of NH4Cl, 3.85g.L
-1

 of(NH4)2SO4, 0.5g.L
-1

 NaCl 
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and 8g.L
-1

 of NaH2PO4.H2O. This new medium recipe allowed the achievement of ~6mg.L
-1

 of 

polymer. 

 

 

Fig. 2 – Response surface plots showing the production of biomass from E. coli and the interaction 

between glycerol vs lactose (A), glycerol vs yeast extract (B) and yeast extract vs lactose (C). 

 

Production and Purification of (VPAVG)220. Several E. coli transformants with pET-220 were 

selected and screened for production (data not shown) prior to fermentation conditions. The cells 

were harvested, lysed and the polymer purified as described in Material and Methods, based in 

simple hot and cold centrifugation steps (Fig. 3A). The polymer self-aggregates when the 

temperature rises above its Tt, allowing its collection from solution by hot centrifugation. As the 

self-aggregation of the polymer is a reversible reaction, the polymer could be resolubilized in cold 

deionized water, while the denatured and aggregating contaminating biomolecules remain in 

solution, being further separated by cold centrifugation. Preparations of fully purified polymer (Fig. 

3B) were lyophilized and used for characterization experiments.  
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Fig. 3 – Purification of (VPAVG)220 polymer. A – Behaviour of (VPAVG)220 polymer solution 

submitted to hot and cold stages. After 30 minutes of incubation at 60 ºC the polymer self-

assembles, forming particles that come out of solution and solubilized again when submitted at 4 

ºC. B – 10% SDS-PAGE analysis of purified (VPAVG)220 polymer stained with copper chloride 

(lane 1) or with Coomassie staining (lane 2). As ELPs stain very poorly with Coomassie [24, 25], 

copper staining was used as routine protocol and Coomassie staining as negative control. The 

purified band appears with higher molecular weight than the expected, a phenomenon observed 

previously by McPherson et al. [24]. The molecular weight marker is the same for both gels. 

 

Maldi MS and MS/MS analysis of (VPAVG)220. The correct molecular weight, composition and 

sequence of the pure bioproduced polymer were assessed by MALDI-TOF/MS (data not shown) 

and MALDI-TOF MS/MS analysis. The polymer was digested with proteinase K in order to obtain 

small fragments of the protein followed by MALDI-TOF analysis. The spectra of the digested 

product revealed several peaks corresponding to the different fragments obtained (Fig. 4A). A 

fragment of 442.2Da corresponding to the theoretical molecular weight of a single VGVPA 

(proteinase K cuts between the A and V) unit was selected and submitted to tandem MS to inspect 

the constitution and sequence (Fig. 4B) that was determined as Val-Gly-Val-Pro-Ala. The obtained 

sequence correlates with the prediction using the peptide cutter website when digesting 

(VPAVG)220 with proteinase K.  
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Fig. 4 – Mass spectra (MALDI-TOF/MS and MS/MS) of (VPAVG)220 digests. A – Spectrum 

obtained from MS analysis of products digestion. The different signals correspond to the different 

length products, e.g. the signal at 187.1 Da corresponds to the PA product, 442.2 Da, corresponds to 

the VPAVG block and the signal at 883.5 Da to a double VGVPA block. B – Spectrum obtained 

from tandem MS analysis of the 442.2 product. The spectrum analysis revealed the VGVPA 

sequence. 

 

Turbidity and DSC analysis. Fig. 5 shows the results obtained in the DSC experiments, carried 

out with the cyclic program described in Materials and Methods, for a 25mg/mL polymer solution 

in deionised water and NaCl at different concentrations. 

  

 

Fig. 5 – DSC run with 25 mg/mL polymer solution in different salt concentration solutions. A – 

DSC heating stage with +5 ºC/min rate. B – DSC cooling stage with a rate of -5 ºC/min. 

 

During the heating stage (HS) (Fig. 5A), the DSC pattern clearly exhibits an endothermic peak that 

is associated with the characteristic endothermic process of chain folding, accompanied by the 

destruction of the ordered water structures of hydrophobic hydration [3,8,15-17]. Accordingly to 
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Rodríguez-Cabello and co-workers [8], the chain folding consists in interchain hydrophobic 

contacts that cause the formation of aggregates that separate from solution. The temperature of self-

assembling (TtS) was calculated based on the onset and is identified with the Tt (table II). On the 

contrary, an exothermic depression (Figure 5B) must be attributed to the reverse process, the 

unfolding of the polymer chain and rehydration of the ordered structures, leading to its consequent 

dissolution (TtD) [3,17]. However, there is a clear difference between the TtS and TtD of each 

condition, revealing hysteresis behaviour. As an example, the polymer self-assembles (folds) near 

33 ºC in deionized water but only redissolves when a strong undercooling is achieved. 

 

  

Values of TtS and ΔH calculated from the DSC experiment. 

Conditions Onset of TtS [ºC] Enthalpy ΔH [J/g] 

Deionised water 32.80 38.35 

NaCl 0.2M 29.18 41.30 

NaCl 0.4M 25.91 45.88 

NaCl 0.6M 22.50 46.53 

NaCl 0.8M 19.18 54.85 

Urea 1M 37.55 31.14 

Urea 3M 47.16 25.56 

Urea 6M ----- ----- 

 

Table 2 – Values of TtS and ΔH calculated from the onsets of the DSC run during the heating stage. 

The enthalpy (ΔH) of the endothermic process was calculated from the area of the endothermic 

peak. 

 

 

In order to support the results obtained by the dynamic calorimeter study, a statical determination of 

TtS was carried out by turbidity assays. The plot in Fig. 6 represents the absorbance values obtained 

for a water solution of (VPAVG)220. The TtS or Tt was determined as the temperature at which the 

turbidity reaches a value of 50%, which was found to have a value of approximately 33 ºC. The 

rapid increase in turbidity upon reaching TtS shows that the transition is very sharp, occurring in a 

range less than 5 ºC. The small variation between the statical determination of TtS and the DSC 

results can be attributed to the associated thermal lags of the DSC experiment. 
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Fig. 6 – Temperature profile of aggregation during the heating process. The Tt was determined as 

the temperature at which the turbidty reaches a value of 50%. The images shows the polymer 

solution below (in the left) and above (in the right) Tt  and the formation of particles (in the right). 

 

The hysteresis behaviour has been described in a previous work [18] with poly(VPGVG) and 

poly(VPAVG), as deduced from FTIR and Raman spectroscopies. It was suggested that this 

behaviour is a combination of two factors, the presence of a methyl group in the Ala residue in 

poly(VPAVG) and a more perfectly stable folding state when compared to the conventional 

poly(VPGVG). The methyl group in the Ala3 residue between the Pro2 and Val4, strongly 

influences the physical structure of the folded and unfolded states. In aqueous solution and below 

the TtS, the water shell around poly(VPAVG) is more closely structured and thus it is more 

dissolved than poly(VPGVG). Above the TtS, poly(VPAVG) contains less water bound to the 

carbonyl of amide groups than poly(VPGVG) [3,18], leading to a more compact and rigid structure 

due to the decrease in the plasticizing effect of water and its role in disrupting the intramolecular 

hydrogen bonds [8]. This impedes coacervation and causes the formation of stable particle 

suspension
3
. The presence of the methyl group is also fundamental for the reversibility of 

temperature transition. During the cooling, the unfolding process of poly(VPAVG) is hampered by 

the strongly bound amide groups that stabilize the folded structure and only takes place after strong 

undercoolings [15,18]. 

It is well known that salts cause a significant, concentration-dependent, decrease in Tt. Previous 

studies clearly shown that the Tt of ELPs is depressed by the addition of salts [19,20]. This fact is 

well represented in Fig. 5. When comparing the thermograms of the different conditions, there is a 

shift of the endothermic and exothermic components into lower temperatures as the salt 

concentration rises (for the endothermic peak: 33 ºC – H2O, 29 ºC – 0.2M NaCl, 26 ºC – 0.4M 

NaCl, 22.5 ºC – 0.6M and 19 ºC – 0.8M). The difference between the onset of the endothermic 

peaks can be explained by the ionic contribution of salt ions to the entropy of the system. Reguera 

et al. [20] demonstrated that there is a linear decrease in Tt versus the salt concentration (NaCl), 

which is in agreement with our data. Accordingly, this behaviour can be explained by a complex 

process that involves not only the disruption of water structures and hydrophobic association, but 

also an increment in order in the main chain with a subsequent stabilization. The effect of NaCl 

concentration in the thermal parameter is equivalent to an increase in the hydrophobicity of the 

polymer and therefore, an increase in salt would cause an increase in the polarity of the solvent, 

causing more and more ordered structures surrounding the polymer chains. This fact provides an 

answer to the increasing values of enthalpy (Table 2) as the NaCl concentration raises and was 

previously observed by Reguera et al. [20]. The estimated enthalpy values (ΔH) for the ELP 
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transition were endothermic and strongly influenced by the NaCl concentration, explainable by the 

increase in the number of more ordered structures of hydrophobic hydration surrounding the 

polymer chains. 

In parallel to the calorimeter studies of NaCl and H2O polymer solutions, a DSC run was performed 

using polymer solutions with urea at different concentrations (1M, 3M and 6M). As expected, both 

endothermic and exothermic components shift to higher temperatures (33 ºC – H2O, 37.5 ºC – Urea 

1M and 47 ºC – Urea 3M), accompanied by a broadening of the endothermic peak (well represented 

between 1M and 3M urea polymer solutions). In the presence of urea 6M (data not shown) a 

straight line without any endothermic or exothermic components was observed, due to a flatted 

peak (broadening of the peak) or suggesting that a probable transition phase would occur outside 

the range of temperatures used (4 – 60 ºC). Urea at high concentrations is commonly used as a 

denaturing agent. This denaturation occurs because it diminishes the hydrophobic effect by 

displacing water in the solvation shell and specifically binds to amide groups through hydrogen 

bonds [21]. According to Urry [22] the addition of salts like NaCl, lowers the Tt, while the addition 

of urea or guanidinium chloride increases this value. Another work by Luan and Urry [23], carried 

with a synthetic poly(VPAVG), shows a raise in the Tt as the concentration of urea increases (34.2 

ºC, 38.5 ºC, 43 ºC and 48.5 ºC for H2O, and urea 1M, 2M and 3M, respectively) as well as a 

decrease in the sharpness of the endothermic peak. These results are in agreement with our data and 

suggest that the increasing urea concentration follows an almost linear increase in the Tt. The 

enthalpy values (Table 2) calculated for the endothermic peak during the HS support the 

conclusions previously stated for the NaCl solutions. In opposition, while the addition of NaCl in 

the system leads to an increase in number of ordered structures, the addition of Urea disrupts the 

water of hydrophobic hydration, leading to a decrease in the hydrophobic effect. 

Morphological characterization and size distribution by SEM and DLS analysis. The self-

assembled (VPAVG)220 particles resulted in sizes lower than 2μm as demonstrated by DLS 

analysis. Fig. 7 shows the volume diameter distribution (volume/size) of microparticles formed in 

water at 37 ºC from a 6mg/mL polymer solution. These results correlate with previous work done 

with a chemically synthesised poly(VPAVG), that also demonstrated that there is a dependence 

between the heating rate and the mean size of microparticles [3]. 

 

 

Fig. 7 – DLS analysis of volume diameter distribution of microparticles formed at 37 ºC. 

 

Fig. 8 shows micrographs of lyophilized/dehydrated polymer below and above the Tt. Below the 

Tt the polymer appears in a disordered state without any structure conformation. On the other hand, 

in the situation above the Tt, the polymer self-aggregates forming spherical particles. The size of 
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particles appears to be smaller than those obtained by DLS, which can be explained by the drying 

step in the sample preparation procedure.  

 

 

Fig. 8 – Micrographs of a lyophilized/dehydrated (VPAVG)220 polymer below and above the Tt. A – 

SEM image showing the disordered state of a lyophilized polymer before the particle preparation 

(see Material and Methods) and below the Tt. B – SEM image showing the size and shape of 

aggregates formed during the particle preparation (see Material and Methods) above the Tt . 

Conclusions 

The use of genetic engineering tools allowed the obtention of protein-based polymers with an 

absolute control over their molecular weight and architecture. In this work and taking advantage of 

those tools, an ELP was designed and produced always keeping in mind maximal production with 

minimal low cost. Applying the CCD the media recipe was redesigned achieving a greater cell 

biomass minimizing the costs and increasing the final production from 2mg/L to 6mg/L of 

(VPAVG)220. Results from the DSC analysis showed a bio-produced polymer behaving the same 

way as the chemical synthesized. The influence of NaCl and Urea in the ITT of a VPAVG polymer 

was followed by conventional DSC showing that it is possible to modulate the Tt by exploiting the 

NaCl and Urea concentrations. According to the results obtained by DSC assays, the addition of 

NaCl causes a concentration-dependent decrease in the Tt, with a subsequent increase in the ΔH. In 

opposition, the addition of Urea leads to an increase in the Tt and a subsequent decrease in the 

enthalpy. While the addition of NaCl to the system suggests that it leads to a better organization of 

the polymer when in the folded state and an increase in the number of ordered structures, the 

addition of Urea disrupts the bulk water, decreasing the hydrophobic effect.  

When above its Tt, the polymer self-assembles into spherical particles with a diameter distribution 

ranging from 700nm to 2µm. Further work will lay on drug delivery studies, focusing on 

hydrophobic compounds and the possibility of making biodegradable films.  
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