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Abstract 
 

After several years of abandonment, the use of bacteriophages (phages) for killing 

bacteria has withdrawn recent attention and reappraisal. This has led to a vast phage 

research, in varied fields, with impressive outcomes and currently several studies are 

ongoing with animals, horticulture and agriculture products, and even with humans. 

Despite this enthusiasm, there is a lack of research conserning phage utilization to reduce 

bacteria living on surfaces in a lifeform known as biofilms.    

This work explores the potential of phages in controlling bacteria present in single and 

dual species biofilms. Gram-negative Pseudomonas fluorescens and Gram-positive 

Staphylococcus lentus, widespread inhabitants of dairy plant surfaces and products were 

the studied bacterial hosts. P. fluorescens is the dominant microorganism present in the 

microflora of raw or pasteurized milk at the time of spoilage and commonly isolated from 

contaminated fresh meats and refrigerated products. S. lentus is coagulase-negative 

staphylococci (CoNS) and a member of the S. sciuri group. CoNS are the bacteria most 

frequently recovered from infected bovine and caprine mammary glands. 

Before performing biofilm studies, special emphasis was given to isolation of new 

lytic phages and to their thorough characterization. Several phages were isolated amongst 

which φIBB-PF7A and φIBB-SL58B were selected for the control experiments. Both 

belong to the Podoviridae family and can kill a wide host range. Phage φIBB-PF7A 

resembles, morphologically, physico-chemically and genomically, to T7-like phages 

while φIBB-SL58B cannot, so far, be assigned to any known Podoviridae group and is 

possibly a novel type of phage.  

After the characterization of the phage candidates, their ability to infect biofilms was 

investigated. P. fluorescens biofilms exhibited cells with two distinct morphologies that, 

independently of the age of the biofilm infected, were efficiently killed by phage φIBB-

PF7A. Unexpectedly, the best infection by S. lentus phage φIBB-SL58B was found to be 

the killing of their hosts formed under severe starvation conditions. Furthermore, biofilms 
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of S. lentus colonized better the substratum than P. fluorescens cells, and in effect S. 

lentus was the predominant bacterium in most dual species biofilms investigated. The 

dual species biofilms were challenged using two approaches. A phage cocktail, for each 

of the hosts of the dual species biofilms, decreased efficiently not only the cell number in 

the biofilm, but also the cells which were released to the planktonic phase. The use of a 

single phage, for the less predominant bacterium, revealed that the applied phage (φIBB-

PF7A) can efficiently reach the host and reduce their cell number in the biofilm, but also 

may cause the release of the non-susceptible species to the planktonic phase. Interestingly 

and contrarily to what is commonly described in literature, one of the studied phages 

(φIBB-PF7A) proved to be excellent in killing stationary phase host cells. 

The conditions under which the phages are applied are important factors to be 

considered. Rotary agitation and medium conditions (exchange or non-exchange) 

influenced vastly phage killing of biofilm cells. Additionaly, rotary agitation, 

temperature, host cell length and growth rate influenced planktonic cell lysis by phage 

(φIBB-PF7A). Nevertheless, the optimal conditions for phage infection are highly 

depended on the phage-host system investigated, as demonstrated in φIBB-PF7A and 

φIBB-SL58B infection experiments performed with their respective hosts. 
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Sumário 
 

Após vários anos de abandono, assistiu-se, recentemente, ao crescente interesse 

científico e reconhecimento das notáveis capacidades dos bacteriófagos (fagos) no 

controlo de bactérias. São diversos os domínios de aplicação de fagos como agentes de 

controlo de bactérias,  nomeadamente na produção animal, horticultura e agricultura e 

existem inclusive investigações a decorrer com humanos. Apesar deste recente 

entusiasmo, há uma grande lacuna relativamente à utilização de fagos para a redução de 

bactérias aderidas a superfícies ou mais propriamente biofilmes.   

Este trabalho explora a utilização de fagos no controlo de bactérias presentes em 

biofilmes formados por uma única espécie bacteriana ou mistos (constituidos por várias 

espécies). As bactérias Gram-negativa Pseudomonas fluorescens e Gram-positiva 

Staphylococcus lentus são ubíquas em superfícies e produtos da indústria dos lacticínios. 

P. fluorescens é a bactéria dominante da microflora dos leites, não-pasteurizados e 

pasteurizados, estragados e frequentemente isolada de carnes e produtos refrigerados 

estragados. S. lentus, é uma bactéria coagulase-negativa (CoNS), pertence ao grupo de S. 

sciuri e pode causar doenças em animais. As CoNS são, de facto, as bactérias mais 

frequentemente isoladas de bovinos e caprinos com infecção das glândulas mamárias.  

Antes de serem iniciados os estudos de infecção de biofilmes, procedeu-se deu-se ao 

isolamento de novos fagos e à sua rigorosa caracterização. Foram isolados vários fagos 

para P. fluorescens e S. lentus e do conjunto total de fagos purificados, os fagos φIBB-

PF7A e φIBB-SL58B, foram seleccionados para os estudos de controlo de biofilmes. 

Ambos pertencem à familia Podoviridae e têm um espectro lítico alargado. O fago φIBB-

PF7A assemelha-se morfologicamente e genomicamente a fagos do tipo T7, enquanto que 

o fago φIBB-SL58B poderá ser um novo tipo de fago uma vez não há semelhanças 

morfológicas, genómicas nem fisico-quimicas com nenhum fago descrito na literatura. 
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O fago φIBB-PF7A foi capaz de lisar com grande eficiência os biofilmes de P. 

fluorescens, independentemente da idade do biofilme. Inesperadamente, este estudo 

revelou que a melhor infecção dos biofilmes de S. lentus por perte do fago φIBB-SL58B 

foi conseguida em biofilmes formados sem renovação do meio de crescimento. No que 

respeita à infecção de biofilmes mistos, formados por P. fluorescens e  S. lentus, utilizou-

se duas estratégias distintas: o uso de um cocktail formado pelos dois fagos e a aplicação 

de apenas um fago específico para a bactéria minoritariamente presente nos biofilmes 

mistos, a P. fluorescens. A primeira estratégia revelou uma redução no número de células 

viáveis presentes nos biofilmes e de células libertadas dos biofilmes para a fase 

planctónica. A utilização de apenas um fago foi eficaz no controlo das células de 

P.fluorescens presentes no biofilme, assistindo-se a uma destruição parcial do biofilme e 

consequentemente à libertação para a fase planctónica da bactéria não susceptível ao fago. 

Contrariamente ao que é frequentemente descrito na literatura, um dos fagos estudados 

(φIBB-PF7A) revelou uma elevada eficácia na lise de células na fase estacionária de 

crescimento. 

A avaliação de diferentes condições de ifecção é fundamental de forma a se conseguir 

optimizar a eficiência fágica no controlo de biofilmes e células planctónicas. Este trabalho 

evidencia que a aplicação de fagos no controlo dos hospedeiros é influenciada por 

factores tais como: a velocidade de agitação, temperatura e vários parâmetros 

relacionados com o hospedeiro tais como o seu tamanho, taxa específica de crescimento e 

com as condições usadas na formação de biofilmes nomeadamente a renovação ou não de 

meio de crescimento. No entanto, este trabalho revela também que as condições óptimas 

de infecção fágica dependem bastante do fago e hospedeiro investigados como verificado 

em ensaios de infecção realizados com os fagos φIBB-PF7A e φIBB-SL58B e os seus 

respectivos hospedeiros. 
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    INTRODUCTION   
 

 

Pathogenic and spoilage bacteria are consistently found living in sessile communities 

attached to a wide range of biotic and abiotic surfaces. These communities, better known 

as biofilms, are accountable for spoilage of products in food, dairy and food processing 

industry, and can cause transmission of diseases. Biofilms tolerate 100 to 1000-fold 

higher levels of antimicrobial agents than planktonic cultures and, although several 

strategies are adopted to prevent biofilm formation and their removal, biofilms do persist 

in a wide range of industrial surfaces. This reveals an inefficacy of the cleaning and 

disinfection mechanisms and demands a quest for possible alternatives.  

Bacterial viruses or bacteriophages (phages) are hypothesized to be the predominant 

lifeform in the biosphere, clearly outnumbering their host bacterium. Phages are currently 

suggested as possible alternatives to antibiotics for the treatment of bacterial diseases in 

humans and animals and widely explored to minimize the pathogen loads in food 

products of animal and plant origin. Thus, why couldn’t phages also be used as an 

alternative to industrial disinfectants and sanitizers, avoiding the undesirable effects of the 

vast doses of antimicrobial agents used to rid biofilms from surfaces? After all, phages do 

have a variety of advantages over chemical agents. Their isolation is fast and simple. 

Their production is inexpensive. They are specific against a host or host range and thus do 

not affect the normal microflora of the environment where they can be applied. They are 

considered environmentally friendly. They self-replicate at the infection site as long as the 

host bacterium is present and, so far, no serious side effects have ever been reported.  

The present study was carried out to further understand the potential of phages to 

reduce bacterial biofilms from surfaces and to scrutinize if they could really provide an 

alternative in industrial environments. For this, the specific aims of this thesis were: 

1. to isolate, select and characterize phages.  

2. to investigate the chosen phages for their ability to function as biological 

control agents and to further widen the knowledge on how phages control 

single and dual species biofilms.  

3. to study phage killing of planktonic cells varying cell growth and phage 

infection parameters.   
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This thesis is composed of 6 different chapters which include original articles and 

unpublished work.   

Chapter 1 provides a general background of phages and biofilms and includes an 

overview of phage applications carried out in food and food processing environments. 

In Chapter 2, the isolation of new phages and their thorough characterization is 

described. Characterization includes morphological, physico-chemical, growth cycle and 

adsorption evaluation of the phages. Additionally, the complete genomic characterization 

of Pseudomonas fluorescens phage φIBB-PF7A and the preliminary genome 

characterization of Staphylococcus lentus phage φIBB-SL58B are presented. 

Chapter 3 describes studies on the ability of phages to control biofilms. The effect of 

phage φIBB-PF7A and φIBB-SL58B on single species biofilms of P. fluorescens and of 

S. lentus are studied varying biofilm formation and phage infection parameters. 

Characterization of dual species biofilms of P. fluorescens and S. lentus formed under 

three distinct conditions and their challenge using two phage treatment approaches is also 

described.  

Chapter 4 presents the studies of phages on P. fluorescens planktonic cultures. The 

effect of some parameters on cell morphology and on phage infection is described in this 

Chapter.  

Finally, Chapter 5 presents the main conclusions extracted from the work presented in 

this thesis and a few recommendations for future work. 
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1.1 Bacteriophages 
 

Bacterial viruses were discovered approximately 100 years ago [1-3] and their 

discovery is equally attributed to Frederick Twort, an English bacteriologist, and Félix 

d’Hérelle, a French-Canadian microbiologist [4, 5]. However, Twort didn’t continue his 

research and it was d’Hérelle who seriously pursued working with these viruses and 

named them, in 1916, as “bacteriophages” from the words “bacteria” and “phagein”, 

which in Greek means to eat or devour. d’Hérelle performed numerous trials in humans 

and animals (rabbits, chicken and buffaloes) [6] trying to shed a light on thei nature and 

ability to function as therapeutic agents [1, 5]. He isolated bacteriophages (phages) for a 

number of bacterial hosts causing diseases such as: cholera, difteria, bubonic plague and 

anthrax. There was also a time when phage products were manufactured in large scale at 

d’Hérelle’s laboratory in Paris (today known as L’Oréal), and by several existing drug 

giants (Eli Lilly & Co, Parke-Davies, Squibb & Sons and Swan-Myers division of Abbott 

Laboratories, etc.) [7-9]. Twenty years after the official finding of phages, the first 

antibiotic, penicillin, was discovered. This fact, allied with some early clinical failures 

[10] and theoretical concerns led to the abandonment of phage therapy in U.S. and most 

of the Western Europe. Nevertheless, research and therapeutic use of phages persisted in 

the former Soviet Union and Eastern European countries [11-14], where phages continued 

to be regarded as a good treatment method against a wide range of bacterial infectious 

diseases [8, 15].  

 

1.1.1 Isolation, classification and prevalence 
 

It has been hypothesized that wherever bacteria thrive it is possible to find at least one 

phage for each different host. Soil, water, sewage, humans’ and animals’ body (skin, oral 

cavity, saliva, faeces, gut) [16-19] and even the food we eat [20] are just some examples 

from where phages have been isolated. Phages have evolved to survive harsh 

environments like extreme temperatures [up to 95°C (hotsprings)] and pH values as low 

as 1.3 [21].  

There is a diversity of phages spread worldwide and a vast array of shapes, sizes, 

capsid symmetries and structures. Their genomes can be either DNA or RNA and single 

stranded (ss) or double stranded (ds). Phage classification has been assigned to the 

International Committee for Taxonomy of Viruses (ICTV) that organizes phages into 
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different families of the Caudovirales order (Table 1.1). The ICTV classification is based 

mainly on morphological analysis, nucleic acid type and host organism. However, other 

properties, regularly updated by ICTV, such as: physico-chemical, biological, protein 

amount and size, lipid content and characteristics, among others standards, are equally 

used for phage classification. 

 
Table 1.1 – ICTV classification of Caudovirales phages. 

 
Family Nucleic acid Characteristics Morphology 

Myoviridae Linear dsDNA Non-enveloped, contractile tail 

 

Siphoviridae Linear dsDNA Non-enveloped, long non- contractile tail

Podoviridae Linear dsDNA Non-enveloped, short non-contractile tail

Corticoviridae Circular dsDNA Non-enveloped, isometric 
 

Tectiviridae Linear dsDNA Non-enveloped, isometric 
 

Lipothrixviridae Linear dsDNA Enveloped, rod-shaped  
Plasmaviridae Circular dsDNA Enveloped, pleomorphic 

 
Rudiviridae Linear dsDNA Non-enveloped, rod-shaped  

Fuselloviridae Circular dsDNA Non-enveloped, lemon shaped  
Inoviridae Circular ssDNA Non-enveloped, filamentous 

Microviridae Circular ssDNA Non-enveloped, isomatric 
 

Leviviridae Linear ssDNA Non-enveloped, isometric 
 

Cystoviridae Segmented dsRNA Enveloped, spherical 
 

 
It is estimated that 96% of all phages in the world belong to one of the three groups of 

tailed phages. These three phage groups essentially differ in the tail type they possess –

contractile or non-contractile and long or short. Among the less common phage families, 

some formed by only one element, are phages with polyhedral, filamentous, and 

pleomorphic morphology.  

The ICTV taxonomical system requires always electron microscopy (EM) 

visualization however this doesn’t allow the classification of the numerous prophage 

genomes that are found within the sequenced microbial genomes. Recently, a new 
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strategy for phage classification has become popular and relies on sequencinf of the phage 

genomes. A phage proteomic tree has been assembled with data of several sequenced 

phage genomes and this tree organizes phages relative to both their near neighbors and to 

all other phages in the database [22]. All predicted protein sequences present in the 

genomes are extremely useful for phage grouping, independently, whether the common 

protein pool occurred from a common ancestor or via lateral transfer. The proteins, which 

are conserved in all members of a specific group, can be regarded as genetic markers for 

their respective groups and therefore can be used to classify numerous unknown 

representatives in the environment and allow their distribution whitin the distinct groups 

of the phage proteomic tree. However, some discrepancies between the two classification 

strategies, the genome-based and the morphological taxonomic classification by ICTV, 

have been discovered. For instance, S. typhimurium phage φP22, a Podoviridae according 

to ICTV standards, revealed resemblance, at genomical level, to Siphophage λ-like 

phages. Also, the enteric phage φPRD1 described as Tectiviridae (ICTV) groups 

genomically with the PZA-like Podophages [22].  

The estimated global phage population size is extraordinarily high. For instance, it is 

presumed that aquatic habitats have total phage numbers above 1031 [16, 23]; terrestrial 

ecosystems have revealed 107 viruses per gram of soil [16] and sewage present total 

phage numbers in the range of 108-1010 per milliliter [24]. It has also been shown that 

phages clearly outnumber bacteria in essentially all studied environments [16, 18, 20] and 

are hypothesized to be the predominant lifeform in biosphere.  

 

1.1.2 Life cycles 
 

Phages, like all other viruses are obligate intracellular parasites and thus, in order to 

replicate they require a specific host. Outside of a host, phage particles are just inert 

packages that protect the genome from physical, chemical and enzymatic damage until 

the vital nucleic acid is delivered into a susceptible host. Phages carry their genetic 

information either in the form of DNA or RNA. Phage contact with a host bacterium 

occurs via their tails and tips that recognize the necessary receptors (carbohydrate, protein 

and lipopolysaccharide molecules and flagella) that are present on the hosts’ surface. 

Most phages are highly specific for their receptors and there is poor or no interaction with 

receptors with slightly different structures. This high specificity is the basis of phage 
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typing methods that are widely used for the identification of bacterial species or 

subspecies [25].  

 

Lytic phage infection 

The lytic phage pathway starts when the virion interacts with the hosts’ cell surface 

receptor molecules. After phage adsorption to these molecules, the cell wall is made 

penetrable and the nucleic acid is transported into the cell, whereas the capsid remains 

outside the cell. Inside the host occur several steps which include gene expression, 

genome replication and morphogenesis – i.e. the formation of the capsids (and tails) and 

the packaging of the genomes into the capsids (Figure 1.1). Phages are reproduced very 

quickly, forming new virion particles and this reproduction phase ends with the lysis of 

bacteria. With the host lysis, hundreds of new phages are released from each infected 

bacteria [26]. The number of new phages produced, or progeny, depends on the species 

and conditions, nevertheless each “parent” phage is able to produce in average 50 - 200 

“daughter” phages per lytic cycle [27]. Lytic phage infection results in clear plaques on 

the respective host bacterial lawns. 

 

 
Figure 1.1 - Lytic and lysogenic life pathways. (1) adsorption and DNA injection; (2) DNA 

replication; (3) head and tail production; (4) synthesis of holing and lysin; (5) DNA packaging; (7) 

disruption of the cell wall and release of the progeny; (8) circularization of phage DNA; (9) integration of 

the phage DNA into the host genome (from Matsuzaki et al., 2005). 
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Lysogenic phage infection 

Phages with lysogenic growth integrate their prophage into the chromossome or other 

replicon of the host bacteria. This results in a so called lysogenic infection where the 

phage genome is passed, through cell division, to all daughter cells (Figure 1.1). Phages 

with this type of growth cycle form turbid plaques on the susceptible host bacterial lawns. 

When a strain is lysogenised with a phage, it becomes resistant to infection by other 

related phages that share the same immunity group profile or same repressor specificity 

[28]. Some phages represent their prophages as plasmids that are replicated and that are 

allocated to the bacterial daughter cells in strict accord with bacterial replication and 

division. From time to time, the level of repressor concentrations decreases and in these 

cases the transcription of genes whose products are required for the lytic pathway is 

activated. This causes the formation of the phage progeny and cell lysis (spontaneous 

induction). These virulent mutants of temperate phages are not always distinguished from 

virulent phages and do not respond to the presence of a specific cell receptor [29].  

 

1.1.3 Polyvalent and gene-engineered phages  
 

Polyvalent or broad-host range phages can productively infect a variety of bacterial 

host species or strains. In complex natural communities (ex. biofilms), the opportunities 

for an effective viral reproduction are increased when phages can profit from a more 

varied potential host range [30]. There is a diversity of polyvalent phages for distinct host 

bacterium described in literature (Table 1.2). This illustrates that polyvalent types of 

phages can be readily isolated from complex natural microbial communities. These 

polyvalent phages can be extremely useful in animal therapy and prophylaxis or even for 

reduction of pathogen or spoilage bacterial loads in food products as one single phage 

will be able to lyse more strains than a non-polyvalent phage. Nevertheless, in practice 

these wide host range phages will most likely disappear after several applications, due to 

the emergence of phage-resistant bacterial mutants. 
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Table 1.2 – Examples of polyvalent phages described in literature. 
 
Bacteria Polyvalent phage name (reference) 

A. aerogenes, E. coli, 

K. Pneumoniae 

φmp [31] 

Campylobacter   CP8, CP34 [32] 

Enterococcus faecalis   ϕEF24C  [33] 

several enteric species 

+ E. coli 

P1 [34] 

E. coli, mycobacterium P1 [35] 

E. coli Mu [36] 

E. coli, Klebsiella, 

Salmonella 

[37] 

E. coli, P. aeruginosa BHR1, BHR2 [30] 

E. coli, S. natans BHR3, BHR4, BHR5 [30] 

Salmonella O-1 [38]; st104a and st104b [39] 

S. natans,  

P. aeruginosa 

SN-1, SN-2, SN-X, SN-T [30] 

Staphylococcus spp. P14, S3K, Muscae [40]; 06, 40, 58 [41]; Gratia [42]; A/3, A/5, f200, X, 

PK [43]; Sb-1 [44,45]; K [46,47]; A, EW, J10, J11, K1, K2 [48]; P1 [49];

φ812, SK311, ϕ131 [50] 

V. vulnificus A-9, J-7, VBNO, 304C, MO6-24 [51]¸ 71A-6 [52] 

 

There is a surprisingly large number of polyvalent phages reported for Staphylococcus 

spp. (Table 1.2) and it is particularly remarkable that they all belong to the same family of 

phages – the Myoviridae [53]. Novick suggests that all these polyvalent staphylococcal 

phages adsorb to the same receptor which is located in the peptidoglycan–teichoic acid 

complex in the cell wall [54]. Thus, the differences in host susceptibility are only related 

to post-adsorption phenomena.   

Gene-engineering phages is attracting worldwide attention and will most likely 

become an integral part of phage therapy. This field of phage research is still recent, 

however, astonishing results have been reported. For instance, T4 phage has been 

modified by replacing the tail fibers to change the adsorption specificity of the phage [55, 

56]. This modification increased the host range, increasing the potential of phage 

application. Filamentous phage M13 has been improved and modified to suppress 

Helicobacter pylori’s growth and to deliver antimicrobial agents to E. coli bacteria [57, 
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58]. Another example of a gene-engineered phage was described by Hagens et al. (2004) 

that succeeded in producing a stable, efficient, and safe therapeutic phage for P. 

aeruginosa through modification of phage Pf3R in order to minimize the hazardous effect 

caused by endotoxin release [59]. Modified filamentous phages (f1.K) can also serve as 

an alternative to traditional carrier proteins for synthetic peptides, carbohydrates and 

haptens [60]. Lu and Collins improved the characteristics of T7 phage to better attack 

biofilms by modifying the phage to express a biofilm-degrading enzyme, while the phage 

replicates inside the host. The refactored T7 phage can thus simultaneously attack the 

bacterial biofilm cells and degrade, in large extent, the polymeric matrix of biofilms [61].  

Besides filamentous phages, the T-odd phages of T7 and T3 type are the most likely 

candidates for gene engineering. These phages are represented in various bacterial species 

and families (ex. Escherichia, Pseudomonas, Klebsiella, Serratia, Citrobacter) and once 

the phages have suffered modification they will probably allow the expression of killing 

genes in various bacterial species. Also, T7 and T3 have small genomes and high rates of 

phage development. Their small genome size are an advantage as they will not allow the 

transfer of extended fragments of chromosome DNA carrying several pathogenity islands 

[29].  

 

1.1.4 Bacterial resistance to phages 
 

Bacteria can become resistant to phages when: a disturbance occurs during the phage 

development, through specific mechanisms to protect themselves against the invasion of 

foreign DNA, genetic exchange with other bacteria, acquisition of some plasmids, and 

lysogenic conversion [29, 62]. Disturbance during phage development can occur through 

loss or change by mutation of the hosts’ receptor molecules to which phages adsorb. In 

these cases, cells become refractory to a phage that used to be able to infect them [29,62]. 

Disturbance can also occur after phage genome injection into a host by its degradation 

with bacterial DNases at different stages of intracellular biosynthesis (replication, 

transcription, translation, phage particle maturation), and, finally, because of the blocked 

lysis and progeny release [29]. This phenomenon is named restriction-modification 

immunity [63].  

Bacterial protection against the invasion of foreign DNA is based on the modification 

of the host’s DNA by methylation. This modification occurs at specific points on the 

DNA sequence which concomitantly will give protection to cleavage by host specific 
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restriction endonucleases. Host-mediated restriction results in the cleavage of all foreign 

DNA which does not carry the corresponding methylation pattern. Some unmodified 

phage genomes avoid host-mediated restriction and, on being replicated, become 

modified. This enables them to evade restriction by a particular host 

restriction/modification system in subsequent infective cycles [21]. In any circumstances, 

the development of cross-resistance has never been reported. Thus, a bacterium that 

becomes resistant to a specific phage will still remain sensitive to other phages (ex. E. coli 

resistant to λ is still sensitive to T7).  

There are also situations in which the evolution of phage-resistant bacteria could be 

positive. The host receptors to which phage adsorb can be capsules or other virulence 

determinants and the development of phage resistance would immediately reduce 

virulence [58, 64-66]. In these cases, resistance to phages would create mutant bacteria 

that would no longer be capable of causing disease. Furthermore, as long as phages are 

present as a selective agent, the resistant, avirulent mutants would probably replace the 

virulent forms. Thus, phages could even be chosen specifically for this property.  

    

1.2 Bacterial biofilms 
 

Direct observations of microbial biofilms have been reported since the first 

microscopes were built. For instance, the Dutch researcher Antoine van Leuvenhoek 

(1632-1723) observed this type of lifeform when examining the “scuff” from his teeth 

using a self constructed microscope capable of enlargements of up to five hundred times. 

Biofilms are found in extreme environments such as hydrothermal vents, nuclear power 

plants [67], oil-recovery industries and even desert boulders [68]. 

 Since the first biofilm observations, the definition of biofilm has changed 

considerably. The most recent definition states that a biofilm is a multicellular community 

composed of prokaryotic and/or eukaryotic cells embedded in a matrix composed, at least 

partially, of material synthesized by the sessile cells in the community [68].  

In nature, many species of bacteria, fungi, protozoa and algae form biofilms. 

However, bacteria have received the most attention and it is estimated that 99% of the 

bacteria present in natural and pathogenic ecosystems can grow in these metabolically 

integrated communities.  
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1.2.1 Biofilm formation stages 
 

The formation of a biofilm requires a series of discrete and well regulated steps 

(Figure 1.2). Biofilm formation begins with adsorption of macromolecules (proteins, 

polysaccharides, and humic acids) and smaller molecules (fatty acids and lipids) at 

surfaces. Adsorbed molecules form conditioning films that alter physiochemical 

characteristics of the interface, including surface hydrophobicity and electrical charge. 

After the surface conditioning step, microorganisms start to adhere. Adhesion can roughly 

be divided into two phases: the reversible and the irreversible. The reversible phase 

essentially includes long-distance interactions such as electrostatic, hydrophobic 

interactions and Van der Waals forces while in the irreversible phase are various short 

range forces (dipole-dipole, hydrophobic, ion-dipole, ion-ion, covalent bonds and 

hydrogen interaction). The predominant surface colonizers are planktonic bacteria. 

Nevertheless, aggregates of cells detached from biofilms can also start biofilm re-growth 

when trapped in surface irregularities.  

 

 
 

Figure 1.2 - Biofilm formation steps, from attachment of single cells, maturation of the biofilm 

and release through cluster detachment and seeding dispersal (reprinted with permission of the Center for 

Biofilm Engineering, Montana State University, Bozeman, U.S.A). 

 

Cells adhered to surfaces start modifying their planktonic gene expression to the 

biofilm phenotype to suit the precise micro-niche in which they find themselves [69]. 



14 
 

Adherent cells also change the physical connections they have with the surface and with 

neighboring cells by the secretion of polysaccharides and other matrix components 

(Figure 1.2). Furthermore, cells can change their phenotype and even the position in the 

community in order to reach a scenario of better survival possibility. In monospecies and 

mixed-species biofilms, the position of individual bacterial cells does not occur randomly. 

It appears that some undetermined species-specific rules and certain classes of pili can 

dictate cell positioning. The volume and extent of biofilms are fully dependent on the 

nutritional and environmental factors present (pH, temperature, nature of biotic and 

abiotic surface, etc.) and the attachment and biofilm formation by microorganisms is 

influenced also by signals from adjacent cooperative and competitive bacterial species 

that influence cell positioning and the activity in the community [68, 70].  

When cells detach from biofilms, mobile post-adhesion behaviors can be observed, 

during which cells will preferably associate with cells of the same and metabolically 

cooperative species where they will start forming aggregates. Detachment depends of 

factors such as biofilm thickness, fluid shear stress, nutrient availability, and fluid 

velocity [70].  

There are no limits to the variety of cellular arrangements in real biofilms. The 

reported biofilm architectures are very diverse, from the tower mushroom and water 

channel structures, to tower, bridges and rosettes [71], stump and mushroom cap 

architectures [72]. Cells can move within the biofilms and causing a distinct biofilm 

configuration. 

 

1.2.2 Advantages of living in a biofilm community  
 

Microorganisms adopt the biofilm mode of growth as a survival strategy to resist 

against environmental stresses and inactivation caused by conventional methods such as 

antibiotics and disinfectants, which are otherwise effective against free-floating cells [73-

83]. The success of an antimicrobial agent is dependent upon its ability to inactivate and 

remove biofilm organisms. Several factors influence biofilm tolerance to antimicrobial 

compounds. For instance, common antimicrobial agents are produced for fast-growing the 

bacteria and thus bacteria on the center of a microcolony are spared as they are slow-

growing for there is less oxygen and nutrients available. Also, intercellular signals can 

alter the physiology of the biofilms and this causes members to produce molecular pumps 

that expel antibiotics from the cells and allow the community to grow even in the 
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presence of a drug. Moreover, positively charged antimicrobials can bind to the 

negatively charged biofilm matrix and this prevents the agents from reaching the cells 

within a colony. Specialized persister cells do not grow in the presence of an antibiotic 

however, these cells are not killed. Furthermore, the population diversity can improve the 

survival chances of some cells [84]. Thus, the inherent resistance of bacteria in biofilms 

can lead to cycles of biofilm re-growth after the system disinfection procedures. 

Besides protection against antimicrobial agents, there are other advantages of living in 

a biofilm community such as: increased availability of nutrients for growth; increased 

binding of water molecules, reducing the possibility of dehydration; proximity to progeny 

and other bacteria, facilitating plasmid transfer [70]. 

1.2.3 Impact of biofilms in food and dairy industry 
 

In most food and dairy industries, pathogenic and spoilage bacteria tend to attach to 

equipment surfaces and form biofilms. These biofilms are important reservoirs of 

microbial contamination that may lead to equipment damage, energy losses, spoilage of 

finished products and transmission of food pathogen that may cause diseases. Bacterial 

biofilm formation in food industries has been the focus of some reviews [79, 85, 86] but 

still has not received enough attention within the food and dairy processing areas. 

Biofilms tend to form on the surfaces of equipment used for example in food handling, 

storage, or processing, especially in sites that are not easy to clean or sanitize (ex. dead 

ends, joints, corners, valves, and gaskets in tubing systems). Corroded areas of equipment 

surfaces are also ideal places for the development of biofilms. Besides stainless steel and 

Teflon, which are common equipment materials in industrial environments, biofilms are 

also found on a diversity of packaging and other equipment surfaces such as plastic, 

rubber, glass, wood etc. and they can exist also in food products [87].  

During industrial process operation it is often difficult to detect where the biofilms 

reside, which makes biofilm treatment a challenging task. It is therefore important to 

understand the interactions between biofilms and the surfaces they are found on, in order 

to design adequate cleaning and disinfection methods to provide more effective measures 

for biofilm removal and prevention [86]. Nowadays, limiting the growth of microbes is 

accomplished through: a good production hygiene, a rational running of the process line, 

and a well designed use of biocides and disinfectants [88]. Effective cleaning and 

disinfection should remove all undesirable materials from the surfaces (microorganisms, 

soil, foreign bodies and cleaning chemicals). The cleaning steps usually involve wetting 
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of the soil and surfaces with the cleaning agent(s); reaction of the chemical agent to 

facilitate removal from the surface; prevention of re-deposition and disinfection of 

residual microorganisms [89, 90]. However, the presence of biofilms is highly prevalent 

and difficult to completely eliminate. Biofilms have been found even on surfaces where 

acceptable cleaning procedures have been employed [89, 91-94] which compromises the 

sanitation standards of food processing environments. 

 

1.3 Phage applications  
 

In recent years, there has been an increase of bacterial resistance to one or a number 

of antimicrobial agents. This has once again drawn attention to phage therapy and to a re-

appraisal of this biological therapeutic alternative for killing pathogenic bacteria. The 

procedure for using phages as therapeutic agents is rather simple and phages have many 

advantages over antimicrobial agents such as: specificity against a host or host range not 

affecting the normal microflora; self-replication capability at the infection site, as long as 

the host bacteria is present; no serious side effects have ever been reported, the production 

is simple and inexpensive and phages are environmentally friendly.      

 

Human therapy 

Nearly since phage discovery, these biological agents have been continuously applied 

to humans in a small number of countries (Georgia, Poland, Russia). Phages are used to 

treat several diseases such as abscesses, suppurating wounds, vaginitis, acute and chronic 

infections of the upper respiratory tract, etc. Human therapy with phages has been 

performed using phages alone, combining them with other agents such as antibiotics or as 

a last measure after the failure of antibiotics therapy [95-99].  

Recently, human trials are ongoing in UK and USA. In the South West Regional 

Wound Care Center, Lubbock, Texas in USA, phase I trials are being carried out against 

P. aeruginosa, S. aureus and E. coli and in the Great Ormond Street hospital in London, 

UK, phase II phage trials are being done against otitis infections caused by P. aeruginosa.  

 

Food industry 

Food industry faces a variety of challenges to keep products safe and free of 

pathogenic microorganisms for the sake of the consumers and the product itself. 

However, annually, there are numerous reports of illness, hospitalization and even death 
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of people due to a variety of food-borne pathogens present on the food we eat. There are 

more than 200 different known food-borne pathogens including viruses, bacteria and 

parasites that can cause food-borne illness, along with toxins, chemical contaminants and 

metals. Since some years, the use and research on the field of natural antimicrobial agents 

has increased due to alterations in consumer positions towards the use of antibiotics and 

synthetic preservative agents in food, surface detergents and disinfectants which are 

amongst the leading causes of the increased emergence of antimicrobial resistant bacteria.  

Also, due to consumer demands and trends in the food industry, it is nowadays 

possible to buy ready-to-eat food (e.g. bagged salads, fresh-cut fruits, prepared foods, 

frozen dishes, etc.), that have greatly challenged the food production technologies and 

demanded new strategies for the prevention of food-borne pathogens in the products. 

When food safety measures are not strictly used, mixing and handling of enormous 

volumes of products can increase the spread of microbial contaminants, when present, 

leading to far more episodes of illness. Many fresh-cut produces, acquired on the markets, 

are processed in industrial facilities where cross-contamination with pathogenic bacteria 

from different sources can occur.  

So, recently phages have been studied and applied to food products of animal (Figure 

1.3) and plant (Figure 1.4) origin.  
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Figure 1.3 - Timeline of phage application in animal production or to foods of animal origin. 
 

 

Animals such as poultry, fish and livestock have been infected with phages in order to 

decrease the population of pathogenic bacteria and attempt to minimize animal disease 

[32, 100-109]. The vast majority of the studies reported in this field occur in poultry 

industry where the animals and products (meats, eggs) get frequently contaminated with 

E. coli, Salmonella and Campylobacter. Many of these studies report successful 
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reductions of these pathogens loads with different phages [32, 65, 66, 102-106, 109 - 

110]. For instance, phage treatment of chickens and calves has shown to protect the 

animals against septicemia and meningitis caused by E. coli and to reduce morbility of the 

treated animals compared to control experiments [103-106, 111-115]. Phages also showed 

to delay the appearance of this bacterium and by this mean lengthened the animal life 

period [116]. Chickens treated with Campylobacter jejuni phages showed a decrease in 

the amount of this pathogen in the skin and caecal content and resulted in a delay of C. 

jejuni colonization. The same observations have also been described with Salmonella 

phages [117] and a decrease of this pathogens’ recovery from the carcass rinsing waters 

due to phage application [102]. In animal husbandry, phages can be applied at different 

stages of processing and in all areas where animals contact. Phages have also been 

successfully applied to ruminants (steer, sheep) [118,119], have decreased the mastitis 

episodes by 16.7% in Holstein cows [120], and even have decreased hemorrhagic ascites 

disease and septicemia in ayu and yellowtail fish [108, 121]. Phages have also proved to 

significantly reduce the pathogen loads in cheese [122, 123], frankfurters [124] and even 

in infant formula [125].  

Plant pathogens are rarely dangerous for humans; however they are one of the main 

causes of product loss. Plant pathogens such as Ralstonia solanacearum and 

Pseudomonas syringae cause bacterial wilt, foliar spots and blights and affect a variety of 

products (potato, tobacco, tomato, banana, peanut and soybean). Phage research is 

occurring in horticulture and agriculture (Figure 1.3) and it aims at protecting plants, 

vegetables and fruits from decay and spread of bacterial diseases.   
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Figure 1.4 - Timeline of phage applications in agriculture, horticulture or to foods of plant origin. 

 

The main products to which phages have been applied to are: geranium [126,127], 

tobacco [128], tomato [129, 130], potato [126, 130, 131], mushroom [132], sprouts 

[133]), peach [134] and apple [135]. However, phage application can be compromised 
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due to environmental factors such as sunlight irradiation, especially in the UV zone, 

temperature, desiccation, and exposure to copper bactericides due to their ability to 

destroy the phages applied in the phyllosphere. Studies show that for a successful 

application there are a number of steps that can be carried out. For instance, to mitigate 

the phage population decrease due to UV irradiation exposure, phage applications to 

tomato fields should always be performed in the the early morning, midmorning, early 

afternoon, and late evening. Phage formulas can also be created by mixing phages with 

other components (e.g. skim milk) protecting phages from ambient temperature 

alterations. Non-protected phage formulas were reduced by dissecation after 60 days and 

by fluorescent light after 2 weeks. However, both of these factors had little effect on 

phages mixed with skim milk [126, 129, 130, 136], which shows that phage formulas 

have a high potential as plant disease control agents.  

The vast research carried out with phages and some food products of plant and animal 

origin has led to the fabrication of phage or phage-based products. Today, in animal 

production, animal and plant products, the application of three four products is allowed. 

Two of these phage products, LISTEXTM 100PM and LMP-2, target Listeria 

monocytogenes present in cheese, meat and fish products and both have been approved by 

the US Food and Drug Administration (FDA). Additionally, LISTEXTM 100PM has also 

received the Generally Recognised as Safe (GRAS) status by the FDA and by the United 

States Department of Agriculture (USDA), to be incorporated in food production 

processes. Another phage product named BacWashTM, has been issued a No Objective 

Letter For Use, by the USDA, and it targets Salmonella and E. coli O157:H7. BacWashTM 

phage was especially created to be used on animals prior to slaughter and it can be 

applied as a wash, mist, or sprayed directly to the live animal. The Environmental 

Protection Agency (EPA) approved, in 2005, the product AgriPhageTM for control 

purposes of Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. in 

tomato, and pepper plants among others. This product can decrease bacterial spot and 

speck and it can be used on farms at the pre-harvest level, diluted prior to dispersal and 

can be applied to crops by different means, such as drip irrigation or using ground or 

aerial spray equipment.  
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Biofilm-phage interaction studies 

It is a known fact that biofilms are the predominant bacterial lifestyle in surfaces. 

However, most research with phage is being performed with their planktonic counterparts 

and not with biofilm communities. Since phage discovery, in the beginning of the 20th 

century, the first phage-biofilm study was reported only in 1995 (Figure 1.5).  
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Figure 1.5 – Timeline of studies on interaction of phages with bacterial biofilms. 

 

Different phages have been used to infect a variety of bacterial biofilms (Table 1.3) 

and in general, all these phage-biofilm interaction studies reveal that phages are capable 

of decreasing the bacterial populations. 

The treatment of biofilms using phages is a complex process and only strictly lytic 

phages should be used. Like in phage infection of planktonic cells, there are several 

essential steps that need to occur. The first and crucial step in phage infection is the 

adsorption of phages to the receptors of the target bacteria. The EPS matrix, in which 

bacteria are embedded in, can constitute a problem for phages, as it needs to be penetrated 

so that phages can reach and adsorb to the specific receptors located on the target hosts’ 

surface. However, it has been reported that phages are well capable of penetrating through 

the EPS matrix by diffusion or due to the presence of phage associated enzymes. These 

enzymes have the role of destroying the matrix so that the phages can get in contact with 

lipopolysaccharides, outer membrane proteins or other receptors necessary for the start of 

the host infection [137, 138]. The activity of polysaccharide depolymerase enzymes has 

been reported in biofilms of E. agglomerans infected with phage SF153b and also 

hypothesed, based on the visible degradation observed, in P. fluorescens biofilms infected 

with phage φS1 [131]. 
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Table 1.3 – Phages and bacterial hosts used in biofilm infection experiments. 
 

Year Bacteria / phage Phage Reference

1995 E. coli  T4 [139] 

1996 E. coli, P. aeruginosa  T4, E79 [140] 

1998 E. agglomerans 53b SF153b [137] 

1998 E. agglomerans Ent and 53b   SF153b, φ1.15 [138] 

2001 E. coli K-12  T4 [141] 

2001 P. aeruginosa  F116 [142] 

2001 S. epidermidis   ?phage [143] 

2002 E, cloace and E. agglomerans  11229, φEnt, φ1.15, 
Blackburn, Philipstown 

[144] 

2004 P. fluorescens  φS1 [145] 

2005 E. coli O157:H7  KH1 [146] 

2005 S. maltophilia  C2 [147] 

2006 S. epidermidis  456 [148] 

2006 S. aureus  φ11, φ12 [149] 

2007 S. epidermidis  K [150] 

2007 E. coli TG1  T7 [61] 

2008 S. maltophilia  C2 [151] 

2008 P. fluorescens  φS1 [152] 

 

Although the presence of polysaccharide depolymerase enzymes in phages has been 

reported, this characteristic is not commonly observed in most naturally isolated phages. 

The difficulty in isolating phages possessing EPS degrading enzymes has lead to the re-

construction of phages, such as the T7 [61]. The gene-engineered T7 phage was built 

specifically to express a biofilm-degrading enzyme once the phage starts to infect and 

reproduce daughter particles inside a host. This genetic manipulation of the phage 

resulted in a decrease, about two orders of magnitude superior, of the bacterial biofilms 

when compared to the non-engineered phage.  

Once the adsorption step has occurred, the phages start using the hosts’ machinery to 

produce hundreds of new phage particles that will be released through burst of the host 

cell. These progeny phages can start a new cycle of host infection.  

Phages are capable to kill early stage biofilms (or adhered cells). Sillankorva et al. 

(2008) reported that single cells adhered to glass surfaces of a parallel plate flow chamber 
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during 60 minutes and under laminar flow regime, were efficiently killed with phage φS1. 

Cell removal was fast (20 minutes) and efficient leading to a biomass reduction of 

approximately 90%. Furthermore they reported that surfaces exposed to phages where 

impossible to be re-colonized by the bacteria [131]. Another strategy studied and proven 

to reduce biofilm formation by Staphylococcus epidermidis is the pre-treatment of 

catheter surfaces with phages [148]. 

The proximity of host cells in biofilm communities can be an advantage in biofilm 

treatment using phages, as the released phages stay concentrated in close proximity and 

therefore can start infecting a neighbouring cell much faster than in planktonic cultures 

where cells are not as accessible [153]. 

Despite the ability phages have in reducing the host cells present in biofilms, there are 

several factors which can influence the lytic performance of phages (ex. a change in 

temperature, growth media, flow, the EPS matrix, among other parameters [139, 141 - 

142, 145, 150]) and lead to a decreased phage killing of their target hosts in biofilms. 

Also, the metabolic state of the hosts in biofilms poses a problem for phage treatment as 

exponentially growing cells are faster attacked than cells at the later growth phases [145, 

150, 154].  

Failure of phage infection of biofilms can also be caused by other factors. Doolittle et 

al. have reported that a P. aeruginosa phage was unable to reach the host in the deeper 

layers of a biofilm [140], suggesting that the phage could not penetrate through the 

biofilm matrix. Unsuccessful phage infection can furthermore be due to an inactivation of 

the phages caused by the presence of proteolytic enzymes in the biofilm matrix, however 

this is clearly a host dependent parameter which will reflect in different matrix 

components excreted.    

Overall, the biofilm-phage interaction studies have demonstrated that single species 

biofilms can be controlled using lytic phages. Although total eradication was not observed 

in most of the studies reported, in general all these experiments describe a significant 

biomass decrease and cell number reduction [61, 137, 139, 140, 144, 148, 150, 152, 155]. 

Prolonged phage experiments can lead to the appearance of bacterial resistance. Tait et al. 

(2002) reported that after an extended exposure of cells to phages, the bacteria and phage 

started co-existing in the biofilm communities. 
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ATCTATCACGCCCTACAGCCGCCGTTTGACGAGTGATTTAAAAACCCTCAC
CAAAACAGGGACCACCGCGTCCCCTTCCCGATGCCTCAAAGGAGACTACTT
CCATGGCAAAACTCATCATCGCCCTGACTTCCGTTCGCGGTCGCAGCGGCA
AAGACACCTTGATCGAACAGTTGCGCCTTGCTGGTCATGACGTGGCCCGTG
TGGCCTTCGGTGACACCCTCAAGGAAGCCTGTGCGGATGACCTTCAGTCCT
ACTGGAATGAGCGCGAGAAGTTGCTCGACTGGTTCCACAGCGACATGAAG
GACGTGCGTCAAGCAACCTTGGCGATCCGTGAGATCCCTGAAGGTCCGTAC
AAAGAGTGGCTGATGTTCAAGGCCCCTCGACCGACCCCTGAAGGCGACTG
GATGAAGGACTTGCGCACACCGCGTTGGCACCTTCAGCAATACGGCACCG
AGTACCGCCGTGGTTTCCTTAAGGACCCGGATGTCTGGCTGGATGCAGGCA
TGAAGGTCGTTGAGGGCACCGAGTCCGAGATCGTTGTGGTCTCCGACCTGC
GCCAGCGTAACGAGTACCACCGTCTTGCCGATGCTGGTGCTAAGTTCGTGC
GCCTTCATCGCATGTGGTTCATCCCCGGCGTTGACGATGCGGAATACCACA
TCACTGACCTCGACCTAATCGGCCACTTCATGGACGCCTGCGCGTTCAACC
ACTGGGGCAACCCACAAGGCATGGTCACTCAACTGAAAGAGCAAGGAGTC
CTGAAATGAAACTGTTCAAAGCACAAGTTGGTAGCGAGTGGGTCCCGATCT
ACGCGAAGGACCTCGACGAAGCATTGGCGCTGGCCGAAGAAGAATACGGT
GCGGCTGCTGTTGGCCGTGTGAAGCCGGAGGTGAACGAATGAACCGCGCC
CAAGGCAACACCCGGTCCAAGCCTGATGGCTTCCTGCATATCCAGAACTTC
ACGGTCACCAAGCACGCTGGCATCGCTGGCGATGGTGCAGCCGATGATTC
ATCCAGCGATGCAGGTAGCGACGAGAAGGGCCCATATCCAGAACTTCACG
GTCACCAAGCACGCTGGCATCGCTGGCGATGGTGCAGCCGATGATTCATCC
AGCGATGCAGGTAGCGACGAGAAGGGCCCATATCCAGAACTTCACGGTCA
CCAAGCACGCTGGCATCGCTGGCGATGGTGCAGCCGATGATTCATCCAGCG
ATGCAGGTAGCGACGAGAAGGGCCATGACATTATCCCAAGCACGCTGGCA
TCGCTGGCGATGGTGCAGCCGATGATTCATCCAGCGATGCAGGTAGCGACC
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2.1 Isolation and characterization of phage φIBB-PF7A for Pseudomonas 
fluorescens 
 
 
 
 
 

 

Summary 
 
Background: Despite the proven relevance of Pseudomonas fluorescens as a 

spoilage microorganism in milk related and refrigerated food products and the 

recognized potential of bacteriophages as sanitation agents, so far no phages 

specific for P. fluorescens have been closely characterized in view of their lytic 

efficiency. This work describes the isolation and characterization of a lytic 

phage capable to infect a variety of P. fluorescens strains isolated from 

Portuguese and United States dairy industries.  

Results: Several phages were isolated which showed a different host spectrum 

and efficiency of lysis. One of the phages, phage φIBB-PF7, was studied in 

detail due to its efficient lysis of a wide spectrum of P. fluorescens strains and 

ribotypes. Phage φIBB-PF7 with a head diameter of about 63 nm and a tail size 

of about 13 × 8 nm belongs morphologically to the Podoviridae family and 

resembles a typical T7-like phage, as analyzed by transmission electron 

microscopy (TEM). The phage growth cycle with a detected latent period of 15 

min, an eclipse period of 10 min, a burst size of 153 plaque forming units per 

infected cell, its genome size of approximately 42 kbp, and the size and N-

terminal sequence of one of the protein bands which gave similarity to the 

major capsid protein 10A are consistent with this classification. 

Conclusions: The isolated T7-like phage, phage φIBB-PF7A, due to its wide 

host range for different P. fluorescens strains and its fast and efficient lysis may 

be a good candidate to be used as a sanitation agent to control the prevalence 

of spoilage causing P. fluorescens strains in dairy and food related 

environments. 

 

The work presented in this sub-chapter was published in BMC Biotechnology 
8:80 (27 of October 2008). 
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Background 
 

Pseudomonas fluorescens is a Gram-negative psychrotrophic bacterium that can be 

divided into five biovars (I through V). This bacterium has frequently been isolated from 

milk and food related environments and characterized due to its relevant spoilage activity 

[1-5].  

Studies with phages as control organisms of bacterial infections have greatly 

increased in the recent years mainly due to the emergence of bacterial resistance to a vast 

number of antimicrobial agents. Phage therapy has again become a field worth of 

attention after years of abandonment in the western world. Phages application to humans 

and to animals is already being performed, nevertheless there is hardly any literature on 

studies concerning industrial environments and the use of phages as sanitation agents. 

Although the spoilage ability of P. fluorescens is well known, there are no studies 

involving the use of phages capable of infecting food related isolates of this host species. 

Essentially, the work on Pseudomonad phages is concentrated on P. aeruginosa phages 

due to the clinical relevance of this strain, which is an opportunistic pathogen affecting 

mainly immunocompromised people and those suffering from cystic fibroses. There is 

some work done with P. fluorescens and phages, nevertheless this work is focused on co-

evolution studies [6-8]. So far, bacteriophages for P. fluorescens were never closer 

characterized in view of their physico-chemical, morphological, and life cycle properties. 

Here it is described the isolation of phages for the food spoilage bacterium P. 

fluorescens and the further characterization of one phage with a very high lytic efficiency. 

The data of this work indicate that this effective phage belongs to the T7-group of 

bacteriophages and that it may be a good sanitizing agent for control of environments 

where P. fluorescens may provoke a quality risk. 
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Results 
 
Isolation and host range characterization of promising lytic phages 

The aim of this work was to isolate, select and characterize an effective lytic broad-

host range bacteriophage for a wider range of P. fluorescens strains. Therefore, initially 

several phages were isolated from a wastewater treatment plant that receives effluents 

from different dairy industries by enrichment with different test species of P. fluorescens, 

which had been earlier isolated from Portuguese and United States dairy plants including 

different ribotypes and strains with different enzymatic activities (see Table 2.1).  

 
Table 2.1. Characteristics of dairy Pseudomonas spp. used. Isolate characteristics include origin, 

ribotypes and extracellular enzyme production [Protease (Prot), Lecithinase (Le) and Lipase (Li)]. 

Strain Species  Origin Ribotype Prot/ Le/ Li Reference 

28 P. fluorescens RSMT * + / * / *  PT unpublished 

33 P. fluorescens RSMT * + / * / * PT unpublished 

33B P. fluorescens RSMT * + / * / * PT unpublished 

35 P. fluorescens RSMT * + / * / * PT unpublished 

37 P. fluorescens RSMT * + / * / * PT unpublished 

37B P. fluorescens RSMT * + / * / * PT unpublished 

7 P. fluorescens Teat cup shell * * / * / * PT unpublished 

8 P. fluorescens Raw milk * * / * / * PT unpublished 

D3-149‡ P. fluorescens Raw milk 409-S-3 + / + / + [3] 

D3-197‡ P. fluorescens Processed milk 422-S-2 + / - / - [3] 

D3-331‡ P. fluorescens Floor 57-S-8 + / + / + [3] 

D3-175‡ P. fluorescens Processed milk 408-S-8 + / + / + [3] 

D1-045‡ P. fluorescens Processed milk 50-S-8 + / + / + [10] 

B1-020‡ P. fluorescens Potato isolate 57-S-5 - / - / + [10] 

D1-027‡ P. fulva Raw milk 53-S-5 - / - / - [10] 

D2-160‡ P. putida Raw milk 112-S-7 - / - / - [10] 

B1-041‡ P. putida Raw milk 50-S-7 - / - / - [10] 

D1-026‡ P. putida Raw milk 94-S-6 - / - / - [10] 

D1-046‡ P. fragi Raw milk 72-S-3 - / - / - [10] 

B1-020‡ P. fragi Raw milk 50-S-6 - / - / - [10] 

RSMT- rubber short milk tube that connects the teatcup assemblies to the claw; * not performed, + positive 

for enzyme activity, - negative for enzyme activity; ‡ kindly provided by K. Boor (Milk Quality 

Improvement Program, Dep. of Food Science, Cornell University, Ithaka, N.Y.).  
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Not all P. fluorescens are capable of producing degradative defects in processed milk. 

Therefore some isolates were included in this study from New York dairy industries 

which were able to produce extracellular enzymes that are problematic for milk products 

and cause their respective spoilage [3, 9, 10]. All NY P. fluorescens isolates were positive 

for protease, lipase, and lecithinase activity (Table 2.1), with exception of two of the 

strains, D3-197 and B1-020 (a potato isolate), which were able to produce only one type 

of enzyme, protease or lipase, respectively. Other Pseudomonas species unable to 

produce extracellular enzymes, provided by the Department of Food Science from the 

Cornell University, New York were also tested.   

Altogether 17 phages were isolated and showed lytic activity against some of the 

different bacterial strains (Table 2.2). All the isolated phages were used in further 

screening assays using the phage spot test on bacterial lawns of the other strains in order 

is to characterize the host range of each phage and to select a phage with the broadest host 

range of P. fluorescens strains. This screening procedure is the basis of phage typing 

methods and it enabled the differentiation of 14 different P. fluorescens strains as they 

resulted in dissimilar phage screenings profiles. According to the phage lytic profiles, the 

phages were divided into 11 different groups based on the host susceptibility, as indicated 

on the bottom of Table 2.2. Each group is characterized by the same lytic profile of its 

phage for the host strains, which either were sensitive, by showing clear or turbid plaques, 

or resistant (no phage plaques observed) to the distinct phage. From these results it seems 

very likely that the phages belonging to different groups also represent different phages. 

Several phages were able to lyse most of the P. fluorescens isolates; however some 

phages were more host-specific, such as the phages isolated for P. fluorescens strains D3-

331 and 33. Phages φIBB-D3-331A to C did only form clear plaques on the P. 

fluorescens isolate D3-331 and a turbid plaque in one more isolate. Phages φIBB-33B to 

D caused turbid plaques on the host which was used for isolation and only φIBB-33D was 

additionally able to produce clear plaques on host strain 8. The phages with the widest 

host range belonged to group 1 and where isolated with the P. fluorescens strains number 

7 and 8 respectively. From the phage group 1, phage φIBB-PF7A had the largest plaque 

diameter. Furthermore, the plaques of φIBB-PF8 in some isolates were more turbid. 

Therefore, phage φIBB-PF7A was selected for further characterization studies and also 

tested for lysis ability in other characterized P. fluorescens isolates provided by the 

Cornell University (NY).   
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Phage φIBB-PF7A was tested with other Pseudomonas species and it was verified that 

it was not able to form plaques on P. putida, P. fragi and P. fulva, which are species 

unable to produce extracellular enzymes. 

In summary, Phage φIBB-PF7A was able to infect positively 5 different ribotypes of 

P. fluorescens, ribotypes 409-S-3, 422-S-2, 408-S-8, 50-S-8, and 57-S-5 respectively 

(Table 2.1). Ribotypes 50-S-8 and 57-S-5 belong to P. fluorescens biovar II and the 

respective isolates B1-020 and D1-045 cluster between the P. fluorescens and P. putida 

lineages in the so-called B3 cluster. The ribotypes 409-S-3, 408-S-8 and 422-S-2 were not 

classified according to the biovar to which they belong. Due to its ability to form clear 

large plaques on a wide host range of P. fluorescens strains, φIBB-PF7A may be an 

interesting candidate for sanitizing applications and therefore was further characterized. 

 

Morphology of the phage particles 

Morphological characterization of phages using Transmission Electron Microscopy 

(TEM), one of the most used methods to classify phages, showed that phage φIBB-PF7A 

has a pentagonal outline indicating an icosahedral nature (Figure 2.1).  

 
 

 

Figure 2.1. Transmission electron micrograph of P. fluorescens phage 

φIBB-PF7A. 

 

 

 

According to the TEM micrograph, phage φIBB-PF7A belongs to the Podoviridae 

family, which is characterized by phages with a short non-contractile tail. Phage φIBB-

PF7A has a very short tail most likely belonging to type C in Bradley’s classification 

[11]. Furthermore, the diameters of phage φIBB-PF7A’s icosahedral capsid and tail 

length (Table 2.3) are similar to typical morphological values observed in members of the 

T7 phage group (H.-W. Ackermann, personal communication). 
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Table 2.2. Sensitivity of phages to different P. fluorescens isolates from dairy industry. 

Isolate 

Phage φIBB- 
PF7

A 
PF7

B 
PF7

C 
PF7

D 
PF8 PF37

B 
PF33

A 
PF33

B 
PF33

C 
PF33

D 
D3-

197A 
D3-

197B 
D3-

149A 
D3-

149B 
D3-

331A 
D3-

331B 
D3-

331C 
7 C C C C C C - - - - C C T T - - - 
8 C C C C C C C - - C C C C C - - - 
28 C C C C C C C - - - T T C C - - - 
33 C C C C C - C T T T T - - C T - - 
33B C C C C C C C - - - T T - - - - - 
35 C C C C C C C - - - - - C - - T T 
37 T T T T TT - - - - - - - - - - - -
37B C C C C C - - - - - T - - - - - - 
D3-149 C C C C C C - - - - C C C C - - - 
D3-197 T T T T TT C - - - - C C - - - - - 
D3-331 - - - - - - - - - - - - - - C C C 
D3-175 C * * * * * * * * * * * * * * * * 
B1-020 C * * * * * * * * * * * * * * * * 
D1-045 C * * * * * * * * * * * * * * * * 
D1-027 - * * * * * * * * * * * * * * * * 
D2-160 - * * * * * * * * * * * * * * * * 
B1-041 - * * * * * * * * * * * * * * * * 
D2-026 - * * * * * * * * * * * * * * * * 
D1-046 - * * * * * * * * * * * * * * * * 
B1-020 - * * * * * * * * * * * * * * * * 

Phage 
group 

1 2 3 4 5 6 7 8 9 10 11 

* not tested, C - clear phage plaque, T - turbid phage plaque , TT – very turbid, – no phage plaque 
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Table 2.3. Phage φIBB-PF7A plaque features, life cycle parameters and morphological 

characteristics determined from TEM micrographs. 

Plaque Morphology* Life Cycle 

Diameter: 4–6 mm 

Halo size: 0.5 mm 

Head size: 63 nm 

Tail size: 13nm × 8nm, 

tapering 

Latent period: 15 min 

Adsorption rate: 5.58 × 10-10 ml min-1 

Eclipse period: 10 min 

Rise period: 25 min 

Burst size: 153 PFU per infected cell 

* Determinations performed by Dr. H. W. Ackermann, Laval University, Quebec, Canada. 
 

Phage DNA studies 

The isolation of phage DNA and the application of restriction 

enzymes allows the approximate determination of the genomic size of 

phages and evaluate if the size is consistent with the T7 classification 

proposed through the TEM observation. The restriction of phage 

φIBB-PF7A DNA was performed with EcoRI and HindIII. The sum of 

the fragments resulted in the following genomic sizes: 41,945 bp and 

41,870 bp with EcoRI and HindIII, respectively (Figure 2.2). The 

approximate genomic size of φIBB-PF7A with EcoRI and HindIII is 

approximately 42 kbp which is in the range of T7 phages that varies 

between 38,208 bp and 45,874 bp as further discussed below. 
 

 

Figure 2.2. Restriction analysis of phage φIBB-PF7A DNA. Undigested phage 

DNA and phage DNA digested with EcoRI and HindIII. Lanes M1 and M2: 1kb 

and lambda mix marker DNA ladders. 

 

 

Analysis of phage structural proteins 

To further characterize φIBB-PF7A, its protein composition was analyzed by SDS-

PAGE and 3 bands were N-terminally sequenced. This allows the observation of the 

number of structural proteins present on this phage and to evaluate the similarities with 

protein profiles of known T7 structural proteins.  

At least 16 bands can be clearly distinguished in the gradient gel (Figure 2.3 and 

Table 2.4) ranging from approximately 16 to 140 kDa. The most predominant polypeptide 
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band appeared at a size of approximately 45 kDa. This band (p3) could be assigned to the 

T7 major capsid protein 10A by its size and by its N-terminal sequence determination of 

the first 10 amino acid residues. This protein has 80% of sequence homology with 

φYeO3-12 and T3 phages, which are both members of the T7 phage supergroup. Also 

four other protein bands could be correlated with T7 structural proteins: T7 tail fiber 

protein in the monomeric form (p1 in Figure 2.3); head-tail connector protein (p2), capsid 

assembly protein (p4), and also the internal virion protein B (p5) [12, 13]. One of these 

four bands, the 63.1 kDa band (p1), gave a signal in the N-terminal sequence 

determination. The 63.1 kDa band resulted in 8 clearly determined amino acid residues 

and was 80% similar to a hypothetical protein of Thalassomonas phage BA3. Like φIBB-

PF7A, phage BA3 also belongs to the Podoviridae family of phages but has not yet been 

further classified. The N-terminal sequence of the 50.5 kDa protein band did not give 

sequence which indicates that this protein is N terminally blocked. The analysis of φIBB-

PF7A structural proteins clearly demonstrate that there are comparable proteins to other 

T7-like phages and like other phages belonging to this group, the most predominant 

structural protein is the major capsid protein 10A as verified by N-terminal sequencing.  

 

 

 

 
Figure 2.3. SDS-polyacrylamide gel electrophoresis analysis of 

phage φIBB-PF7A structural proteins. Phage lysate was mixed with 

Laemmli buffer containing SDS, boiled for 10 min, and loaded on a 4-

20% gradient gel that was electrophoresed with Tris-glycine running 

buffer. Lane M: molecular weight marker. p1 to p5 mark sizes of typical 

T7 phage structural proteins.  
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Table 2.4. Phage φIBB-PF7A structural proteins. Molecular weights of phage φIBB-PF7A structural proteins were determined from SDS-PAGE gels and 

compared with known T7 structural proteins with approximate weights, N- terminal sequence of proteins, similarities and respective accession numbers.   

MW 
(kDa)a Probable T7 protein aa sequence Identity 

(%) 
BLASTp similarity  

(phage, Accession nr.) Alignment 

137.3      
98.4      
85.6      
74.5      
68.5      
63.1 (p1) Tail fiber (monomeric form of 

gp17)1 
KEVLFGDS 80 Hyp. protein (phage BA3, YP001552271) KEVLFG - - DS 

KEVLFG - - DS 
KEVLFGLNDS 

59.7 (p2) Head-tail con. (gp8)1

50.5 - No sequence - N-terminally blocked - 
45.2 (p3) Major capsid (gp10A)2 AQMQGGQQIG  

80 
 
 

Major capsid protein 10A (phage φYeO3-12, 
NP_052109) 

Major capsid protein 10A (phage T3, NP_523335) 

AQMQGGQQIG 
A - - QGGQQIG 
ANIQGGQQIG 

39.3      
38.2      
30.6 (p4) Capsid assembly (gp9)1     
29.0      
25.9      
18.6 (p5) Internal virion protein B (gp14)1     
16.6      

  a) Average from 2 separate determinations; 1 Kovalyova and Kropinski, 2003; 2 Pajunen et al. 2000. 
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Phage growth characteristics 

The EM, genomic and structural protein studies permit to classify φIBB-PF7A as a 

T7-like phage. Furthermore, it was aimed to characterize φIBB-PF7A’s life cycle and 

adsorption ability. Firstly, one-step growth studies were performed to identify the 

different phases of a phage infection process. After infection of φIBB-PF7A’s host, the P. 

fluorescens isolate nr. 7, the phage growth cycle parameters - the latent period, eclipse 

period, rise period, and burst size, were determined from the dynamical change of the 

number of free and total phages (Figure 2.4 and Table 2.3). 

In the system studied, the eclipse and latent periods of φIBB-PF7A were very short, 

10 and 15 min, respectively. φIBB-PF7A yielded a burst size of 153 PFU per infected cell 

after 25 min at RT. These phage life cycle values are in conformity with the values 

normally observed for T7 group phages.  

 

 
Figure 2.4. One-step growth curve of phage φIBB-PF7A in P. fluorescens at RT. Shown are the 

PFU per infected cell in untreated cultures (■) and in chloroform-treated cultures (□). The phage growth 

parameters are indicated in the figure and correspond to: E- eclipse period; L- latent period and B- burst 

size. 

 

The adsorption efficiency of phages to the host was estimated with cells in the early 

logarithmic growth phase. The experiment was carried out at room temperature under 

constant shaking (150 rpm) and a phage inocculum of MOI = 0.01. The number of free 

phages was calculated from the PFU of chloroform-treated samples within 15 min after 

inoculation (Figure 2.5). 
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 Figure 2.5.  Percentage of free φIBB-PF7A phages after infection of steady-state P. fluorescens at 

a MOI of 0.01. 

 

Phage φIBB-PF7A appears to have two adsorption phases: a very rapid adsorption to 

its host during the first 5 min is followed by a slower rate of attachment after 5 min. The 

number of free phages was below 10 % already within 5 min and below 5 % within 15 

min after infection (Figure 2.5). The adsorption rate, which represents the phage 

adsorption affinity towards the host, was calculated according to Barry and Walter [14] 

for a period of 5 min. The adsorption rate constant of phage φIBB-PF7A was calculated 

to be 5.58 × 10-10 ml min-1 (Table 2.3) which is similar to other T7 rates in literature [14]. 

 

Discussion 
 

Pseudomonas fluorescens is a major milk product contaminant as well as spoilage 

causing agent of fresh poultry and refrigerated foods, in particular of refrigerated meats 

[1, 3, 15-18]. Product contamination occurs at different stages of processing which shows 

that it is difficult to maintain the processing environment clean from this bacterium 

mainly due to the ecologic diversity and multiple origins of Pseudomonas spp. [3]. 

Phages have been suggested as alternative anti-microbial agents for a variety of 

pathogenic bacteria found in food processing environments [19-23]. So far, no phages 

have been closely studied for their ability to infect the spoilage causing bacterium P. 

fluorescens. The bacterial isolates tested in this work include different ribotypes and 

isolates capable of producing extracellular enzymes, such as protease, lecithinase and 

lipase that cause spoilage of milk products. A number of phages were isolated for P. 

fluorescens, some of which exhibited a high efficiency in lysing different P. fluorescens 
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isolates while others had a narrower host range. This shows that a variety of lytic P. 

fluorescens phages can be easily isolated from the environment and their use as 

alternative sanitation agents will most likely be feasible for application in food and dairy 

industry as demonstrated by studies with P. fluorescens biofilms subjected to phage [24].  

Of all the phages isolated, phage φIBB-PF7A was selected for further 

characterization. This novel highly lytic phage φIBB-PF7A has a strong virulence 

towards a number of P. fluorescens present on Portuguese and American dairy facilities. 

The verification of the ability of phage φIBB-PF7A in infecting isolates capable of 

producing extracellular enzymes isolates was an exceptionally important result and is an 

additional argument for phage based sanitation – it is possible to select phages only for a 

specific range of bacteria, in this case for the enzyme producing bacteria that are the 

major spoilage causative microorganisms. 

The structural proteins are similar with known T7 proteins. Five distinct protein bands 

were identified according to their size representing the T7 tail fiber protein, the minor 

capsid protein, the major capsid protein 10A, the capsid assembly protein, and the internal 

virion protein B [12, 13]. In fact, N-terminal sequencing identified one of the protein 

bands as the T7-like major capsid protein 10A.  

Phage φIBB-PF7A has a genome size of about 42 kbp (Figure 3.2) which is very close 

to the T7 phage φKMV (42,519 bp), a Pseudomonas aeruginosa phage [25]. This is well 

in the range of genome sizes of other T7-like phages; the smallest T7-like phage genome 

sequenced so far is the E. coli phage T3 having a size of 38,208 bp and the largest T7-like 

phage, a Vibrio parahaemolyticus phage, has a size of 45,874 bp [25]. 

The adsorption rate of 5.58 × 10-10 ml min-1 obtained through the one-step growth 

curve (Figure 2.5) is also well in accordance with other T7-like phages, with values 

varying between 4.5 × 10-10 and 8.9 × 10-10 ml min-1, depending on whether the bacteria 

are alive or were killed [14]. 

Nowadays there are some phage products approved by different United States 

organizations: AgriPhage produced by Omnilytics was approved in 2005 by EPA to 

combat Xanthomonas campestris and Pseudomonas syringae; LISTEXTMP100 from EBI 

Food Safety in 2006 and LMP-102 also in 2006 from Intralytix were both approved by 

the FDA to combat Listeria monocytogenes, and BacWash from Omnilytics in the year 

2006 by the USDA to target E. coli O157:H7 and Salmonella. Also, the use of phages of 

the Podoviridae group, specifically T7-like phages, as therapeutic agents has been 
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reported for different bacteria. P. aeruginosa T7-like phages φKMV, LKD16, and LKA1 

have been suggested as good biological agents due to their ability to infect a variety of 

clinical P. aeruginosa isolates [25, 26]. Phage PPpW-4 for P. plecoglossicida has been 

suggested equally suggested for combating the hemorrhagic ascites disease in cultured 

ayu fish [27, 28]. Aside from the high rate of development of T7-like phages if e.g. 

compared to T4 phages that are being used in animal therapy, T7-like phages are also 

interesting for their small genome, which decreases the chance of  transferring extended 

fragments of chromosomal DNA with pathogenicity islands [29] to host strains.  

The data obtained in this study support the hypothesis that phage φIBB-PF7A can be a 

good candidate for phage based sanitation in food processing environments, preventing 

product spoilage due to extracellular enzyme producing P. fluorescens strains. 

Conclusions 
 

This is the first report with a detailed study of phages isolated for dairy P. fluorescens 

isolates. The newly isolated T7-like phage has an increased potential for lysing a variety 

of isolates and has several attractive features such as very short replication times and very 

fast adsorption ability which makes the phage a promising candidate for therapeutic or 

sanitation purposes. 
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Material and Methods 
 
Bacteria and growth conditions 

The bacterial strains (see Table 2.1) were previously isolated from Portuguese and 

United States dairy plants. All bacteria were grown at 30 ºC in Tryptic Soy Broth (TSB, 

Fluka). Solid TSA medium contained 1.2 % w/v of BactoTM agar (Difco) and the soft 

agar top-layer contained 0.6 % of BactoTM agar. All bacteria were subcultured once and 

glycerol stocks were done and stored frozen at -80 ºC until further use.  

 

Bacteriophage isolation 

Bacteriophages were isolated from a sewage treatment plant (ETAR de Esposende, 

Portugal). This wastewater treatment plant was selected because it receives effluents from 

many dairy industries and cow farms. For selection of phages 200 ml of raw sewage 

sample was added to a 1 L Erlenmeyer flask containing 200 ml of 2 × TSB medium and 

50 μl of the respective bacterial test species with an optical density of 1.0. The solution 

was incubated for 24 h at 150 rpm and 30 ºC on a rotary shaker and was afterwards 

centrifuged (10 min, 10,000 ×g, 4 ºC). The clear supernatant was chloroform treated and 

phage detection was done by spotting the phage lysate on bacterial lawns. These plates 

were incubated at 30 ºC for 12 h and inspected for plaques. Plaques were tested for 

containing only one single type of phage by repeated transfer of the lysates to new plates. 

Final lysates were stored at 4º C for further use. 

 

Host range of phages and selection of the most efficient phage 

The isolated phages were investigated for host range specificity and lysis efficiency 

(no lysis, clear plaque, and turbid plaque) in screening tests against different P. 

fluorescens. Bacterial lawns of different P. fluorescens were propagated on TSA plates 

and 10 μl droplets of phages (1 × 104 up to 1 × 107 PFU ml-1) were put on the lawns. The 

plates were incubated 18 h and checked for presence of plaque. The most efficient phage, 

the one which was able to lyse the greatest number of hosts, was selected for further 

studies. The selection criteria included the lysis profiles, plaque clarity and size. Phages 

were named according to the bacteria from which they were isolated [e.g. phage φIBB-

PF7 stands for Institute for Biotechnology and Bioengineering (IBB), the host bacterium 

Pseudomonas fluorescens (PF) and sample number 7]. In case different plaque sizes were 
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obtained using the same host bacterium for phage isolation, the plaques were further 

purified and considered different phages and a caps letter was then added at the end of the 

phage name, i.e. phage φIBB-PF7A. 

 

Bacteriophage propagation and concentration 

Small-scale concentration of phages was performed by spreading phages on the top-

agar layer containing the respective host bacterium by plaque picking and using sterile 

paper strips. Briefly, 10 μl of isolated phage lysate was added onto a TSA Petri dish 

containing a soft top-agar layer with bacteria and spread with the help of sterile paper 

strips. After incubation the lysate from a clear Petri dish was eluted with SM buffer (5.8 g 

l-1 NaCl, 2 g l-1 MgSO4 × 7 H2O, 50 ml 1 M Tris, pH 7.5) and further purified with 

chloroform and stored at 4 ºC. These solutions were then used for preparing concentrated 

phage solutions in larger scale using the plate lysis and elution method as described by 

Sambrook & Russel [30] with some modifications. Briefly, a top agar was prepared 

containing 1 ml of phage solution and 1 ml of a bacterial overnight culture in 300 ml of 

soft-agar. This agar was added to 250 ml T-flasks with a thin bottom layer of TSA. After 

solidification of the top agar layer the T-flasks were incubated at 30 ºC overnight. 

Afterwards, the flasks were eluted with SM buffer and the phage lysate was first 

concentrated with PEG 8000 and then purified with chloroform. Samples in SM buffer 

were stored at 4 ºC until further use. 

 

Phage titration 

Bacteriophage titer was analysed as described by Adams [31]. Briefly, 100 μl of 

diluted phage solution, 100 μl of a bacterial overnight culture, and 3 ml of molten agar 

were mixed in a glass tube and poured into a TSA containing Petri dish. Plates were 

incubated for 18 h after which plaque forming units (PFU) were counted.   

 

Electron microscopy 

Bacteriophage particles were sedimented at 25,000 ×g for 60 min using a Beckman 

(Palo Alto, CA) J2-21 centrifuge with a JA 18.1 fixed-angle rotor. Bacteriophages were 

washed twice in 0.1 M ammonium acetate (pH 7.0), deposited on copper grids provided 

with carbon-coated Formvar films, stained with 2 % potassium phosphotungstate (pH 
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7.2), and examined in a Philips EM 300 electron microscope (performed by Dr. H. W. 

Ackermann, Laval University, Quebec, Canada). 

 

SDS-PAGE 

Purified phage solution was precipitated with 4 volumes of ice-cold acetone. After 

centrifugation (1,600 × g, 20 min, 4ºC) the pellet was air-dried and resuspended in PBS 

buffer (8 g l-1 NaCl, 0.2 g l-1 KCl, 0.2 g l-1 KH2PO4, 1.44 g l-1 Na2HPO4 × 2H2O, pH 7.5). 

SDS-PAGE was carried out according to Laemmli [32]. Briefly, 24 μl of sample were 

added to 8 μl of 4 × Laemmli buffer and boiled for 10 min. Samples were then loaded to 4 

- 20 % PAGEr precast gels (Cambrex) and electrophoresed with Tris-glycine buffer. 

After electrophoresis the gels were stained with Bio-safe Coomassie (BioRad). 

 

DNA isolation and restriction enzyme digestion 

Phage DNA was isolated using a Wizard Lambda Preps DNA purification system 

(Promega, Madison, Wis.) according to the manufacturer’s instructions.   

Phage DNA was digested with the following restriction enzymes: Eco RI, Eco RV, Hind 

III, and Tsp 509I according to the instructions provided by the manufacturer. All 

restriction enzyme digestions were performed in triplicate. Electrophoresis at 15 V for 24 

h was performed with a 0.7 % TAE agarose gel stained with ethidium bromide. A 1 kb 

DNA ladder and Lambda Mix Marker (both from Fermentas) were used as molecular 

weight markers to calculate the sizes of the phage DNA fragments.  

 

N-terminal amino acid sequencing of proteins.  

Phage proteins separated in 4 – 20 % gradient gels were transferred to PVDF 

membranes (500V, 1.25 h) and stained with Bio-safe Coomassie brilliant blue solution 

(Bio-Rad) (1 min) and de-stained with 50% methanol. The membrane was rinsed with 

milliQ water for 5 min and let dry. The chosen bands were excised from the membrane 

and subjected to Edman chemistry for determining the N-terminal sequences. The 

sequencing was performed on a ProciseTM 492 protein sequencer (PE Applied 

Biosystems). 

 

One-step growth curve 

One-step growth curves were performed as described by Pajunen et al. [13] with some 

modifications. Briefly, 10 ml of a mid-exponential-phase culture were harvested by 
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centrifugation (7,000xg, 5 min, 4ºC) and resuspended in 5 ml TSB medium in order to 

obtain an OD600 of 1.0. To this suspension, 5 ml of phage solution were added in order 

to have a MOI of 0.001 and phages were allowed to adsorb for 5 min at room 

temperature. The mixture was than centrifuged as described above and the pellet was 

resuspended in 10 ml of fresh TSB medium. Two samples were taken every 5 min over a 

period of 1 h. The first sample was plated immediately without any treatment and the 

second set of samples was plated after treatment with 1 % (vol/vol) chloroform to release 

intracellular phages. 

 

Bacteriophage adsorption 

Bacteria in the steady-state growth phase were diluted in TSB to an optical density 

(OD600) of 1.0. Afterwards, 10 ml of the bacterial suspension and 10 ml of phage 

solution were mixed in order to give a multiplicity of infection (MOI) of 0.01. The 

mixture was incubated at room temperature with shaking (150 rpm, Rotamax 120, 

Heidolph) and samples were collected every minute during a total period of 15 min. 

Samples were immediately chloroform-treated, diluted and plated on TSA plates. After 

overnight incubation at 30 ºC phage plaques were counted. 



55 
 

References 
 
1.  Arnaut-Rollier I, De Zutter L, Van Hoof J: Identities of the Pseudomonas spp. in 

flora from chilled chicken. International Journal of Food Microbiology 1999, 48: 

87-96. 

2.  Bodilis J, Calbrix R, Guerillon J, Merieau A, Pawlak B, Orange N et al.: 

Phylogenetic relationships between environmental and clinical isolates of 

Pseudomonas fluorescens and related species deduced from 16S rRNA gene and 

OprF protein sequences. Systematic and Applied Microbiology 2004, 27: 93-108. 

3.  Dogan B, Boor KJ: Genetic diversity and spoilage potentials among Pseudomonas 

spp. isolated from fluid milk products and dairy processing plants. Applied and 

Environmental Microbiology 2003, 69: 130-138. 

4.  Peneau S, Chassaing D, Carpentier B: First evidence of division and accumulation 

of viable but nonculturable Pseudomonas fluorescens cells on surfaces subjected 

to conditions encountered at meat processing premises. Applied and 

Environmental Microbiology 2007, 73: 2839-2846. 

5.  Wang L, Jayarao BM: Phenotypic and genotypic characterization of Pseudomonas 

fluorescens isolated from bulk tank milk. Journal of Dairy Science 2001, 84: 1421-

1429. 

6.  Morgan AD, Brockhurst MA, Lopez-Pascua LDC, Pal C, Buckling A: Differential 

impact of simultaneous migration on coevolving hosts and parasites. Bmc 

Evolutionary Biology 2007, 7. 

7.  Buckling A, Wei Y, Massey RC, Brockhurst MA, Hochberg ME: Antagonistic 

coevolution with parasites increases the cost of host deleterious mutations. 

Proceedings of the Royal Society B-Biological Sciences 2006, 273: 45-49. 

8.  Brockhurst MA, Buckling A, Rainey PB: Spatial heterogeneity and the stability of 

host-parasite coexistence. Journal of Evolutionary Biology 2006, 19: 374-379. 



56 
 

9.  Craven HM, Macauley BJ: Microorganisms in Pasteurized Milk After 

Refrigerated Storage .1. Identification of Types. Australian Journal of Dairy 

Technology 1992, 47: 38-45. 

10. Wiedmann M, Weilmeier D, Dineen SS, Ralyea R, Boor KJ: Molecular and 

phenotypic characterization of Pseudomonas spp. isolated from milk. Applied and 

Environmental Microbiology 2000, 66: 2085-2095. 

11. Bradley DE: Ultrastructure of Bacteriophages and Bacteriocins. Bacteriological 

Reviews 1967, 31: 230-&. 

12. Kovalyova IV, Kropinski AM: The complete genomic sequence of lytic 

bacteriophage gh-1 infecting Pseudomonas putida - evidence for close 

relationship to the T7 group. Virology 2003, 311: 305-315. 

13. Pajunen M, Kiljunen S, Skurnik M: Bacteriophage phi YeO3-12, specific for 

Yersinia enterocolitica serotype O : 3, is related to coliphages T3 and T7. Journal 

of Bacteriology 2000, 182: 5114-5120. 

14. Barry GT, Goebel WF: The Effect of Chemical and Physical Agents on the Phage 

Receptor of Phase-Ii Shigella sonnei. Journal of Experimental Medicine 1951, 94: 

387-400. 

15. Arnaut-Rollier I, Vauterin L, De Vos P, Massart DL, Devriese LA, De Zutter L et al.: 

A numerical taxonomic study of the Pseudomonas flora isolated from poultry 

meat. Journal of Applied Microbiology 1999, 87: 15-28. 

16. Cousin MA: Presence and Activity of Psychrotrophic Microorganisms in Milk 

and Dairy-Products - A Review. Journal of Food Protection 1982, 45: 172-207. 

17. Cromie S: Psychrotrophs and Their Enzyme Residues in Cheese Milk. Australian 

Journal of Dairy Technology 1992, 47: 96-100. 

18. Sorhaug T, Stepaniak L: Psychrotrophs and their enzymes in milk and dairy 

products: Quality aspects. Trends in Food Science & Technology 1997, 8: 35-41. 



57 
 

19. Huff WE, Huff GR, Rath NC, Donoghue AM: Evaluation of the influence of 

bacteriophage titer on the treatment of colibacillosis in broiler chickens. Poult Sci 

2006, 85: 1373-1377. 

20. Atterbury RJ, Van Bergen MA, Ortiz F, Lovell MA, Harris JA, De BA et al.: 

Bacteriophage therapy to reduce salmonella colonization of broiler chickens. 

Appl Environ Microbiol 2007, 73: 4543-4549. 

21. Barrow PA: Novel approaches to control of bacterial infections in animals. Acta 

Vet Hung 1997, 45: 317-329. 

22. Higgins JP, Higgins SE, Guenther KL, Huff W, Donoghue AM, Donoghue DJ et al.: 

Use of a specific bacteriophage treatment to reduce Salmonella in poultry 

products. Poult Sci 2005, 84: 1141-1145. 

23. Loc Carrillo C., Atterbury RJ, el-Shibiny A, Connerton PL, Dillon E, Scott A et al.: 

Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler 

chickens. Appl Environ Microbiol 2005, 71: 6554-6563. 

24. Sillankorva S, Neubauer P, Azeredo J: Pseudomonas fluorescens biofilms subjected 

to phage φIBB-PF7A. BMC Biotechnology 2008, 8:79 (27 of October 2008). 

25. Lavigne R, Burkal'tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez 

B et al.: The genome of bacteriophage phi KMV, a T7-like virus infecting 

Pseudomonas aeruginosa. Virology 2003, 312: 49-59. 

26. Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J et al.: Genomic 

analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: Establishment of 

the phiKMV subgroup within the T7 supergroup. Journal of Bacteriology 2006, 

188: 6924-6931. 

27. Park SC, Shimamura I, Fukunaga M, Mori KI, Nakai T: Isolation of bacteriophages 

specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for 

disease control. Applied and Environmental Microbiology 2000, 66: 1416-1422. 

28. Park SC, Nakai T: Bacteriophage control of Pseudomonas plecoglossicida infection 

in ayu Plecoglossus altivelis. Diseases of Aquatic Organisms 2003, 53: 33-39. 



58 
 

29. Krylov VN: Phagotherapy in terms of bacteriophage genetics: hopes, 

perspectives, safety, limitations. Genetika 2001, 37: 869-887. 

30. Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. New York: 

Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 2001. 

31. Adams MH: Bacteriophages. New York: Interscience Publishers; 1959. 

32. Laemmli UK: Cleavage of structural proteins during the assembly of the head of 

bacteriophage T4. Nature 1970, 227: 680-685. 

 



59 
 

2.2 Complete genome sequence of the lytic Pseudomonas fluorescens 
phage φIBB-PF7A  

 

 

Abstract 

 
Phage φIBB-PF7A is a newly isolated T7-like bacteriophage able to infect 

several Pseudomonas fluorescens dairy isolates and to kill efficiently its host 

when this is found in single and dual species biofilms. These were the reasons 

for a further characterization of φIBB-PF7A and therefore the complete genome 

sequence of this phage was determined. Phage φIBB-PF7As’ genome consists of 

linear double-stranded DNA with 40,973 bp. The genome has 483 bp direct 

terminal repeats and the GC content of this phage is 56.27 %. There are 51 

open reading frames which occupy 91.78% of the entire genome and the amino 

acid residues range from 174 to 3996. From the total orfs, 28 have homology 

with T7 proteins with assigned function. There are also 23 potential putative 

genes with unknown function of which 7 show homology to unknown P. putida 

gh-1 phage and 2 other with hypothetical proteins of LKA1 and T7 phages. In 

fact, phage φIBB-PF7A is closest related with phage gh-1 of P. putida and 

resulted in a homology at protein level of 55.24%. However, there is a lack of 3 

class II genes in φIBB-PF7A that are present in gh-1 and also this new 

sequenced phage has 2 DNA ligases, one of which has homology to gh-1 while 

the other is similar to the DNA ligase of coliphage K1F. Another striking 

difference between φIBB-PF7A and gh-1 is the presence of the minor capsid 

protein 10B which is missing in gh-1. Also, there are more orfs with unassigned 

function in φIBB-PF7A, especially before the right terminal repeat of the 

genome than the orfs in gh-1. 
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Introduction 

 

Formerly the phylogenetic and taxonomic classification of bacteriophages (phages) 

was merely based on similarities in phage morphology and host range [1], phage ability to 

recombine, and in the similar cross-hydridization patterns with their DNA [2-4]. Today, 

phage genome sequencing is commonly performed for classification and characterization 

purposes. However, from the total estimated phage population (e.g. > 1031 in aquatic and 

107 in terrestrial environments), only about 5000 phages have been completely sequenced. 

Classification based on genome sequencing is based on the arrangement of conserved 

genes and the nucleotide sequence identity [5, 6]. A specific group of phages has a 

number of conserved genomic patterns but also a relatively high number of proteins with 

no match in the database which reveals the great genetic diversity existant within phages.  

In the recent years, sequencing of several sequenced T7-like phages has generated a 

supergroup – the T7 supergroup of phages. Most members of the T7 supergroup have 

Enterobacteriaceae as hosts. Nevertheless, today there are at least 19 other phage hosts 

such as Pseudomonas [7, 8], Yersinia [9, 10], Salmonella [11, 12], Roseobacter [13], and 

Vibrio [14]. Some T7-like phages present more similarities with other phages and this has 

consequently led to the formation of subgroups within the T7 supergroup. Nevertheless, 

all these phages present highly conserved genome organizations differing at sequence 

level through the presence or absence of nonessential genes [15].   

The T7 phage genome is characterized by possessing 56 genes encoding potential 

proteins [15]. A high percentage (45%) of the phage head volume is occupied by the 

genome. From the total proteins postulated, merely 35 have known function or functions. 

There are 25 nonessential proteins, of which only 12 are conserved across the family of 

T7-like phage [15]. 

As previously described in sub-chapter 3.1, a new phage for P. fluorescens, phage 

φIBB-PF7A has been isolated from raw sewage and carefully characterized. This newly 

isolated phage showed morphological resemblance to T7-like phages and also presented 

several physico-chemical, and life cycle properties similar to the T7 phages [16]. This 

phage has also been the focus of several recent studies and showed to be capable of 

infecting a wide variety of dairy Pseudomonas fluorescens isolates [16], and lysing the 

specific host when this was found in single [17] and dual species biofilms [18]. Moreover, 

φIBB-PF7A is the first reported phage capable to infect rod- and filamentous-shaped cells 
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and has a high efficiency in killing planktonic stationary cells [19]. For all these reasons, 

a more detailed characterization was desired and determining the genome sequence of this 

phage was thus the following step to further increase the knowledge on this lytic phage. 
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Results and Discussion 
 
This work focuses on the determination of the complete genome sequence of the newly 

isolated Pseudomonas fluorescens phage φIBB-PF7A which has been extensively used in 

host control studies [17-19]. Also, this phage has been classified according to several 

taxonomic parameters used by the International Committee on Phage Taxonomy 

including host range determination, TEM visualization and life cycle studies [16].  

 

φIBB-PF7A nucleotide sequence and general sequence properties  

In a previous characterization work, phage φIBB-PF7A showed to resemble 

morphologically to T7-like phages. Here, the DNA sequence of phage φIBB-PF7A for P. 

fluorescens was determined. The genome of φIBB-PF7A consists of linear double-

stranded DNA with 40,973 bp and this size is among the range of other T7-like phages 

where the smallest reported is the P. putida phage gh-1 (37,359 bp) [7] and the largest is 

the 45,874 bp Vibrio parahaemolytic phage VpV262 [14]. The direct terminal repeats 

(DTR) of φIBB-PF7A are 483 bp, which are longer than the DTRs of all other members 

of T7, which reportedly range from 160 bp in T7 [20] to 428 bp in P. aeruginosa phage 

LKD16 [21]. Phage φIBB-PF7A has an overall genomic guanine plus cytosine (GC) 

content of 56.27 % which is in the range of the GC content observed in T7 members (46.2 

– 62.3%) [8].  

 

φIBB-PF7A gene organization  

Phage φIBB-PF7A was examined for open reading frames (orf) of 150 bp or longer 

size using the GeneMark software and visual inspection was also used to scan the 

complete genome sequence. The search resulted in 51 predicted putative genes or orfs 

which occupy 91.78 % of the entire nucleotide genome. It is believed that phages with 

DNA molecules whose length is limited by a virion of fixed size tend to pack the 

maximum amount of useful information efficiently into the DNA molecule (20).  

In phage φIBB-PF7A, the orfs length range from 174 to 3996 amino acid residues. 

The predicted putative genes were blasted and compared with the non-redundant protein 

database and the results are described in Table 2.5. From these 51 orfs, 28 have homology 

with T7 phage proteins with known function. Therefore, the T7 gene nomenclature, 

where genes are numbered sequentially in the order that they are transcribed, was used for 
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assigning the genes of φIBB-PF7A phage. From the total predicted putative genes, 49 are 

transcribed from the same strand and only two genes, orfs 14 and 18 respectively, are 

transcribed from the reverse strand (Table 2.5 and Figures 2.8 and 2.9).  

Orfs which showed no similarities to known putative proteins in the database or gave 

homology to unknown or hypothetical proteins of other phages were numbered from 1 to 

23 (orf1 to orf23), starting from the left end of the genome sequence. Seven orfs with 

unknown function had some similarity with orfs of phage gh-1, 1 orf with a hypothetical 

protein of phage LKA1 and 1 orf with a hypothetical protein of phage T7, respectively. 

These 23 predicted putative genes of unknown function are probably nonessential orfs or 

regulatory signals. Nevertheless, no protein coding function can be speculated without 

more detailed studies. The initiation codon for 46 of the 51 potential genes is ATG while 

3 orfs have GTG and 2 orfs have TTA as the initiation codon. Like in all other T7 

supergroup members, the temporal and functional distribution of phage φIBB-PF7A 

genes is tightly organized and all genes are packed close to each others. The genome 

organization and gene order of phage φIBB-PF7A seems largely conserved in gh-1 

although there are some differences. The average protein homology percentage obtained 

between the genes of these two Pseudomonas phages was 55.42% (Table 2.5).  

At the nucleotide level, there are regions that are identical (red line) but also several 

parts where the straight line is interrupted. The first big gap in the strainght line occurs 

immediately after RNA polymerase and before the primase/helicase and the highest 

dissimilarity is observed in the region corresponding to the internal virion proteins (gp12 

to gp15) (Figure 2.6). Thus, although there is similarity at protein level the homology 

percentage at nucleotide level is decreased. 
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Figure 2.6 – Dot blot comparison of φIBB-PF7A and gh-1 genomes. Dot plot analysis was performed 

with the Genome Comparison Viewer (www.softberry.com) with the genomic DNA sequence of φIBB-

PF7A in x axis and gh-1 in y axis. 

 

Adsorption and host range 

Phage adsorption to a host occurs via interaction of the tail fibers with molecules 

present on the host surface. The ability of phages to interact and adapt to a new host is 

due the rather malleable structure of the tail fibers that can easily adapt to a variety of 

receptors in order to start adsorption [15]. The phage studied here, φIBB-PF7A, is the first 

T7-like phage for P. fluorescens for which the genome has been sequenced. This 

broadens the host members of the T7 supergroup of phages to one more bacteria – P. 

fluorescens.  

 

DNA penetration 

After phage adsorption to a host and the phage DNA is injected to the hosts 

cytoplasm. Some genes are known to carry this function and in phage φIBB-PF7A all 

these necessary genes are present, namely the gp14, gp15 and gp16. These gene products 

when combined form a channel right from the tail tips all the way through the cell 

envelope allowing the penetration of the DNA. This penetration or internalization takes 

usually place in 10 minutes and the genomes are internalized by transcription. This 10 

minute period is quite long but it is due to the regulation that occurs by the insertion of 

the genes in the proper manner: first the early genes, followed by middle and lastly the 

late genes.     

 



66 
 

φIBB-PF7A gene arrangement  

Phage φIBB-PF7A has a gene clustering analogous to T7 and therefore a similar gene 

organization was suggested. Genes were divided in three clusters – class I, II and III 

genes respectively. As Blastn grouped φIBB-PF7A with the P. putida phage gh-1 (Figure 

2.7) the gene clustering of these 2 phages was compared. The cluster I groups all early 

genes which are responsible for the transition to phage metabolism (Figure 2.8). Cluster II 

has the so called middle genes which are genes involved in DNA metabolism or phage 

replication (Figure 2.9), while class III contains the late genes that are all structural 

proteins, genes responsible for the virion assembly, packaging and maturation proteins 

and also the genes which will lyse the hosts (Figure 2.10).  

 

 
Figure 2.7 – Phylogenetic relation between phage φIBB-PF7A and other T7-members. The distance 

tree of results was generated using blastn. 
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Table 2.5 – Features of phage φIBB-PF7A open reading frames and their homologies to other T7-like phages.  

Gene Strand Left 
End 

Right 
End 

Gene 
Length 

Start 
codon

Stop 
codon 

MW 
(kDa) PI 

GC 
content 

(%) 
 Similarity  Best 

homolog 
Identity 

(%) 
BLAST 

score 
E 

value 
Accession 

no. 

orf1 + 252 602 351 ATG TAA 108.49 5.21 58.90 unknown 
orf2 + 602 928 327 ATG TAA 101.37 5.25 55.35 unknown      
orf3 + 996 1511 516 ATG TGA 159.77 5.16 57.36 unknown 
orf4 + 1508 2215 708 ATG TAA 218.78 5.09 57.34 unknown      
orf5 + 2217 2594 378 ATG TGA 116.60 5.19 59.79 unknown      
orf6 + 2591 2989 399 ATG TGA 126.70 5.21 56.89 unknown      

gp1 + 3123 5798 2676 GTG TAA 827.13 4.82 56.02 
RNA 

polymerase gh-1 63 1102 0.0 NP_813747
orf7 + 5808 6002 195 ATG TAA 60.16 5.31 54.36 unknown      
orf8 + 6067 6297 231 ATG TGA 71.21 5.27 59.74 unknown      
orf9 + 6294 6572 279 GTG TAA 85.98 5.24 56.27 unknown      
gp1.
3 + 6573 7100 528 ATG TGA 163.36 5.15 58.33 DNA ligase gh-1 47 134 3e-30 NP_813751
gp1.
3 + 7054 7557 504 ATG TGA 156.06 5.16 57.54 DNA ligase K1F 55 174 2e-42 YP_338096
orf10 + 7636 8100 465 ATG TAA 143.66 5.17 55.70 unknown      
orf11 + 8324 8989 666 ATG TGA 205.74 5.10 57.81 unknown gh-1 45 188 3e-46 NP_813752
orf12 + 9120 9461 342 ATG TAA 105.43 5.21 57.89 unknown gh-1 51 102 9e-21 NP_813755
gp2.
5 + 9537 10232 696 ATG TAA 215.29 5.10 56.90 ssDNA binding T3 52 207 5e-52 NP_523311
gp3 + 10233 10670 438 ATG TAG 135.52 5.18 56.85 endonuclease gh-1 61 170 4e-41 NP_813757
gp3.
5 + 10683 11144 462 ATG TAA 142.80 5.17 56.49 

lysozyme/amidas
e gh-1 60 184 1e-45 NP_813758

orf13 + 11210 11773 564 ATG TGA 174.20 5.14 55.50 unknown gh-1 40 108 3e-22 NP_813759
gp4 + 12036 13475 1440 ATG TAA 446.20 4.97 55.42 primase/helicase gh-1 72 707 0.0 NP_813761
orf14 - 13472 13765 294 TTA CAT 90.48 5.08 55.44 unknown gh-1 44 110 5e-04 NP_813762
orf15 + 13755 14198 444 ATG TGA 137.14 5.19 54.28 unknown gh-1 36 121 2e-05 NP_813763

gp5 + 14185 16323 2139 ATG TAA 662.43 4.87 57.18 
DNA 

polymerase gh-1 64 904 0.0 NP_813764
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Table 2.5 (Cont.) – Features of phage φIBB-PF7A open reading frames and their homologies to other T7-like phages.  

Gene Strand Left 
End 

Right 
End 

Gene 
Length 

Start 
codon

Stop 
codon 

MW 
(kDa) PI 

GC 
content 

(%) 
 Similarity  Best 

homolog 
Identity 

(%) 
BLAST 

score 
E 

value 
Accession 

no. 

orf16 + 16325 16639 315 ATG TGA 97.69 5.26 54.92 unknown gh-1 33 43.1 7e-03 
NP_81376

5 
gp5.
7 + 16642 16851 210 ATG TGA 64.87 5.30 57.62 gp5.7 gh-1 59 88.2 2e-16 

NP_81376
6 

gp6 + 16848 17762 915 ATG TAA 283.74 5.05 57.81 exonuclease gh-1 59 323 1e-86 
NP_81376

7 
gp6.
5 + 17870 18136 267 ATG TAA 82.49 5.28 50.94 gp6.5 gh-1 60 63.2 6e-09 

NP_81376
8 

gp6.
7 + 18123 18413 291 ATG TAG 90.16 5.27 53.61 

virion 
protein gh-1 50 68.6 1e-10 

NP_81376
9 

gp7.
3 + 18423 18743 321 ATG TGA 99.71 5.26 56.07 

essential 
virion 
protein gh-1 55 43.5 5e-03 

NP_81377
1 

gp8 + 18756 20363 1608 ATG TAA 497.47 4.93 55.66 
head-tail 
connector  gh-1 77 813 0.0 

NP_81377
2 

gp9 + 20429 21343 915 ATG TAA 282.87 5.04 57.81 
capsid 

assembly  gh-1 49 256 2e-66 
NP_81377

3 
gp10
A + 21432 22457 1026 ATG TAA 316.91 5.02 56.14 

major 
capsid 10A gh-1 79 474 4e-132 

NP_81377
4 

gp10
B + 22499 22987 489 ATG TAA 151.57 5.18 54.81 

minor 
capsid 10B 

phiYe03-
12 58 66.6 6e-10 

NP_05210
8 

gp11 + 23052 23639 588 ATG TAA 181.68 5.13 55.10 
tail tubular 

A gh-1 72 291 2e-77 
NP_81377

5 

gp12 + 23650 26073 2424 ATG TAA 749.42 4.84 57.63 
tail tubular 

B gh-1 65 1050 0.0 
NP_81377

6 

gp13 + 26102 26539 438 ATG TAG 135.34 5.18 55.94 
Internal 
virion A gh-1 45 105 1e-21 

NP_81377
7 
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Table 2.5 (Cont.) – Features of phage φIBB-PF7A open reading frames and their homologies to other T7-like phages.  

Gene Strand Left 
End 

Right 
End 

Gene 
Lengt

h 

Start 
codon

Stop 
codo

n 

MW 
(kDa) PI 

GC 
content 

(%) 
 Similarity  Best 

homolog 
Identit
y (%)

BLAST 
score 

E 
value 

Accession 
no. 

gp14 + 26572 27108 537 ATG TAG 166.27 5.14 58.29 
Internal 
virion B gh-1 47 125 1e-27 NP_813778

gp15 + 27117 29330 2214 ATG TGA 684.69 4.86 56.55 
Internal 
virion C gh-1 42 589 3e-166 NP_813779

gp16 + 29334 33329 3996 ATG GTA 
1234.9

7 4.73 58.00 
Internal 
virion D gh-1 46 1139 0.0 NP_813780

gp17 + 33392 35029 1638 ATG TAA 504.71 4.90 57.94 tail fiber gh-1 55 256 3e-66 NP_813781
gp17.
5 + 35039 35242 204 ATG TAA 63.17 5.33 51.96 

Lysis 
protein  K11 39 49.7 7e-05 YP_418245

gp18 + 35235 35492 258 ATG TGA 79.46 5.27 54.65 

DNA 
packaging 

A gh-1 52 77.8 2e-13 NP_813784
gp18.
5 + 35492 35929 438 ATG TGA 

135.5
7 5.19 54.34 cell lysis protein gh-1 34 73.9 3e-12 

NP_81378
5 

gp19 + 35926 36264 339 GTG TGA 
104.5

6 5.22 53.69 
DNA packaging 

B gh-1 83 154 3e-39 
NP_81378

6 

gp19 + 36366 37691 1326 ATG TAA
410.4

3 4.97 56.56
DNA packaging 

B gh-1 73 658 0.0
NP_81378

6

orf17 + 37912 38085 174 ATG TGA 53.69 5.34 54.60 
hypothetical 

protein T7 47 46.2 8e-04 
ABR2298

5 
orf18 - 39145 39348 204 TTA CAT 62.97 5.12 47.06 unknown      

orf19 + 39347 39838 492 ATG TGA 
151.7

1 5.15 55.89 
hypothetical 

protein LKA1 39 88.6 1e-16 
YP_00152

2848 
orf20 + 39835 40104 270 ATG TGA 83.65 5.28 55.19 unknown      

orf21 + 40239 40589 351 ATG TAA 
108.4

9 5.21 58.97 unknown      
orf22 + 40589 40915 327 ATG TAG 101.3 5.25 55.35 unknown      
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Early gene expression 

The genome of phage φIBB-PF7A has after the 483 bp left DTR the class I genes 

(Figure 2.8) which are synthesized about 2 to 8 minutes pos-infection. The host RNA 

polymerase transcribes these class I genes which include genes with functions to 

overcome host restriction and to convert the metabolism of the host cell to the production 

of phage proteins, e.g., synthesis of phage promoter-specific RNA polymerase (gp1). 

Unlike in P. putida phage gh-1, which has no putative genes before gp1, phage φIBB-

PF7A has 6 orfs before gp1. However, none of these 6 genes presents similarities with 

genes known in the database. T7 phages have several different genes before gp1 (gp0.3 to 

gp0.7). These new orfs present in φIBB-PF7A, before gp1, may have a specific function 

in the phage infection cycle that is similar to the functions of the known early T7 genes. 

Nevertheless, the lack of similarity is intriguing. Also, the genome of phage φIBB-PF7A 

presents two genes with homology to DNA ligase (gp1.3): one which is 528 bp and 

resembles to the gene of phage gh-1 and the other, 504 bp long, shows similarity to the 

gp1.3 of coliphage K1F (Table 2.5). 
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Figure 2.8 – Putative distribution of early or class I genes in P. fluorescens phage φIBB-PF7A and 

comparison with P. putida phage gh-1. Unknown orfs are in lighter colors than genes with assigned 

function. 

 

Middle gene expression 

The class II genes are transcribed by the phage RNA polymerase (gp1) and they are 

synthesized from about 6 to 15 minutes pos-infection. All the first T7class II genes 

(gp1.4, gp1.5, gp1.6, gp1.7 and gp1.8) are missing in the genome of phage φIBB-PF7A 

(Figure 3.9). Four of these five first class II genes are nonessential and only the gp1.7 is 

considered an essential gene. Gp1.7 is reportedly a full-length non conserved gene that is 

beneficial for phage growth [15].   
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Figure 2.9 – Putative gene distribution of middle or class II genes in P. fluorescens phage φIBB-PF7A 

and the comparison with P. putida phage gh-1. Unknown orfs are in lighter colours than genes with 

assigned function.  

 

Besides the lack of all these first class II genes, the genome of φIBB-PF7A lacks also 

other genes such as: the T7 inhibitor of host RNA polymerase (gp2), the nonessential 

homing endonuclease (gp3.8), nonessential gp4.3 and nonessential gp5.5 as well as the 

genes gp3.2 and gp3.7. Also, the phages φIBB-PF7A and gh-1 have both 7 orfs with 

unknown function that, although not presenting protein homology with T7, might assume 

identical functions to some class II T7 phage genes. 

 

Late gene expression 

Like class II genes, the late genes or class III genes are also transcribed by the phage 

RNA polymerase. Like in all T7 members, in phage φIBB-PF7A the class III genes start 

with exonuclease (gp6). In fact, the majority of T7 putative genes are present in φIBB-

PF7A (Figure 2.10). However, the genome of φIBB-PF7A doesn’t possess the 

nonessential protein gp7 which is usually involved in the recognition of the host range 

[15]. Additionally, there are 6 orfs all situated just before the right DTR. The major 

striking difference in class III genes between φIBB-PF7A and phages gh-1 is the presence 

of the minor capsid protein 10B (gp10B). In the capsid shell of T7 coliphages there are 

415 molecules of capsid protein (gp10). Of these 415 molecules, 95% are of major capsid 

protein 10A (gp10A) and only a small percentage of gp10B [15]. The gp10B of phage 

φIBB-PF7A showed 58% protein homology with the gp10B of Yersinia enterocolitica 

phage φYe03-12 and also 57% with coliphage T3. 
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Figure 2.10 – Putative gene distribution of late or class III genes in P. fluorescens phage φIBB-

PF7A and the comparison with P. putida phage gh-1. Unknown orfs are in lighter colours than genes with 

assigned function.  

 

Phage φIBB-PF7A possesses the gene internal virion protein D (gp16). Gp16 

presents peptidoglycan hydrolase activity which is essential for enlarging a hole across 

the cell wall of stationary cells or the cell walls when hosts where infected at low 

temperatures [15]. In previous work, this phage has shown to be able to infect efficiently 

stationary cells and cells grown below the optimal temperature [17, 19]. 

 

Putative regulatory elements 

No tRNA genes were predicted in the φIBB-PF7A genome using tRNAscan-SE. Also, 

no transmembrane helices were found using TMPred and TMHMM. Although no tRNA 

genes were identified in the sequence of φIBB-PF7A, several potential putative 

transcription promoters were identified in the DNA sequence using PHIRE (Table 2.6).  
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Table 2.6 – Predicted promoter sequences in phage φIBB-PF7A using PHIRE and degenerate consensus sequence are presented. 

Name Promoter sequence Number of 
mismatches 

Transcription 
Beginning End 

A3 CACAGTGACATCGGGCTGGATGCGTCCAGTAACCTCAACGCTTTGACCGA  875 920 
C CTTTAACTTAAAGACCCTTTAAGATCCTTTAAGATTACTCTTATAGTAAT 3033 3078
C GACCCTTTAAGATCCTTTAAGATTACTCTTATAGTAATTATCATTAAGTA  3045 3090 

φorf8 CCCCTCACCAAAACAGGGTG 3 06005 06024
φorf11 ACCCTCACCAAAACAGGGAC 2 08263 08282
φ2.5 ACCCTCACCAGAACAGGGAG 2 09464 09483
φorf13 ACCCTCACCAGAACAGGGAC 3 11147 11166
φorf15 ACCCTCACCTAAACAGCTTG 3 13961 13980
φ6.5 CCCCTCACCTAAACAGGGAG 1 17798 17817
φ9 ACCCTCACCTAAACAGGGAG 0 20366 20385

φ10A ACCCTCACCTAAACAGGGAG 0 21359 21378
φ13 ACACTCACCACAACAGGGAG 3 26076 26095
φ17 CCCCTCACCTAAACAGGGAG 1 33333 33352

φorf17 ACCCTCACCTAAAGAGGGAC 2 37734 37753
φorf18 ACCCTCACCTAAACAGGGAT 1 38714 38733

Degenerate 
consensus 

                                            -10          -5          +1       +5 
                                        ACCCTCACCTAAACAGGGAG 

   

gh-1                                         ACCCTCACTRTGGCHSCM    
T7                                         CGACTCACTATAGGGAGA    
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The phage RNA polymerase (RNAP) in all T7 group phages is responsible for the 

recognition of phage-specific promoters and these promoter sequences are found in all the 

members of the T7 group for which genome data is available. Like in T7 phage, there 

were identified 3 early host RNAP promoters near the left end of phage φIBB-PF7A (blue 

lines with arrowhead in Figure 2.8). These promoters are necessary for the expression of 

the RNA polymerase. The first one identified is possibly the promoter A3 found in T7 

phages. The second and third promoters are possibly the same ones, as they are closely 

located, and may correspond to the minor E. coli promoter C. 

T7 group phages code for an RNAP with a strict template specificity for its own 

genome. In phage φIBB-PF7A, there were 12 phage RNAP specific promoters recognized 

(Table 2.6) and they were named acoording to the gene right after they appear. The 

promoters in φIBB-PF7A correspond to the red lines above the genome (Figures 2.9 and 

2.10). These promoter sequences have some mismatches (see Table 2.6) and a degenerate 

consensus sequence, ACCCTCACCTAAACAGGGAG, was derived based on all 

sequences. 12 of the 13 putative promoters lie in intergenic regions and only 1 is located 

approximately 200 bp from the beginning of orf 15. Nevertheless, all the other 11 sites 

are excellent promoter candidates. In T7 and gh-1 phages there are 16 promoters. The 

specificity of the RNAP is determined by the positions -10 and -11 and it is the position -

2 that establishes the promoter strength (23). The highest relative utilization of the 

promoter is observed when there is a T at the -2 position. Unlike in phage gh-1 and T7, 

both of which have T at -2, φIBB-PF7A has A and therefore a lower promoter utilization. 

Nonetheless, the promoter positions -10 and -11 are identical to the consensus sequence 

of gh-1 (C and C, respectively) with the exception of position -10 of promoter φ13. The 

promoter positions -10 and -11 of φIBB-PF7A are distinct from the T7 promoter positions 

which are G and A, respectively. Phage φIBB-PF7A has 6 promoters that are also 

identified in gh-1 and T7 which are: φ2.5, φ6.5, φ9, φ10A, φ13 and φ17, respectively. 

There are also promoters that lie just before orfs of unknown function (Table 2.6 and 

Figure 2.10). The promoter sequences which are found in analogous genomic positions to 

the ones in gh-1 and T7 suggest that the regulation of phage mRNA synthesis is also well 

conserved within the group. Furthermore, the consensus sequences of gh-1 and T7 are 50 

and 39% dissimilar over the 18 nucleotides compared. 

FindTerm program (www.softberry.com) was used to search for transcription 

terminators. T7 and gh-1 phages have 3 terminators identified. However, FindTerm only 
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identified one putative major terminator. This terminator is positioned at 22994 to 23040 

which is just downstream of gene 10. This suggests the presence of the Tø terminator as 

the location is equivalent to the one found in gh-1 (named TLate1 in this phage) and also in 

T7 phages. 

 

 Lysis genes 

Endolysin is a soluble muralytic enzyme produced by dsDNA phages. Like in T7 

phages, gp3.5 of φIBB-PF7A is proposed to be the endolysin which possess N-

acetylmuramoyl-L-alanine amidase activity. The access of endolysins to the cell wall 

occurs through the presence of a secondary lysis factor known as holin. The small 

membrane protein gp17.5 of φIBB-PF7A is proposed as holin. Phage φIBB-PF7A has 

also one more lysis gene which is the 18.5. However, unlike T7 phages, the genome of 

φIBB-PF7A is lacking the host cell lysis gene 18.7. 

Summarizing, the genome sequencing of φIBB-PF7A showed similarity to T7 phages 

and allowed the formation of a new sub-group within the T7 supergroup. So far, this new 

sub-group consists of only phages φIBB-PF7A and gh-1. 
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Materials and Methods 
 
Bacteria and bacteriophage φIBB-PF7A 

The bacteria used for phage propagation was isolated from a dairy industry and the 

bacteriophage was isolated from raw sewage. Bacteria was grown at 30 ºC in Tryptic Soy 

Broth (TSB, Fluka) and glycerol stocks were done and stored frozen at -80. 

 

Bacteriophage φIBB-PF7A propagation  

For phage amplification, the plate lysis and elution method described by Sambrook & 

Russel [22] was used with some modifications. Briefly, 1 ml of phage (1 × 103 PFU ml-1) 

and 1 ml of overnight grown host were mixed with 30 ml of TSB soft agar (TSB + 0.6% 

agar) and added to 250 ml T-flasks with a thin layer of TSA media. The soft-agar layer 

was allowed to solidify and the flasks were incubated at 30 °C for 7 h. Afterwards, the 

flasks were eluted with SM buffer and the phage lysate was first concentrated with 

PEG8000 and then purified with chloroform. Samples in SM buffer were stored at 4 ºC 

until further use. 

 

DNA isolation  

Phage DNA was isolated using a Wizard Lambda Preps DNA purification system 

(Promega, Madison, Wis.) according to the manufacturer’s instructions.   

 

Phage DNA sequencing 

Phage φIBB-PF7A DNA was sheared with a nebulizer and sizes between 1 and 4 kb 

were cut from a 1% 1×TAE agarose gels after overnight electrophoresis at 30V. 

Afterwards, the fractions were purified, end repaired and ligated overnight at 16ºC into 

pZero cloning vector (Zero background/Kan cloning kit, Invitrogen) which had been 

previously digested with EcoRV. After overnight ligation, chemical transformation to 

One Shot® TOP10 cells (Invitrogen) was performed. The cells were recovered in SOC 

medium, incubated for 1 h at 37ºC and 225 rpm (Titramax plate shaker, Heidolph) and 

afterwards plated onto a LB-Kan containing X-Gal plate. Selected clones were picked 

with a colony picker (QPix2) and grown overnight in LB medium at 37 ºC and 225 rpm.  

The cultures were centrifuged and plasmid DNA was extracted and purified and eluted in 

0.1 × TE buffer. PCR was performed with T7, SP6 primers or with oligos designed 
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throughout the sequencing experiments. For sequencing, Big Dye chemistry was used and 

sequencing was carried out in ABI 3700 DNA Sequencer (Applied Biosystems). 

Sequence reads were assembled using GAP4 (Staden package software). Sequences were 

assembled into contigs, and gaps were linked through a primer-walking technique with 

20-mer oligonucleotide primers and pure φIBB-PF7A DNA until all contigs assembled 

into a single sequence.  

 

ORF prediction and annotation 

Prediction of open reading frames (orfs) was performed using GeneMark.hmm, 

OrfFinder and by visual inspection of the sequence searching ATG as start codons. For 

tRNA gene identification, the tRNAscan-SE program was used. Translated orfs were 

compared with known protein sequences using Blastx and Blastn, using the non-

redundant public GenBank database.  

Molecular masses and isoelectric points of phage φIBB-PF7A translated putative 

proteins were determined with ExPasy. Promoter predictions were calculated using 

promoter predictor (http://www.fruitfly.org/cgi-bin/seq_tools/promoter.pl).  

A search for transmembrane helices was done by using the TMHMM program.  
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2.3 Isolation and characterization of Staphylococcus lentus phage φIBB-
SL58B 
 
 
 
 

Abstract 
 

This work describes the isolation and characterization of a Staphylococcus 

lentus phage capable to infect also S. sciuri and S. simulans. The phage was 

characterized morphologically by TEM and the physico-chemical properties 

were studied. Phage φIBB-SL58B belongs to the Podoviridae family but could 

not be assigned to any group of phages as the virions possess uncharacteristic 

morphology, as evaluated by TEM. Furthermore, phage φIBB-SL58B growth 

parameters differ from the typical values known for Podoviridae genera. Phage 

φIBB-SL58B presents 9 distinctive structural proteins of which the major 

component is a 47.8 kDa polypeptide. The protein bands excised and analyzed 

by N- terminal sequencing showed no homology to known structural proteins. 

The genome of phage φIBB-SL58B proved to be resistant to cleavage by a 

number of restriction enzymes (Eco RI, Eco RV, Hind III, Pst 509I, BamHI, Sau 

3AI, Sma I, Spe I, Sph I, and Xba I). Moreover, the DNA sequencing showed 

that there are genes which resemble to T7 like phages however the identity 

percentage is minimal. Thus, all these results suggest that phage φIBB-SL58B is 

clearly a novel phage and the first phage of the Podoviridae family that has a 

gram-positive host.  
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Introduction 
 

Staphylococci are divided into coagulase positive (CoPS) and negative (CoNS) 

strains. S. aureus is the most known pathogenic CoPS and is frequently isolated from 

clinical environments while among the best studied CoNS is S. epidermidis. Although 

CoNS are widespread in nature and considered commensal inhabitants of humans and 

animals’ skin, mucous membranes and other body sites (Koneman et al., 1988; Quinn et 

al., 1994), there has been an increase of clinical infection due to these strains. CoNS are 

also frequently associated with animal diseases and especially isolated from infected 

bovine and caprine mammary glands (Bedidi-Madani et al., 1998; Birgerrson et al., 1992; 

Lilenbaum et al., 1987; Devriese, 1990; Devriese et al., 1985; Kloos, 1980; Nagase et al., 

2002). The increase of CoNS infection is due to the high resistance to antibiotics (Otto, 

2004). 

Staphylococcus members belong to different groups. The CoNS S. sciuri group 

consists of the species S. sciuri, S. lentus, S. vitulinus, and S. pulvereri (Kwok and Chow, 

2003) and besides animals skin and mucosal surfaces, these staphylococci have been 

isolated from different foods of animal origin (Garcia et al., 2002; Papamanoli et al., 

2003), from soil, sand, water (Kloos, 1980; Oger et al., 2003) as well as from hospital 

environments (Dakic et al., 2005). The members are novobiocin-resistant, oxidase 

positive and rarely considered pathogenic for humans. Nevertheless, there has been an 

increase of different infections due to these bacteria (Dakic et al., 2005; Stepanovic et al., 

2005) and nowadays some CoNS have shown to be opportunistic human pathogens.  

This work describes the morphological, physico-chemical and genomical 

characterization of a Staphylococcus lentus phage which has been recently isolated. 
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Results and Discussion 

 
Selection of the Staphylococcus lytic phage candidate  

Staphylococcus spp. phages, were isolated from raw sewage for 10 different dairy 

isolates belonging to S. sciuri, S. lentus and S. simulans (Table 2.7). Phages were found 

for only four of the host isolates investigated, namely the S. lentus isolates 57 and 58 and 

for S. sciuri isolates 46 and 51. Also, there was not found any phage for S. simulans. 

 
Table 2.7 – Bacterial species and strains used and phages isolated for the different hosts. 

Bacterial species and  
strain designations 

Phages designations for the isolated hosts 

Staphylococcus lentus: 
57, 58 

Staphylococcus lentus: 
φIBB-SL57A, φIBB-SL57B, φIBB-SL57C, 
φIBB-SL57D, φIBB-SL58A, φIBB-SL58B 

Staphylococcus sciuri: 
45, 46, 50, 51, 55, 56, LC4 

Staphylococcus sciuri: 
φIBB-SC46, φIBB-SC51 

Staphylococcus simulans: 
53 

Staphylococcus simulans: 
- 

 

The isolated phages (Table 2.7) were further investigated in screening assays, where 

all phages where tested against all bacterial isolates (Table 2.8), in order to select the 

most effective lytic phage that would be further characterized.  

 
Table 2.8 – Screening of phages for Staphylococcus spp. for selection of the most efficient phages. 

 φIBB- 
Isolate SL57A SL57B SL57C SL57D SL58A SL58B SC46 SC51 
45 - - T T T T T - 
56 - - T T T T - - 
55 - - T T T T - - 
53 - T T T T T - - 
46 - T T T T T T - 
51 T T T T T T T T 
50 T T T T T T - - 
57 T T T T T T - - 
58 C C C C C C - C 
LC4 C C C C C C - C 

C - clear phage plaque; T - turbid phage plaque; – no phage plaque 
 

Most of the phages isolated from raw sewage produced turbid plaques in the different 

hosts. From the list of isolated phages, φIBB-SL57C, φIBB-SL57D, φIBB-SL58A and 
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φIBB-SL57B gave similar screening results and were all capable to infect S. lentus, S. 

simulans and S. sciuri. This suggests that they possibly belong to the same phage species 

or are in fact the same phage. All of them showed a very small plaque (1.5-2 mm) and a 

considerably big halo (2-2.5 mm) on the bacterial lawn of isolate 58 and an even smaller 

plaque size on isolate LC24. Although phage φIBB-SL57C and φIBB-SL57D formed a 

turbid plaque on the isolation host (isolate 57), these phages formed clear plaques on the 

lawns of isolate 58. Thus, phages isolated for S.lentus nr. 58 were preferred over the 

phages for S. lentus nr. 57. Phage φIBB-SL58B, was selected, rather randomly, for further 

characterization studies. This study shows that, the majority of the isolated phages, for 

dairy Staphylococcus spp., can be considered polyvalent.  

 

Morphology of the phage particles  

Morphological characterization of phage φIBB-SL58B using Transmission Electron 

Microscopy (TEM) was performed (Figure 2.11) showed that this phage belongs to the 

family of Podoviridae and as it has a short tail it also belongs to type C in Bradley’s 

classification (Bradley, 1967). The Podoviridae family consists of different genera: T7-

like, P22-like, φ29-like, N4-like and unassigned viruses and although there are some 

morphological similarities between phage φIBB-SL58B and group N4-type phages, the 

definite morphological assignment of phage φIBB-SL58B can not be made due to the 

uncharacteristic morphology of the virion particles (Figure 2.11) (Dr. H. W. Ackermann, 

personal communication). These particles have head and tail sizes of approximately 64nm 

and 13 × 9 nm, respectively.   

 
Figure 2.11 – Morphology of φIBB-SL58B for S. lentus. 

 

So far, all polyvalent phages reported in literature belong to the Myoviridae family of 

which the most knowns are phage K and phage φ812 that infect several pathogenic 

staphylococci isolated from both human and bovine infections (Rees and Fry, 1981 and 
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1983; Pantucek et al., 1998). Thus, phage φIBB-SL58B is the first polyvalent 

Staphylococcal phage belonging to the Podoviridae family.    
 

One-step growth curve  

One-step growth curves were performed to analyse the life cycle of phage φIBB-

SL58B. The number of free and total phages present in different time intervals was used 

to estimate the different infection periods (Figure 2.12).  

 
Figure 2.12 – One step growth curve of phage φIBB-SL58B for S. lentus. 

 

Phage φIBB-SL58B has a latent and eclipse periods of about 15 min which are 

followed by a rise period of 20 min that results in a burst size of 507 PFU per infected 

cell. The life cycle values obtained for φIBB-SL58B differ from the typical values 

observed for: T7 and N4-like phages. The burst size is higher than in T7, however lower 

than the burst sizes observed in N4-like phages which are around 3000 after 3 h of post-

infection. Also, contrarily to N4-like phages which have a 30 min latent period (Schito, 

1974) the phage isolated and characterized in this work has a 15 min latent period. Phage 

φIBB-SL58B also differs from phi29-like phages which have a burst size of 180 and a 35 

min latent period, as well as from P22-like phages that possess burst sizes of 1000 and 30 

min latent periods (Yamamoto, 1969). This shows that the phage selected for 

characterization, φIBB-SL58B, has uncommon values regarding the phage life cycle 

parameters. 

 

Adsorption experiments 

For the estimation of the adsorption rate, the number of free phages was calculated 

from the PFU of chloroform-treated samples within 15 min after inoculation (Figure 

2.13).  
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Figure 2.13 – Adsorption of phage φIBB-SL58B to its host S. lentus at a MOI of 0.01. 

 

S. lentus phage φIBB-SL58B adsorbs fastly to the host cells and after 5 min the 

percentage of free phages was already less than 10 % (Figure 2.13). The adsorption rate, 

calculated according to Hadas et al. (1997) was of 1.051 × 107 phages ml-1 min-1.  

 

Analysis of phage structural proteins  

Phage structural proteins were analyzed by gel electrophoresis to allow possible 

comparisons and correlation with other phages. Furthermore, some bands were submitted 

to N-terminal sequencing for further characterization (Table 2.9). 

 
  Table 2.9 – N- terminal sequencing of phage φIBB-SL58B structural proteins. 

 N-terminal sequence Score (%) Similarity with proteins  
in database 

1  A-G-I-F-A-S-T-N-V-Q  22.7 Phage tail sheath protein 
(Cellvibrio japonicus 

Ueda107) 

2  A-E-I-Y-N-K-D-G-N-
K-L  

38.4 NmpC precursor 
(Enterobacter phage P7) 

3  Difficult to get sequence 
(too low amount?) 
A-P-K-D-N-T-?-Y-T-G 

 Not phage related 
homologies 

4  T-D-G-T-I-T-F-N-G-K   Not phage related 
homologies 

Figure 2.14 – Phage φIBB-SL58B structural proteins. 

 

Phage φIBB-SL58B has 9 visible structural protein bands of which the 47.8 kDa 

polypeptide appears in greater amount (Figure 2.14). All these bands have sizes smaller 

than 49 kDa. According to literature, the N4-type phages have 10 structural proteins 
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where the major component is a 48kDa polypeptide coat protein (10). This similarity 

obetween the major polypeptide expressed in φIBB-SL58B 47.8 kDa and the 48 kDa coat 

protein of N4 phages could be a good reason to classify the S. lentus phage within the N4-

like phages, however, there is no homology, in terms of N-terminal sequencing of that 

protein band with the specified phage group. In fact, N-terminal sequencing of four bands 

did not improve the knowledge on the structural proteins of this phage as basically there 

was no high homology (scores of 22.7 and 38.4%) between the proteins of this phage and 

proteins in the database. Also, the proteins identified as 3 and 4 had no similarity to phage 

proteins. The results of this study also do not help on the characterization of this phage, 

keeping the classification still a mistery.  

 

Phage DNA studies 

The isolated phage φIBB-SL58B DNA was digested with several restriction enzymes. 

This was performed in order to determine the approximate genome size of this phage. 

However, the DNA extracted from phage φIBB-SL58B proved to resist cleavage with 

EcoRI, EcoRV, HindIII and Tsp509I as well as with BamHI, Sau3AI, SmaI, SpeI, SphI 

and XbaI and therefore the genome size of this phage could not be determined (data not 

presented). This phage appears to be resistant to cleavage by this wide range of restriction 

enzymes tested. This fact has been also reported by other authors for N4-like phages 

(Ohmori et al., 1988; Zehring and Rothman-Denes, 1983).  

 

Genome overview 

The studies described above failed to classify phage φIBB-SL58B within a 

determined Podoviridae group. Thus, it can be assumed, based on all previously 

performed studies that this might be a novel type of phage. Genome sequencing was 

performed to elucidate on the genes present on this peculiar phage. Intensive sequencing 

work has been performed and a number of oligos have been designed in order to obtain 

the left and right terminal repeats of this phage. However, all the experiments performed 

have not, so far, led to the determination of the complete genome. Nevertheless, the 

preliminary results obtained are presented in this study (Table 2.10 and Figure 2.15).      
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Table 2.10 – Gene similarities and properties (Blastp and blastx). 
 

gene Strand Left end Right end Gene 
length Homology Phage Score Expect Identity 

% Accession nr. 

1 + 92 271 180 gp0.36 K1F 60.1 5e-08 54 YP_338092 
2 + 268 486 219 unknown      
3 + 483 791 308 unknown      
4 + 793 1683 891 unknown      
5  + 1683 2087 405 unknown      
6  + 2089 2295 207 unknown      
7  + 2279 2494 216 gp33 Xop411 36.6 .59 30 YP_001285703 
8 + 2481 2783 303 unknown      
9 + 2780 3196 417 unknown      
10 + 3377 3640 264 unknown      
11 + 3640 4116 477 unknown      
12 + 4167 4415 249 DNA 

primase 
LKA1 49.7 7e-05 44 YP_001522861 

13 + 4403 4834 432 unknown      
14 + 4842 5804 963 DNA 

helicase 
LKA1 147 1e-37 35 YP_001522864 

15 + 5806 6087 282 DNA_B 
helicase 

LUZ19 101 2e-20 50 YP_001671959 

16 + 6349 7347 999 DNA ligase VP4 69.36 4e-10 33 YP_249578
17 + 7436 8032 597 Hyp protein phiKMV 45.4 0.003 28 NP_877455 
18 + 8042 10495 2454 DNA 

polymerase 
LKA1 540 2e-151 40 YP_001522870 

19 + 10509 11339 831 Hyp protein LKA1 91.3 8e-17 32 YP_001522872 
20 + 11339 12340 1002 DNA 

exonuclease 
LKA1 132 4e-29 35 YP_001522873 
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Table 2.10 (Cont.) – Gene similarities and properties (Blastp and blastx). 
 

gene strand Left end Right end Gene 
length Homology Phage Score Expect Identity 

% Accession nr. 

21 + 12345 12501 156 Hyp protein Era103 35.8 0.92 40 YP_001039662 
22 + 12498 12896 399 unknown      
23 + 12889 13314 426 DNA 

exonuclease 
LKA1 110 3e-23 46 YP_001522874 

24 + 13307 14341 1053 gp23 SP6 284 9e-75 46 NP_853583 
25 + 14341 14517 177 unknown      
26 + 14525 14908 384 Hyp protein BcepF1 73.9 4e-12 50 YP_001039759 
27 <150          
28 + 15022 17511 2490 DNA 

polymerase 
MSMB43 427 3e-117 32 ZP_02468154 

29 + 17624 17809 186 unknown      
30 + 17802 18224 423 unknown      
31 + 18208 18597 390 unknown      
32 + 18607 20112 1506 Head-to-tail 

joining 
MSMB43 390 2e-106 43 ZP_02468149 

33 + 20112 20906 795 Hyp protein MSMB43 80.5 1e-13 34 ZP_02468148 
34 + 20980 22002 1023 Minor capsid 

protein 10B 
MSMB43 245 5e-63 42 ZP_02468147 

35 + 22098 22709 612 Tail tub 
protein A 

MSMB43 120 8e-26 36 ZP_02468146 
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Table 2.10 (Cont.) – Gene similarities and properties (Blastp and blastx). 
 

gene strand Left end Right end Gene 
length Homology Phage Score Expect Identity 

% Accession nr. 

36 + 22711 25302 2592 Tail tub 
protein B 

MSMB43 488 1e-135 35 ZP_02468145 

37 + 25304 26086 783 unknown      
38 + 26096 28339 2244 Hyp protein MSMB43 96.3 1e-17 20 ZP_02468143 
39 + 28353 32162 3810 Hyp protein MSMB43 216 2e-53 24 ZP_02468142 
40 + 32294 34495 2202 Hyp protein MSMB43 95.9 1e-17 37 ZP_02468141 
41 + 34497 35219 723 unknown      
42 + 35233 35409 177 gp17.5 BA14 33.5 4.7 33 YP_002003494 
43 + 35402 35743 342 unknown      
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K1F Xop411

LKA1

LUZ19 VP4

phiKMV

Era103 SP6

BcepF1BA14 unknown

< 50 >= 50

1     2    3     4     5     6     7    8     9    10   11  12   13  14   15   16   17  18   19   20   21

22   23   24    25  26   27   28   29  30   31   32   33  34   35   36   37   38   39   40   41  42  43  

Legend:

MSMB43

 
 
Figure 2.15 – Schematic block representation of the 43 potential genes present in the genome of S. lentus 

phage φIBB-SL58B. Coloured blocks correspond to homology with genes of phages in the database. The 

red and blue block outlines represents the homology percentage, below and above or equal to 50%, with a 

gene in the database.   

 
The genome of φIBB-SL58B consists of linear double-stranded DNA and the biggest 

contig contains 38,762 nucleotides and 43 orfs as predicted using GeneMark software. 

The GC content of this phage is 56% and no tRNA genes were identified. Also, all genes 

are transcribed from the same strand. Translated orfs were compared to known proteins 

sequences within the non-redundant database using Blast tools. The orfs encoding with 

known proteins are listed in Table 2.10 along with their putative function and the 

organisms with most similar sequence. Most genes (19 orfs) of φIBB-SL58B present no 

significant similarities with phage genes in the databank (black blocks in Figure 2.15). 

Only 3 orfs, the orfs1, 21 and 26, gave homology percentages above or equal to 50%. 

These 3 orfs showed similarities with genes of three distinct phages: coliphage K1F, 

Erwinia emilovara phage Era103 and the Burkholderia ambifaria phage BcepF1. Phages 

K1F and Era103 belong to the T7 group of Podoviridae phages while BcepF1 is a 

Bcep781-like Myoviridae phage. Many orfs of φIBB-SL58B showed low homology 

percentages (<50%) with 7 different phages of which only one, the Xanthomonas oryzae 

pv. oryzae phage Xop411, does not belong to the family Podoviridae but instead to the 

Siphoviridae family. So, this study reveals that the S. lentus phage φIBB-SL58B has 

similarities with several genes of gram-negative phages and this fact that has never been 

reported.   

As the information gathered with analysis of the phage genome does not present that 

much similarities with any phage there was not hypothesized analogies with any phage 
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arrengments and clustering. Nevertheless, genes from gp0.36 to gp17.5 presented some 

similarity with early, middle and late genes characteristically observed in T7 phages. 

Moreover, there was not obtained homology with any RNA polymerase (RNAP). RNAP 

binds and initiates transcription at specific conserved promoter sequences and possibly 

the non-identification of this gene was also responsible for the uncharacteristically low 

number of phage specific promoters identified using PHIRE with a string length of 20, 

degeneracy of 4 and a window size of 20 (Table 2.11).  

 
Table 2.11 – Promoter sequences and location found in φIBB-PF7A genome. 
 

Nr. Start End Promoter sequence Mismatch 

1 1064 1083 CGTACGTGCAGCGTGACGGC 3 

2 9381 9400 AGTACGTGCAGCTGGACAGC 2 

3 12607 12626 AGTACGTGCAGCAGGACGGC 0 

4 24872 24891 AGTACCGGCAGCGGGACGAC 4 

5 26505 26524 AGTACGTGCAGCAGAACCAA 4 

Consensus AGTACGTGCAGCAGGACGGC  

 
 

All the promoters identified with PHIRE are not in intergenic regions but rather 

embedded in orfs, more specifically in orfs 4, 18, 23, 36 and 38, respectively. Therefore, 

none of these promoters can be considered suitable candidates.  

There was identified only one terminator starting at 21,969 nt and with a length of 31 

nt, suggesting a weak termination activity. This terminator lies in the minor capsid protein 

10B (gp10B) of this phage.  

Understanding and classifying phage φIBB-SL58B is proving to be a big challenge as 

there is no significant morphological, physico-chemical or even genomic similarities with 

any known phage or group of phages. The genome sequencing is still being performed to 

further reach the ends of this phage. Nevertheless, the study of the phage genome proves 

that the assembly has been obtained in the correct order as the first known gene obtained 

is gp0.36 and the last one from this contig fragment is gp17.5 which is the lysis protein in 

many phages. 
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Materials and Methods 

 

Bacteria and growth conditions  

The bacterial strains used in this work (see Table 2.7) were previously isolated from a 

dairy plant (Paços de Ferreira, Portugal). All bacteria were grown at 30 ºC in Tryptic Soy 

Broth (TSB, Fluka). Solid TSA medium contained 1.2 % w/v of BactoTM agar (Difco) and 

the soft agar top-layer contained 0.6 % of BactoTM agar. All bacteria were subcultured 

once and glycerol stocks were done and stored frozen at -80 ºC until further use.  

 

Bacteriophage isolation, selection and concentration  

Bacteriophages were isolated, selected, propagated and concentrated as previously 

described in Materials and Methods of sub-chapter 2.1. 

 

Phage titration  

Bacteriophage titer was analysed as described by Adams (1959).  

 

Bacteriophage adsorption  

Bacteria in the logarithmic growth phase were diluted in TSB to an optical density 

(OD600) of 1.0. Afterwards, 10 ml of the bacterial suspension and 10 ml of phage solution 

were mixed in order to give a multiplicity of infection (MOI) of 0.01, incubated at room 

temperature with shaking (150 rpm, Rotamax 120, Heidolph) and samples were collected 

every minute for 15 min. Samples were immediately chloroform-treated, diluted and 

plated on TSA plates. After overnight incubation at 30 ºC phage plaques were counted. 

 

One-step growth curve  

One-step growth curve was performed as described by Pajunen et al. (2000) with 

some modifications as described in sub-chapter 2.1.  

 

SDS-PAGE  

Purified phage solution was precipitated with 4 vol of ice-cold acetone and the pellet 

was air-dried and later resuspended in PBS buffer (8 g l-1 NaCl, 0.2 g l-1 KCl, 0.2 g l-1 

KH2PO4, 1.44 g l-1 Na2HPO4 × 2H2O, pH 7.5). SDS-PAGE was carried out according to 

Laemmli (1970). Briefly, 24 μl of sample were added to 8 μl of 4 × Laemmli buffer and 
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boiled for 10 min. Samples were then loaded to a 4-20 % PAGEr precast gels (Cambrex) 

and electrophoresed with Tris-glycine buffer. After electrophoresis the gels were stained 

with Bio-safe Coomassie (BioRad). 

 

DNA isolation  

Phage DNA was isolated using a Wizard Lambda Preps DNA purification system 

(Promega, Madison, Wis.) according to the manufacturer’s instructions.   

 

Restriction enzyme digestion  

Phage φIBB-SL58B DNA was digested with the following restriction enzymes: Eco 

RI, Eco RV, Hind III, Tsp, Bam HI, Sau 3AI, Sma I, Spe I, Sph I and Xba I, according to 

the instructions provided by the manufacturer. All restriction enzyme digestions were 

performed in triplicate. Electrophoresis at 15 V for 24 h was performed with a 0.7 % TAE 

agarose gel stained with ethidium bromide. A 1 kb DNA ladder and Lambda Mix Marker 

(both from Fermentas) were used as molecular weight markers to calculate the sizes of 

the phage DNA fragments.  

 

Electron microscopy  

Bacteriophage particles were sedimented at 25,000 ×g for 60 min using a Beckman 

(Palo Alto, CA) J2-21 centrifuge with a JA 18.1 fixed-angle rotor. Bacteriophages were 

washed twice in 0.1 M ammonium acetate (pH 7.0), deposited on copper grids provided 

with carbon-coated Formvar films, stained with 2 % potassium phosphotungstate (pH 

7.2), and examined in a Philips EM 300 electron microscope (performed by Dr. H. W. 

Ackermann, Laval University, Quebec, Canada). 

 

Phage DNA sequencing 

Phage φIBB-SL58B DNA was sheared with a nebulizer and sizes between 1 and 4 kb 

were cut from a 1% 1×TAE agarose gels after overnight electrophoresis at 30V. 

Afterwards, the fractions were purified, end repaired and ligated overnight at 16ºC into 

pZero cloning vector (Zero background/Kan cloning kit, Invitrogen) which had been 

previously digested with EcoRV. After overnight ligation, chemical transformation to 

One Shot® TOP10 cells (Invitrogen) was performed. The cells were recovered in SOC 

medium, incubated for 1 h at 37ºC and 225 rpm (Titramax plate shaker, Heidolph) and 
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afterwards plated onto a LB-Kan containing X-Gal plate. Selected clones were picked 

with a colony picker (QPix2) and grown overnight in LB medium at 37 ºC and 225 rpm.  

The cultures were centrifuged and plasmid DNA was extracted and purified and eluted in 

0.1 × TE buffer. PCR was performed with T7, SP6 primers or with oligos designed 

throughout the sequencing experiments. For sequencing, Big Dye chemistry was used and 

sequencing was carried out in ABI 3700 DNA Sequencer (Applied Biosystems). 

Sequence reads were assembled using GAP4 (Staden package software). Sequences were 

assembled into contigs, and gaps were linked through a primer-walking technique with 

20-mer oligonucleotide primers and pure φIBB-SL58B DNA until all contigs assembled 

into a single sequence.  

 

ORF prediction and annotation 

Prediction of open reading frames (orfs) was performed using GeneMark.hmm, 

OrfFinder and by visual inspection of the sequence searching ATG as start codons. For 

tRNA gene identification, the tRNAscan-SE program was used. Translated orfs were 

compared with known protein sequences using Blastx and Blastn, using the non-

redundant public GenBank database.  

Molecular masses and isoelectric points of phage φIBB-PF7A translated putative 

proteins were determined with ExPasy. Promoter predictions were calculated using 

promoter predictor (http://www.fruitfly.org/cgi-bin/seq_tools/promoter.pl).  

A search for transmembrane helices was done by using the TMHMM program. 
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3.1 Pseudomonas fluorescens biofilms subjected to phage φIBB-PF7A 

 

 

Summary 
 
Background: Pseudomonas fluorescens is an important food spoilage 

organism, usually found in the form of biofilms. Biofilms are inherently 

tolerant to antimicrobial agents, therefore alternative methods to biofilm 

eradication, such as bacteriophages (phages) have been suggested. Phage 

behavior on biofilms is still poorly investigated and needs further 

understanding. This work describes the application of phage φIBB-PF7A, a 

newly isolated phage, to control P. fluorescens biofilms. The biofilms were 

formed under static or dynamic conditions and with or without renewal of 

medium. 

Results: Conditions for biofilm formation influenced the feature of the 

biofilm and the morphology of P. fluorescens. Biomass removal due to 

phage activity varied between 63 and 91 % depending on the biofilm age 

and the conditions under which the biofilm had been formed and phages 

applied. Removal of the biofilm by phage treatment was faster in younger 

biofilms, but interestingly, after only 4 h of treatment approximately the 

same number of surviving cells was detected in all tested biofilms, even in 

older biofilms. Under static conditions, a 3 log higher number of phage 

progeny remained either inside the biofilm matrix or attached to the 

substratum surface than under dynamic conditions, pointing to the 

importance of experimental conditions for the efficacy of phage entrapment 

into the biofilm.  

Conclusions: Phage φIBB-PF7A is highly efficient in removing P. 

fluorescens biofilms within a short time interval. The conditions of biofilm 

formation and applied during phage infection are critical for the efficacy of 

the sanitation process. The integration of phages into the biofilm matrix and 

their entrapment to the surface may be further beneficial factors when phage 

treatment is considered alone or in addition to chemical biocides in 

industrial environments where P. fluorescens causes serious spoilage.  

 
The work presented in this chapter was published in BMC Biotechnology, 
8:79 (27 of October 2008). 
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Background 
 

Pseudomonas fluorescens is a spoilage causing bacterium present in a variety of food 

related environments. In dairy industry, P. fluorescens is one of the most commonly 

isolated psychrotrophic bacteria that dominate the microflora of raw or pasteurized milk 

at the time of spoilage [1-6]. This spoilage ability is mostly due to the capability of 

producing heat-stable extracellular lipases, proteases and lecithinases that survive the 

thermal processing steps [2, 6-8]. This bacterium is also one of the three most 

predominantly isolated bacteria associated with spoilage of fresh poultry and reports of 

spoilage due to P. fluorescens date since the 1930s [9-12]. More recently, some studies 

have revealed that some strains of Pseudomonas can increase the colonization of inert 

surfaces by Listeria monocytogenes [13] and/or protect this pathogenic bacterium from 

disinfectants[14]. There are also studies reporting spoilage of refrigerated foods with P. 

fluorescens, in particular of refrigerated meat products [15-17]. The contamination of the 

meats results in changes in appearance and odour during prolonged storage. Furthermore, 

P. fluorescens is also recognized to be a model organism for biofilm studies as it can 

easily form biofilms in different laboratory simulators [18-20].  

The interest in applied bacteriophage research has increased during recent years 

mainly due to positive results obtained with phage therapy applied to animals [21-24]. 

Also phage application to certain meat products was allowed, since August 2006, by the 

United States Food and Drug Administration (FDA) in order to control Listeria 

monocytogenes [25]. There is also an increase in the number of patents of application of 

phages to control pathogenic bacteria in industrial environments and foodstuffs [26-29].  

The idea in this area is to either keep the biofilm propagation limited by the phages over 

long times, e.g. by insertion of phages in surface layers (e.g. [30]) or to apply phages at 

different stages of production and processing to reduce food product contamination at that 

point or to protect against contaminations at subsequent points, which can be performed 

also in combination of sterilizing chemical agents as long as these agents do not reduce 

the biological activity of the phages [29].  

Biofilm phenomena have been studied over many years and it is generally recognized 

that this bacterial lifestyle on surfaces is dominant. Although many studies involve phage 

infection of cells, most of them only consider planktonic bacteria. Bacteria attached to 

surfaces have totally different characteristics such as they are embedded in a matrix 
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composed of exopolysaccharides, proteins and nucleic acids and the cells represent 

different growth stages. As phage infection and life cycle generally strongly depend from 

the growth stage of the host bacterium (see e.g. [31, 32]) the treatment of slowly growing 

cells in biofilms is a challenge. Some studies have already been made regarding the 

application of phages to eradicate bacteria in the form of biofilm [30,33-38] nonetheless 

more understanding of phage action in biofilm influenced by age and formation 

conditions is  still required.  

In a previous work with biofilms [37] it was already showed that under optimal 

conditions phage φS1 could infect well P. fluorescens biofilms. This was a study 

performed with a culture collection host and phage system that had been isolated from 

soil. In this work, a P. fluorescens isolated from a dairy industry was used. The bacterium 

was isolated from a biofilm present on the stainless steel teatcup shell which indicates that 

this isolate would easily form biofilms on stainless steel slides. The aim of this work was 

to study the application of the recently isolated T7-like bacteriophage φIBB-PF7A [39] to 

control P. fluorescens biofilms. Aside from a very high efficiency of this phage in biofilm 

removal, different conditions applied for biofilm formation and during phage application 

proved their influence on the time kinetics of the phage absorption and biofilm removal 

process. Interestingly however, the single species model biofilm was efficiently removed 

under all conditions which suggests phage φIBB-PF7A to be a superior sanitation agent. 
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Results 
 
Biofilms formed under different conditions 

In this work, P. fluorescens biofilms were allowed to form onto stainless steel (SS) 

slides, which is a common substratum used in the dairy industry. Three different 

experimental approaches for biofilm formation were applied: (i) static conditions, i.e. no 

shaking applied, with media renewal every 12 h (SR), (ii) dynamic conditions, i.e. 

incubation on an orbital shaker, with media renewed every 12 h (DR), and (iii) dynamic 

conditions without renewal of cultivation medium (DNR) (see Methods for description of 

the different conditions). Also, different biofilm ages were studied ranging from 24 up to 

168 hours. 

The number of cells present on SS slides was assessed after different periods of 

biofilm formation (Figure 3.1). Lowest cell counts, detected as colony forming units after 

removal of the cells from the substratum, were obtained from biofilms which were 

incubated under shaking conditions (dynamic conditions) with an additional renewal of 

the cultivations medium. Dependent on the incubation period, 10 to 100 times higher cell 

numbers were detected from coupons which were incubated without any turbulence, i.e. 

under static (SR) conditions (Figure 3.1). Interestingly, the difference in the number of 

colony forming units between the different conditions decreased with the time of 

incubation.  

 
Figure 3.1 - Number of biofilm cells present on stainless steel slides. P. fluorescens biofilms were 

formed during different times on stainless steel slides under different conditions: static with media renewal 

(SR), dynamic with media renewal (DR), dynamic non-renewal of media (DNR). For all experiments n = 6. 

Error bars indicate standard deviations.  
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Additionally to the determination of colony forming units, also the dry weight of the 

biofilms was analyzed. These dry weight measurements cannot be directly correlated with 

viable cell numbers (Table 3.1). For example, the viable cell counts obtained from 

biofilms which were cultivated for 72 h under static or dynamic conditions (DR and SR) 

were practically identical, but the determined dry weight was clearly different. This 

difference in dry weigh is most likely due to different amounts of EPS matrix present in 

these different biofilms.  

In order to better characterize the effect of dynamic conditions on the biofilm, 

samples after incubation for 24 to 168 hours were analyzed by field emission scanning 

microscopy (FESEM) (Figure 3.2). The FESEM micrographs show a predominance of 

filamentous cells in early stage biofilms (24 h and 72 h) and a shift to rod-shape forms in 

older biofilms (120 h and 168 h).  

 
Figure 3.2 - Dynamic P. fluorescens biofilms formed on stainless steel slides with media renewal 

every 12 h. FESEM micrographs before phage application: a) 24 h; b) 72 h; c) 120 and d) 168 h old biofilm. 

 

For the dynamic conditions without renewal of medium biofilm formation was 

studied only during 24 h and 72 h, as there was clearly decreased biofilm formation 

ability, most likely due to the lack of nutrients.  
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Overall, this study shows that the biofilm formation conditions influence the number 

of cells and biomass present on the coupons as well as the P. fluorescens cell 

morphology. This study is an important basis for the valuation of the effects of 

bacteriophages.      

 

Efficacy of phage φIBB-PF7A to control biofilms  

Single species biofilms do not mimic real conditions, but these biofilms determinedly 

present advances in the biofilm-phage interaction research field. Here it is investigated 

how effective the recently isolated T7-like bacteriophage φIBB-PF7A is in controlling 

biofilms under static and dynamic conditions. In these experiments the number of phages 

applied was 1 × 107 PFU ml-1 as this concentration is in the range of normally used phage 

solutions (1 × 106 PFU ml-1 to × 1010 PFU ml-1) [33,36-38].    

Initial tests performed with biofilms and phage φIBB-PF7A showed that maximum 

cell reduction was achieved within 4 hours. Therefore, the effect of the phages was 

followed over a time interval of two and four hours respectively, which is clearly lower 

than the 24 hours infection period used in other biofilm-phage studies [38, 40-42]. 

As a negative control, biofilms immersed for four hours in a solution of SM buffer 

and TSB without addition of phages also investigated in order to verify that the observed 

effects are really related to the phages and not to a detachment of the biofilms as a 

response to the addition of new SM medium.  

In order to evaluate the phage ability to infect the different P. fluorescens biofilms 

described above, samples were taken after two and four hours for cell and phage 

enumeration. Already two hours after phage addition, a very strong reduction of the 

number of cells on the SS slides was observed for all the different biofilms (Figure 3.3). 

In older biofilms (120 h and 168 h) the phage acted somewhat slower, obviously older, 

stationary phase biofilms delay the cell lysis process. However, under all tested 

conditions, a 3 to 5 log order reduction of the cell count was detected during only four 

hours of phage exposure. 

Biofilm cell reduction was about one order of magnitude higher in static conditions 

compared to dynamic conditions, despite of the clearly different cell morphology 

(compare Figures. 3.3a and 3.3b). Furthermore, it was also wanted to investigate whether 

the application of the phages would lead to the release of cells. 
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Figure 3.3 - Number of P. fluorescens biofilm and planktonic cells before and after exposure to 

phage φIBB-PF7A. Cells before phage (time 0 h), control experiments performed for 4 h in SM buffer-TSB, 

phage exposure for 2 h and 4 h are presented in biofilms were formed under: a) static with media renewal 

(SR), b) dynamic with media renewal (DR), and c) dynamic with non-renewal of media (DNR). For all 

experiments n = 6. Error bars indicate standard deviations.  
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Measurements of cell numbers in the planktonic phase showed that in phage infection 

experiments there was a detachment of cells or clusters of cells into the liquid medium, 

although these numbers were quite low, generally below 10³ cells per ml. The 

measurements of the control coupons show that the biofilms are not detached due to the 

half-strength TSB and the cell numbers are similar to those at the start of the experiments 

(Figure 3.3) and therefore it can be concluded that the detachment in phage infection 

experiments is only due to the presence of phages. 

The number of phages in the planktonic phase was approximately the same after 

infection of the different biofilms (Figure 3.4). The main difference in phage counts was 

related to phages adsorbed to the biofilms and SS slides. A higher number of phages 

adsorbed to the biofilms and SS slides under static conditions. However, infection under 

dynamic conditions decreased the ability of phages to adsorb to the substratum and 

remaining biofilms. Despite this, it was surprising that the number of phages found to be 

absorbed is approximately in the order of magnitude of the phages applied for the 

treatment, which indicates a very efficient reproduction of the phages.  

 
Figure 3.4 - Number of phages used to infect the different biofilms and progeny phages adsorbed 

and released after 4 h of infection of biofilms. Horizontal line: initial number of phages used. Static 

biofilms with media renewal (SR), dynamic biofilms with media renewal (DR); dynamic biofilms without 

media renewal (DNR). For all experiments n = 6. Error bars indicate standard deviations. 

 

FESEM micrograph taken after 30 min of exposure of a 24 h static biofilm to phage 

φIBB-PF7A shows some individual rod-shaped cells as well as a vast number of phages 

adsorbed to the SS slides and to the bacteria. The phages appear either individually or as 

groups of phages (Figure 3.5). 
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Figure 3.5 - P. fluorescens cells and φIBB-PF7A phages on stainless steel slides. FESEM 

micrograph taken after infection 30 min of infection of a 24 h static P. fluorescens biofilm formed with 

media renewal every 12 h. 

 

Table 3.1 - Biomass before and after 4 h of phage application to different biofilms and biomass 

removal percentages. 

 Biofilm 

age (h) 

Biomass start (0 h) 

(±SD) 

Biomass end (4 h 

phage) (±SD) 

Biomass removal 

(%) 

SR 24 

72 

120 

168 

8.50 (0.71) 

12.50 (3.54) 

13.67 (4.73) 

14.67 (3.79) 

1.50 (1.08) 

3.00 (1.73) 

5.00 (1.15) 

4.00 (3.06) 

82.35 

76.00 

63.42 

72.73 

DR 24 

72 

120 

168 

5.00 (1.41) 

7.50 (0.71) 

8.67 (0.50) 

12.50 (3.21) 

1.00 (0.00) 

0.67 (0.58) 

2.00 (1.46) 

4.33 (1.15) 

80.00 

91.07 

76.93 

65.36 

DNR 24 

72 

7.33 (2.08) 

11.00 (1.73) 

2.00 (1.52) 

3.00 (2.06) 

72.71 

72.72 

 SD means standard deviations from 6 different SS slides. 

 

Table 3.1 shows the dry weight on the slides before and after four hours of phage 

application and the relative biomass decrease after infection of different biofilms. Four 

hours after infection a considerable biomass decrease was observed for all biofilms. The 

relative biomass removal accounted for 63 to 91 %. In general, older biofilms (120 h and 

168 h) showed a lower biomass decrease, most probably due to a higher amount of 
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cellular debris that stayed attached to the SS surfaces (Figure 3.6). This cellular debris 

and dead cells still constitute important sites for phage attachment. 

Four hours after phage application, in all experiments, cells from the remaining 

biofilms were isolated and tested for resistance to the stock phage solution. In none of 

these tests was found phage-resistant bacteria, indicating that the time of the experiment 

was not long enough for the bacteria to acquire any form of resistance (data not shown) as 

described previously by other authors [38, 43]. 

 

 
Figure 3.6 - Cellular debris and biofilm remains on stainless steel slides after 4 hours of phage 

φIBB-PF7A infection of dynamic P. fluorescens biofilms formed with renewal of media every 12 h. 

FESEM micrographs: a) 24 h; b) 72 h; c) 120 and d) 168 h old biofilm. 

 

Phage φIBB-PF7A is a potential efficient biological agent to control biofilms as the 

phage’s action on biofilms resulted in good biofilm cell log decreases factors and high 

percentual biomass removal. 
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Discussion 

 
P. fluorescens is a known milk product contaminant being able to produce 

extracellular enzymes that spoil milk products. In this work P. fluorescens biofilms were 

challenged with a newly isolated lytic phage. The data presented here, shows the potential 

of the novel phage φIBB-PF7A for controlling and reducing the P. fluorescens biofilms 

formed under three different conditions. Phage φIBB-PF7A was able to reduce greatly the 

number of biofilm cells present on stainless steel slides already after 2 h of infection 

experiment and this reduction was even more noticeable after 4 h of phage application. 

The biofilm cell log reduction factors, after 4 h of phage exposure varied between 3 and 

5. Complete eradication was not achieved in any of the studied cases, however it is 

evident that phage φIBB-PF7A can greatly decrease the number of biofilm cells present 

on the surfaces. Similar cell log reductions have been reported in other biofilm-phage 

experiments, however in all these other studies the phage infection period used was 24 h 

[38, 40-42]. This shows that phage φIBB-PF7A has very good potential as a biofilm 

control agent as it can achieve the same result in only 4 hours.  

In this study, the formation of biofilms on substrata immersed on microplates does not 

imitate true conditions observed in a variety of environments; nevertheless it is a simple, 

rapid and reproducible method with which it is easy to assess the influence of different 

parameters. Biofilms formed show that P. fluorescens are able to grow either as rod-

shaped or as filamentous like form. This change in morphology is due to the rotation 

applied (100 rpm) to form dynamic biofilms. However, there is a clear switch on the cell 

morphology: young biofilms (24 h and 72 h) are predominantly filamentous like, while 

older biofilms (120 h and 168 h) consist of more rod-shaped cells (Figure 3.2). Unlike in 

P. aeruginosa and P. putida where this filamentous cell morphology has already been 

described [44-46] the filamentous morphology has not been reported for P. fluorescens.  

Biofilm cell lysis starts faster under dynamic than under static conditions, but 

interestingly, the total relative biofilm reduction after four hours was not as effective in 

dynamic biofilms compared to static biofilms. Under dynamic conditions, phages 

probably meet their hosts faster than on static conditions, indicating the important role of 

the convection mechanism. Conversely, under static conditions, the lack of agitation 

keeps the progeny phages in the proximity to other neighboring biofilm cells. Under static 

conditions, the new phages, which are released due to phage infection and lysis of the 
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host cells, are not transferred to the bulk and this enhances the biofilm cell lysis. This 

hypothesis is confirmed by the values of adsorbed phage counts which were more than 

two orders of magnitude higher under static conditions compared to dynamic conditions 

(~1 × 107 and <1 × 105 PFU ml-1 respectively). In both situations the phage numbers in 

the planktonic phase were approximately the same (1 × 109 PFU ml-1).  Nevertheless, it is 

important to state that the same efficiency of cell lysis was reached within four hours after 

phage infection under dynamic and static conditions.  

Biofilm formation is directly related to the supply of nutrients [47-51]. In this work, 

P. fluorescens biofilm formation under non-renewed media conditions was the worst and 

least effective method for producing biofilms (Figure 4.1). This lower ability of forming 

biofilms might be due to depletion in nutrients available for the sessile bacterial cells, 

which were consumed by the planktonic cells rendering difficult the multiplication of the 

biofilm bacteria. Cerca et al. [52] observed also this enhanced biofilm formation under 

fed-batch (nutrient renewal) conditions in comparison to batch (without nutrient renewal) 

formation of S. epidermidis biofilms. The efficiency to remove biofilms by phages is 

decreased in biofilms where a change of the medium was not performed. There may be 

various reasons, including a decreased number of daughter phages and longer phage 

development cycles in starving bacteria [31, 53], but also less efficient phage adsorption.   

Biofilms are composed of pores and channels [54] through which nutrients reach cells 

present on different layers. It may be also assumed that phages are able to circulate 

through these channels and pores and by this way reach and adsorb to cells on different 

biofilm layers, including the basal layer of the biofilm. This study shows that phage 

application to biofilms resulted in a release of cells to the planktonic phase. This is most 

likely due to the infection of cells at different layers which causes the sloughing off of 

parts of biofilms to the liquid medium. After the release of these biofilm clusters to the 

planktonic phase, the detached biofilm cells are most likely attacked by phages present on 

the liquid medium as in all situations the number of cells detectable on the planktonic 

phase was always bellow 103 cells ml-1.  

It has been reported that phage aggregation and fixation on surfaces is a mechanism of 

protection that phages adopt as a strategy of survival from inactivating environmental 

stresses [54-57]. In this work it is shown that phage φIBB-PF7A in fact adsorbs to 

stainless steel and phages are found individually or in aggregates (Figure 4.5). Phage 
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adsorption was clearly dependent on the infection conditions applied. Static conditions 

allow the deposition of phages while dynamic conditions suppress phage fixation.  

Coexistence of phages and bacteria has frequently been reported and discussed in 

relation to bacterial resistance of the bacteria to the phages as well as a consequent 

mutation of phages [58]. In this work, phage action on the biofilms formed was studied 

merely for 4 h which was not a period long enough for the emergence of resistance. 

Possibly longer periods of phage action on the biofilms would result in the appearance of 

phage resistant bacteria.  

Tail et al. [38] has obtained complete eradication of 24 h biofilms of E. cloacae when 

exposing the biofilms during 24 h to a solution of 3 different phages. Curtin and Donlan 

[30] have adopted a different approach of phage application in order to combat S. 

epidermidis biofilm formation onto catheters. Instead of treating biofilms once they were 

already present, these authors have adopted pre-treatment of catheter surfaces with phages 

to decrease bacteria adhesion to the surface. In food industry, pre-treatment of all surfaces 

is more complicated, so the combination of phages in a cocktail to achieve biofilm 

eradication is more realistic. Furthermore, there might be attractive scenarios where 

phage sanitation is applied before or with chemical biocides, which may make sanitation 

more efficient and therefore decreasing the necessary amount of chemicals. 

Phages have been suggested as sanitation agents for different bacteria present in 

industrial facilities [26-29, 54]. The phage used in this study, φIBB-PF7A, is an 

interesting biological agent as it has a great ability of lysing biofilm cells in an 

exceptionally rapid time. 

 

Conclusions 
 

Phage φIBB-PF7A may prove to be useful for the biocontrol of P. fluorescens strains 

in dairy and other food related industries. In laboratory studies it was highly efficient in 

reducing the number of cells present even in mature P. fluorescens biofilms, formed 

under different conditions, which persuaded to continue further biofilm and phage studies 

including studies with mixed biofilm communities.  
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Material and Methods 
 
Bacteria and growth conditions 

P. fluorescens was isolated from a Portuguese dairy plant located in Paços de Ferreira 

and grown at 30 ºC in Tryptic Soy Broth (TSB, Fluka). Solid TSA medium contained 

1.2 % w/v of BactoTM agar (Difco) and the soft agar top-layer contained 0.6 % of BactoTM 

agar. All bacteria were subcultured once and glycerol stocks were done and stored frozen 

at -80 ºC until further use.  

 

Bacteriophage isolation 

Bacteriophage φIBB-PF7A was isolated from a sewage treatment plant in Esposende 

(ETAR de Esposende, Portugal). This phage was chosen amongst different P. fluorescens 

phages isolated as it was able to infect a higher number of P. fluorescens isolated from a 

dairy industry [39]. 

  

Bacteriophage propagation and concentration 

Concentrated phage solutions were produced using the plate lysis and elution method 

as described by Sambrook & Russel [59] with some modifications. Briefly, a top agar was 

prepared containing 1 ml of phage solution and 1 ml of a bacterial overnight culture in 

300 ml of soft-agar. This agar was added to 250 ml T-flasks with a thin bottom layer of 

TSA. After solidification of the top agar layer the T-flasks were incubated at 30 ºC 

overnight. Afterwards, the flasks were eluted with SM buffer and the phage lysate was 

first concentrated with PEG 8000 and then purified with chloroform. Samples in SM 

buffer were stored at 4 ºC until further use. 

 

Phage titration of stock solution  

Bacteriophage titer was analysed as described by Adams [60]. Briefly, 100 μl of 

diluted phage solution, 100 μl of a bacterial overnight culture, and 3 ml of molten agar 

were mixed in a glass tube and poured into a TSA containing Petri dish. Plates were 

incubated for 18 h after which plaque forming units (PFU) were counted. 
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Biofilm formation 

Biofilms were formed on stainless steel (SS) 1 × 1 cm slides for different time periods 

(24 h up to 168 h) according to the method described by Cerca et al. [52] with some 

alterations. Briefly, SS slides were placed on the wells of a 6 well microplate containing 

each well 6 ml of TSB medium. Bacterial culture (50 μl) with an OD600 of 1.0, which 

corresponds to approximately 1.79 × 109 cells ml-1, was added to each well and the 

microplate was incubated at 30 ºC under different conditions. Under static conditions, the 

6-well microtiter plates were put in an incubator and the biofilms were formed without 

agitation and with a change of medium every 12 h during the whole duration of the 

experiment. Under dynamic conditions, the 6-well microtiter plates were put on an orbital 

shaker at a constant speed of 100 rpm and two different biofilm formation strategies were 

studied – with the change of medium every 12 h and without the change of medium. 

Abbreviation will be used for the different biofilm formation conditions: static conditions 

with media renewal every 12 h (SR), dynamic conditions with media renewal every 12 h 

(DR) and dynamic conditions without renewal of media (DNR).  

 

Biofilm infection 

Biofilms were allowed to form on stainless steel (SS) slides for different times and 

conditions in 6-well microplates. Afterwards, the SS slides with biofilm were immersed 

twice in PBS and placed in new microplates with 3 ml of TSB and 3 ml of phage solution 

with a concentration of 107 PFU ml-1. The 6-well microplates were incubated at 30 °C the 

same conditions at which the biofilms were formed. Control experiments were performed 

at the same conditions with the SS slides put, after immersion in PBS, in new microplate 

wells with 3 ml of TSB and 3 ml of SM buffer. Biofilms before and after phage infection 

were analyzed for number of cells (CFU counts) and phages (PFU counts) attached to the 

surfaces and on the planktonic phase as well through dry weight determinations (see 

below).    

 

CFU and PFU counts of biofilm samples 

The number of bacteria and phage present on the SS slides before and after infection 

of biofilms formed under different conditions was enumerated in order to estimate the 

efficiency and adsorption characteristics of the phage. Therefore SS slides with biofilms 

were washed twice by immersion in PBS and afterwards put in 50 ml tubes containing 6 
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ml of 0.9 % saline solution. The tubes were thoroughly mixed (vortexed 4 × 30 sec) and 

serial dilutions were immediately performed in 0.9 % saline solution for CFU counts and 

in SM buffer for PFU counts. For CFU counts the samples were immediately plated on 

TSA plates and for PFU counts samples were immediately plated using the method 

described above for phage titration. Six independent parallels were performed for the 

different countings. 

 

CFU and PFU counts of planktonic samples  

Samples for planktonic CFU and PFU counts were removed from the 6-well 

microtiter plates and serial dilutions were performed. All samples were immediately 

processed. Six independent parallels were performed for the different countings. 

 

Biofilm dry weight determination 

Biofilm dry weight determinations were performed as described by An & Friedman 

[61]. Briefly, stainless steel (SS) slides with biofilms formed under different conditions 

were removed from the microplates and rinsed by immersion in PBS. Afterwards, the 

slides were dried at 100 °C for 24 h and weighed. The SS slides were then carefully 

washed, dried again for 24 h at 100 °C and weighed (empty control). Biofilm dry weight 

was calculated from the difference between these measurements. Biofilm dry weight 

determinations represent six independent parallels for controls (time 0 of infection) and 

for phage treated slides (4 h after infection). 

 

Resistance assays 

Biofilm cells that remained on the stainless steel surfaces were analysed for resistance 

as described by Sillankorva et al. [32] with some alterations. Briefly, swabs were used to 

collect the bacteria and put on tubes containing 1 ml of saline 0.9%. After, dilutions were 

made and plated on TSA dishes. After overnight incubation, 20 colonies from different 

dishes were picked and grown on flasks with 50 ml TSB medium for 10 h. Bacterial 

lawns of these cultures were done and tested for resistance using the spot test with the 

phage stock solution. The dishes were incubated for 18 h at 30°C and checked for 

presence of phage plaque. 
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Field Emission Scanning Electron Microscopy (FESEM) 

Samples were taken before phage infection and after 4 h of phage infection. The SS 

slides were rinsed by immersion in TSB media before adding 2.5 % glutaraldehyde and 

incubation at 4 °C for 1 h. Dehydration was carried out with an ethanol series from 30 % 

to 50 % to 70 % to 80 % to  90 % and absolute, followed by critical drying (Critical Point 

Dryer CPD 030). Biofilms were coated with platinum coating and analyzed with FESEM 

in a JEOL JSM-6300F (Tokyo, Japan) instrument. 
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3.2. Dual species biofilms of P. fluorescens and S. lentus challenged with 
lytic phages 
 
 
 
 
 
 
 
 
 

Abstract 

 
Despite the enthusiasm and increase in phage research in the last years, there 

are limited studies of phage interaction in dual species biofilms. This work 

characterizes dual species bacterial biofilms formed by Gram-negative 

(Pseudomonas fluorescens) and Gram-positive bacteria (Staphylococcus 

lentus), and their infection with phages. Dual species biofilms were exposed to a 

phage cocktail for each species present or to a single phage (φIBB-PF7A) for 

the less predominant bacterium (P. fluorescens). Infection with the phage 

cocktail was very effective and the biofilms were well removed from the 

substratum. Additionally, the phage cocktail also controlled the bacteria 

released from the biofilms to the planktonic phase. Regardless of the low 

amounts of P. fluorescens observed in dual species biofilms, this study shows 

that phage φIBB-PF7A can easily reach its’ target host. After 4 hours of φIBB-

PF7A application to the biofilm consortium, the number of P. fluorescens cells 

on the biofilms was highly reduced and there was an increase of the planktonic 

cell quantity from 2 to 4 hours, most likely due to the release of S. lentus, the 

non-susceptible host, from the partially damaged biofilms. This study evidences 

that phages are well capable of reducing the target hosts present in dual species 

biofilms, however phage treatment depends of the application strategy 

employed. 
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Introduction 

 
Microorganisms living attached to inert surfaces in multicellular consortia are known 

as biofilms. In biofilms the microorganisms are found embedded in a matrix where 

extracellular polymeric substances (EPS) are considered the primary matrix material 

(Flemming et al. 2000). The wet weight of mature biofilms consists of approximately 90-

97 % of water, 2-5 % of microbial cells and 1-5 % of EPS (Zhang et al. 1998). The 

structure of a biofilm depends of several factors such as: the microorganisms present, 

their physiological state, the physical environment (availability of nutrients and oxygen, 

flow velocity of the surrounding liquid), and the surface where the biofilm is formed 

(Sutherland 2001). 

Studies of interspecies biofilms have shown that the interactions of species within 

biofilms influence the susceptibility of the biofilms to antimicrobial agents (Bourion & 

Cerf 1996; Budhani & Struthers 1998; Cowan et al 2000; Erb et al 1997; Leriche et al 

2003; Skillman et al 1999). The efficacy of chemical agents in these biofilms is clearly 

decreased which leads to reduced microbial eradication efficiencies. Microbial protection 

against chemical agents is a serious problem and it is suggested to be due to enzyme 

complementation (Shu et al 2003) and organized spatial distribution of the cells in the 

biofilms (Cowan et al 2000; Leriche et al 2003). Therefore, besides the antimicrobial 

agent protection advantage, when microorganisms live in biofilm communities, there are 

other beneficial interactions to one or more strains or species in interspecies biofilms 

which include conjugation (Ghigo 2001) and coaggregation of cells (Rickard et al 2003; 

Sharma et al 2005; Tait et al 2002). Antagonistic interactions in multi-species biofilms 

can include the production of bacteriotoxins (Rao et al 2005; Tait & Sutherland 2002) by 

one member of the biofilm consortium.   

It is known that phages are able to infect and lyse cells found on single species 

communities (Curtin & Donlan 2006; Hanlon et al 2001; Hughes et al 1998; Lu & 

Collins 2007; Sharma et al 2005; Sillankorva et al 2004; Sillankorva et al 2008a; Tait et 

al 2002). However, to the authors’ knowledge there is only one phage infection study on 

dual species biofilms (Tait et al 2002). In a previous study, it was demonstrated that 

Pseudomonas fluorescens biofilms, commonly found in dairy industries worldwide were 

successfully infected by the lytic phage φIBB-PF7 (Sillankorva et al 2008b). Here the 
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application of lytic phages to dual species biofilms of P. fluorescens and Staphylococcus 

lentus are presented.  

S. lentus is a coagulase-negative (CoNS), novobiocin-resistant and oxidase positive 

bacterial species that belongs to the S. sciuri group. This bacterium is a common 

inhabitant of the physiological skin flora and mucosal surfaces of domestic and wild 

animals and frequently isolated from different food products of animal origin. S. lentus is 

not considered pathogenic, however their clinical significance is increasing (Couto et al 

2000; Dakic et al 2005; Johnson et al 1991; Marsou et al 1999; Monday & Bohach 1999; 

Omoe et al 2002) and the main reason for this rate of increase is the spreading antibiotic 

resistance among CoNS staphylococci (Otto et al 2004).  

This work investigated the use of phages for the reduction of single and dual species 

biofilms from stainless steel slides. The main objectives of this study was to evaluate the 

capability of phages to reach and infect the hosts, study phage biofilm interaction in the 

presence of a non-susceptible host, and the ability of phages in decreasing the amount of 

viable cells from biofilms. It was also intended to study the effect of dynamic versus 

static phage infection conditions in the overall biofilm biomass removal. Both P. 

fluorescens and S. lentus strains used to produce single and dual species biofilms were 

isolated from a dairy plant after the equipment routine cleaning procedures. Firstly, phage 

treatment was carried out in single species biofilms. Afterwards, the conditions for the 

formation of dual species model biofilms were established and finally it was considered 

interesting to see how the dual species biofilms would respond to phage infection. 

Initially, dual species biofilms were challenged with a phage cocktail containing two 

phages, being each specific for one of the hosts. Afterwards, the reduction of P. 

fluorescens, the far more problematic bacterium in a number of food related industries, 

was attempted with phage φIBB-PF7A alone as the effective controlling reagent.   
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Results 

 

The effect of biofilm formation conditions in single species biofilms  

Single species biofilms of P. fluorescens and S. lentus formed under different 

conditions were characterized in order to evaluate the effect of biofilm formation 

conditions in biofilm growth. These biofilms were formed on stainless steel slides during 

24  or 72 h under dynamic conditions (continuous shaking at 100 rpm) without renewal of 

nutrient broth medium (DNR), or with renewal of medium every 12 h (DR), or under 

static conditions (without shaking) with renewal of medium (SR). The number of viable 

cells on single species biofilms of P. fluorescens and S. lentus and total viable cells on 

dual species biofilms, formed under different conditions, as well as the percentage of P. 

fluorescens in dual species biofilms are presented in Table 3.2.  

 
Table 3.2 Mean number of cells present in 24 and 72 hours old single and dual species (DS) 

biofilms of P. fluorescens and S. lentus formed under different conditions and percentage of P. fluorescens 

on dual species biofilms. 

 Biofilm formation Mean cell density [log10CFUi cm-2 (± SD)] P. 

fluorescens 

in DS (%) 
 Shake Media 

renewal 

Age 

(h) 

Single species DS 

P. fluorescens S. lentus Total 

DR 

 

+ 

 

+ 

 

24 4.37 (0.53) 6.35 (0.04) 6.56 (0.08) 32.08 (0.87) 

72 6.41 (0.64) 8.08 (0.13) 8.61 (0.12) 18.33 (4.07) 

DNR + - 
24 3.65 (0.01) 6.34 (0.14) 6.52 (0.03) 23.13 (0.87) 

72 5.80 (0.12) 7.17 (0.25) 7.64 (0.38) 37.50 (3.90) 

SR - + 
24 5.82 (0.19) 6.85 (0.10) 6.84 (0.08) 53.40 (3.41) 

72 6.74 (0.06) 8.01 (0.25) 7.00 (0.16) 51.14 (3.83) 

SD means standard deviation of 6 parallel measurements, DR dynamic biofilm with renewal of media every 

12 h, DNR dynamic biofilm with no renewal of media, SR static biofilm with renewal of media every 12 h 

 

S. lentus biofilms showed a slightly faster growth, after 24 hours, when cultivated 

under static compared to dynamic conditions. Nonetheless, after 72 hours there was no 

significant difference between shaken and non-shaken cultures. However, biofilm cell 

density in S. lentus biofilms was clearly dependent on nutrient supply and an 

approximately 10-fold higher cell number was detected in 72 hours biofilms when the 

medium was exchanged. Under static conditions, P. fluorescens biofilms formed for 24 
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hours contained approximately 28 and 148 times more cells than the two distinct dynamic 

biofilms, DR and DNR respectively. Like in S. lentus studies, the biofilms of P. 

fluorescens formed under non-renewal medium conditions had noticeably fewer cells in 

comparison to biofilms which experienced regular medium exchange. Furthermore, S. 

lentus succeeded better to colonize the metal surface compared to P. fluorescens, with 

overall 10 to 1000 times more cells detected (Table 3.2).  

This study shows that the biofilm formation conditions influence differently the 

number of viable cells of S. lentus and P. fluorescens present on the substratum and was 

highest for both single species biofilms with static incubation and medium renewal.  

 

Single species biofilms infected with phages  

Phages are able to infect biofilm cells. The S. lentus phage φIBB-SL58B and P. 

fluorescens phage φIBB-PF7A, previously characterized in Chapter 2, were used in the 

biofilm infection experiments. Single species biofilms of S. lentus and P. fluorescens 

were infected with phages φIBB-SL58B and φIBB-PF7A and the amounts of viable cells 

and phages present in the planktonic phase and those adsorbed to the SS substratum and 

remaining biofilm cells were enumerated (Table 3.3). So far no studies have been 

performed with phages specific for S. lentus. Therefore, in analogy to the treatment of 

different single species biofilms of P. fluorescens with the phage φIBB-PF7A infection 

experiments (sub-chapter 3.1), it was interesting to study the effect of phage φIBB-

SL58B, on the above described single species biofilms of S. lentus. 

In general, cell decrease by phages was highly related with the amount of cells 

present in the distinct biofilms. Under all studied situations, cell reduction was 

approximately 10 to 100 fold higher in 72 hours old biofilms compared to 24 hours old 

biofilms (Table 3.3).  

The best cell reduction in P. fluorescens biofilms was obtained without shaking and 

with repeated medium renewal (SR) where approximately a 3 magnitude reduction was 

observed in both 24 and 72 hours old biofilms. Compared to infection experiments with 

the P. fluorescens phage, under SR conditions phage φIBB-SL58B had a lower lytic 

efficiency and the cell removal was approximately 100 fold less efficient in the infection 

of S. lentus biofilms (Table 3.3).  
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Table 3.3 Biofilm cell reduction and number of planktonic and adsorbed phages after 4 h of phage 

φIBB-PF7A or φIBB-SL58B infection of P. fluorescens and S. lentus biofilms, respectively. 

  Cell reduction 
[log10(CFU cm-2) (± 

SD)] 

Number of phages after 4 h  
[log10(PFU ml-1) (± SD)] 

  φIBB-PF7A φIBB-SL58B 
Biofilm  Age 

(h) 
P. fluorescens S. 

lentus 
Planktonic Adsorbed Planktonic Adsorbed 

DR 24 
 

72 

2.11  
(0.10) 
2.90  

(0.41) 

1.56  
(0.12) 
3.36  

(0.14) 

8.70  
(0.19) 
9.33  

(0.05) 

4.76  
(0.31) 
5.21  

(0.05) 

9.07  
(0.03) 
9.63  

(0.22) 

5.72  
(0.37) 
6.29  

(0.17) 
DNR 24 

 
72 

1.05  
(0.13) 
2.90  

(0.23) 

2.58  
(0.28) 
3.59  

(0.31)

7.64  
(0.02) 
8.59  

(0.23)

5.51  
(0.18) 
5.69  

(0.39)

9.04  
(0.23) 
9.82  

(0.23) 

5.43  
(0.21) 
6.38  

(0.02)
SR 24 

 
72 

2.98  
(0.65) 
3.23  

(0.48) 

1.12  
(0.14) 
2.16  

(0.15) 

8.78  
(0.01) 
8.78  

(0.09) 

7.06  
(0.49) 
6.99  

(0.35) 

8.19  
(0.07) 
9.37  

(0.37) 

4.95  
(0.52) 
4.30  

(0.01) 
SD means standard deviation of 6 parallel measurements, DR dynamic biofilm with renewal of media every 

12 h, DNR dynamic biofilm with no renewal of media, SR static biofilm with renewal of media every 12 h 

 

When S. lentus biofilms were formed under shaking conditions, with (DR) and 

without medium renewal (DNR) respectively, the initial number of cells present on the 

substratum at the time of infection was higher (Table 3.2) and, interestingly, also cell 

lysis was significantly higher with the φIBB-SL58B phage and S. lentus biofilms, 

compared to phage φIBB-PF7A infection of P. fluorescens biofilm cells (Table 3.3).  

In summary, the main difference observed in the experiments with phage infection of 

single species biofilms was the very efficient reduction by φIBB-SL58B of S. lentus 

biofilms under shaking and without medium renewal (DNR) compared to P. fluorescens 

biofilms infected with φIBB-PF7A (Table 3.3). In contrast, under static conditions, a poor 

cell lysis of S. lentus was observed and the number of PFUs was the lowest. The 

experiments also showed that, even if the efficiency of lysis was low within the 

investigated time window, φIBB-SL58B adsorbed well to the SS slides and to the 

remaining cells present on the surfaces (Table 3.3). 

The infection of both single species biofilms with their respective phages was quite 

efficient and resulted in a relatively low number of survivors, 1 × 103 cells ml-1 for 24 

hours old SR P. fluorescens biofilms and 1 × 104 cells ml-1 for 24 hours old DNR S. 

lentus biofilms which were observed to be the best infection conditions, respectively 

(Table 3.3).  
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The data of this study show clearly that the hydrodynamic and medium renewal 

conditions during biofilm formation and phage treatment must be considered and may 

vary for different phage/host systems. φIBB-SL58B showed an enhanced ability of 

infecting S. lentus under shaking conditions without medium removal (DNR), while 

φIBB-PF7A attacked P. fluorescens biofilms most efficiently under static conditions. 

 

Characterization of dual species biofilms  

P. fluorescens and S. lentus were used to produce dual species biofilms using the 

biofilm formation methods above described for single species biofilms. Total cell counts 

and the percentage of P. fluorescens cells present on dual species biofilms are presented 

in Table 3.2. Also, confocal laser scanning microscopy (CLSM) was used to verify the 

overall coverage of the stainless steel slides by cells using the three different biofilm 

formation conditions (DR, DNR and SR) and incubation for 24 and 72 hours (Figure 3.7). 

Interestingly, for 24 hours old dual species biofilms neither medium renewal nor 

shaking did influence much the amount of cells (Table 3.2).  However, these 24 hours old 

biofilms formed under DNR and SR consisted of a sparse single layer of cells with a 

small number of cell clusters while the biofilms formed under DR conditions of a greater 

number of cell clusters and aggregates (Figure 3.7). The biofilm architecture was clearly 

more developed after 72 hours and there was an increase of the size and number of cell 

clusters in the different biofilms. The highest number of cells in 72 hours old dual species 

biofilms was observed under dynamic and medium renewed conditions (Table 3.2) where 

biofilms presented a thicker structure, as observed on the orthogonal sections showing the 

side (xz and yz) views, and covered the stainless steel slides entirely (Figure 3.7). Also, 

contrarily to 72 hours old single species biofilms of S. lentus and P. fluorescens, which 

exhibited the highest cell number when formed under static conditions, prolonging the 

formation of dual species biofilms to 72 hours using static conditions resulted in the 

smallest cell amount, clearly visible by CLSM (Figure 3.7). As shown by viable cell 

counts, both 24 and 72 hours old biofilms formed under the two studied dynamic 

conditions, DR and DNR respectively, were predominantly formed by S. lentus cells and 

the percentage of P. fluorescens was always below 40% and was the lowest for 72 hours 

old DR biofilms. Contrarily to these two types of biofilms, the ones formed without 

shaking (SR) had approximately equal amounts of P. fluorescens and S. lentus cells 

(Table 3.2). 
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Figure 3.7 – Confocal laser scanning micrographs (20 × magnification) of the overall coverage of 

stainless steel slides with dual species biofilms. Biofilms were formed under dynamic media renewal (DR), 

dynamic non-media renewal (DNR) and static media renewal (SR) conditions for 24 and 72 hours and 

afterwards infected using a cocktail of phages φIBB-PF7A and φIBB-SL58B. Shown are biofilms stained 

with DAPI before and after 4 hours of infection with the phage cocktail.  Orthogonal sections show side 

views (xz and yz) of the biofilm z-stack images at the selected points.  
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In summary, it was observed that the conditions to produce the highest cell counts 

were different for single species S. lentus and P. fluorescens biofilms compared to 

experiments where the two bacteria co-existed in a same substratum. 

 

Dual species biofilms challenged with phages φIBB-PF7A and a phage cocktail 

After establishing the conditions for the formation of dual species biofilms, it was 

then studied how dual species biofilms would respond to phage infection.  

Firstly, dual species biofilm control was performed with a cocktail of phages φIBB-

PF7A and φIBB-SL58B specific for P. fluorescens and S. lentus respectively. Phage 

infection was evaluated by viable counts of the total number of cells (counted as CFU) 

present in the biofilms and in the planktonic phases (Figure 3.8). Also, phage replication 

was assessed by the number of phages adsorbed to the coupons and those existing at the 

planktonic phasenumber of phages adsorbed to the coupons and those existing at the 

planktonic phase (Figure 3.9).  

The application of the phage cocktail to all different types of biofilms resulted in cell 

reductions compared to the biofilm controls, where the stainless steel coupons were 

immersed for 4 hours in a solution of saline and TSB (1:1 v/v). The phage cocktail 

infected best the biofilms formed without medium renewal and worse the ones formed 

without agitation. Although a higher initial cell number was observed in 72 hours old 

biofilms compared to the 24 hours old biofilms, phages were able to reduce both biofilms 

to the same level of viable cells present on the coupons and thus higher cell decreases 

were observed in infected 72 hours old biofilms (Figures 3.8). Furthermore, in the phage-

biofilm interaction studies performed, 2 hours of biofilm treatment with phages was 

enough to achieve a good cell lysis and prolonging the phage treatment to 4 hours only 

slightly decreased the amount of cells present on biofilms. CLSM micrographs, taken 

after 4 hours of phage exposure, show a considerable reduction of cells on the substratum 

when the treatment was carried out under shaken conditions and they also confirmed that 

the treatment was less efficient under static conditions (Figure 3.7). Although the cell 

reduction observed under shaken conditions was remarkable, phage treatment always left 

a number of surviving cells (Figure 3.8).  
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Figure 3.8 – Number of cells present on biofilms (B) (CFU cm-2) or planktonic phase (P) (CFU 

ml-1) after 2 and 4 hours of infection of 24 and 72 hours old dual species biofilms P. fluorescens and S. 

lentus using a cocktail of phages φIBB-PF7A and φIBB-SL58B. Phage infected biofilms were formed under 

dynamic media renewal (DR), dynamic non media renewal (DNR) and static media renewal (SR) 

conditions and total viable cell counts were performed. Controls were 4 hours in saline-TSB solution and 

biofilm cells and planktonic phase cells were enumerated. For all experiments n = 6. The error bars indicate 

standard deviations. 

 

Control experiments carried out with the different types of biofilms, during 4 hours in 

saline-TSB, showed always a low cell release from the biofilms to the planktonic phase 

(< 30 CFU ml-1). Contrarily to control experiments, the application of phages induced a 

considerable release of cells to the planktonic phase and more than 103 CFU ml-1 were 

always detected (Figure 3.8). The only advantage of prolonging the infection period from 

2 to 4 hours was that it allowed phages to further decrease the planktonic cell numbers 

(Figure 3.8). Furthermore, the higher cell amounts detected in 72 hours old biofilms 

resulted in a much lower planktonic cell numbers than those detected after phage 

infection of 24 hours old biofilms (Figure 3.8). This was due to a somewhat higher 

quantity of phages present due to lysis of more cells (Figure 3.9). 
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Figure 3.9 – Number of phages on the planktonic medium (PFU ml-1) or adsorbed to the stainless 

steel slide and biofilms (PFU cm-2) after 4 h of phage infection of different dual species biofilms. Dual 

species 24 h and 72 h biofilms of P. fluorescens and S. lentus were infected with: a phage cocktail or only 

with phage φIBB-PF7A. Horizontal line represents the number of phages in the beginning of the 

experiment. For all experiments n = 6. The error bars indicate standard deviations. 

 

In general, the phage numbers obtained after biofilm treatment with the phage 

cocktail indicate that both phages, φIBB-SL58B and φIBB-PF7A, were able to replicate 

well in all investigated biofilms (Figure 3.9). High numbers of phages were observed in 

the planktonic phase. However, the number of progeny phages adsorbed to dual species 

biofilms and the substrata was lower than observed in single species biofilm infection 

experiments with the two phages (Table 3.3 and Figure 3.9). In dual species biofilms the 

adsorbed phage numbers varied between 1 × 102 and 1 × 105 PFU ml-1 (Figure 3.9) while 

in the single species P. fluorescens biofilm studies the numbers were remarkably higher 

and between 1 × 105 and 1 × 107 PFU ml-1 (Table 3.3). 

Comparing single infected with the specific phages and dual species biofilms infected 

with a phage cocktail, it was clearly visible that the infection followed the kinetic 

observed in S. lentus biofilms infected with phage φIBB-SL58B. This was already 

expected as the dual species biofilms were predominantly formed by S. lentus. Dual 

species biofilms formed under SR conditions exhibit similar percentages of both bacteria 

and although single species biofilms were well reduced under non-shaken conditions, 

with 100 and 1000 fold reduction of S. lentus and P. fluorescens cell counts in 72 hours 
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old biofilms, the decrease detected in dual species was clearly diminished (Table 3.3 and 

Figure 3.8).  

After studying the influence of a phage cocktail to dual species biofilms and having 

observed that it could greatly reduce the amount of P. fluorescens and S. lentus cells in 

the biofilms, a next experiment was performed applying only one phage specific for the 

less predominant bacterium present in the biofilms, P. fluorescens (cf. Table 3.2). 

Although P. fluorescens phage performed best in single species biofilms formed under 

static conditions (Table 3.3), the application of a phage cocktail to dual species showed to 

be inefficient (Figure 3.8) and therefore static experiments were not carried out. Thus, P. 

fluorescens viable cells in the dual species DR and DNR biofilms and total cells released 

to the planktonic media were enumerated after 4 hours of infection (Figure 3.10). 

 
Figure 3.10 – Number of cells present on biofilms (B) (CFU cm-2) or planktonic phase (P) (CFU ml-

1) after 4 hours of infection of 24 and 72 hours old dual species biofilms of P. fluorescens and S. lentus 

using phages φIBB-PF7A. Phage infected biofilms were formed under dynamic media renewal (DR) and 

dynamic non media renewal (DNR) and P. fluorescens cells on biofilms and total viable cell counts of cells 

in the planktonic phase were performed. Controls were 4 hours in saline-TSB solution and biofilm cells and 

planktonic phase cells were enumerated. For all experiments n = 6. The error bars indicate standard 

deviations. 

 

Assessing the numbers of P. fluorescens cells on the different biofilms, it became 

obvious that phage φIBB-PF7A can successfully reach its host. With the exceptions of 24 

hours old DNR biofilms, cell reduction from the biofilms was confirmed in all other 

experiments carried out. Contrarily to the practically inexistent decrease detected with 24 

hours DNR biofilms, the cell amount from 72 hours old DNR biofilms was decreased by 

two orders of magnitude (Figure 3.10). Also, an interesting difference was observed in the 
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number of cells present in the planktonic phase. Dual species biofilm infection with 

φIBB-PF7A alone resulted in a 100-fold increase of the number of cells in the planktonic 

phase compared to the treatments with a phage cocktail (cf. Figures 3.8 and 3.10). It may 

be assumed that, when only φIBB-PF7A was applied, S. lentus, the non-susceptible 

bacterium present and predominant in the DR and DNR dual species biofilms (Table 3.2), 

detaches from the infected biofilms. Furthermore, a more detailed analysis of the phage 

numbers shows that phage φIBB-PF7A can better reach the host when applied alone as 

there was observed an increase of phage numbers on the planktonic phase and adsorbed to 

the remaining biofilms present on the substrata compared to experiments with biofilm 

treatment with the phage cocktail (Figure 3.9).  

In summary, the application of a phage cocktail with phages specific for each host 

present in a dual species biofilm reduced not only the number of bacteria present in the 

biofilms but also kept the cell numbers of bacteria in the planktonic phase at a low level. 

Moreover, a phage, specific for one of the hosts of a dual species biofilm, can 

successfully reach the host and lead to an efficient cell reduction under dynamic 

conditions. 

 

Discussion 

 
In this work, phage control of dual species biofilms of two bacteria that co-exist in dairy 

plants was studied. This is the first study where biofilms formed by Gram-positive 

(Staphylococcus lentus) and Gram-negative bacteria (Pseudomonas fluorescens) were 

subjected to lytic phages. Phage control of such biofilms was investigated by two 

approaches, with phages specific for either one or both of the hosts, in order to understand 

what occurs to the biofilms in these two different scenarios.  

This experimental work indicates that a single phage applied to a dual species biofilm 

can efficiently reach the host and reduce their cell number in the biofilm, but also may 

cause the release of the non-susceptible species to the planktonic phase. Furthermore, 

application of a phage cocktail for each of the hosts of the dual species biofilm decreased 

not only the cell number in the biofilm, but also the cells which were released to the 

planktonic phase. Moreover, the conditions under which the phages are applied are 

important factors to be considered.  
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Biofilm destruction and cell lysis were efficient in single species biofilms formed 

under non-shaken conditions, however phages were incapable of decreasing the bacterial 

hosts when mixed in a dual species biofilm. Thus, under non-shaken conditions, S. lentus 

and P. fluorescens cells appear to be protected from phage infection. The results of this 

work are in agreement with the work of Tait and colleagues that have suggested that the 

presence of a non-susceptible bacterial population within a biofilm can protect phage-

susceptible bacteria from being attacked by the phage (Tait et al 2002). However, it 

cannot be assumed that bacterial protection takes always place as evidenced by the great 

cell decreases obtained after phage infection of DR and DNR biofilms, respectively. 

However, the reason for a less successful decrease under static conditions, after 4 hours of 

phage exposure, also suggests a possible inefficient phage-host interaction. Another 

possible explanation, for the low phage infection efficacy in static biofilms can be a 

possibly higher polysaccharide and protein content than in dynamic biofilms. It is known 

that biofilms formed under distinct hydrodynamic conditions exhibit different amounts of 

cellular and extracellular polysaccharides and proteins. Simões et al. showed that biofilms 

of P. fluorescens ATCC 13525T formed under laminar flow conditions have a much 

higher content of cellular and extracellular polysaccharides and proteins than turbulent 

flow-generated biofilms. However, this explanation for the different cell lysis detected in 

shaken and non-shaken biofilms needs further investigation to be proved. 

The addition of a single phage or the two phage cocktail to dynamic dual species 

biofilms resulted in a 1000 fold cell reduction of 72 h old dual species biofilms within 

only 2 to 4 hours. This efficiency is comparable with other reported studies of biofilms 

infected with phages over a 24 hour period (Hanlon et al 2001; Lu &Collins 2007; 

Sharma et al 2005; Tait et al 2002). In this work, 2 hours of biofilm exposure to phages 

lead to a great reduction of the biofilm and prolonging the exposure period to 4 hours 

slightly enhanced the cell reduction. The results of this work are in agreement with the 

ones obtained by Hughes et al. (1998) where the maximum reduction of viable cells in 

biofilms was obtained already within 2 h or 5 h, depending on the biofilm studied, after 

which there was no further decrease. These results may indicate that prolonged phage 

infection periods are not required and short application periods may even be beneficial to 

avoid resistance acquisition by the hosts.   

The use of phages to treat and control established single species biofilms of P. 

fluorescens and S. lentus indicated the principal possibility of obtaining efficient 

reduction of the biofilm cell numbers. P. fluorescens biofilms are well infected under 
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static conditions while under these conditions S. lentus biofilms are inefficiently attacked. 

Phage treatment of P. fluorescens biofilms was inefficient when the biofilm was grown 

without renewal of medium, i.e. if biofilms experienced severe starvation. In contrast and 

surprisingly, S. lentus biofilms were best removed under severe starvation. This finding is 

especially interesting, as it is well known that phage development depends on the 

physiological state of the host which directly reflects on the intracellular resources 

available for phage reproduction (Hadas et al 1997). Therefore, the result obtained in this 

work was unexpected as starvation state cells commonly would be suggested to result in a 

decreased number of progeny phages and longer phage reproduction cycles (Los et al 

2007; Neubauer et al 2006). The efficiency of biofilm removal was well in accordance 

with different burst sizes of the two phages, 507 PFU per infected cell for φIBB-SL58B 

and 153 PFU per infected cell for φIBB-PF7A, respectively, as characterized in Chapter 

2. Furthermore, this reveals the importance and challenge of performing a careful 

selection of phages for the use in multi-species biofilms. 

This study shows the importance of selecting a proper model system for the 

development of biofilm control studies with phages. Factors such as mixing and medium 

supply can influence the infection process however they may be optimized to obtain an 

efficient biofilm control. It also became clear that other species in a consortium affect the 

treatment. Nevertheless, this investigation proves that both single and dual species 

biofilms can be efficiently controlled by phages and despite the presence of a non-

susceptible host, phages can successfully reach and lyse the target host bacterium. 

However, for technical applications the effect of the biological control may be enhanced 

by other methods, such as the use of chemical agents to obtain biofilm eradication. The 

potential of such a combination seems to be attractive, as the results described in this 

work indicate that even the use of a single phage weakens the biofilm and leads to a 

release of non-attacked bacteria to the medium, where they could be efficiently killed. 

Also, it seems likely that the total amount of chemical agents used for biofilm control 

could be significantly reduced if the biofilm is already partially disintegrated by phages.  
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Materials and Methods 
 
Bacteria, bacteriophage and growth conditions 

Pseudomonas fluorescens and Staphylococcus lentus were isolated from a dairy plant 

(Paços de Ferreira, Portugal). Both bacteria were grown at 30 ºC in Tryptic Soy Broth 

(TSB, Fluka) or in solid TSA medium that contained 1.2 % w/v of BactoTM agar (Difco). 

The strains were subcultured once and glycerol stocks were generated and stored frozen 

at –80 ºC until further use. Bacteriophages φIBB-PF7A and φIBB-SL58B were isolated 

from raw sewage (wastewater treatment plant, Esposende, Portugal) and purified and 

concentrated using the double soft agar layer (Sambrook & Russell 2001) where the soft 

agar top-layer of TSB contained 0.6 % of BactoTM agar. 

 

Phage titration of stock solution  

Bacteriophage φIBB-PF7A and φIBB-SL58B titers, were analyzed as described by 

Adams (Adams 1959).  

 

Biofilm formation 

Single and dual species biofilms of S. lentus and of P.  fluorescens were formed on 

stainless steel (SS) 1 × 1 cm slides, immersed in 6-well microplates with 6 ml of TSB 

medium, during 24 h and 72 h under dynamic media renewed (DR), dynamic media non-

renewed (DNR) and static media renewed (SR) conditions according to the method 

described in sub-chapter 3.1.  

  

Biofilm infection 

Biofilms were infected with phage as described previously in sub-chapter 3.1. 

 

CFU and PFU counts of attached or planktonic bacteria or phages 

The amount of bacteria present on the SS slides before and after infection of pre-

grown biofilms and bacteria released to the planktonic phase after phage infection were 

enumerated as described by Sillankorva et al. (2008b) in order to estimate the efficiency 

of phages in lysing the cells. Briefly, SS slides with biofilms before phage infection were 

washed by immersion in PBS and inserted in 50 ml tubes with 6 ml of saline (0.9 % 

NaCl). The tubes were vigorously vortexed (4 × 30 sec) and the SS slides were 
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immediately removed to prevent bacterial reattachment. Afterwards, dilutions were made 

in saline for CFU counts and plated on TSA Petri dishes, or made in SM buffer, and 

mixed with the host bacterium and soft-agar and poured onto TSA Petri dishes. For CFU 

or PFU counts of planktonic bacteria or phages, samples where diluted in saline or SM 

buffer and equally plated. In order to verify if SM buffer would interfere with the 

bacterial release from biofilms, control experiments were performed where SS slides with 

biofilms were washed by immersion in PBS and inserted in 6-well microplates with 3 ml 

of SM buffer and 3 ml of TSB and the microplates were subjected to the same conditions 

as those performed in phage infection experiments. Afterwards, these control SS slides 

were once again washed by immersion in PBS and inserted in 50 ml tubes with 6 ml of 

saline, vortexed as described above and plated. For P. fluorescens cell counts, the 

selective medium Pseudomonas Isolation Agar (PIA) (Sigma-Aldrich, St. Louis, MO) 

was used and the procedure was the same as adopted for total cell counts. The Petri dishes 

were incubated at 30 °C for 24 h and colonies were counted. Six independent parallels 

were performed for the attached and planktonic CFU and PFU countings. 

 

Microscopy and image processing 

Image acquisition was performed using a Zeiss LSM 5 PASCAL confocal laser 

scanning microscope (CLSM) (Carl Zeiss MicroImaging GmbH, Jena, Germany). 

Stainless steel (SS) slides with biofilms for CLSM were rinsed by immersion in PBS and 

immersed into a 2.5% glutaraldehyde solution (4°C, 1h) for fixation. Afterwards, the SS 

slides were rinsed with PBS and stained with 4',6-diamidino-2-phenylindole 

dihydrochloride (DAPI) (Molecular Probes, Carlsbad, CA, U.S.A) according to the 

manufacturer’s instructions. The LSM image browser software was used for analysis of 

biofilm images and z-stacks were acquired from random positions through the biofilm 

avoiding the edges of the SS slides. 
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4.1. Action of the lytic phage φIBB-PF7A on rod-shaped and filamentous-
like P. fluorescens cells 
 
 
 

Abstract 
 

 
Aims: Occasionally bacteria suffer changes acquiring uncommon morphologies. 

These changes can cause problems for phages to infect their hosts. This work 

describes the morphological changes occurring on Pseudomonas fluorescens 

cells due to exposure to a variety of temperatures and rotary agitations and 

investigates the efficacy of a lytic phage in controlling rod and filamentous 

shaped hosts.  

Methods and Results: P. fluorescens cell morphology changed from rod to 

filamentous shaped above speeds of 100 rpm and 25°C. Low temperatures and 

no agitation delayed the beginning of lysis and increased the period of cell lysis. 

Furthermore, phage acted fastest on mid-logarithmic cells and early stationary 

cells were lysed after a brief regrowth period. Nevertheless, phages were able to 

infect particularly well the stationary cells and high density decrease 

percentages were achieved. Phage reproduction showed to be dependent on two 

factors: cells growing at a faster rate were capable of producing more phages 

and lengthened cells were able to produce high phage progeny inside the hosts.  

Conclusions: P. fluorescens cell morphology showed to be highly influenced by 

temperature and rotary agitation. Phage φIBB-PF7A infection of rod and 

filamentous cells resulted, in general, in high cell density reductions. 

Significance and Impact of the Study: This is the first study carried out with a 

lytic phage capable of infecting planktonic P. fluorescens cells with different 

morphologies and lengths. Furthermore, this phage was able to target and 

reproduce inside cells at different growth phases including late-logarithmic and 

stationary phase cells.     
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Introduction 
 

Bacteriophages have for quite some time been suggested as good biocontrol 

alternatives to the traditional agents used in a variety of environments (Atterbury et al. 

2003; Breeuwer et al. 2005; Curtin & Donlan 2006; Goode et al. 2003; Loessner & 

Carlton 2005; Withey et al. 2005) possessing many advantages over chemical agents. 

Firstly, phages have a high specificity against a host or host range which implies a safe 

and targeted elimination without altering the surrounding microflora. Also, phages are 

readily present in all environments, although not at the necessary concentration for being 

considered biocontrol agents, and are utterly biodegradable (UV, temperature, etc.) and 

therefore functional in sustainable, environmental-friendly systems. Ultimately, phages 

reproduce when the target bacterium is present increasing their concentration in the 

respective environment, through reproduction inside the host cells.      

A variety of environmental alterations may result in morphological and physiological 

changes on the host bacterium that include cell volume decrease, cell shape change, 

nucleoid compactation, alteration of cell wall composition, accumulation of some storage 

material, etc. (Huisman et al. 1996; Ishiharma 1999; Kolter et al. 1993; Roszak & 

Colwell 1987). Consequently, these cell alterations may influence the phage reproduction 

and infection process. The effectiveness of a phage in lysing the respective host bacterium 

depends greatly of the target bacterium availability and density but also of factors that 

cause stress on microbial cells such as: nutrient concentration, temperature, life history 

strategies (De Paepe & Taddei 2006; Moebus 1996; Sillankorva et al. 2004). In a 

previous study with a dairy P. fluorescens isolate, biofilms of this host exhibited either 

rod or filamentous morphology depending on the biofilm formation conditions used 

(Sillankorva et al. 2008). In this study, morphological changes in planktonic cells were 

induced by exposing the cells to different: (i) rotary agitations and (ii) temperatures in 

order to study phage performance against different cell shapes and physiologies. 
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Results 
 

In a previous study, P. fluorescens biofilm cells were shown to acquire a filamentous 

morphology when the formation occurred under the effect of two conditions: rotary 

agitation at 100 rpm and at 30 ºC (sub-chapter 3.1). The work described here investigates 

the effect of temperature (5 - 30 ºC) and rotary agitation (0 – 200 rpm) on the length of 

planktonic cells. Moreover, phage control of cells at different growth phases will be 

studied.  

 

Effect of temperature 

P. fluorescens is a gram-negative bacterium able to grow at temperatures ranging 

from 4 - 32°C. In order to assess the effect of temperature in cell morphology, cultures 

were grown from 5 to 30 ºC, until reaching mid-exponential phase and the cells were 

visualized by field emission scanning microscopy (FESEM) (Figure 4.1). Also, control of 

cells using phage solutions with different concentrations (107, 108 and 109 PFU ml-1) was 

investigated following the decrease in optical density and phage increase.  

 

 
Figure 4.1 - Morphology of P. fluorescens cells grown at 160 rpm under varied temperatures. 
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P. fluorescens cells grown between 5 to 25 ºC presented typical rod shape, with cell 

lengths of approximately 2 – 3 µm. The morphology altered at 30 ºC and cells acquired a 

filamentous shape. At this temperature, a variety of lengths, ranging from 4 up to 24 µm 

were observed (Figure 4.1 and Table 4.1).  
 

Table 4.1 - Influence of temperature on cell size, growth rate and influence of different phage 

concentrations on phage infection parameters and cell density decrease (%).  

T 

(°C) 

Cell size* 

(μm) 

μ (h-1) 

(± SD) 

Log (PFUi 

ml-1) 

Beginning of 

infection (min) 

Lysis 

period  

(min) 

Density decrease 

(%) (± SD) 

5 - 0.025 

(0.001) 

9 240 285 67.80 (3.08) 

8 360 320 72.82 (0.22) 

7 525 415 82.42 (5.02) 

10 - 0.047 

(0.002) 

9 120 300 69.33 (2.75) 

8 180 240 66.44 (6.64) 

7 330 510 79.65 (1.83) 

15 1.7–3.8 0.070 

(0.004) 

9 60 180 61.54 (4.05) 

8 120 180 62.58 (2.93) 

7 160 325 71.93 (1.15) 

20 2.3–3.3 0.087 

(0.004) 

9 40 160  73.08 (3.75)  

8 80 160 75.15 (4.72) 

7 120 160 78.03 (4.27) 

25 2.4–3.4 0.122 

(0.003) 

9 40 100 82.37 (1.94) 

8 60 120 83.06 (0.72) 

7 60 160 84.13 (0.87) 

30 4.2–23.8 0.084 

(0.003) 

9 40 120 79.75 (6.75) 

8 60 120 78.11 (7.96) 

7 100 80 69.67 (7.62) 

* minimum and maximum size from measurements of 5-10 cells, SD means standard deviations 

 

Also, temperature affected greatly the specific growth rate, increasing with 

temperature and reaching a maximum at 25 ºC after which the rate decreased slight 

(Table 4.1). 

A constant optical density can reflect in different cell numbers depending on the 

morphology a cell possess. Cell lengths in cultures grown from 5 to 25 ºC are similar and 

a density of 1.0 corresponded approximately to 7.6 × 109 CFU ml-1. Low temperatures, 
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especially 5 and 10 ºC, delayed significantly the beginning of phage infection (Figure 

4.2a) and increased the lysis period, which corresponds to the time point right before an 

optical density decrease was observed until the time point when this decrease ends. 

Consequently, the long lysis periods observed resulted in lower rates of density decrease 

(Figure 4.2c). Nevertheless, although phages needed, at low temperatures, a more 

prolonged period to infect the cells, phages reduced rather well the density of the cultures 

(66 – 83 %). Phage progeny increase after infection of cells grown between 5 to 25 ºC 

showed that low temperatures resulted in less phage progeny, 1000 up to 10000 fold 

times less compared to the maximum phage concentration which was achieved at 25 ºC 

(Figure 4.2b). This shows that phage progeny was highly dependent of cell growth 

temperature, most likely due to the different specific growth rates of the host. At higher 

temperatures, phages start attacking faster the cells. At 25 ºC, the highest density decrease 

rate (Figure 4.2c) was obtained and there was merely a 20 minute difference in the 

beginning of phage infection after exposure to the different phage concentrations (107, 

108 or 109 PFU ml-1) (Table 4.1).  
 

 
Figure 4.2 – P. fluorescens cells grown and infected at different temperatures with phage φIBB-

PF7A. Measurement of a) cell density; b) phage numbers at different time periods using a phage 

concentration of 1 × 109 PFU ml-1 and 160 rpm and c) cell decrease rates obtained after infection of cells 

with different phage concentrations. Error bars indicate standard deviations of 24 different wells.  

 

As expected, in all tested temperatures, the use of less concentrated phage solutions 

lead to longer lysis periods due to the lower number of phages available for a host. 

Interestingly, the majority of the experiments showed that the use of less concentrated 

phage solutions resulted in greater density decrease percentages (Table 4.1). This shows 
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that although the phages required a longer infection period, they were more efficient in 

eliminating the hosts.  

A density of 1.0 (OD at 600 nm) in filamentous cultures (30ºC) corresponded to about 

5.9 × 108 CFU ml-1. This shows that at 30 ºC there was an initial cell concentration 10 

times lower than in the experiments carried out at temperatures from 5 to 25 ºC however 

the cells present had a length 10 times longer (Table 4.1). Phage infection at 30 ºC was 

similar to the one observed at 25 ºC with comparable periods of beginning of infection 

and lysis. The main difference besides cell morphology was on the rate of density 

decrease which was at 30 ºC half the value obtained at 25 ºC. Phages were able to 

replicate well inside the filamentous hosts and although there were 10 fold less cells the 

long length resulted in very high phage progeny at 30 ºC (Figure 4.2b).  

This study evidences that P. fluorescens cell morphology and growth parameters are 

significantly influenced by temperature. Nonetheless, phage φIBB-PF7A was remarkably 

efficient lysing both cell morphologies.    

 

Effect of rotary agitation 

In a previous study with P. fluorescens biofilms it was observed that the biofilm cells 

formed under static conditions (0 rpm) possessed rod shape while the ones formed under 

dynamic conditions (100 rpm) had both rod and filamentous shaped cells (Sillankorva et 

al. 2008). In this work it is investigated how different agitations influence the lengths of 

planktonic cells and observed how these two variables, cell lengths and agitations, 

influence the phage lytic efficacy. For this purpose, cultures were grown, until reaching a 

mid-exponential phase, at different rotational agitations (0, 100, 160 or 200 rpm) and 

maintaining a constant temperature (30 °C). Cells were visualized with FESEM (Figure 

4.3), and colony forming units of cells grown at different agitations were performed 

(Table 4.2).  

Like in the experiments with P. fluorescens biofilms (Sillankorva et al. 2008), 

planktonic cells grown without any rotary agitation exhibited a rod shape morphology, 

with minimum and maximum cell lengths of 1.5 and 3.3 µm respectively. The increase of 

the agitation speed caused a lengthening of the cells and a change from rod to filamentous 

morphology (Table 4.2 and Figure 4.3). At the maximum speed studied, the cell lengths 

were 10 times greater than those registered at 0 rpm. Other parameter highly influenced 
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by the rotary agitation was the specific growth rate, which increased significantly with the 

agitation speed applied (Table 4.2).  

 

 
Figure 4.3 – Morphology of P. fluorescens cells grown at 30 °C under varied shake speeds.  

 

Contrarily to the effect of temperature, the use of different rotational agitations did not 

influence greatly the start of cell lysis. However, the lack of agitation (0 rpm) caused a 

particularly prolonged lysis period, a very low density decrease (Table 4.2), and a reduced 

rate of density decrease (Figure 4.4b). A density of 1.0 (OD at 600 nm) in both cells 

suspensions grown at the maximum agitation speed and with no speed corresponded to 

different cell concentrations, being the filamentous suspension 2.3 log (agitated culture) 

lower than the rod shape one. Once again the lower colony counts were due to the 

increase of the cell lengths (Table 4.2). 

Cells with varied lengths were well infected at speeds from 100 to 200 rpm. 

Interestingly, the amount of progeny released after application of 1 × 109 PFU ml-1 

phages to cells with different lengths was analogous even though the number of cells 

decreased considerably from 100 to 200 rpm (Figure 4.4a). This shows that two 

parameters highly influenced the amount of phages produced inside a cell. First, phage 

progeny production appeared to be closely related to the cell length as the more 

lengthened a cell was the more progeny phages were produced (Figure 4.4a), and 
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secondly, like observed in the temperature experiments, the specific growth rate seems to 

be directly responsible for the number of new phages (Table 4.2).  

 
Table 4.2 – Influence of rotary agitation speed on cell size, growth rate and influence of different 

phage concentrations on phage infection parameters and cell density decrease (%).  

Speed 

(rpm) 

Cell 

size* 

(μm) 

μ (h-1)  

(± SD) 

Log 

(CFU 

ml-1) 

Log 

(PFUi 

ml-1) 

Beginning 

of infection 

(min) 

Lysis 

period  

(min) 

Density 

decrease  

(%) (± SD) 

0 1.5–3.3 0.048 

(0.004) 

9.88 

(0.04) 

9 40 260 27.04 (4.50) 

8 40 260 33.19 (4.22) 

7 80 220 31.39 (3.09) 

100 2.7–

13.0 

 

0.050 

(0.001) 

 9 80 100 81.98 (3.62) 

8 80 140 80.16 (2.70) 

7 160 140 79.30 (3.27) 

160 4.2–

23.8 

0.084 

(0.003) 

8.77 

(0.12) 

9 40 120 79.75 (6.75) 

8 60 120 78.11 (7.96) 

7 100 80 69.67 (7.62) 

200 11.3–

29.2 

 

0.127 

(0.002) 

7.58 

(0.04) 

9 60 80 78.73 (3.79) 

8 80 120 85.25 (1.81) 

7 100 120 84.15 (2.38) 

* minimum and maximum size from measurements of 5-10 cells, SD means standard deviations 

 

 
Figure 4.4 – Infection of P. fluorescens cells grown and infected with phage φIBB-PF7A under 

varied shake speeds. Measurement of a) cell density and phage numbers at different time periods using a 

phage concentration of 1 × 109 PFU ml-1 and 30 °C and b) cell decrease rates obtained after infection of 

cells with different phage concentrations. Error bars indicate standard deviations of 24 different wells.  



164 
 

 

This study shows that P. fluorescens morphology and length were greatly influenced 

by the rotary agitation applied during the growth of the cultures. Furthermore, the phage 

infection process was dependent of the application of agitation, as cell lysis was reduced 

when no speed was applied. Moreover, two factors appear to be directly influencing the 

production of new phages: cell length and specific growth rate.  

 

Effect of growth phase 

In nature cells reside predominantly in biofilm communities where cells exist in 

different growth phases. This work investigates the effect of filamentous cells at different 

growth phases in the phage lytic efficacy. For the formation of filamentous type of cells, 

two parameters were chosen – agitation speed at 160 rpm and temperature at 30 °C. Cells 

were grown under these two constant conditions, until reaching four different growth 

phases: early-, mid- and late-logarithmic and stationary. Afterwards, the cultures were 

challenged with phages. 

Cells at early-, mid-, and late-logarithmic phases were well infected by the different 

phage concentrations, showing similar density decrease patterns (Figure 4.5a). Contrarily 

to cells at the logarithmic phases, once the cells reached the stationary phase the phage 

infection process suffered a considerable change. Stationary cells challenged with phages 

were not readily lysed. First there was observed a quite long period where the density 

increased and only after this density increase period the cells started lysing. Interestingly, 

once the lysis had begun the process was surprisingly fast (Figure 4.5a). Phage progeny 

increase was fastest in mid-logarithmic cells and the concentration reached a plateau after 

100 min of infection. In late-logarithmic cells, phage numbers reached this plateau 50 

minutes later and in stationary cell infection this value is only reached after 120 min 

compared to mid-logarithmic cell infection (Figure 4.5a). 

In terms of density decrease rate, phages were able to attack slightly faster cells at the 

mid-logarithmic phase (Figure 4.5b). The density decrease percentages obtained after 

phage challenge were slightly lower in late-logarithmic and stationary cells (Table 4.3). 

Nevertheless, the 70 % density reduction observed in these two phases was noticeably 

high and shows that the phage is in fact able to infect well cells at late growth phases and 

therefore their ability in controlling even 168 h biofilms. 
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Figure 4.5 – Phage φIBB-PF7A infection of P. fluorescens cells grown at different growth phases 

(early-log (E); mid-log (M); late-log (L) and stationary (S) phases). Measurement of a) cell density and 

phage numbers at different time periods using a phage concentration of 1 × 109 PFU ml-1, 30 °C and 160 

rpm; and b) cell decrease rates obtained after infection of cells with different phage concentrations. Error 

bars indicate standard deviations of 24 different wells.  

 
Table 4.3 – Influence of P. fluorescens cell growth phase on cell size and influence of different 

phage concentrations on phage infection parameters and cell density decrease (%).  

Growth 

phase 

Log (PFUi 

ml-1) 

Beginning of 

infection (min) 

Lysis 

period  

(min) 

Density decrease  

(%) (± SD) 

Early-log 9 40 120 79.80 (7.05) 

8 40 140 71.77 (4.63) 

7 60 120 64.97 (6.82) 

Mid-log 9 40 120 79.75 (6.75) 

8 60 120 78.11 (7.96) 

7 100 80 69.67 (7.62) 

Late-log 9 40 100 70.42 (2.93) 

8 80 100 70.74 (2.87) 

7 80 120 68.40 (2.52) 

Stationary 9 80 140 71.42 (3.00) 

8 80 140 71.22 (2.43) 

7 80 140 57.36 (5.53) 

    SD means standard deviations 
 

This work shows that filamentous cells under all logarithmic phases were similarly 

infected by phages. Moreover, the passage from log to stationary growth phase caused a 
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delay in the beginning of lysis. Nevertheless, significantly high density reductions were 

achieved even in stationary phase cells.  

 

Discussion 
 

Phages are ubiquitous in nature and have been studied with a variety of hosts. 

Different growth conditions were responsible for morphological changes in the 

Pseudomonas fluorescens cells, which either existed as rod or filamentous shaped. The 

phage used to infect the cultures, phage φIBB-PF7A, was efficient in lysing both 

morphological cell types and two key factors were found to influence phage progeny 

production: cell length and growth rate. Also, phage φIBB-PF7A showed efficacy 

towards stationary filamentous cells and infection was dependent on the phage-host 

encounter as lysis was extremely reduced under static conditions.  

Cell morphology and length were found to be greatly influenced by rotary agitation 

and temperature. The typical rod-shape morphology was observed under stationary 

conditions (0 rpm) and when growth took place at temperatures below or equal to 25°C. 

Cells acquired filamentous morphology already at 100 rpm and higher agitation speeds as 

well as at 30°C. However, cells grown at 30°C and under non-agitation conditions exist 

as rod-shaped. So, for this P. fluorescens strain to become filamentous it was required a 

combination of high temperature and existence of agitation. The filamentous morphology 

was most likely due to a blocking of the cell division process as described for example in 

Pseudomonas aeruginosa and Escherichia coli (Greenwood & O'Grady 1973; Maki et al. 

2000; Rolinson 1980; Steinberger et al. 2002; Werner et al. 2004; Wright et al. 1988; 

Yokochi et al. 2000). It is known that cell division requires several proteins  and, in case 

one or more of these proteins become nonfunctional, the cells form non septated cells or 

filaments, that can have 50 times longer lengths. The only obvious effects are 

morphological growth rate, DNA replication, and chromosome segregation which all 

appear to continue as if nothing had happened. This cell division blocking doesn’t stop 

cell growth and these cells still maintain motility (Errington et al. 2003; Margolin 2000; 

Rothfield et al. 1999).  

Phage infection occurs when there is an interaction of phage proteins with molecules 

or structures, such as lipopolysaccharides or proteins and flagella or capsules that exist on 

the bacterial surface (Puig et al. 2001). So, although P. fluorescens cell morphology was 
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shown to alter, both filamentous and rod shaped cells were efficiently infected by phages. 

Therefore, it can be hypothesized that P. fluorescens filamentous shaped cells possessed 

the necessary receptors for phages to adsorb and start the reproduction cycle; otherwise 

the infection would have not taken place.  

Phage reproduction is known to be affected by many factors (De Paepe & Taddei 

2006; Moebus 1996; Sillankorva et al. 2004). Here, it was observed a direct relation of 

phage progeny with two parameters. First, temperature and rotary agitation influenced 

greatly the specific growth rate, with high rates resulting in more phages released from 

the infected cells. Second, lengthened cells were able to reproduce higher phage progeny 

numbers than rod shaped.  

It has been frequently described, with different phage-host systems, that there is a 

reduced lysis when cells are near the stationary phase (Abedon & Yin 2006; Burch & 

Chao 2004; Haywood 1974; Middleboe 2000; Ricciuti 1972; Sillankorva et al.  2004). 

For instance, T4 phage cannot even produce a burst if the E. coli cells are in the stationary 

phase (Delbruck 1940; Hedon 1951). The main factors accounted for the reduction of 

lysis in stationary cells are: less phage-adsorption sites, lower phage progeny per 

infection, reduced cell lysis due to cell wall thickness or increased non-viable infections 

(Weitz & Dushoff 2007). However, in this work, stationary P. fluorescens cells and all 

the factors responsible for lysis reduction appear not to influence the activity of this 

specific phage. The main difference to logarithmic cell infection was that in stationary 

cells the start of phage infection was delayed due to an initial regrowth phase. However, 

after this initial cell growth phase, phage φIBB-PF7A was able to lyse the newly 

produced cells as well as the stationary cells. Interestingly, the lysis period observed in 

stationary cells was exceptionally fast and comparable to the lysis period of early-, mid- 

and late-logarithmic cells and resulted in significant density reduction percentages. This 

confirms previous hypothesis, where it was observed that phage φIBB-PF7A could reduce 

the number of cells, including stationary cells, from 24, 72, 120 and 168 h P. fluorescens 

biofilms (Sillankorva et al. 2008). This shows that the decrease of phage effectiveness so 

many times described once cells reach stationary or near stationary phases, is not 

universal and there are most certainly more phages, like phage φIBB-PF7A, which are 

highly effective in infecting older cells.  

It is known that the number of phages per number of host bacterium is determinant for 

the rapidity of phage infection. Contrarily to high phage φIBB-PF7A concentrations, the 
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use of low concentrations caused a considerable delay on the beginning of cell lysis that 

was more pronounced under the influence of low temperature. Nevertheless, at low 

temperatures, these less concentrated phage solutions were interestingly capable to 

eliminate a higher number of cells.  

Previously, it was shown that after a slight delay of infection, biofilms of P. 

fluorescens were well infected by phage φIBB-PF7A under static (non-agitation) 

conditions. This was mostly due to a high number of progeny phages that remained in the 

proximity of the infected neighboring biofilm cells (Sillankorva et al. 2008). Contrarily to 

these results, planktonic cells were inefficiently infected by phage under non-agitated 

conditions (0 rpm). It appears that phages are not encountering their hosts and due to this 

fact the infection process is extremely reduced.  

In conclusion, this is a novel study where a newly isolated phage φIBB-PF7A was 

shown to infect filamentous and rod-shaped cells. Furthermore, this phage was highly 

efficient in attacking stationary cells and this is a clearly an important fact which makes 

possible phage application to real environments where cells are definitely present in 

different growth stages. 
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Materials and Methods 
 
Bacteria and bacteriophage 

Pseudomonas fluorescens PF7 was isolated from a dairy plant. The bacterium was 

grown at 30 ºC in Tryptic Soy Broth (TSB, Fluka) or in solid TSA medium that contains 

1.2 % (wt/vol) of BactoTM agar (Difco). The bacterium was subcultured once and 

glycerol stocks were performed and stored frozen at –80 ºC until further use. 

Bacteriophages φIBB-PF7A was isolated from raw sewage and purified and concentrated 

using the double soft agar layer (Sambrook & Russell 2001) where the soft agar top-layer 

of TSB contained 0.6 % of BactoTM agar. 

 

Phage titration of stock solution  

Bacteriophage of φIBB-PF7A titers were analyzed as described by Adams (Adams 

1959).  

 

Effect of different parameters on cells 

P. fluorescens were grown at different temperatures (5ºC to 30 ºC), rotational 

agitation speeds (0 rpm to 200 rpm) (Multitron, Infors AG, Bottmingen-Basel, 

Switzerland) and during different time periods to have cells in distinct growth phases 

(early exponential, mid exponential, late exponential and stationary). Cells were grown in 

Erlenmayers with 100 ml of TSB. After growth, the cultures were centrifuged (9,000 rpm, 

10 min, 4 ºC) and the pellet was resuspended in used TSB (supernatant from the 

centrifugation performed). The optical density (600 nm) of cells, grown at 30ºC using 

different shake speeds, was adjusted to 0.5 and colony forming units were performed. 

 

Phage infection of P. fluorescens cells 

After adjusting the OD600 to 1.0 with used TSB, 125 μl of P. fluorescens cultures, 

grown under different conditions, were put on the wells of a 96-well microplate. Phage 

φIBB-PF7A solutions (125μl) with different concentrations (107, 108 and 109 PFU ml-1) 

were added to the wells. Control experiments were performed with 125 μl of suspension 

and 125 μl of SM buffer (5.8 g l-1 NaCl, 2 g l-1 MgSO4.7H2O, 50 ml l-1 1M TRIS, pH 7.5). 

The duration of phage infection was dependent on the rapidity of phages to decrease the 

cell density. OD measurements were performed at different time intervals to evaluate 
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phage lytic parameters (beginning of lysis and lysis period) and to determine the cell 

density decrease percentage and rate (h-1). 

 

Field Emission Scanning Electron Microscopy (FESEM) 

Samples (100 µl) grown under different conditions (temperature and rotational 

agitation) were put on stainless steel slides and fixed with 500 µl of 2.5 % glutaraldehyde 

and incubated at 4 ºC for 1 h. Afterwards, samples were washed by immersion on 

phosphate buffer saline (PBS) and dehydrated in ethanol series, followed by critical 

drying (Critical Point Dryer CPD 030). Samples were coated with platinum and analyzed 

with FESEM in a JEOL JSM-6300F (Tokyo, Japan) instrument. 
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5.1 Main conclusions 
 

The goal of this thesis was to select suitable phages candidates and verify their 

capability of controlling single and dual species bacterial biofilms. Thus, the core of this 

thesis was divided into distinct chapters, each of which aiming at bringing more insights 

about different phage aspects.  

The first experimental work described of this thesis consisted in phage isolation and, 

principally, selection and characterization of phages for their further use in control 

experiments. As different environments have their own precise niche of predominant and 

characteristic spoilage and pathogenic bacteria arises the need to isolate new phages. 

Collection phages, especially the phages with broad host range, are suitable to be applied 

in most circumstances; nevertheless, phages from a particular environment usually prove 

to be more efficient. Phage lytic profiles, performed against different bacterial isolates, 

are required to exclude temperate phages and are a good strategy to select the best or 

broadest host range phages. The study of phage growth cycle characteristics is essential 

for all future infection experiments, whether performed with planktonic or biofilm 

bacteria. Phage characterization is equally useful for their classification and genomic 

sequencing can elucidate about genes present and their function on the phage replication 

properties. Furthermore, genome sequencing can be significant in the future development 

of phage or phage-based products and also of utmost importance if genetic modifications 

of phages are desired. A throrough characterization of the two phages, φIBB-PF7A for P. 

fluorescens and φIBB-SL58B for S. lentus, was performed. Genome sequencing of φIBB-

PF7A allowed the formation of a new sub-group, within the T7-supergroup of phages. 

This new sub-group has two representative phages: φIBB-PF7A for P. fluorescens and 

gh-1 of P. putida. These phages resemble with each other at protein level approximately 

55 %, however φIBB-PF7A possess more putative genes. Taking into account that phages 

are suggested to be the predominant lifeform in the biosphere, it can be affirmed that 

phage sampling and isolation is scarce. Thus, it is not unexpected to discover new phages. 

An example of that is phage φIBB-SL58B for S. lentus which reveals no morphological, 

physico-chemical and even genomical resemblance with any phage described so far and is 

most likely a novel type of phage belonging to the Podoviridae family. This 

Staphylococcus phage is also the first polyvalent phage which does not belong to the 

Myoviridae family. 



178 
 

After characterization of phages, emphasis was given to biofilm-phage interaction 

studies. The single species biofilms studied here were quite well attacked by their specific 

phages and phages decreased a significant number of viable cells. However, factors 

involved in biofilm formation and applied during phage infection affected the phage 

killing efficacy. Moreover, the two phages assumed different biofilm infection 

behaviours. Phage φIBB-PF7A infected best P. fluorescens biofilms formed and infected 

under non-shaken conditions and the best infection of S. lentus biofilm was unexpectedly 

observed after infection of biofilms formed under severe starvation conditions. In P. 

fluorescens biofilms, cell lysis due to phage φIBB-PF7A infection started faster in 

younger biofilms, but already after 4 h of treatment the level of surviving cells was 

approximately the same number in 24 up to 168 hours old biofilms. Also, this phage was 

productive in infecting both rod and filamentous shaped biofilm and planktonic cells. 

Furthermore, the P. fluorescens phage proved also to be excellent in killing both 

planktonic and biofilm cells at the stationary phase as demonstrated in Chapters 3 and 

Chapter 4. The work described in this thesis proves that there are phages that can 

effectively reproduce in their hosts grown under severe starvation, assuming different 

morphologies (rod and filamentous) and even hosts at the stationary growth stage. 

Phage infection was also investigated with dual species biofilms. Phage cocktail 

application resulted in significant cell reductions from the different dual species biofilms. 

The phage cocktail was also highly efficient in controlling planktonic bacteria released 

from the biofilms. The infection of dual species biofilms assumed similar patterns to 

those observed in experiments of single biofilm infections carried out with phage φIBB-

SL58B and S. lentus. This was somewhat expected as this bacterium is dominant in the 

refered biofilms. Phage treatment of mixed biofilms was influenced by the same 

parameters as the ones affecting infection of single species biofilms of S. lentus. 

Furthermore, biofilms formed and infected under non-shaken conditions revealed to be 

ineficciently reduced. This can be due to: i) protection of the hosts against their respective 

phages due to the presence of non-susceptible bacterium, ii) to an inefficient phage-host 

interaction due to a lack of convection mechanisms, iii) to a different content and amount 

of extracellular polysaccharides and proteins in shaken and non-shaken biofilms that can 

be preventing phages from reaching the specific receptors. However, protection of the 

hosts from phage attack due to the presence of a non-sustecptible bacterium can possibly 

be ruled out, as this work demonstrated that a single phage, specific for the less 
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predominant bacterium, easily reached and efficiently killed the target host within the 

dual species biofilms. It was also verified that a single phage applied to a dual species 

biofilm destroyed partly the biofilms as, after phage treatment, a high amount of cells, 

suggestedly of the non-susceptible bacterium, were released from the dual species 

biofilms to the planktonic phase. This proves that phages can be adopted as a method to 

kill a specific bacterium even when its host resides in mixed consortium.      

Although phages can decrease bacterial populations present in biofilms, these 

biological agents alone are most likely not efficient enough to be applied to control 

industrial biofilms. Commonly used cleaning procedures remove not only 

microorganisms but also all undesirable materials (e.g. foreing bodies, cleaning 

chemicals, soil, etc.) and phages are not capable of this task. However, phages could have 

a similar function to nowadays used biocides and sanitizers, and be used after the major 

cleaning processes, to kill specific bacterium on the remainder biofilms. Aqueous phage 

solutions could be applied to rinse surfaces through spraying, painting, coating, pouring 

or immersion of inanimate objects. Also, phages could be coupled with conventional 

cleaners - detergents, disinfectants, ammonium-based chemicals, however phage stability 

and biological activity needs to be reassured. This strategy could reduce the chemical 

loads applied during disinfection procedures adopted in industrial facilities.  

 

5.2 Suggestions for forthcoming work 
 

Several studies can be suggested for future work. For instance, single phages or phage 

cocktails could be coupled with antimicrobial agents and tested on biofilms formed by far 

more than two species or could even be tested in real industrial biofilms.  

Also, now that the phage sequences are known (or partly known) another future study 

could involve their genetic manipulation to “build” less host specific phages. This could 

be accomplished by changing the genes responsible for host specificity, such as the 

proteins in the tail fibers. Gene manipulation could also be used to include a 

polysaccharide lyase to improve the polymeric matrix degradation. 

Furthermore, phage receptors (ex: outer membrane proteins and lipopolysaccharides) 

present on rod and filamentous shaped P. fluorescens should be analysed. Also, the phage 

growth cycles in the distinct length cells could be performed to study the amount of cells 

reproduced inside these hosts.  


