
Universidade do Minho
Escola de Engenharia

João Paulo de Sousa Ferreira Fernandes

Setembro 2008

U
M

in
ho

|2
00

8

Design, Implementation and Calculation of
Circular Programs

Jo
ão

 P
au

lo
 d

e 
So

us
a 

Fe
rr

ei
ra

 F
er

na
nd

es
D

e
si

g
n

, 
Im

p
le

m
e

n
ta

ti
o

n
 a

n
d

 C
a

lc
u

la
ti

o
n

 o
f 

C
ir

cu
la

r 
P

ro
g

ra
m

s

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55609962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Doutoramento em Informática
Ramo Fundamentos da Computação

Trabalho efectuado sob a orientação do
Professor Doutor João Alexandre Saraiva

Setembro 2008

Universidade do Minho
Escola de Engenharia

João Paulo de Sousa Ferreira Fernandes

Design, Implementation and Calculation of
Circular Programs



É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA EFEITOS DE INVESTIGAÇÃO, 

MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE; 

 

 

 

 

Universidade do Minho, ___/___/______ 

 

Assinatura: ________________________________________________ 



Acknowledgements

This thesis would not be real without the support of my friends, family and

supervisors.

I sincerely thank all for their encouragement and commitment.

Several institutions contributed to this thesis in different ways. The

research was mainly supported by Fundação para a Ciência e Tecnologia

(FCT), grant No. SFRH/BD/19186/2004. The Department of Informatics

of the University of Minho provided financial support for me to participate

in the ACM SIGPLAN 2007 Workshop on Partial Evaluation and Program

Manipulation, the ACM SIGPLAN Professional Activities Committee pro-

vided financial support for me to participate in the ACM SIGPLAN Haskell

Workshop 2007 and the NATO Science for Peace and Security Programme

provided financial support for me to participate in the Summer School Mark-

toberdorf 2007.

i



Abstract

Circular programming is a powerful technique to express multiple traver-

sal algorithms as a single traversal function in a lazy setting. Such a (virtual)

circular program may contain circular definitions, that is, arguments of func-

tion calls that are also results of that same calls. Although circular definitions

always induce non-termination under a strict evaluation mechanism, they can

sometimes be immediately evaluated using a lazy evaluation strategy. The

lazy engine is able to compute the right evaluation order, if that order exists.

Indeed, using this style of circular programming, the programmer does not

have to concern him/herself with the definition and the scheduling of the

different traversal functions, since a single (traversal) function has to be de-

fined. Moreover, because there is a single traversal function, the programmer

does not have to define intermediate gluing data structures to convey values

computed in one traversal and needed in following ones, either.

In this Thesis, we present our studies on the design, implementation and

calculation of circular programs. We start by developing techniques to trans-

form circular programs into strict ones. Then, we introduce calculation rules

to obtain circular programs from strict equivalents, both in the context of

pure and monadic programming. Because we use calculation techniques we

guarantee that the resulting circular programs are equivalent to the strict

ones we start with. In this Thesis, we also perform a series of benchmarks

comparing the running performances of circular programs and the programs

we are able to derive from circular programs.



Abstract

A utilização de programas circulares na implementao de algoritmos de

programação é uma técnica poderosa que permite, num paradigma lazy , im-

plementar soluções que efectuam múltiplas travessias sobre uma ou mais es-

truturas de dados como um programa que efectua apenas uma travessia sobre

uma única estrutura de dados. Num programa (virtualmente) circular podem

ocorrer definições circulares, isto é, invocações de funções onde um argumento

da invocação é, ao mesmo tempo, um resultado da mesma invocação. Emb-

ora este tipo de definições induza não terminação num paradigma estrito, a

verdade é que, num paradigma lazy , elas podem ser desde logo executadas

utilizando uma estratégia baseada em lazy evaluation: a máquina lazy é ca-

paz de determinar o escalonamento correcto das computações, se ele existir.

Na verdade, utilizando este método de programação, o(a) programador(a)

não tem de definir nem de escalonar as diferentes travessias, uma vez que

apenas uma função necessita de ser implementada. Para além disso, porque

existe apenas função, e uma vez que essa função realiza apenas uma traves-

sia, o(a) programador(a) também não é forçado a definir estruturas de dados

intermédias para colar as diferentes travessias.

Nesta Tese são apresentados os nossos estudos relativos ao desenho, im-

plementação e cálculo de programas circulares. Começamos por desenvolver

técnicas de transformação de programas circulares em programas estritos.

Depois apresentamos regras de cálculo que permitem obter programas circu-

lares a partir de estritos, equivalentes, tanto no contexto de funções puras

como no contexto de funções monádicas. Uma vez que, neste trabalho, uti-

lizamos técnicas de cálculo de programas, é posśıvel garantir a correção da

transformação que propomos. Por fim, realizamos uma bateria de testes

que permitem comparar a performance de programas circulares com a dos

programas que derivamos a partir deles.



Contents

1 Introduction 2

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 5

2 Strictification of Circular Programs 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Circular Programs . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 The Table Formatter Program . . . . . . . . . . . . . . 8

2.3 From Circular to Strict Programs . . . . . . . . . . . . . . . . 13

2.3.1 Detection of Circular Definitions . . . . . . . . . . . . . 13

2.3.2 Partitionable Circular Programs . . . . . . . . . . . . . 14

2.3.3 Ordered Circular Programs . . . . . . . . . . . . . . . 18

2.3.4 The Visit-Sequence Paradigm . . . . . . . . . . . . . . 24

2.3.5 Computing Strict Functions . . . . . . . . . . . . . . . 25

2.4 Slicing Circular Programs . . . . . . . . . . . . . . . . . . . . 32

2.5 Class of Programs Considered . . . . . . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Calculation of Circular Programs 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Circular Programs . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Bird’s method . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Our method . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Program schemes . . . . . . . . . . . . . . . . . . . . . . . . . 49

ii



3.3.1 Data types . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Fold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Fold with parameters . . . . . . . . . . . . . . . . . . . 58

3.4 The pfold/buildp rule . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Algol 68 scope rules . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Calculation of Monadic Circular Programs 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Bit String Transformation . . . . . . . . . . . . . . . . . . . . 76

4.3 The Algol 68 scope rules Revisited . . . . . . . . . . . . . . . 80

4.4 Calculating monadic circular programs, generically . . . . . . 86

4.4.1 Extended shortcut fusion . . . . . . . . . . . . . . . . . 86

4.4.2 Monadic shortcut fusion . . . . . . . . . . . . . . . . . 88

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Tools and Libraries to Model and Manipulate Circular Pro-

grams 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Tools and Libraries for Circular Programming . . . . . . . . . 94

5.2.1 The CircLib Library . . . . . . . . . . . . . . . . . . . 94

5.2.2 The HaCirc Tool . . . . . . . . . . . . . . . . . . . . . 94

5.2.3 The OCirc Tool . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 The Table Formatter: . . . . . . . . . . . . . . . . . . . 98

5.3.2 The MicroC Processor: . . . . . . . . . . . . . . . . . . 98

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusions 101

Bibliography 103

.1 The CircLib Haskell library . . . . . . . . . . . . . . . . . . . 110

iii



List of Figures

2.1 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 HTML Table Formatting . . . . . . . . . . . . . . . . . . . . . 9

2.3 Dependency graph of function evalTable . . . . . . . . . . . . 14

2.4 Dependency graph DP (black lines), IDP (black and dashed

lines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 The visit-sub-sequences induced by the Table circular program. 26

5.1 Web interactive interface of the HaCirc tool. . . . . . . . . . . 96

5.2 The deforested version of the repmin program. . . . . . . . . . 97

iv



List of Tables

5.1 Performance results of the three different Table formatters . . 98

5.2 Performance results of the three MicroC processors. . . . . . . 99

1



Chapter 1

Introduction

Circular programs were first proposed by Bird (1984) as an elegant and ef-

ficient technique to eliminate multiple traversals of data structures. As the

names suggests, circular programs are characterized by having what appears

to be a circular definition: arguments in a function call depend on results of

that same call. That is, they contain definitions of the form:

(..., x , ...) = f ... x ...

In order to motivate the use of circular programs, Bird introduces the fol-

lowing programming problem, widely known as the repmin problem: consider

the problem of transforming a binary leaf tree into a second tree, identical

in shape to the original one, but with all the leaf values replaced by the

minimum leaf value.

In a strict and purely functional setting, solving this problem would re-

quire a two traversal strategy: the first traversal would compute the original

tree’s minimum value, and the second traversal would replace all leaf val-

ues by the minimum value, therefore producing the desired tree result. This

straightforward solution is as follows.

data LeafTree = Leaf Int

| Fork (LeafTree,LeafTree)

transform :: LeafTree → LeafTree

2



transform t = replace (t , tmin t)

tmin :: LeafTree → Int

tmin (Leaf n) = n

tmin (Fork (l , r)) = min (tmin l) (tmin r)

replace :: (LeafTree, Int)→ LeafTree

replace (Leaf ,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

However, a two traversal strategy is not essential to solve the repmin

problem. An alternative solution can, on a single traversal, compute the

minimum leaf value and, at the same time, replace all values by that mini-

mum value. Bird showed how the single traversal program, presented next,

may be obtained by transforming the original program using the following

techniques: tupling, fold-unfold and circular programming1.

repmin (Tip n ,m) = (Tip m, n)

repmin (Fork (l , r),m) = (Fork (t1, t2),min m1 m2)

where (t1,m1) = repmin (l ,m)

(t2,m2) = repmin (r ,m)

transform t = nt

where (nt ,m) = repmin (t ,m)

Notice the circularity in the above program: m is both an argument and

a result of the repmin call, in the transform function. Although this circular

definition seems to induce both a cycle and non-termination of this program,

the fact is that using a lazy language, the lazy evaluation machinery is able

to determine, at runtime, the right order to evaluate such circular definition.

Bird’s work showed the power of circular programming, not only as an

optimization technique to eliminate multiple traversal of data, but also as

a powerful, elegant and concise technique to express multiple traversal algo-

rithms. Indeed, using this style of circular programming, the programmer

does not have to concern him/herself with the definition and the schedul-

1We review Bird’s transformation in detail in Chapter 3.

3



ing of the different traversal functions, since a single (traversal) function has

to be defined. Moreover, because there is a single traversal function, the

programmer does not have to define intermediate gluing data structures to

convey values computed in one traversal and needed in following ones, either.

Bird’s approach, however, has a severe drawback since it preserves partial

correctness only. The circular programs derived using Bird’s method are not

guaranteed to terminate.

Circular programs are used in the construction of Haskell compilers (Mar-

low and Jones 1999; Hinze and Jeuring 2002), to express pretty printing al-

gorithms (Swierstra et al. 1999), breadth-first traversal strategies (Okasaki

2000), type systems (Dijkstra and Swierstra 2004) and aspect-oriented com-

pilers (de Moor et al. 2000). As an optimization technique, circular pro-

grams are used, for example, in the deforestation of accumulating param-

eters (Voigtländer 2004). Circular programs can also be obtained through

partial evaluation (Lawall 2001) and continuations (Danvy and Goldberg

2002). As Johnsson (1987) and Swierstra and Kuiper (Kuiper and Swierstra

1987) originally showed, circular programs are the natural representation of

attribute grammars in a lazy setting (Swierstra and Azero 1998; de Moor

et al. 2000; Saraiva 1999; Dijkstra 2005).

1.1 Contributions

The main contributions of this Thesis are:

• a program calculation rule, in the style of the shortcut deforestation

rule, to obtain circular programs from strict ones;

• the formal proof that such rule is correct;

• the study of a program calculation rule, developed in the same setting

as the above one, but in the monadic context;

• such monadic rule was also proved correct;

4



• a strictification technique, based on well-known Attribute Grammars

techniques, that we have developed and applied to transform circular

programs into strict and strict deforested equivalents;

• a sistematic benchmark comparing the performances of circular, strict

and strict deforested programs.

1.2 Structure of the Thesis

This Thesis is organized as follows: in Chapter 2 we present techniques to

model circular lazy programs in a strict, purely functional setting. A mo-

tivating example, that will guide the presentation for the Chapter, is also

presented. The circular solution to such example is then transformed, by

applying the Attribute Grammar based techniques that we propose, into a

strict and a strict and deforested equivalent programs. In Chapter 3 we

present a shortcut deforestation technique to calculate circular programs.

The technique we propose takes as input the composition of two functions,

such that the first builds an intermediate structure and some additional con-

text information which are then processed by the second one, to produce the

final result. Our transformation into circular programs achieves intermediate

structure deforestation and multiple traversal elimination. Furthermore, the

calculated programs preserve the termination properties of the original ones.

In Chapter 4, we propose an extension to the new form of fusion presented

in Chapter 3, but in the context of monadic programming. Our extension

is also provided in terms of generic calculation rules, that can be uniformly

defined for a wide class of data types and monads. In Chapter 5, we present

the implementation of the techniques formally introduced in Chapter 2 as a

Haskell library: the CircLib library. Using this library, we have constructed

two tools to transform Haskell and Ocaml based circular programs into their

strict counterparts. Furthermore, we also conduct the first systematic bench-

marking of circular, strict and deforested programs. Finally, in Chapter 6,

we draw some conclusions concerning the present techniques.

5



Chapter 2

Strictification of Circular

Programs

This Chapter presents techniques to model circular lazy programs in a strict,

purely functional setting. Circular lazy programs model any algorithm based

on multiple traversals over a recursive data structure as a single traversal

function. Such elegant and concise circular programs are defined in a (strict

or lazy) functional language and they are transformed into efficient strict

and deforested, multiple traversal programs by using attribute grammars-

based techniques. Moreover, we use standard slicing techniques to slice such

circular lazy programs.

2.1 Introduction

Circular lazy programs, as introduced by Bird (1984), are a famous example

that demonstrates the power of a lazy evaluation mechanism. Bird’s work

showed that any multiple traversal algorithm can be expressed in a lazy lan-

guage as a single traversal circular function, being the repmin program the

reference example in this case. Such a (virtual) circular function may contain

a circular definition, that is, an argument of a function call that is also a re-

sult of that same call. Although circular definitions induce non-termination

under a strict evaluation mechanism, they can be immediately evaluated us-

6



ing a lazy evaluation strategy. The lazy engine is able to compute the right

evaluation order, if that order exists. Indeed, using this style of circular

programming, the programmer does not have to concern him/herself with

the definition and the scheduling of the different traversal functions, since a

single (traversal) function has to be defined. Moreover, because there is a

single traversal function, the programmer does not have to define interme-

diate gluing data structures to convey values computed in one traversal and

needed in following ones, either.

On the contrary, defining multiple traversal programs within a strict,

purely functional setting can be a complex task: additional data structures

have to be defined and constructed/destructed to explicitly pass values com-

puted in one traversal and needed in following ones. Furthermore, there are

algorithms that rely on a large number of traversals whose scheduling is not

a trivial one. As a result, expressing such algorithms in a strict setting leads

to longer solutions which are harder to write, understand and maintain.

In this Chapter we present techniques to model and transform circular

lazy programs into strict multiple traversal (equivalent) ones. This refactor-

ing of circular programs is expressed in terms of attribute grammar tech-

niques (Knuth 1968). Moreover, we use partial evaluation techniques to

derive deforested versions of the strict programs. Furthermore, because our

techniques break up circular definitions into several strict functions, we can

directly apply standard slicing techniques to slice circular lazy programs.

That is, given a circular program we derive a program that performs the

computations needed to produce some of its results (backward slicing), or

the computations that use some of its arguments (forward slicing).

This Chapter is organized as follows: Section 2.2 presents the notation

and the running example used throughout the Chapter. Section 2.3 presents

the derivation of strict programs from circular ones. Section 2.4 presents the

slicing of circular programs. In Section 2.5 we discuss the class of circular

programs considered. Section 2.6 shows our conclusions.

7



2.2 Circular Programs

2.2.1 Notation

To demonstrate our techniques, we use the language given in Fig. 2.1. A

program is a sequence of definitions. The language natively incorporates

integers (0,1,...), with the usual operators, characters (’a’,’b’,...,’z’)

and strings (character sequences). It also makes use of lists, the empty list

being represented by [], the insertion of an element x in the head of a list

l being represented by x:l and the concatenation of two lists, l1 and l2,

being represented by l1 ++ l2. The semantics of the language is that of

standard lazy functional languages.

Expressions
e ::= v variables

| n constants
| (e1, ..., en) tuples
| C(v1, ..., vn) constructors

Attributions
a ::= v1 = v2 variable copying

| v1 = C(v2, ..., vn) contructor value
| v1 = f e function application
| v = n constant value
| (v1, ..., vn) = vm e recursive calls

Function and Data-Types definitions
Decl ::= v e1 = e2 function definition,

| v e1 = e2 where a1 ... an with a where clause
| data T = C1 t1 | ... | Cn tn data type definition

t ::= () | (t1, ..., tn) | Int | Char | String | T

Figure 2.1: Abstract syntax

2.2.2 The Table Formatter Program

The repmin problem is a famous example which nicely exploits and demon-

strates the power of circular programming. However, when defining more re-

8



alistic multiple traversal problems, like for example the four traversal pretty

printing algorithm presented in (Swierstra et al. 1999), the programmer has

to define additional gluing data structures to pass values to future traversals.

Furthermore, the scheduling of traversals can be a complex task, as well.

To show more clearly the properties of circular programming we will use

a more realistic example. Let us consider that we want to define a program

that formats HTML style tables. Fig. 2.2 shows an example of a possible

input (left) and correspondent output (right).

〈TR〉〈TD〉 The first line 〈/TD〉〈TD〉 of a 〈/TD〉〈/TR〉
〈TABLE〉

〈TR〉〈TD〉〈TABLE〉
〈TR〉〈TD〉 This 〈/TD〉〈TD〉 is 〈/TD〉〈/TR〉

〈TR〉〈TD〉 another 〈/TD〉〈TD/〉〈/TR〉

〈TR〉〈TD〉 table 〈/TD〉〈TD/〉〈/TR〉
〈/TABLE〉
〈/TD〉〈TD〉 table 〈/TD〉〈/TR〉

〈/TABLE〉

7

14

1

4

24

5

1 1

1

7

1

12

5

1

1

|--------------------|
|The first line|of a |
|--------------------|
||----------| |table|
||This |is| | |
||----------| | |
||another| | | |
||----------| | |
||table | | | |
||----------| | |
|--------------------|

Figure 2.2: HTML Table Formatting

The straightforward solution to construct such a program is to compute

the heights and widths of each element in the table, before we define the

formatting. They can be computed as follows: the height of an element is

the height of a data element (i.e., a string with height 1) or the height of

a nested table. The height of a row is the maximum height of its elements.

And, the height of a table is the sum of the heights of its rows plus the line

separators. The width of an element is the length of the data element, or

the width of the nested table. Like for the height of a column, the width

of a column is the maximum width of the elements in that column, and the

width of a table is the sum of the widths of its columns (plus the column

separators). In the input HTML example, we have annotated tag TD with

the height of the element (superscript) and its width (subscript).

Having defined the heights and widths of the elements in a table, the next

step is to do the formatting. Obviously, we will need to add some vertical

9



and horizontal glue (spaces) so that we can obtain the desired output. In our

example, in the first column of the second row we need to add 2 spaces of

horizontal glue (the element has width 14 whilst the nested table has 12: see

associated subscripts). Such two spaces have to be used 7 times as vertical

glue since that column has that height.

The immediate implementation of this algorithm would rely on a two

traversal strategy. First we traverse the HTML tree to compute the correct

heights and widths of each element, and in a second traversal we produce the

formatting using those values. Note, however, that in order to compute the

width of our outermost table, we need to compute the width of each column

first. Thus, we need to know the width of the nested table. According to this

approach that table has to be traversed twice as well. As a result, in the first

traversal of an outermost table we need to perform the two traversals to its

nested tables. So, the computations related to the first and second traversals

are intermingled. Moreover, the values of the height and width of the nested

table have to be passed to the second traversal of the outermost table: they

are needed to define the necessary vertical and horizontal glue. That is to

say that in a straightforward implementation of this program an intermediate

data structure has to be defined and constructed to pass explicitly the height

and width of a nested table from the first to the second traversal.

Next, we present the elegant and concise Table circular program that relies

on a single traversal. Note that to construct such a program the programmer

did not have to define and construct/destruct gluing data structures nor to

schedule the different traversals. Such data structures and the scheduling of

computations will be defined by the static analysis and transformations we

present in Section 2.3.

HTML like tables are defined by the following recursive data type defini-

tions:

data Table = RootTable Rows

data Rows = EmptyRows

| ConsRows (Row ,Rows)

data Row = OneRow Elems

10



data Elems = EmptyElems

| ConsElems (Elem,Elems)

data Elem = OneStr String

| OneTable Table

Next, we present the single traversal circular program. As referred before,

for each table the program computes the desirable format (lines), its height

(mh) and width (mw). The function that processes the rows returns three

things: the format of the rows, the height of those rows and the list of widths

of the columns (in our example, this list will be [14, 5]). Thus, the width of

the table is the sum of those widths plus the separators (22 in our example).

Each row needs to know the available width of each column, to add glue in

the format, if necessary. Thus, this function receives as argument the list of

available widths of the columns. This list is the computed list of widths. As

we can see below, a circular dependency is defined.

evalTable :: Table → ([String ], Int , Int)

evalTable (RootTable rows) = (lines ,mh,mw)

where (lines1,mh1,mws) = evalRows (rows ,mws)

mh = mh1 + 2

mw = (sum mws) + (length mws) + 1

lines = sepLine (mws , lines1)

When processing the rows, we accumulate the heights of each row (mh),

and we zip the widths of the columns with the maximum values of the rows.

In our example, the two rows produce the following two lists of widths [14, 4]

(first) and [12, 5] (second). The result of zipwithMax is [14, 5], that is, the

maximum width of each column.

evalRows (ConsRows (row , rows), aws) = (lines ,mh,mws)

where (lines1,mh1,mws1) = evalRow (row , aws)

(lines2,mh2,mws2) = evalRows (rows , aws)

mh = mh1 +mh2 + 1 -- + 1 is for the separator

mws = zipwithMax (mws1,mws2)

11



lines = addSep (aws , lines1, lines2)

evalRows (EmptyRows , aws) = ([ ],−1, [ ])

For each individual row, we receive as argument the available widths of

its columns, and we have to compute its format, height and the widths (that

will be used to compute the widths of the table elements). One result of the

function evalElems is the maximum height (mh) of the elements in the row.

We need to pass it to those same elements, in order to add vertical glue.

Once again we use a circular definition: the height computed is the height

passed as argument.

evalRow (OneRow elems , aws) = (lines ,mh,mws)

where (lines1,mh,mws) = evalElems (elems ,mh, aws)

lines = addBorder lines1

The elements of one row receive as argument the available height of the

row and the list of maximum widths. It returns the format, the height of the

row and the widths.

evalElems (ConsElems (elem, elems), ah, aws) = (lines ,mh,mws)

where aws2 = tail aws

(lines1,mh1,mw1) = evalElem elem

(lines2,mh2,mws2) = evalElems (elems , ah, aws2)

mws = mw1 :mws2

mh = max (mh1,mh2)

lines = glue (aws ,mw1, ah,mh1, lines1, lines2)

evalElems (EmptyElems , ah, aws) = ([ ], 0, [ ])

Finally, the function that processes individual elements, returns their

format, height and width.

evalElem (OneStr str) = ([str ], 1, length str)

evalElem (OneTable table) = (lines1,mh1,mw1)

where (lines1,mh1,mw1) = evalTable table

The functions addSep, sepLine, addBorder and glue, add line separators,

12



horizontal and vertical borders, and glue table lines, respectively.

This table formatter is a circular program: circular definitions occur twice

as we can see in the program. These programs can be immediately evaluated

under a lazy evaluation mechanism. The lazy engine will be able to schedule

the computations and convey values between different traversal functions at

execution time. Under a strict evaluation setting, however, such programs

induce non-termination. Next, we will show how to transform this circular

program into a strict and deforested multiple traversal program.

2.3 From Circular to Strict Programs

In this section we will describe a program transformation technique to derive

a strict program from its lazy circular definition. A strict evaluation setting is

attractive not only because we obtain implementations that are not restricted

to a lazy semantics execution model, but also because we obtain very efficient

implementations in terms of memory and time consumption. The resulting

program can be correctly executed under both a strict and a lazy execution

model.

2.3.1 Detection of Circular Definitions

Let us analyze in detail one of the most intricate function alternatives of

the above program: the function evalTable applied at the node RootTable,

where a circular definition occurs. Figure 2.3 shows the induced dependency

relation (represented as a graph), which follows from a flow analysis of the

total program.

For each alternative function definition a dependency graph is induced.

Such graphs are labeled with the data type constructor that the alternative

definition refers to. Furthermore, in these graphs we use undirected (solid)

lines to connect the types involved in a tree-like structure: result type on

top and arguments at the bottom. The variable names representing formal

arguments(results) of the function definition are displayed at the left(right)

of the resulting type. Such variable names are displayed in all occurrences of

13



RootTable:

Table

Rows

lines

aws mhlines

mh mw

mws

Figure 2.3: Dependency graph of function evalTable

that data type in the different induced graphs. Notice, for example, that the

results produced by evalTable: lines , mh and mw , are drawn to the right of

Table’s position. Arrows are used in the graphs to represent dependencies

between variables. For example, the arrow with origin in the variable mws

and destination in the variable aws represents that mws is used to compute

aws . We use black lines to represent direct dependencies and dashed-black

lines to represent indirect dependencies. Later, we will present the formal

process to calculate these dependencies.

As we can easily see in Figure 2.3, there is an evaluation order to evaluate

the so-called circular definition, since no value depends directly nor indirectly

on itself.

Dependencies from a result to an argument, however, induce additional

traversals to the tree.

The detection of such circular definitions in the abstract syntax tree of

the programs under consideration is a straightforward function. Thus, we

omit its definition here.

2.3.2 Partitionable Circular Programs

This section discusses the class of circular programs for which strict pro-

grams can be derived. That is, circular programs whose circularity may be

eliminated, by statically analyzing the dependencies induced by them. These

dependencies are established in the program’s functions, between function ar-

guments and function results, and the static analysis consists in determining

14



an alternative evaluation order for them.

The algorithms that compute the alternative evaluation order establish

the number of visits and an interface for every data-type X of the circular pro-

gram. We denote the interface of data-type X by Interface(X). Interface(X),

as computed by these algorithms, usually has the following shape:

Interface(X) = [(args1, results1), . . . , (argsn, resultsn)]

with argsi ={arguments of the ith function defined

over elements of type X}
resultsi = {results of the ith function defined

over elements of type X}

Thus, by computing Interface(X), for every data-type X, the scheduling

algorithms specify, for every visit to X, which arguments are used and which

results are computed. Roughly speaking, Interface(X) fixes the types for

every one of the traversal functions for type X. Interface Interface(X) induces

a partial order on the arguments and results of the functions defined over X.

The largest class of circular programs for which strict multiple traversal

programs can be derived is the class of partitionable circular programs. In-

formally, a circular program is partitioned if for each data-type there is an

interface, such that in any function defined over the data-type, its results are

computable in an order which is included in the partial order induced by the

interface.

For every constructor C of a circular program, let DP (C ) be the relation

of direct dependencies, between variable occurrences, defined in the function

of the circular program that traverses elements built using C (defined in C ,

for short). Formally, let DP (C ) be the relation

DP (C ) = {Var 1 → Var 2 | Var 2 depends on Var 1 in C}

A program variable (directly) depends on another if the latter is used to

compute the former (whether this computation requires complex processing

of the latter, or simply be the copy of its value). These dependencies are easily

inferred from the program, in the program sentences that match our func-

15



tional language’s three first attribution rules: in the first rule (v1 = v2), the

variable v1 depends on the variable v2, in the second rule (v1 = C (v2, ..., vn)),

v1 depends on the variables v2 ... vn and in the third (v1 = f e), v1 depends

on all the variables that occurr in e. We present such dependencies in Fig-

ure 2.4 (black lines were used to represent this type of dependencies). Next,

we also present the derived DP relation, for the constructor RootTable of the

Table program.

DP (RootTable) = {(RootTable, 1, lines) → (RootTable, 0, lines),

(RootTable, 1,mh) → (RootTable, 0,mh),

(RootTable, 1,mws) → (RootTable, 0,mw),

(RootTable, 1,mws) → (RootTable, 1, aws),

(RootTable, 1,mws) → (RootTable, 0, lines)}

Each dependency is established between two program variables, each of

which is represented by a tuple with three components: the first component

represents the constructor, say C , where the dependency is detected and

the third component represents the variable name. The second component

contains an integer value, say i; this value represents the data-type Xi, in

C : X1 X2 . . . Xn → X0, that is an argument of the traversal function that

induces the dependency.

For example, we have RootTable : Rows → Table, and the variable

(RootTable, 1, lines) states the occurrence of a variable, named lines , com-

puted by traversing an element of type Rows , which is the first argument of

the constructor RootTable.

Furthermore, the dependency (RootTable, 1, lines)→ (RootTable, 0, lines)

states that, in the definition of the function that traverses elements built using

the constructor RootTable (let such an element be (RootTable x )), the result

value lines is computed by traversing x (i.e., using the lines value computed

by traversing a value of type Rows). In other words, the result value lines ,

represented by (RootTable, 0, lines), depends on the lines value produced by

traversing the first argument of RootTable, being this value represented by

(RootTable, 1, lines).

Having defined the relation DP (C ), we are now ready to give the defini-

16



tion of partitionable circular program.

Definition (Partitionable Circular Program).

Let PO(X) be the partial order induced by Interface(X ).

A circular program is a partitionable circular program if for every con-

structor C : X1 X2 . . . Xn → X0, the relation

DP (C ) ∪
⋃n

i=0 PO(〈C , i〉), where 〈C , i〉 = Xi,

is non-circular.

In this case we say that the interfaces are compatible.•

A non-circular relation of dependencies between variables is a relation

that does not include, at the same time, a dependency between a variable a

and a variable b, and a dependency between the variable b and the variable

a, i.e., by a non-circular relation we mean a cycle-free relation.

The concept of partitionable circular programs is inspired in the similar

concept for attribute grammars. In (Engelfriet and Filé 1982), Engelfried

and Filè proved that deciding whether an attribute grammar is partitionable

or not is a NP-complete problem. Kastens (1980) defined a subclass of parti-

tionable attribute grammars, the so-called ordered attribute grammars, that

can be checked by an algorithm that depends polynomially in time on the

size of the attribute grammar. We define a slightly different class of circular

programs, that we shall call L-ordered circular programs.

Definition (L-Ordered Circular Program).

A circular program is a L-ordered circular program if there exist total

orders TO(X) for every data-type X such that for every constructor C that

defines values of type X, C : X1 X2 . . . Xn → X0, the relation

DP (C) ∪
⋃n

i=0 TO(〈C, i〉)

is cycle free.•

17



The total orders TO(X) are easily converted into interfaces: cut them

into maximal segments of function arguments and function results.

2.3.3 Ordered Circular Programs

In this section we present an adaptation of Kastens’ attribute scheduling

algorithm (Kastens 1980; Reps and Teitelbaum 1989; Pennings 1994) to cir-

cular programs. The basic idea of this algorithm is the following: for each

data-type X defined in the program, a partial order DS(X) over the program

variables that occur in the function defined on X is computed. It determines

an evaluation order for values in X, applicable in any context where X may

occur. As a result, an element X.a → X.b ∈ DS(X) indicates that a must

be computed before b in any node that is an instance of X.

The existence of such an order is a sufficient but not necessary condition

for the well-definedness of circular programs. Note that Kastens’ ordering

algorithm makes a worst case assumption by merging all (indirect) dependen-

cies on variables of a data-type, in any context the data-type may occur, into

a single dependency graph. This pessimistic approach, however, is crucial for

L-ordered programs: it must always be possible to compute the variables of

X in the order specified by DS(X), irrespective of the actual context of X.

Step 1: DP =
⋃

C∈ConstructorsDP (C), where Constructors is the set of the

program’s constructors, is computed; this is the relation of direct dependen-

cies between variable occurrences in the program.

The circular program is not ordered if DP is cyclic.

Step 2: IDP =
⋃

C∈Constructors IDP (C) is computed; this is the relation

of induced dependencies between variable occurrences. IDP projects indi-

rect dependencies into dependencies between variable occurrences as follows:

every dependency between variables of one occurrence of a symbol, say X,

induces a dependency between corresponding variables of all occurrences of

X. Formally it is defined as follows:

18



IDP (C) = DP (C) ∪ {〈C, i, a〉 → 〈C, i, b〉 | 〈C ′, j, a〉 → 〈C ′, j, b〉 ∈ IDP+

∧ 〈C, i〉 = 〈C ′, j〉}

The circular program is not ordered if IDP is cyclic.

Figure 2.4 shows the IDP relation (black and dashed lines were used to

represent it) induced by the Table circular program (in fact, for simplicity

and readability, Figure 2.4 omits the representation of the dependencies es-

tablished, in IDP , between two argument variables and between two result

variables, e.g., the dependency (RootTable, 1,mw)→ (RootTable, 1, lines) is

omitted).

[]

mh
Rows

EmptyRows:

aws lines

Rows

Rows

ConsRows:

OneStr: Elem

str

EmptyElems:

Elems
ah aws mhlines

mhlines

RootTable:

Table

Rows

lines

aws mhlines

mh mw

mws

mws

[]0

OneRow:

Row

Elems

lines

aws mhlines

mh mws

ah

aws

mws

mhlines mwsaws

Row
aws awsmhlines mws mhlines mws

mws

[] []0

Elems

Elems

ConsElems:

mhlines mwsaws

Elem
awsmhlines mw mhlines mws

ah

ah

mw

1

OneTable:
Elem

Table

mhlines mw

lines mh mw

Figure 2.4: Dependency graph DP (black lines), IDP (black and dashed
lines)

The relation IDS =
⋃

X∈Data−Types
IDS(X), where Data− Types is the

set of the program’s data-types, defines the Induced Dependencies among

19



variables:

IDS(X) = {X.a→ X.b | (C, i, a)→ (C, i, b) ∈ IDP ∧ 〈C, i〉 = X}

The IDS relation, for the Table program, is presented next.

IDS(Table) = {}
IDS(Rows) = {Rows.aws→ Rows.lines,Rows.mws→ Rows.aws,

Rows.mws→ Rows.lines}
IDS(Row) = {Row.aws→ Row.lines,Row.mws→ Row.aws,

Row.mws→ Row.lines}
IDS(Elems) = {Elems.ah→ Elems.lines,Elems.aws→ Elems.lines,

Elems.mh→ Elems.ah,Elems.mh→ Elems.lines,

Elems.mws→ Elems.aws,Elems.mws→ Elems.lines}
IDS(Elem) = {}

Step 3: the “interfaces” for the data-type symbols are determined. That

is, the algorithm statically establishes the number of visits to a data-type X

and for each of those visits it defines which arguments are used to compute

which results. Several orders are possible. Kastens’ algorithm maximizes the

size of the interfaces so that the number of visits is minimized. In order to

compute such interfaces we define successively

AX,1 = Results(X)− {X.a | X.a→ X.b ∈ IDS+}

AX,2n = {X.a | X.a ∈ Arguments(X)

∧ ∀X.b : X.a→ X.b ∈ IDS+ ⇒ ∃m < 2n : X.b ∈ AX,m}
−

⋃2n−1
k=1 AX,k

AX,2n+1 = {X.a | X.a ∈ Results(X)

∧∀X.b : X.a→ X.b ∈ IDS+ ⇒ ∃m < 2n + 1 : X.b ∈ AX,m}
−

⋃2n
k=1 AX,k

where Arguments(X) is the set of argument variables of the function defined

over X, and Results(X) is the set of result variables of that same function.

The sets AX,k
, with 1 ≤ k ≤ m form a disjoint partition of Arguments(X)∪

20



Results(X). The algorithm uses a “backward” sort, hence, the evaluation

order corresponds to a decreasing order of index k. Thus, the subsets are in

such a way that AX,k
contains the arguments which contribute directly to

the computation of results in AX,k−1
.

Having computed the disjoint partitions of Arguments(X) ∪Results(X)

for each data-type X, the graphs DS(X) are defined as follows:

DS(X) = IDS(X) ∪ {X.a→ X.b | X.a ∈ AX,k
∧X.b ∈ AX,k−1

∧ 2 ≤ k ≤ m}

We are now ready to give the definition of ordered circular program.

Definition (Ordered Circular Program).

A circular program is an ordered circular program if the relation

EDP =
⋃

C∈ConstructorsDP (C)⋃
{((C, i, a)→ (C, i, b)) | X.a→ X.b ∈ DS ∧ 〈C, i〉 = X}

is cycle free. •

If the constructed relation is circular, the program is rejected, although

circularities also arise for some programs that are not truly circular. We will

return to this subject on Section 2.5. On the contrary, if the constructed

relation is not circular, it can be topologically sorted in order to determine

a total order on the variable occurrences of a constructor. That is, on the

variables that occur in the program’s part that specifies how to compute

results when input matches a constructor. This order can be interpreted as

a sequence of abstract computations to be performed on that constructor.

Moreover, the fact that a circular program is ordered also proves that it

always terminates for all possible finite inputs1.

A circularity can originate from two sources. Either the program is not

L-ordered (i.e., it is indeed not possible to determine an alternative evalua-

tion order for the circular program) and no interface exist, or it is L-ordered

(therefore it would be possible to transform the circular program into a strict

one), but Step 3 selected a non-compatible interface. In this case, one could

1provided that the auxiliary functions used in the program also terminate.

21



try to enforce a different disjoint partition of Arguments(X)∪Results(X) by

adding artificial dependencies. If a circular program is ordered, it is always

possible to transform it into a strict, multiple traversal one. The scheduling

algorithm defines the interfaces of data-type X as follows:

Interface(X) = [(AX,m
, AX,m−1

), . . . , (AX,2
, AX,1

)]

This is the crucial step of Kastens’ algorithm and it is this that makes

the algorithm polynomial. Many partial orders comply with a IDS relation,

but Step 3 fixes a particular choice: the one that maximizes the interfaces.

Let us now prove that the Table program is an ordered circular program.

First, we define the sets AX,k
of disjoint partitions of variables for all data-

type symbols X of Table. We obtain

ATable,1
= {Table.lines,Table.mh,

Table.mw}
ATable,2

= {}
ARows,1

= {Rows.lines,Rows.mh}
ARows,2

= {Rows.aws}
ARows,3

= {Rows.mws}
ARows,4

= {}
ARow,1

= {Row.lines,Row.mh}
ARow,2

= {Row.aws}

ARow,3
= {Row.mws}

ARow,4
= {}

AElems,1
= {Elems.lines}

AElems,2
= {Elems.ah,Elems.aws}

AElems,3
= {Elems.mh,Elems.mws}

AElems,4
= {}

AElem,1
= {Elem.lines,Elem.mh,

Elem.mw}
AElem,2

= {}

Next, we compute the partial ordersDS(X) over the variables ofArguments(X)∪
Results(X). As a result we have

22



DS(Table) = {}
DS(Rows) = {Rows.aws→ Rows.lines,Rows.mws→ Rows.aws,

Rows.mws→ Rows.lines,Rows.aws→ Rows.mh}
DS(Row) = {Row.aws→ Row.lines,Row.mws→ Row.aws,

Row.mws→ Row.lines,Row.aws→ Row.mh}
DS(Elems) = {Elems.ah→ Elems.lines,Elems.aws→ Elems.lines,

Elems.mh→ Elems.ah,Elems.mh→ Elems.lines,

Elems.mws→ Elems.aws,Elems.mws→ Elems.lines

Elems.mh→ Elems.aws,Elems.mws→ Elems.ah}
DS(Elem) = {}

As we can easily notice, all the DS dependency relations are cycle free.

Furthermore, we can observe the graphs shown in Figure 2.4 to notice that

the dependency relations DP of the constructors are also cycle free. So, the

Table program is ordered. We have the following partitions for the data-types

symbols:

Interface(Table) = [({}, {Table.lines, Table.mh, Table.mw})]
Interface(Rows) = [({}, {Rows.mws}),

({Rows.aws}, {Rows.lines, Rows.mh})]
Interface(Row) = [({}, {Row.mws}),

({Row.aws}, {Row.lines, Row.mh})]
Interface(Elems) = [({}, {Elems.mh, Elems.mws}),

({Elems.ah, Elems.aws}, {Elems.lines})]
Interface(Elem) = [({}, {Elem.lines, Elem.mh, Elem.mw})]

It is worthwhile to note that the scheduling algorithm just broke up the

circular definitions of the Table circular program into two partitions (or

traversals). That is the case of evalRows ’ circular invocation, inside func-

tion evalTable: the algorithm schedules a two traversal strategy, where the

first traversal computes the minimum widths of the table rows mws and the

second traversal computes the table’s height mh and, using the mws infor-

mation (passed to the aws argument of the second traversal function), the

formatted table lines (lines).

23



2.3.4 The Visit-Sequence Paradigm

The result of the circular program scheduling algorithm is a set of interfaces,

that can be interpreted as a sequence of abstract computations that have to be

performed by a multiple traversal program. In the context of attribute gram-

mars, such abstract computations are usually called visit-sequences. They are

constructed according to the following idea: for every constructor C a fixed

sequence of abstract computations is associated. They abstractly describe

which computations have to be performed in every visit of the program to a

particular type of nodes in the tree. Such nodes are the instances of C.

Two kinds of abstract computations or instructions are used: eval (x)

that computes variable x and visit (X, v) that visits data-type X for the

vth time. In a visit-sequence program, the number of visits to a data-type

X is fixed: it corresponds to the number of elements in Interface(X). We

denote the number of visits of data-type X by v(X). Furthermore, each visit

v to X, with 1 6 v 6 v(X), has a fixed interface: the element in position v of

sequence Interface(X). This interface consists of a set of argument variables

that may be used during the visit v and another set of result variables that

are guaranteed to be computed by the visit v to X. We denote these two sets

by Argsv(X) and Resv(X), where

Argsv(X) = AX,2∗(v(X)−v+1)
, and Resv (X) = AX,2∗(v(X)−v)+1

.

The visit-sequence of a constructor is usually presented as a list of the

two basic instructions. Visit-sequences, however, are the input of our tech-

niques to derive purely functional programs. Thus, they are divided into

visit-sub-sequences vss(C, v), delimited by begin v and end v, containing

the instructions to be performed on visit v to the constructor C, where C

is a constructor of X, and 1 6 v 6 v(X). In order to simplify the presen-

tation, visit-sub-sequences are also annotated with define and usage variable

directives. Every visit-sub-sequence vss(C, v) is annotated with the inter-

face of visit v to X. Therefore vss(C, v) is annotated with arg(Argsv(X))

and res(Resv(Xi)).

24



Every instruction eval (x) is annotated with the directive uses(bs) that

specifies the list of variable occurrences used to evaluate x, i.e., the occur-

rences that x depends on. The instruction visit (Xi, v) causes child i of

constructor C, where C : X1 X2 . . . Xn → X0, to be visited for the vth

time. The visit uses the variable occurrences of Argsv(Xi) as arguments and

returns the variable occurrences of Resv(Xi). Thus visit (Xi, v) is anno-

tated with inp and out where inp is the list of the elements of Argsv(Xi)

and out is the list of elements of Resv(Xi).

Figure 2.5 presents the annotated visit-sub-sequences derived from the

Table circular program. The boxed variables correspond to values that are

defined in one visit-sub-sequence and used in a different one. An implemen-

tation of this visit-sequences has to have a special mechanism to handle such

occurrences: they induce values that have to be passed between different

traversals of the evaluator.

As we have discussed in Section 2.2, in the multiple traversal evaluator

of the table fomatter, the height, the width and the formatted lines of the

nested tables have to be passed from the first to the second traversal of its

outer one. This can be seen in the visit-sub-sequences of ConsElems : those

values are computed in the first sub-sequence and used in the second one.

2.3.5 Computing Strict Functions

In imperative programming the implementation of visit sequences is straight-

forward: values needed in later visits are stored in the nodes of the original

tree. Thus no problem arises when a later visit uses values computed in

previous ones. In a purely functional setting values cannot be stored in the

original tree. As a consequence, values needed in future traversals must be

explicitly passed around.

The rules to transform visit-sequences into pure strict functions are de-

scribed in (Saraiva 1999). Such strict functions mimics the imperative ap-

proach: values needed later are stored in a new tree, called a visit tree. Such

values have to be preserved from the traversal that creates them until the

25



plan RootTable
begin1 arg(),

visit (Rows, 1)
inp()
out(Rows.mws),

eval (Table.mw)
uses(Rows.mws),

eval (Rows.aws)
uses(Rows.mws),

visit (Rows, 2)
inp(Rows.aws)
out(Rows.lines, Rows.mh),

eval (Table.lines)
uses(Rows.mws, Rows.lines),

eval (Table.mh)
uses(Rows.mh),

end1 res(Table.lines, Table.mh, Table.mw)

plan OneRow
begin1 arg()
visit (Elems, 1)

inp()

out(Elems.mws, Elems.mh ),

eval (Row.mws)
uses(Elems.mws),

end1 res(Row.mws)
begin2 arg(Row.aws)
eval (Row.mh)

uses(Elems.mh),
eval (Elems.ah)

uses( Elems.mh ),

visit (Elems, 2)
inp(Elems.ah, Elems.aws)
out(Elems.lines),

eval (Elems.aws)
uses(Row.aws),

eval (Row.lines)
uses(Elems.lines),

end2 res(Row.mh, Row.lines)

plan OneStr
begin1 arg()
eval (Elem.mh)

uses()
eval (Elem.lines)

uses(str)
eval (Elem.mw)

uses(str)
end1 res(Elem.lines, Elem.mh, Elem.mw)

plan EmptyRows
begin1 arg()
eval (Rows.mws)

uses()
end1 res(Rows.mws)
begin2 arg(Rows.aws)
eval (Rows.mh)

uses()
eval (Rows.lines)

uses()
end2 res(Rows.mh, Rows.lines)

plan EmptyElems
begin1 arg(),

eval (Elems.mws)
uses(),

eval (Elems.mh)
uses(),

end1 res(Elems.mh, Elems.mws)
begin2 arg(Elems.ah, Elems.aws),

eval (Elems.lines)
uses(),

end2 res(Elems.lines)

plan OneTable
begin1 arg()
visit (Table, 1)

inp()
out(Table.lines, Table.mh, Table.mw),

eval (Elem.mh)
uses(Table.mh)

eval (Elem.mw)
uses(Table.mw)

eval (Elem.lines)
uses(Table.lines)

end1 res(Elem.lines, Elem.mh, Elem.mw)

plan ConsRows
begin1 arg()
visit (Rows2, 1)

inp()
out(Rows2.mws),

visit (Row, 1)
inp()
out(Row.mws),

eval (Rows1.mws)
uses(Row.mws, Rows2.mws),

end1 res(Rows1.mws)

begin2 arg(Rows1.aws)
eval (Row.aws)

uses(Rows1.aws),
visit (Row, 2)

inp(Row.aws)
out(Row.lines, Row.mh),

eval (Rows2.aws)
uses(Rows1.aws),

visit (Rows2, 2)
inp(Rows2.aws)
out(Rows2.lines, Rows2.mh),

eval (Rows1.mh)
uses(Row.mh, Rows2.mh)

eval (Rows1.lines)
uses(Rows1.aws, Row.lines, Rows2.lines)

end2 res(Rows1.lines, Rows1.mh)

plan ConsElems
begin1 arg()
visit (Elems2, 1)

inp()
out(Elems2.mh, Elems2.mws),

visit (Elem, 1)
inp()

out( Elem.lines , Elem.mh , Elems.mw ),

eval (Elems1.mh)
uses(Elem.mh, Elems2.mh),

eval (Elems1.mws)
uses(Elem.mw, Elems2.mws)

end1 res(Elems1.mh, Elems1.mws)
begin2 arg(Elems1.ah, Elems1.aws)
eval (Elems2.ah)

uses(Elems1.ah),
eval (Elems2.aws)

uses(Elems1.aws),
visit (Elems2, 2)

inp(Elems2.ah, Elems2.aws)
out(Elems2.lines),

eval (Elems1.lines)

uses(Elems1.aws, Elem.mw , Elem.mh ,

Elems1.ah, Elem.lines , Elems2.lines),

end2 res(Elems1.lines)

Figure 2.5: The visit-sub-sequences induced by the Table circular program.

last traversal that uses them. Thus, each traversal builds a new visit tree

containing in its nodes the values needed in future visits. The functions that

represent the subsequent traversal find the values they need either in their

arguments or in the tree nodes, exactly as in the imperative approach. A set

of visit tree types is defined, one per traversal. Subtrees that are not needed

in future traversals are discarded from the visit trees concerned. As result

any data no longer needed is indeed no longer referenced. Next, we present

26



Table the program that is obtained by applying such rules.

The type for the first visit of the strict program is the type of the original

tree. The tree type for the second traversal is:

data Rows2 = ConsRows2 (Row 2,Rows2)

| EmptyRows2

data Row 2 = OneRow 2 (Int ,Elems2)

data Elems2 = ConsElems2 ([String ], Int , Int ,Elems2)

| EmptyElems2

Note, for example, that type of ConsElems2 constructor includes now

references to the values that have to be passed from the first to its second

traversal: the formatted list of strings of the element (string or nested table),

its height and width. There is no reference to the Table or the Elem types

because they induce a single traversal subtree. Next, we show the strict,

multiple traversal program.

The sequence of abstract computations scheduled for the constructor

RootTable, shown in Figure 2.5, is mapped to function visitTable.

visitTable :: Table → ([String ], Int , Int)

visitTable (RootTable rows) = (lines ,mw ,mh)

where (rows2,mws) = visitRows1 rows

(lines1,mh1) = visitRows2 (rows2,mws)

mw = (sum mws) + (length mws) + 1

lines = sepLine (mw , lines1)

mh = mh1 + 2

Notice that all the function calls in visitTable are non-circular. Remem-

ber that this was not the case of evalRows ’ function call, inside function

evalTable, in the program presented in Section 2.2. In this sense, the calls

visitRows1 and visitRows2 are now both strict in their arguments. They are

defined as follows, according to the sequence of abstract computations sched-

uled for the constructors they traverse,i.e., for the constructors ConsRows

and EmptyRows .

27



visitRows1 (ConsRows (row , rows)) = (ConsRows2 (row 2, rows2),mws)

where (rows2,mws2) = visitRows1 rows

(row 2 ,mws1) = visitRow 1 row

mws = zipwithMax (mws1,mws2)

visitRows1 EmptyRows = (EmptyRows2, [ ])

visitRows2 (ConsRows2 (row , rows), aws) = (lines ,mh)

where (lines1,mh1) = visitRow 2 (row , aws)

(lines2,mh2) = visitRows2 (rows , aws)

lines = addSep (aws , lines1, lines2)

mh = mh1 +mh2 + 1

visitRows2 (EmptyRows2, aws) = ([ ],−1)

As for constructor OneRow , recall Figure 2.5 to notice the two visit-sub-

sequences scheduled over it. The first one is mapped to function visitRow 1

and the second one to function visitRow 2.

visitRow 1 (OneRow elems) = (OneRow 2 (mh1, elems2),mws1)

where (elems2,mws1,mh1) = visitElems1 elems

visitRow 2 (OneRow 2 (mh1, elems), aws) = (lines ,mh1)

where lines1 = visitElems2 (elems ,mh1, aws)

lines = addBorder lines1

Constructors ConsElems and EmptyElems also have been scheduled two

visit-sub-sequences, that we translate to the strict functions visitElems1 and

visitElems2. Notice that this scheduling breaks up evalElems ’ circular invo-

cation, inside function evalRow , into a two traversal strategy.

visitElems1 (ConsElems (elem, elems))

= (ConsElems2 (mh1,mw1, lines1, elems2),mh,mws)

where (lines1,mh1,mw1) = visitElem elem

(elems2,mh2,mws2) = visitElems1 elems

mh = max mh1 mh2

mws = mw1 :mws2

28



visitElems1 EmptyElems = (EmptyElems2, 0, [ ])

visitElems2 (ConsElems2 (lines1,mh1,mw1, elems), ah, aws) = lines

where aws2 = tail aws

lines2 = visitElems2 (elems , ah, aws2)

lines = glue (aws ,mw1, ah,mh1, lines1, lines2)

visitElems2 (EmptyElems2, ah, aws) = [ ]

A single traversal to constructors OneStr and OneTable is, as we have

seen and as computed by the scheduling algorithm, enough to compute a

single element’s formatted list of strings, height and width.

visitElem (OneStr str) = ([str ], 1, length str)

visitElem (OneTable table) = (lines1,mh1,mw1)

where (lines1,mh1,mw1) = visitTable table

Deforestation by Partial Evaluation

The strict program derived in the previous section relies on (possibly) large

number of gluing intermediate data structures to convey information between

different traversals. Such redundant structures can, however, be eliminated

by using partial evaluation techniques (Jones et al. 1993). Indeed, they

are static parameters (i.e., known at compile time) of the visit-functions.

Thus, we can specialize the functions with these arguments. As a result, we

obtain a complete data structure free program (Saraiva and Swierstra 1999).

Such programs consist of a set of partially parameterized functions, each

performing the computations scheduled for the traversal they represent. The

functions return, as one of their results, the function for the next traversal.

The main idea is that for each visit-sub-sequence we construct a function,

that besides computing the expected results, also returns the function that

defines the following traversal. Any state information (like values inducing

inter traversal dependencies) needed in future visits is passed on by partially

parameterizing a more general function.

Next, we show the strict, deforested Table program obtained by partial

29



evaluation of the strict one. Function visitTable is transformed into the

following higher-order function:

rootTable :: ([Int ]→ ([String ], Int), [Int ])→ ([String ], Int , Int)

rootTable rows = (lines ,mw ,mh)

where (rows2,mws) = rows

(lines1,mh1) = rows2 mws

mw = (sum mws) + (length mws) + 1

lines = sepLine (mw , lines1)

mh = mh1 + 2

Notice that the calls visitRows1 rows and visitRows2 (rows2,mws) in

the strict program have been replaced, respectively, by the calls rows and

rows2 mws in the above definition. This means that both rows and rows2

are now functions, instead of concrete values, as before (actually, rows is

a special function, since it has no arguments. However, it returns a pair,

whose first component, rows2, is itself a function). This also means that

the intermediate structure computed in the strict program, represented by

variable rows2, is no longer constructed: it has been deforested by partial

evaluation.

Next, functions consRows1, emptyRows1, consRows2 and emptyRows2 are

presented. Functions consRows1 and emptyRows1 specialize the definition of

function visitRows1 over the constructors ConsRows and EmptyRows , respec-

tively, while functions consRows2 and emptyRows2 specialize the definition

of visitRows2 over constructors ConsRows2 and EmptyRows2.

consRows1 (row , rows) = (consRows2 (row 2, rows2),mws)

where (rows2,mws2) = rows

(row 2,mws1) = row

mws = zipwith max (mws1,mws2)

emptyRows1 = (emptyRows2, [ ])

consRows2 (row , rows , aws) = (lines ,mh)

where (lines1,mh1) = row aws

30



(lines2,mh2) = rows aws

lines = addSep (aws , lines1, lines2)

mh = mh1 +mh2 + 1

emptyRows2 aws = ([ ],−1)

Next we present functions oneRow 1 and oneRow 2, obtained, by partial

evaluation, from the definitions of visitRow 1 and visitRow 2, respectively.

oneRow 1 elems = (oneRow 2 (mh1, elems2),mws1)

where (elems2,mws1,mh1) = elems

oneRow 2 (mh1, elems , aws) = (lines ,mh1)

where lines1 = elems (mh1, aws)

lines = addBorder lines1

Functions visitElems1 and visitElems2 of the strict Table program are

mapped into the following definitions.

consElems1 (elem, elems)

= (consElems2 (lines1,mh1,mw1, elems2),mh,mws)

where (lines1 ,mh1,mw1) = elem

(elems2,mh2,mws2) = elems

mh = max mh1 mh2

mws = mw1 :mws2

emptyElems1 = (emptyElems2, 0, [ ])

consElems2 ((lines1,mh1,mw1, elems2), ah, aws) = lines

where aws2 = tail aws

lines2 = elems2 (ah, aws2)

lines = glue (aws ,mw1, ah,mh1, lines1, lines2)

emptyElems2 (ah, aws) = [ ]

Functions oneStr and oneTable consist in a simple specialization of func-

tion visitElem, for constructors OneStr and OneTable, respectively.

oneStr str = ([str ], 1, length str)

31



oneTable table = (lines1,mh1,mw1)

where (lines1,mh1,mw1) = table

Although we have used a first-order circular program as the running ex-

ample, the techniques introduced by the higher-order extension to attribute

grammars (Swierstra and Vogt 1991) directly apply to the transformation of

higher-order circular functions, as well. Circular programs modelling algo-

rithms that rely on a large number of traversals tend to have functions with

a large number of arguments and results. Such programs, however, can be

easily expressed in Haskell as a first class attribute grammar (de Moor et al.

2000). Our techniques directly apply to such Haskell -definitions.

The transformation presented in this section constructs standard strict

multiple traversal programs. These programs can be now further transformed

using other well-known techniques. For example, we can use the Hylo sys-

tem (Onoue et al. 1997b) to refactor the derived strict program (which uses

explicit recursion) into an hylomorphism. That is to say that we can express

a circular program as an hylomorphism. In the next section we present the

use of program slicing techniques to slice circular programs.

2.4 Slicing Circular Programs

Although the programming language community has done a considerable

amount of work on program slicing (Horwits and Reps 1992; Tip 1994), there

is little work done on slicing of lazy functional languages. In this section,

we use use standard slicing techniques to perform static slicing of circular

lazy programs. Note that, the standard techniques for static slicing do not

directly handle circular definitions due to potential copy-back conflicts as

explicitly mentioned in (Horwits and Reps 1992).

The transformations presented in the previous sections break up the circu-

latities that occur in a circular program. They produce a sequence of abstract

computations, very suitable for further analysis and manipulation. Indeed,

in the abstract computation setting, it is easy to compute forward, backward

or chopping slices of the total program; only then the instructions selected

32



are mapped into a Haskell program. We will illustrate how we manipulate

abstract computations in order to achieve slicing of circular programs.

Suppose that, from the Table program, we are interested in computing

the table’s width only. This is equivalent to saying that we want to perform

bacward slicing of the Table program, using as criteria the variable mw . The

result of the backward slicing is the sub-program that includes the definitions

of the original one that contribute to compute the width of the table. All

other definitions are sliced-out.

We start by considering the top level constructor of that program, RootTable.

From the total visit sequence plan scheduled for such constructor (presented

in Figure 2.5), we select the following instructions:

plan RootTable

begin1 arg(),

visit (Rows, 1)

inp()

out(Rows.mws),

eval (Table.mw)

uses(Rows.mws),

end1 res(Table.mw)

The eval instruction is filtered in since we are precisely interested in com-

puting the result mw. However, that instruction states that, in order to com-

pute Table.mw (the result mw), we must use Rows.mws; this value then has

to be computed. The visit instruction is selected, since it produces exactly

that value. For this constructor, slicing stops here: the visit instruction

filtered in needs no extra arguments in order to compute Rows.mws.

Slicing proceeds by visiting data-type Rows in order to produce mws, as

scheduled by the previous visit instruction. Constructors ConsRows and

EmptyRows are then considered and the following instructions are selected,

using the strategy described before.

33



plan ConsRows

begin1 arg()

visit (Rows2, 1)

inp()

out(Rows2.mws),

visit (Row, 1)

inp()

out(Row.mws),

eval (Rows1.mws)

uses(Row.mws, Rows2.mws),

end1 res(Rows1.mws)

plan EmptyRows

begin1 arg()

eval (Rows.mws)

uses()

end1 res(Rows.mws)

Now, the instruction visit(Row, 1) tells us to traverse data-type Row,

in order to produce the result mws. We obtain the following visit sequence

plan for constructor OneRow.

plan OneRow

begin1 arg()

visit (Elems, 1)

inp()

out(Elems.mws),

eval (Row.mws)

uses(Elems.mws),

end1 res(Row.mws)

Notice that, in the original program, the instruction visit(Elems, 1)

also produced the result Elems.mh. However, such result has been sliced

out, since we are no longer interested in producing it.

The instruction visit(Elems, 1) induces visits to constructors ConsElems

and EmptyElems.

34



plan ConsElems

begin1 arg()

visit (Elems2, 1)

inp()

out(Elems2.mws),

visit (Elem, 1)

inp()

out( Elems.mw ),

eval (Elems1.mws)

uses(Elem.mw, Elems2.mws)

end1 res(Elems1.mws)

plan EmptyElems

begin1 arg(),

eval (Elems.mws)

uses(),

end1 res(Elems.mws)

Finally, in order to compute Elem.mw, the instruction visit(Elem, 1)

induces the following sequence of abstract computations, for constructors

OneStr and OneTable.

plan OneStr

begin1 arg()

eval (Elem.mw)

uses(str)

end1 res(Elem.mw)

plan OneTable

begin1 arg()

visit (Table, 1)

inp()

out(Table.mw),

eval (Elem.mw)

uses(Table.mw)

end1 res(Elem.mw)

Next, we present the result of a backward slicing of the circular table for-

matter. This program is obtained by directly mapping, for every constructor

of the program, the sequence of abstract computations presented into Haskell

valid definitions.

visitTable :: Table → Int

visitTable (RootTable rows) = mw

where mws1 = visitRows rows

mw = (sum mws1) + (length mws1) + 1

35



visitRows (ConsRows (row , rows)) = mws

where mws2 = visitRows rows

mws1 = visitRow row

mws = zipwith max mws1 mws2

visitRows EmptyRows = [ ]

visitRow (OneRow els) = mws

where mws = visitElems1 els

visitElems (ConsElems (el , els)) = mw1 :mws2

where mws2 = visitElems els

mw1 = visitElem el

visitElems EmptyElems = [ ]

visitElem (OneStr str) = length str

visitElem (OneTable table) = mw1

where mw1 = visitTable table

In this simple example, the resulting program performs a single tree

traversal. For more complicated programs, however, the result of a slice

may be a program that performs multiple tree traversals. In this case we

can generate one of the three implementations presented in the paper, that

is circular, strict or deforested programs. This is the case if we consider, in

our example, as the slicing criteria the result that computes the table (lines).

The resulting programs are very similar to the ones we have presented, with

the exception that the top function returns one result only: the formatted

table.

2.5 Class of Programs Considered

In the previous sections we have studied the Table language and processor in

great detail. It should be noticed that this running example is just a simple

two traversal program. Things get much more complicated if we consider

36



more practical examples. For example, Swierstra et al. (1999) presented an

optimal pretty printing algorithm that performs four traversals over the ab-

stract syntax tree describing the program to print. As a consequence, the

strict version of that program needs three gluing intermediate data struc-

tures to convey information between the different traversals. Moreover, the

scheduling of the four traversals is not trivial at all. Like in the Table ex-

ample, it has several subtrees that have to be traversed in different visits to

the parents. Indeed, we believe that would be extremely difficult to hand-

write such a program in a strict setting. In (Swierstra et al. 1999), however,

the authors have expressed the pretty printing as an attribute grammar and

derived its strict implementation.

Although we can derive strict implementations from circular definitions,

our techniques do not consider all possible well-formed circular programs.

By well-formed circular programs we mean the set of circular programs that

can be evaluated without inducing non-termination. It is well-known that

AG scheduling algorithm performs an approximation on the dependencies to

compute the evaluation order. As a consequence, there are programs that

are considered circular by the scheduling algorithm, although no circularity

really exists. Moreover, there are other circular programs that do rely on

dynamic scheduling (lazy evaluation) to compute the evaluation order. One

example of such circular programs is the breadth-first numbering algorithm

presented in (Okasaki 2000).

Nevertheless, most of algorithms needed in practical examples belong to

the class of ordered circular programs. Thus, they can be analyzed and trans-

formed by our techniques. The single example we found in the literature that

can not be (directly) considered is the breadth-first numbering. However, the

tricky example presented by Okasaki can be slightly modified and expressed

as an ordered circular program2.

2In fact, the definition of breadth-first numbering in a strict setting was proposed by
Okasaki as an exercise in one IFIP WG 2.8 meeting.

37



2.6 Conclusion

This Chapter presented techniques and tools to model and manipulate cir-

cular programs. These techniques transform circular programs into strict,

purely functional programs. Partial evaluation and slicing techniques are

used to improve the performance of the evaluators and to slice circular lazy

programs, respectively. The presented slicing techniques allow the program-

mer to extract different aspects of a circular program.

38



Chapter 3

Calculation of Circular

Programs

Circular programs are a powerful technique to express multiple traversal al-

gorithms as a single traversal function in a lazy setting. In this Chapter,

we present a shortcut deforestation technique to calculate circular programs.

The technique we propose takes as input the composition of two functions,

such that the first builds an intermediate structure and some additional con-

text information which are then processed by the second one, to produce the

final result. Our transformation into circular programs achieves intermediate

structure deforestation and multiple traversal elimination. Furthermore, the

calculated programs preserve the termination properties of the original ones.

3.1 Introduction

Circular programs, as reviewed in detail in Chapter 2, provide a very ap-

propriate formalism to model multiple traversal algorithms as elegant and

concise single traversal solutions. Using this style of programming, the pro-

grammer does not have to concern him/herself with the definition and the

schedulling of the different traversals and does not have to define interme-

diate gluing data structures. Later, circular programs can be transformed

into efficient implementations using the Attribute Grammar based techniques

39



presented before.

However, circular programs are also known to be difficult to write and to

understand. Besides, even for advanced functional programmers, it is easy

to define a real circular program, that is, a program that does not termi-

nate. Bird proposes to derive such programs from their correct and natural

strict solution. Bird’s approach is an elegant application of the fold-unfold

transformation method coupled with tupling and circular programming. His

approach, however, has a severe drawback since it preserves partial correct-

ness only. The derived circular programs are not guaranteed to terminate.

Furthermore, as an optimization technique, Bird’s method focuses on elimi-

nating multiple traversals over the same input data structure. Nevertheless,

one often encounters, instead of programs that traverse the same data struc-

ture twice, programs that consist in the composition of two functions, the

first of which traverses the input data and produces an intermediate struc-

ture, which is traversed by the second function, which produces the final

results.

Several attempts have successfully been made to combine such compo-

sitions of two functions into a single function, eliminating the use of the

intermediate structures (Wadler 1990; Onoue et al. 1997a; Gill et al. 1993;

Ohori and Sasano 2007). In those situations, circular programs have also

been advocated suitable for deforesting intermediate structures in composi-

tions of two functions with accumulating parameters (Voigtländer 2004).

On the other hand, when the second traversal requires additional infor-

mation, besides the intermediate structure computed in the first traversal,

in order to be able to produce its outcome, no such method produces sat-

isfactory results. In fact, as a side-effect of deforestation, they introduce

multiple traversals of the input structure. This is due to the fact that defor-

estation methods focus on eliminating the intermediate structure, without

taking into account the computation of the additional information necessary

for the second traversal.

Our motivation for the work presented in this Chapter is then to trans-

form programs of this kind into programs that construct no intermediate

data-structure and that traverse the input structure only once. That is to

40



say, we want to perform deforestation on those programs and, subsequently,

to eliminate the multiple traversals that deforestation introduces. These

goals are achieved by transforming the original programs into circular ones.

We allow the first traversal to produce a completely general intermediate

structure together with some additional context information. The second

traversal then uses such context information so that, consuming the inter-

mediate structure produced in the first traversal, it is able to compute the

desired results.

The method we propose is based on a variant of the well-known fold/build

rule (Gill et al. 1993; Launchbury and Sheard 1995). The standard fold/build

rule does not apply to the kind of programs we wish to calculate as they need

to convey context information computed in one traversal into the following

one. The new rule we introduce, called pfold/buildp, was designed to support

contextual information to be passed between the first and the second traver-

sals and also the use of completely general intermediate structures. Like

fold/build, our rule is also cheap and practical to implement in a compiler.

The pfold/buildp rule states that the composition of such two traversals

naturally induces a circular program. That is, we calculate circular programs

from programs that consist of function compositions of the form f ◦ g , where

g , the producer, builds an intermediate structure t and some additional infor-

mation i , and where f , the consumer, defined by structural recursion over t ,

traverses t and, using i , produces the desired results. The circular programs

we derive compute the same results as the two original functions composed

together, but they do this by performing a single traversal over the input

structure. Furthermore, and since that a single traversal is performed, the

intermediate structures lose their purpose. In fact, they are deforested by

our rule.

In this Chapter, we not only introduce a new calculation rule, but we

also present the formal proof that such rule is correct. We also present

formal evidence that this rule introduces no real circularity, i.e., that the

circular programs it derives preserve the same termination properties as the

original programs. Recall that Bird’s approach to circular program derivation

preserves partial correctness only: the circular programs it derives are not

41



guaranteed to terminate, even that the original programs do.

The relevance of the rule we introduce in this Chapter may also be ap-

preciated when observed in combination with other program transformation

techniques. With our rule, we derive circular programs which most pro-

grammers would find difficult to write directly. Those programs can then

be further transformed by applying manipulation techniques like, for exam-

ple, the one presented in Chapter 2. This technique attempts to eliminate

the performance overhead potentially introduced by circular definitions (the

evaluation of such definitions requires the execution of a complex lazy engine)

by transforming circular programs into programs that do not make essential

use of lazyness. Furthermore, the obtained strict multiple traversal programs

are later transformed into completely data-structure free programs. They do

not traverse, nor construct, any data structure.

The work presented in this Chapter also made possible to achieve fur-

ther optimizations, in calculational form (Voigtländer 2008). This particular

optimization proposed a new rule that trades the circular definitions in our

rule for higher-order ones. This has relevant connections with our work:

the rule we present proposes circular programs as a solution to eliminate

intermediate structures and multiple traversals in certain types of function

compositions; Voigtländer (2008)’s rule then replaces the circular definitions

obtained by higher-ordeness. This direction precisely follows the direction

we took in Chapter 2: circular programs were transformed into higher-order

ones, increasing its performance in a relevant factor.

This Chapter is organized as follows. In Section 3.2, we review Bird’s

method for deriving circular programs in the case of the repmin problem,

and we contrast it with the (informal) derivation of the circular solution for

the same problem following the method we propose. Like fold/build, our

technique will be characterized by certain program schemes, which will be

presented in Section 3.3 together with the algebraic laws necessary for the

proof of the new rule. In Section 3.4 we formulate and prove the pfold/buildp

rule; we also review the calculation of the circular program for the repmin

problem, now in terms of the rule. Section 3.5 illustrates the application of

our method to a realistic programming problem: the Algol 68 scope rules.

42



Section 3.6 concludes the Chapter.

3.2 Circular Programs

Circular programs were proposed by Bird (1984) as an elegant and efficient

technique to eliminate multiple traversals of data structures. As the name

suggests, circular programs are characterized by having what appears to be

a circular definition: arguments in a function call depend on results of that

same call.

Recall Bird’s repmin problem of transforming a binary leaf tree into a

second tree, identical in shape to the original one, but with all the leaf values

replaced by the minimum leaf value. In a strict and purely functional setting,

solving this problem would require a two traversal strategy: the first traversal

to compute the original tree’s minimum value, and the second traversal to

replace all the leaf values by the minimum value, therefore producing the

desired tree. This straightforward solution is as follows.

data LeafTree = Leaf Int

| Fork (LeafTree,LeafTree)

transform :: LeafTree → LeafTree

transform t = replace (t , tmin t)

tmin :: LeafTree → Int

tmin (Leaf n) = n

tmin (Fork (l , r)) = min (tmin l) (tmin r)

replace :: (LeafTree, Int)→ LeafTree

replace (Leaf ,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

However, a two traversal strategy is not essential to solve the repmin prob-

lem. An alternative solution can, on a single traversal, compute the minimum

value and, at the same time, replace all leaf values by that minimum value.

43



3.2.1 Bird’s method

Bird (1984) proposed a method for deriving single traversal programs from

straightforward solutions, using tupling, folding-unfolding and circular pro-

gramming. For example, using Bird’s method, the derivation of a single

traversal solution for repmin proceeds as follows.

Since functions replace and tmin traverse the same data structure (a

leaf tree) and given their common recursive pattern, we tuple them into

one function repmin, which computes the same results as the previous two

functions combined. Note that, in order to be able to apply such tupling

step, it is essential that the two functions traverse the same data structure.

repmin (t ,m) = (replace (t ,m), tmin t)

We may now synthesize a recursive definition for repmin using the stan-

dard application of the fold-unfold method. Two cases have to be considered:

repmin (Leaf n,m)

= (replace (Leaf n,m), tmin (Leaf n))

= (Leaf m, n)

repmin (Fork (l , r),m)

= (replace (Fork (l , r),m), tmin (Fork (l , r)))

= (Fork (replace (l ,m), replace (r ,m)),min (tmin l) (tmin r))

= (Fork (l ′, r ′),min n1 n2)

where (l ′, n1) = repmin (l ,m)

(r ′, n2) = repmin (r ,m)

Finally, circular programming is used to couple the two components of the

result value of repmin to each other. Consequently, we obtain the following

circular definition of transform.

transform :: LeafTree → LeafTree

transform t = nt

where (nt ,m) = repmin (t ,m)

A single traversal is obtained because the function applied to the argu-

ment t of transform, the repmin function, traverses t only once; this single

44



traversal solution is possible due to the circular call of repmin: m is both

an argument and a result of that call. This circularity ensures that the in-

formation on the minimum value is being used at the same time it is being

computed.

Although the circular definitions seem to induce both cycles and non-

termination of those programs, the fact is that using a lazy language, the

lazy evaluation machinery is able to determine, at runtime, the right order

to evaluate such circular definitions.

After the seminal paper by Bird, the style of circular programming be-

came widely known. However, the approach followed by Bird does not guar-

antee termination of the resulting lazy program. In fact, Bird (1984) discusses

this problem and presents an example of a non-terminating circular program

obtained using his transformational technique.

3.2.2 Our method

The calculational method that we propose in this paper is, in particular,

suitable for calculating a circular program that solves the repmin problem.

In this section, we calculate such a program.

Our calculational method is used to calculate circular programs from

programs that consist in the composition f ◦g of a producer g and a consumer

f , where g :: a → (b, z ) and f :: (b, z )→ c.

In order to be able to apply our method to repmin, we then need to

slightly change the straightforward solution presented earlier. In that solu-

tion, the consumer (function replace) fits the desired structure; however, no

explicit producer occurs, since the input tree is copied as an argument to

function replace.

We then define the following solution to repmin:

transform :: LeafTree → LeafTree

transform t = replace ◦ tmint $ t

tmint :: LeafTree → (LeafTree, Int)

tmint (Leaf n) = (Leaf n, n)

45



tmint (Fork (l , r)) = (Fork (l ′, r ′),min n1 n2)

where (l ′, n1) = tmint l

(r ′, n2) = tmint r

replace :: (LeafTree, Int)→ LeafTree

replace (Leaf ,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

A leaf tree (that is equal to the input one) is now the intermediate data

structure that acts with the purpose of gluing the two functions.

Although the original solution needs to be slightly modified, so that it is

possible to apply our method to repmin, we present such a modified version,

and the circular program we calculate from it, since repmin is very intuitive,

and, by far, the most well-known motivational example for circular program-

ming. In the remaining of this Chapter we will present a realistic example (in

Section 3.5) which shows that, in general, the gluing trees need to grow from

traversal to traversal. This fact forces the definition of new data-structures

in order to glue the different traversals together. Therefore, our rule directly

applies to such examples.

Now we want to obtain a new version of transform that avoids the gen-

eration of the intermediate tree produced in the composition of replace and

tmint . The method we propose proceeds in two steps.

First we observe that we can rewrite the original definition of transform

as follows:

transform t = replace (tmint t)

= replace (π1 (tmint t), π2 (tmint t))

= replace ′ ◦ π1 ◦ tmint $ t

where replace ′ x = replace (x ,m)

m = π2 (tmint t)

= π1 ◦ (replace ′ × id) ◦ tmint $ t

where replace ′ x = replace (x ,m)

m = π2 (tmint t)

where π1 and π2 are the projection functions and (f × g) (x , y) = (f x , g y).

46



Therefore, we can redefine transform as:

transform t = nt

where (nt , ) = repmin t

repmin t = (replace ′ × id) ◦ tmint $ t

replace ′ x = replace (x ,m)

m = π2 (tmint t)

We can now synthesize a recursive definition for repmin using, for example,

the fold-unfold method, obtaining:

transform t = nt

where (nt , ) = repmin t

m = π2 (tmint t)

repmin (Leaf n) = (Leaf m, n)

repmin (Fork (l , r)) = let (l ′, n1) = repmin l

(r ′, n2) = repmin r

in (Fork (l ′, r ′),min n1 n2)

In our method this synthesis will be obtained by the application of a particu-

lar short-cut fusion law. The resulting program avoids the generation of the

intermediate tree, but maintains the residual computation of the minimum

of the input tree, as that value is strictly necessary for computing the final

tree. Therefore, this step eliminated the intermediate tree but introduced

multiple traversals over t .

The second step of our method is then the elimination of the multiple

traversals. Similar to Bird, we will try to obtain a single traversal function

by introducing a circular definition. In order to do so, we first observe that

the computation of the minimum is the same in tmint and repmin, in other

words,

π2 ◦ tmint = π2 ◦ repmin (3.1)

This may seem a particular observation for this specific case but it is a

property that holds in general for all transformed programs of this kind. In

fact, later on we will see that tmint and repmin are both instances of a

same polymorphic function and actually this equality is a consequence of a

47



free theorem (Wadler 1989) about that function. Using this equality we may

substitute tmint by repmin in the new version of transform, finally obtaining:

transform t = nt

where (nt ,m) = repmin t

repmin (Leaf n) = (Leaf m, n)

repmin (Fork (l , r)) = let (l ′, n1) = repmin l

(r ′, n2) = repmin r

in (Fork (l ′, r ′),min n1 n2)

This new definition not only unifies the computation of the final tree

and the minimum in repmin, but it also introduces a circularity on m. The

introduction of the circularity is a direct consequence of this unification. As

expected, the resulting circular program traverses the input tree only once.

Furthermore, it does not construct the intermediate leaf-tree, which has been

eliminated during the transformation process.

The introduction of the circularity is safe in our context. Unlike Bird,

our introduction of the circularity is made in such a way that it is possible to

safely schedule the computations. For instance, in our example, the essential

property that makes this possible is the equality (3.1), which is a consequence

of the fact that both in tmint and repmin the computation of the minimum

does not depend on the computation of the corresponding tree. The fact that

this property is not specific of this particular example, but it is an instance

of a general one, is what makes it possible to generalize the application of

our method to a wide class of programs.

In this Section, we have shown an instance of our method for obtaining a

circular lazy program from an initial solution that makes no essential use of

lazyness. In the next Sections we formalize our method using a calculational

approach. Furthermore, we present the formal proof that guarantees its

correctness.

48



3.3 Program schemes

Our method will be applied to a class of expressions that will be characterized

in terms of program schemes. This will allow us to give a generic formulation

of the transformation rule in the sense that it will be parametric in the

structure of the intermediate data type involved in the function composition

to be transformed.

In this section we describe two program schemes which capture struc-

turally recursive functions and are relevant constructions in our transforma-

tion. Throughout we shall assume we are working in the context of a lazy

functional language with a cpo semantics, in which types are interpreted as

pointed cpos (complete partial orders with a least element ⊥) and functions

are interpreted as continuous functions between pointed cpos. However, our

semantics differs from that of Haskell in that we do not consider lifted cpos.

That is, unlike the semantics of Haskell, we do not consider lifted products

and function spaces. As usual, a function f is said to be strict if it preserves

the least element, i.e. f ⊥ = ⊥.

3.3.1 Data types

The structure of datatypes can be captured using the concept of a functor. A

functor consists of two components, both denoted by F : a type constructor

F , and a function F :: (a → b) → (F a → F b), which preserves identities

and compositions:

F id = id F (f ◦ g) = F f ◦ F g

A standard example of a functor is that formed by the list type constructor

and the well-known map function, which applies a function to the elements

of a list, building a new list with the results.

map :: (a → b)→ [a ]→ [b ]

map f [ ] = [ ]

map f (a : as) = f a : map f as

49



Another example of a functor is the product functor, which is a case of

a bifunctor, a functor on two arguments. On types its action is given by the

type constructor for pairs. On functions its action is defined by:

(×) :: (a → c)→ (b → d)→ (a, b)→ (c, d)

(f × g) (a, b) = (f a, g b)

Semantically, we assume that pairs are interpreted as the cartesian product

of the corresponding cpos. Associated with the product we can define the

following functions, corresponding to the projections and the split function:

π1 :: (a, b)→ a

π1 (a, b) = a

π2 :: (a, b)→ b

π2 (a, b) = b

(M) :: (c → a)→ (c → b)→ c → (a, b)

(f M g) c = (f c, g c)

Among others properties, it holds that

f ◦ π1 = π1 ◦ (f × g) (3.2)

g ◦ π2 = π2 ◦ (f × g) (3.3)

f = ((π1 ◦ f ) M (π2 ◦ f )) (3.4)

Another case of bifunctor is the sum functor, which corresponds to the dis-

joint union of types. Semantically, we assume that sums are interpreted as

the separated sum of the corresponding cpos.

data a + b = Left a | Right b

(+) :: (a → c)→ (b → d)→ (a + b)→ (c + d)

(f + g) (Left a) = Left (f a)

(f + g) (Right b) = Right (g b)

Associated with the sum we can define the case analysis function, which has

the property of being strict in its argument of type a + b:

50



(O) :: (a → c)→ (b → c)→ (a + b)→ c

(f O g) (Left a) = f a

(f O g) (Right b) = g b

Product and sum can be generalized to n components in the obvious way.

We consider declarations of datatypes of the form:1

data τ = C1 (τ1,1, · · · , τ1,k1) | · · · | Cn (τn,1, · · · , τn,kn)

where each τi,j is restricted to be a constant type (like Int or Char), a type

variable, a type constructor D applied to a type τ ′i,j or τ itself. Datatypes of

this form are usually called regular. The derivation of a functor that captures

the structure of the datatype essentially proceeds as follows: alternatives are

regarded as sums (| is replaced by +) and occurrences of τ are substituted

by a type variable a in every τi,j. In addition, the unit type () is placed in

the positions corresponding to constant constructors (like e.g. the empty list

constructor). As a result, we obtain the following type constructor F :

F a = (σ1,1, · · · , σ1,k1) + · · ·+ (σn,1, · · · , σn,kn)

where σi,j = τi,j[τ := a]2. The body of the corresponding mapping function

F ::(a → b)→ (F a → F b) is similar to that of F a, with the difference that

the occurrences of the type variable a are replaced by a function f :: a → b,

and identities are placed in the other positions:

Ff = g1,1 × · · · × g1,k1 + · · ·+ gn,1 × · · · × gn,kn

with

gi,j =


f if σi,j = a

id if σi,j = t, for some type t

D g′i,j if σi,j = D σ′i,j

1For simplicity we shall assume that constructors in a datatype declaration are declared
uncurried.

2By s[t := a] we denote the replacement of every occurrence of t by a in s.

51



where the D in the expression D g′i,j represents the map function D :: (a →
b)→ (D a → D b) corresponding to the type constructor D .

For example, for the type of leaf trees

data LeafTree = Leaf Int

| Fork (LeafTree,LeafTree)

we can derive a functor T given by

T a = Int + (a, a)

T :: (a → b)→ (T a → T b)

T f = id + f × f

The functor that captures the structure of the list datatype needs to reflect

the presence of the type parameter:

La b = () + (a, b)

La :: (b → c)→ (La b → La c)

La f = id + id × f

This functor reflects the fact that lists have two constructors: one is a con-

stant and the other is a binary operation.

Every recursive datatype is then understood as the least fixed point of the

functor F that captures its structure, i.e. as the least solution to the equation

τ ∼= Fτ . We will denote the type corresponding to the least solution as µF .

The isomorphism between µF and F µF is provided by the strict functions

inF :: F µF → µF and outF :: µF → F µF , each other inverse. Function

inF packs the constructors of the datatype while function outF packs its

destructors. Further details can be found in (Abramsky and Jung 1994;

Gibbons 2002).

For instance, in the case of leaf trees we have that µT = LeafTree and

inT :: T LeafTree → LeafTree

inT = Leaf O Fork

outT :: LeafTree → T LeafTree

outT (Leaf n) = Left n

52



outT (Fork (l , r)) = Right (l , r)

3.3.2 Fold

Fold (Bird and de Moor 1997; Gibbons 2002) is a pattern of recursion that

captures function definitions by structural recursion. The best known exam-

ple of fold is its definition for lists, which corresponds to the foldr operator

(Bird 1998).

Given a functor F and a function h :: F a → a, fold (or catamorphism),

denoted by fold h :: µF → a, is defined as the least function f that satisfies

the following equation:

f ◦ inF = h ◦ F f

Because outF is the inverse of inF , this is the same as:

fold :: (F a → a)→ µF → a

fold h = h ◦ F (fold h) ◦ outF

A function h :: F a → a is called an F-algebra.3 The functor F plays the

role of signature of the algebra, as it encodes the information about the

operations of the algebra. The type a is called the carrier of the algebra. An

F-homomorphism between two algebras h :: F a → a and k :: F b → b is a

function f :: a → b between the carriers that commutes with the operations.

This is specified by the condition f ◦ h = k ◦ F f . Notice that fold h is a

homomorphism between the algebras inF and h.

For example, for leaf trees fold is given by:

foldT :: (Int → a, (a, a)→ a)→ LeafTree → a

foldT (h1, h2) = fT

where fT (Leaf n) = h1 n

fT (Fork (l , r)) = h2 (fT l , fT r)

For instance,

tmin :: LeafTree → Int

3When showing specific instances of fold for concrete datatypes, we will write the
operations in an algebra h1O · · ·Ohn in a tuple (h1, . . . , hn).

53



tmin (Leaf n) = n

tmin (Fork (l , r)) = min (tmin l) (tmin r)

can be defined as:

tmin = foldT (id , uncurry min)

Fold enjoys many algebraic laws that are useful for program transformation.

A well-known example is shortcut fusion (Gill et al. 1993; Gill 1996; Takano

and Meijer 1995) (also known as the fold/build rule), which is an instance of

a free theorem (Wadler 1989).

Law 3.3.1 (fold/build rule) For h strict,

g :: ∀ a . (F a → a)→ c → a

⇒
fold h ◦ build g = g h

where

build :: (∀ a . (F a → a)→ c → a)→ c → µF

build g = g inF

The instance of this law for leaf trees is the following:

foldT (h1, h2) ◦ buildT g = g (h1, h2) (3.5)

where

buildT :: (∀ a . (Int → a, (a, a)→ a)→ c → a)→ c → LeafTree

buildT g = g (Leaf ,Fork)

The assumption about the strictness of the algebra disappears because every

algebra h1 O h2 is strict as so is every case analysis.

As an example, we can use this law to fuse:

tmm = tmin ◦mirror

mirror :: LeafTree → LeafTree

mirror (Leaf n) = Leaf n

54



mirror (Fork (l , r)) = Fork (mirror r ,mirror l)

To do so, first we have to express mirror in terms of buildT :

mirror = buildT g

where g (leaf , fork) (Leaf n) = leaf n

g (leaf , fork) (Fork (l , r)) = fork (g (leaf , fork) r ,

g (leaf , fork) l)

Finally, by (3.5) we have that

tmm = g (id , uncurry min)

Inlining,

tmm (Leaf n) = n

tmm (Fork (l , r)) = min (tmm r) (tmm l)

In the same line of reasoning, we can state another fusion law for a slightly

different producer function:

Law 3.3.2 (fold/buildp rule) For h strict,

g :: ∀ a . (F a → a)→ c → (a, z )

⇒

(fold h × id) ◦ buildp g = g h

where

buildp :: (∀ a . (F a → a)→ c → (a, z ))→ c → (µF, z )

buildp g = g inF

Proof From the polymorphic type of g we can deduce the following free

theorem: for f strict,

f ◦ φ = ψ ◦ F f ⇒ (f × id) ◦ g φ = g ψ

By taking f = fold h, φ = inF , ψ = h we obtain that (fold h × id)◦g inF =

g h. The equation on the left-hand side of the implication becomes true by

definition of fold. The requirement that f is strict is satisfied by the fact

55



that every fold with a strict algebra is strict, and by hypothesis h is strict.

Finally, by definition of buildp the desired result follows. 2

For example, the instance of this law for leaf trees is the following:

(foldT (h1, h2) × id) ◦ buildpT g = g (h1, h2) (3.6)

where

buildpT :: (∀ a . (Int → a, (a, a)→ a)→ c → (a, z ))→ c → (LeafTree, z )

buildpT g = g (Leaf ,Fork)

The assumption about the strictness of the algebra disappears by the same

reason as for (3.5).

To see an example of the application of this law, consider the function

ssqm:

ssqm :: LeafTree → (Int , Int)

ssqm = (sumt × id) ◦ gentsqmin

sumt :: LeafTree → Int

sumt (Leaf n) = n

sumt (Fork (l , r)) = sumt l + sumt r

gentsqmin :: LeafTree → (LeafTree, Int)

gentsqmin (Leaf n) = (Leaf (n ∗ n), n)

gentsqmin (Fork (l , r)) = let (l ′, n1) = gentsqmin l

(r ′, n2) = gentsqmin r

in (Fork (l ′, r ′),min n1 n2)

To apply Law (3.6) we have to express sumt as a fold and gentsqmin in terms

of buildpT :

sumt = foldT (id , uncurry (+))

gentsqmin = buildpT g

where g (leaf , fork) (Leaf n) = (leaf (n ∗ n), n)

g (leaf , fork) (Fork (l , r)) = let (l ′, n1) = g (leaf , fork) l

(r ′, n2) = g (leaf , fork) r

56



in (fork (l ′, r ′),min n1 n2)

Hence, by (3.6),

ssqm = g (id , uncurry (+))

Inlining,

ssqm (Leaf n) = (n ∗ n, n)

ssqm (Fork (l , r)) = let (s1, n1) = ssqm l

(s2, n2) = ssqm r

in (s1 + s2,min n1 n2)

Finally, the following property is an immediate consequence of Law 3.3.2.

Law 3.3.3 For any strict h,

g :: ∀ a . (F a → a)→ c → (a, z )

⇒

π2 ◦ g inF = π2 ◦ g h

Proof

π2 ◦ g inF

= { (3.3) }

π2 ◦ (fold h × id) ◦ g inF

= { Law 3.3.2 }

π2 ◦ g h 2

This property states that the construction of the second component of

the pair returned by g is independent of the particular algebra that g carries;

it only depends on the input value of type c. This is a consequence of the

polymorphic type of g and the fact that the second component of its result

is of a fixed type z .

57



3.3.3 Fold with parameters

Some recursive functions use context information in the form of constant

parameters for their computation. The aim of this section is to analyze the

definition of structurally recursive functions of the form f :: (µF, z ) → a,

where the type z represents the context information. Our interest in these

functions is because our method will assume that consumers are functions of

this kind.

Functions of this form can be defined in different ways. One alternative

consists of fixing the value of the parameter and performing recursion on the

other. Definitions of this kind can be given in terms of a fold:

f :: (µF, z )→ a

f (t , z ) = fold h t

such that the context information contained in z may eventually be used in

the algebra h. This is the case of, for example, function:

replace :: (LeafTree, Int)→ LeafTree

replace (Leaf n,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

which can be defined as:

replace (t ,m) = foldT (λn → Leaf m,Fork) t

Another alternative is the use of currying, which gives a function of type

µF → (z → a). The curried version can then be defined as a higher-order

fold. For instance, in the case of replace it holds that

curry replace = foldT (Leaf , λ(f , f ′)→ Fork ◦ ((f M f ′)))

This is an alternative we won’t pursue in this paper.

A third alternative is to define the function f :: (µF, z ) → a in terms

of a program scheme, called pfold (Pardo 2001, 2002), which, unlike fold, is

able to manipulate constant and recursive arguments simultaneously. The

definition of pfold relies on the concept of strength of a functor F , which is a

polymorphic function:

τF :: (F a, z )→ F (a, z )

58



that satisfies certain coherence axioms (see (Pardo 2002; Cockett and Spencer

1991; Cockett and Fukushima 1992) for details). The strength distributes the

value of type z to the variable positions (positions of type a) of the functor.

For instance, the strength corresponding to functor T is given by:

τT :: (T a, z )→ T (a, z )

τT (Left n, z ) = Left n

τT (Right (a, a ′), z ) = Right ((a, z ), (a ′, z ))

In the definition of pfold the strength of the underlying functor plays an

important role as it represents the distribution of the context information

contained in the constant parameters to the recursive calls.

Given a functor F and a function h :: (F a, z ) → a, pfold, denoted by

pfold h :: (µF, z ) → a, is defined as the least function f that satisfies the

following equation:

f ◦ (inF × id) = h ◦ (((F f ◦ τF ) M π2))

Observe that now function h also accepts the value of the parameters. It is

a function of the form (h1 O . . . O hn) ◦ d where each hi :: (Fi a, z ) → a if

F a = F1 a + · · · + Fn a, and d :: (x1 + · · · + xn , z ) → (x1, z ) + · · · + (xn , z )

is the distribution of product over sum. When showing specific instances of

pfold we will simply write the tuple of functions (h1, . . . , hn) instead of h.

For example, in the case of leaf trees the definition of pfold is as follows:

pfoldT :: ((Int , z )→ a, ((a, a), z )→ a)→ (LeafTree, z )→ a

pfoldT (h1, h2) = pT

where pT (Leaf n, z ) = h1 (n, z )

pT (Fork (l , r), z ) = h2 ((pT (l , z ), pT (r , z )), z )

We can then write replace in terms of a pfold:

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

The following equation shows one of the possible relationships between pfold

and fold.

pfold h (t , z ) = fold k t where ki x = hi (x , z ) (3.7)

Like fold, pfold satisfies a set of algebraic laws. We don’t show any of them

59



here as they are not necessary for this paper. The interested reader may

consult (Pardo 2001, 2002).

3.4 The pfold/buildp rule

In this section we present a generic formulation and proof of correctness of

the transformation rule we propose. The rule takes a composition of the

form cons ◦ prod , composed by a producer prod :: a → (t , z ) followed by a

consumer cons ::(t , z )→ b, and returns an equivalent deforested circular pro-

gram that performs a single traversal over the input value. The reduction of

this expression into an equivalent one without intermediate data structures is

performed in two steps. Firstly, we apply standard deforestation techniques

in order to eliminate the intermediate data structure of type t . The program

obtained is deforested, but in general contains multiple traversals over the

input as a consequence of residual computations of the other intermediate

values (e.g. the computation of the minimum in the case of repmin). There-

fore, as a second step, we perform the elimination of the multiple traversals

by the introduction of a circular definition.

The rule makes some natural assumptions about cons and prod : t is a

recursive data type µF , the consumer cons is defined by structural recursion

on t , and the intermediate value of type z is taken as a constant parameter by

cons . In addition, it is required that prod is a “good producer”, in the sense

that it is possible to express it as the instance of a polymorphic function

by abstracting out the constructors of the type t from the body of prod .

In other words, prod should be expressed in terms of the buildp function

corresponding to the type t . The fact that the consumer cons is assumed to

be structurally recursive leads us to consider that it is given by a pfold. In

summary, the rule is applied to compositions of the form: pfold h ◦ buildp g .

Law 3.4.1 (pfold/buildp rule) For any h = (h1 O . . . O hn) ◦ d,

60



g :: ∀ a . (F a → a)→ c → (a, z )

⇒
pfold h ◦ buildp g $ c

= v

where (v , z ) = g k c

k = k1 O . . . O kn

ki x = hi (x , z )

Proof The proof will show in detail the two steps of our method. The first

step corresponds to the application of deforestation, which is represented by

Law 3.3.2. For that reason we need first to express the pfold as a fold.

pfold h ◦ buildp g $ c

= { definition of buildp }

pfold h ◦ g inF $ c

= { (3.4) }

pfold h ◦ (((π1 ◦ g inF ) M (π2 ◦ g inF ))) $ c

= { (3.7) }

fold k ◦ π1 ◦ g inF $ c

where z = π2 ◦ g inF $ c

ki x = hi (x , z )

= { (3.2) }

π1 ◦ (fold k × id) ◦ g inF $ c

where z = π2 ◦ g inF $ c

ki x = hi (x , z )

= { Law 3.3.2 }

π1 ◦ g k $ c

where z = π2 ◦ g inF $ c

ki x = hi (x , z )

Law 3.3.2 was applicable because by construction the algebra k is strict.

61



Once we have reached this point we observe that the resulting program is

deforested, but it contains two traversals on c. The elimination of the mul-

tiple traversals is then performed by introducing a circular definition. The

essential property that makes it possible the safe introduction of a circularity

is Law 3.3.3, which states that the computation of the second component of

type z is independent of the particular algebra that is passed to g . This is a

consequence of the polymorphic type of g . Therefore, we can replace inF by

another algebra and we will continue producing the same value z . In partic-

ular, we can take k as this other algebra, and in that way we are introducing

the circularity. It is this property that ensures that no terminating program

is turned into a nonterminating one.

π1 ◦ g k $ c

where z = π2 ◦ g inF $ c

ki x = hi (x , z )

= { Law 3.3.3 }

π1 ◦ g k $ c

where z = π2 ◦ g k $ c

ki x = hi (x , z )

= { (3.4) }

v

where (v , z ) = g k c

ki x = hi (x , z ) 2

Now, let us see the application of the pfold/buildp rule in the case of the

repmin problem. Recall the definition we want to transform:

transform :: LeafTree → LeafTree

transform t = replace ◦ tmint $ t

To apply the rule, first we have to express replace and tmint in terms of pfold

and buildp for leaf trees, respectively:

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

62



tmint = buildpT g

where g (leaf , fork) (Leaf n) = (leaf n, n)

g (leaf , fork) (Fork (l , r)) = let (l ′, n1) = g (leaf , fork) l

(r ′, n2) = g (leaf , fork) r

in (fork (l ′, r ′),min n1 n2)

Therefore, by applying Law 3.4.1 we get:

transform t = nt

where (nt ,m) = g (k1, k2) t

k1 = Leaf m

k2 (l , r) = Fork (l , r)

Inlining, we obtain the definition we showed previously in Section 3.2.2:

transform t = nt

where

(nt ,m) = repmin t

repmin (Leaf n) = (Leaf m, n)

repmin (Fork (l , r)) = let (l ′, n1) = repmin l

(r ′, n2) = repmin r

in (Fork (l ′, r ′),min n1 n2)

3.5 Algol 68 scope rules

In this section, we consider the application of our rule to a real example: the

Algol 68 scope rules (Saraiva 1999; de Moor et al. 2000). These rules are

used, for example, in the Eli system 4 (Waite et al. 2007) to define a generic

component for the name analysis task of a compiler.

We wish to construct a program to deal with the scope rules of a block

structured language, the Algol 68. In this language a definition of an identifier

x is visible in the smallest enclosing block, with the exception of local blocks

that also contain a definition of x . In the latter case, the definition of x in

4A well known compiler generator toolbox.

63



the local scope hides the definition in the global one. In a block an identifier

may be declared at most once. We shall analyze these scope rules via our

favorite (toy) language: the Block language, which consists of programs of

the following form:

[use y ;decl x ;

[decl y ;use y ;use w ; ]

decl x ;decl y ; ]

We define the following Haskell data-type to represent Block programs.

type Prog = [It ] data It = Use Var

| Decl Var

type Var = String | Block Prog

Such programs describe the basic block-structure found in many lan-

guages, with the peculiarity however that declarations of identifiers may also

occur after their first use (but in the same level or in an outer one). Accord-

ing to these rules the above program contains two errors: at the outer level,

the variable x has been declared twice and the use of the variable w , at the

inner level, has no binding occurrence at all.

We aim to develop a program that analyses Block programs and com-

putes a list containing the identifiers which do not obey to the rules of the

language. In order to make the problem more interesting, and also to make

it easier to detect which identifiers are being incorrectly used in a Block

program, we require that the list of invalid identifiers follows the sequential

structure of the input program. Thus, the semantic meaning of processing

the example sentence is [w , x ].

Because we allow an use-before-declare discipline, a conventional imple-

mentation of the required analysis naturally leads to a program which tra-

verses the abstract syntax tree twice: once for accumulating the declarations

of identifiers and constructing the environment, and once for checking the

uses of identifiers, according to the computed environment. The uniqueness

of names is detected in the first traversal: for each newly encountered decla-

ration it is checked whether that identifier has already been declared at the

64



current level. In this case an error message is computed. Of course the iden-

tifier might have been declared at a global level. Thus we need to distinguish

between identifiers declared at different levels. We use the level of a block to

achieve this. The environment is a partial function mapping an identifier to

its level of declaration. In Haskell we represent the environment as follows.

type Env = [(Var , Int)]

Semantic errors resulting from duplicate definitions are then computed

during the first traversal of a block and errors resulting from missing dec-

larations in the second one. In a straightforward implementation of this

program, this strategy has two important effects: the first is that a “glu-

ing” data structure has to be defined and constructed to pass explicitly the

detected errors from the first to the second traversal, in order to compute

the final list of errors in the desired order; the second is that, in order to

be able to compute the missing declarations of a block, the implementation

has to explicitly pass (using, again, an intermediate structure), from the first

traversal of a block to its second traversal, the names of the variables that

are used in it.

Observe also that the environment computed for a block and used for

processing the use-occurrences is the global environment for its nested blocks.

Thus, only during the second traversal of a block (i.e., after collecting all its

declarations) the program actually begins the traversals of its nested blocks;

as a consequence the computations related to first and second traversals

are intermingled. Furthermore, the information on its nested blocks (the

instructions they define and the blocks’ level) has to be explicitly passed

from the first to the second traversal of a block. This is also achieved by

defining and constructing an intermediate data structure. In order to pass

the necessary information from the first to the second traversal of a block,

we define the following intermediate data structure:

type Prog2 = [It2 ] data It2 = Block 2 (Int , P rog)

| Dupl2 Var

| Use2 Var

Errors resulting from duplicate declarations, computed in the first traver-

65



sal, are passed to the second, using constructor Dupl2. The level of a nested

block, as well as the instructions it defines, are passed to the second traver-

sal using constructor Block 2’s pair containing an integer and a sequence of

instructions.

According to the strategy defined earlier, computing the semantic errors

that occur in a block sentence would resume to:

semantics :: Prog → [Var ]

semantics = missing ◦ (duplicate 0 [ ])

The function duplicate detects duplicate variable declarations by collecting

all the declarations occurring in a block. It is defined as follows:

duplicate :: Int → Env → Prog → (Prog2,Env)

duplicate lev ds [ ] = ([ ], ds)

duplicate lev ds ((Use var) : its)

= let (its2, ds
′) = duplicate lev ds its

in ((Use2 var) : its2, ds
′)

duplicate lev ds ((Decl var) : its)

= let (its2, ds
′) = duplicate lev ((var , lev) : ds) its

in if ((var , lev) ∈ ds) then ((Dupl2 var) : its2, ds
′)

else (its2, ds
′)

duplicate lev ds ((Block nested) : its)

= let (its2, ds
′) = duplicate lev ds its

in ((Block 2 (lev + 1, nested)) : its2, ds
′)

Besides detecting the invalid declarations, the duplicate function also com-

putes a data structure, of type Prog2, that is later traversed in order to detect

variables that are used without being declared. This detection is performed

by function missing , that is defined such as:

missing :: (Prog2,Env)→ [Var ]

missing ([ ], ) = [ ]

missing ((Use2 var) : its2, env)

66



= let errs = missing (its2, env)

in if (var ∈ (map π1 env)) then errs

else var : errs

missing ((Dupl2 var) : its2, env)

= var : missing (its2, env)

missing ((Block 2 (lev , its)) : its2, env)

= let errs1 = missing ◦ (duplicate lev env) $ its

errs2 = missing (its2, env)

in errs1 ++ errs2

The semantics program constructs an intermediate structure, of type

Prog2, that we would like to eliminate with fusion. In order to apply our

rule, we first have to express the functions missing and duplicate in terms

of pfold and buildp for Prog2, respectively. The functor that captures the

structure of Prog2 lists is:

L b = () + (It2, b)

L :: (b → c)→ (L b → L c)

L f = id + id × f

Pfold and buildp for Prog2 lists are defined as follows.

pfoldL :: (z → b, It2 → b → z → b)→ (Prog2, z )→ b

pfoldL (hnil , hcons) = pL

where pL ([ ], z ) = hnil z

pL (h : t , z ) = hcons h (pL (t , z )) z

buildpL :: (∀ a . ([a ], a → [a ]→ [a ])→ c → ([a ], z ))→ c → (Prog2, z )

buildpL g = g ([ ], (:))

We may now write missing and duplicate in terms of them; function missing

is defined, in terms of pfoldL, as:

missing = pfoldL (hnil , hcons)

where hnil z = [ ]

67



hcons (Use2 var) errs env

= if (var ∈ (map π1 env))

then errs

else var : errs

hcons (Dupl2 var) errs env = var : errs

hcons (Block 2 (lev , its)) errs env

= let errs ′ = missing ◦ (duplicate lev env) $ its

in errs ′ ++ errs

and function duplicate is defined, in terms of buildpL, as:

duplicate lev ds = buildpL (g lev ds)

where g lev ds (nil , cons) [ ] = (nil , ds)

g lev ds (nil , cons) ((Use var) : its)

= let (its2, ds
′) = g lev ds (nil , cons) its

in (cons (Use2 var) its2, ds
′)

g lev ds (nil , cons) ((Decl var) : its)

= let (its2, ds
′) = g lev ((var , lev) : ds) (nil , cons) its

in if ((var , lev) ∈ ds)

then (cons (Dupl2 var) its2, ds
′)

else (its2, ds
′)

g lev ds (nil , cons) ((Block nested) : its)

= let (its2, ds
′) = g lev ds (nil , cons) its

in (cons (Block 2 (lev + 1, nested)) its2, ds
′)

Recall the definition we want to transform:

semantics :: Prog → [Var ]

semantics = missing ◦ (duplicate (0, [ ]))

and notice that we have just given this composition an explicit pfold ◦ buildp

form. By application of Law 3.4.1 to the above definition, we obtain the

program:

68



semantics its = errs

where (errs , env) = g 0 [ ] (knil , kcons) its

knil = hnil env

kcons x y = hcons x y env

Inlining the above definition, we obtain:

semantics its = errs

where (errs , env) = gk 0 [ ] its

gk lev ds [ ] = ([ ], ds)

gk lev ds ((Use var) : its)

= let (errs , ds ′) = gk lev ds its

in (if (var ∈ (map π1 env)) then errs

else var : errs , ds ′)

gk lev ds ((Decl var) : its)

= let (errs , ds ′) = gk lev ((var , lev) : ds) its

in if ((var , lev) ∈ ds) then (var : errs , ds ′)

else (errs , ds ′)

gk lev ds ((Block nested) : its)

= let (errs , ds ′) = gk lev ds its

in (let errs ′ = missing ◦ (duplicate (lev + 1) env) $ nested

in errs ′ ++ errs , ds ′)

We may notice that the above program is a circular one: the environment

of a Block program (variable env) is being computed at the same time it is

being used. The introduction of such circularity made it possible to eliminate

some intermediate structures that occurred in the program we started with:

the intermediate list of instructions that was computed in order to glue the

two traversals of the outermost level of a Block sentence has been eliminated

by application of Law 3.4.1. We may also notice, however, that, for nested

blocks, in the definition

gk lev ds ((Block nested) : its)

69



= let (errs , ds ′) = gk lev ds its

in (let errs ′ = missing ◦ (duplicate (lev + 1) env) $ nested

in errs ′ ++ errs , ds ′)

an intermediate structure is still being used in order to glue functions

missing and duplicate together. This intermediate structure can easily be

eliminated: we have already expressed function missing in terms of pfold,

and function duplicate in terms of buildp. Therefore, by direct application

of Law 3.4.1 to the above function composition, we obtain:

gk lev ds ((Block nested) : its)

= let (errs , ds ′) = gk lev ds its

in (let (errs ′, env ′) = g (lev + 1) env (knil , kcons) nested

where knil = hnil env ′

kcons x y = hcons x y env ′

in errs ′ ++ errs , ds ′)

Again, we could inline the definition of function g into a new function,

for example, into function gk ′. However, the definition of gk ′ would exactly

match the definition of gk , except for the fact that where gk searched for

variable declarations in the environment env , gk ′ needs to search for them in

the environment env ′.

In order to use the same function for both gk and gk ′, we choose to add

an extra argument to function gk . Such argument will make possible to

use circular definitions to pass the appropriate environment variable to the

appropriate block of instructions (the top level block or the nested ones).

It should be clear that, in general, this extra effort is not required: it was

necessary, in this particular example, due to the facts that it is possible to

calculate two circular definitions from the straightforward solution and that

both circular functions share almost the exact same definition. In all other

cases, inlining the calculated circular program is enough to derive an elegant

and efficient lazy program from a function composition between a pfold and

a buildp.

We finally obtain the program:

70



semantics its = errs

where (errs , env) = gk 0 [ ] env its

gk lev ds env [ ] = ([ ], ds)

gk lev ds env ((Use var) : its)

= let (errs , ds ′) = gk lev ds env its

in (if (var ∈ (map π1 env))

then errs

else var : errs , ds ′)

gk lev ds env ((Decl var) : its)

= let (errs , ds ′) = gk lev ((var , lev) : ds) env its

in if ((var , lev) ∈ ds)

then (var : errs , ds ′)

else (errs , ds ′)

gk lev ds env ((Block nested) : its)

= let (errs , ds ′) = gk lev ds env its

in (let (errs ′, env ′) = gk (lev + 1) env env ′ nested

in errs ′ ++ errs , ds ′)

Regarding the above program, we may notice that it is a circular one.

Indeed, two circularities occur in its definition:

...

(errs , env) = gk 0 [ ] env its

...

(errs ′, env ′) = gk (lev + 1) env env ′ nested

...

The introduction of these circularities, by application of our fusion Law,

completely eliminated the intermediate lists of It2 instructions that were

used in the straightforward solution we started with. Furthermore, such

circularities made it possible to compute the list of semantic errors that

occur in a Block program by traversing it only once.

71



3.6 Conclusions

In this Chapter we have presented a new program transformation technique

for intermediate structure elimination. The programs we are able of dealing

with consist in the composition of a producer and a consumer functions.

The producer constructs an intermediate structure that is later traversed by

the consumer. Furthermore, we allow the producer to compute additional

values that may be needed by the consumer. This kind of compositions

is general enough to deal with a wide number of practical examples. Our

approach is calculational, and proceeds in two steps: we apply standard

deforestation methods to obtain intermediate structure-free programs and we

introduce circular definitions to avoid multiple traversals that are introduced

by deforestation. Since that, in the first step, we apply standard fusion

techniques, the expressive power of our rule is then bound by deforestation.

We introduce a new calculational rule conceived using a similar approach

to the one used in the fold/build rule: our rule is also based on parametricity

properties of the functions involved. Therefore, it has the same benefits

and drawbacks of fold/build since it assumes that the functions involved

are instances of specific program schemes. Therefore, it could be used, like

fold/build, in the context of a compiler. In fact, we have used the rewrite

rules (RULES pragma) of the Glasgow Haskell Compiler (GHC) in order to

obtain a prototype implementation of our fusion rule.

According to Danielsson et al. (2006), the calculation rule we present

in this Chapter is morally correct only, in Haskell. In fact, in the formal

proof of our rule, surjective pairing (Law (3.4)) is applied twice to the result

of function g . However, (3.4) is not valid in Haskell: though it holds for

defined values, it fails when the result of function g is undefined, because ⊥
is different from (⊥,⊥) as a consequence of lifted products. Therefore, (3.4) is

morally correct only and, in the same sense, so is our rule. We may, however,

argue that, for all cases with practical interest (the ones for which function g

produces defined results), our rule directly applies in Haskell. Furthermore,

due to the presence of seq in Haskell, further strictness pre-conditions may

need to be defined in our rule in order to guarantee its correctness in Haskell

72



(Johann and Voigtländer 2004).

The rule that we propose is easy to apply: in this paper, we have pre-

sented a real example that shows that our rule is effective in its aim. Other

examples may be found in (Fernandes et al. 2007). The calculation of circular

programs may be understood as an intermediate stage: the circular programs

we calculate may be further transformed into very efficient, completely data

structure free programs.

73



Chapter 4

Calculation of Monadic

Circular Programs

Functional programs often combine separate parts using intermediate data

structures for communicating results. Such programs are easier to under-

stand and maintain, but suffer from inefficiencies due to the generation of

those data structures. Indeed, in order to eliminate them, several program

transformation techniques have been proposed. One such technique is short-

cut fusion, and has been studied in the context of both pure and monadic

functional programs.

In the previous Chapter, we have extended shortcut fusion: in addition to

intermediate structures, the program parts may now communicate context

information, and still it is possible to eliminate the intermediate structures.

This is achieved by transforming the original function composition into a cir-

cular program. This new technique, however, has been studied in the context

of purely functional programs only. In this Chapter, we propose an exten-

sion to this new form of fusion, but in the context of monadic programming.

Our extension is provided in terms of generic calculation rules, that can be

uniformly defined for a wide class of data types and monads.

74



4.1 Introduction

Functional programs often combine separate parts of the program using inter-

mediate structures for communicating results. In general, we have programs

such as prog = cons ◦ prod , where prod is called the producer function and

cons is called the consumer function. Programs so defined are modular and

have many benefits, such as clarity and maintainability, but suffer from innef-

ficiencies caused by the generation of the intermediate data structures that

glue functions cons and prod together.

In response to this problematic, some program transformation techniques

have been studied aiming at the elimination of intermediate data structures.

One of these techniques, that we have reviewed in detail in Section 3.3, is

known as shortcut fusion, or shortcut deforestation (Gill et al. 1993). This

technique eliminates the generation of the intermediate structure, of type

b, when prod :: a → b, cons :: b → c and prog = cons ◦ prod . Shortcut

deforestation has recently been studied and applied also in the context of

monadic functional programs (Ghani and Johann 2008; Manzino and Pardo

2008).

In Chapter 3, we have proposed circular programs as an extension to

standard shortcut fusion: in order to achieve intermediate structure defor-

estation in programs such as prog = cons ◦prod , where prod ::a → (b, z ) and

cons ::(b, z )→ c, we transform prog into a circular program. This means that

the producer function may generate, besides the intermediate structure b, an

additional value, of type z , that the consumer function may need to compute

its result. Later, a calculation rule is applied to prog , which is transformed

into an equivalent circular program that does not construct any intermediate

structure and that traverses the input data (of type a) only once. The rule

applied to prog is generic in the sense that it can be applied to a wide range

of programs and datatypes. However, it does not handle monadic functional

programs, that is, programs that, for example, rely on a global state or per-

form I/O operations. Thus, the rule has a limited applicability scope since

several functions, like compilers, pretty-printers or parsers do rely on global

effects.

75



Our motivation for the work presented in this Chapter is to extend short-

cut fusion to this kind of programs in the context of monadic programming.

The goal is to achieve fusion of monadic programs, maintaining the global

effects. We study two cases: the case where the producer function is monadic

and the consumer is given by a pure function, and the case where both func-

tions are monadic.

Our extension is provided in terms of calculational rules. An important

feature of our rules is that they are generic, in the sense that they can be

given by a uniform, single definition that can be instantiated to a wide class

of algebraic data types and monads. Throughout we will use Haskell nota-

tion, assuming a cpo semantics (in terms of pointed cpos), but without the

presence of the seq function (Johann and Voigtländer 2004).

This Chapter is organized as follows. Sections 4.2 and 4.3 present two

motivating examples that serve to illustrate the applicability of our technique.

The generic constructions that give rise to the specific program schemes and

laws presented in those examples are developed in Section 4.4. Finally, in

Section 4.5 we draw some conclusions and describes directions for future

work.

4.2 Bit String Transformation

To illustrate our technique we first consider an example based on a simple

bit string conversion that has applications in criptography (Harald Baier and

Margraf 2007). Suppose we want to transform a sequence of bits into a new

one, of the same length, by applying the exclusive or between each bit and

the binary sum (sum modulo 2) of the sequence. We will consider that the

input sequence is given as a string of bits, which will be parsed into a list

and then transformed. It is in the parsing phase that computational effects

will come into play, as we will use a monadic parser.

Suppose we are given the string "101110110001". To transform this

string of bits, we start by parsing it, computing as result a list of bits

[1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1], and its binary sum (1 in this case). Having the

list and the binary sum, the original sequence is transformed into this one

76



[0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0] after applying the exclusive or of each bit with 1

(the binary sum).

To construct the parser, we adopt a usual definition of parser monad (see

(Hutton and Meijer 1998) for more details):

newtype Parser a = P (String → [(a, String)])

instance Monad Parser where

return a = P (λcs → [(a, cs)])

p >>= f = P (λcs → concat [parse (f a) cs ′ | (a, cs ′)← parse p cs ])

parse :: Parser a → String → [(a, String)]

parse (P p) = p

(< | >) :: Parser a → Parser a → Parser a

(P p) < | > (P q) = P (λcs → case p cs ++ q cs of [ ] → [ ]

(x : xs)→ [x ])

pzero :: Parser a

pzero = P (λcs → [ ])

item :: Parser Char

item = P (λcs → case cs of [ ] → [ ]

(c : cs)→ [(c, cs)])

Alternatives are represented by a deterministic choice operator (< | >),

which returns at most one result. The parser pzero is a parser that always

fails. The item parser returns the first character in the input string.

We can use these simple parser combinators to define parsers for bits and

bit strings. The binary sum is calculated as the exclusive or of the bits of

the parsed sequence. We write ⊕ to denote exclusive or over the type Bit .

data Bit = Z | O

bit :: Parser Bit

bit = do {c ← item;

case c of ’0’→ return Z

’1’→ return O

77



→ pzero}

bitstring :: Parser ([Bit ],Bit)

bitstring = do b ← bit

(bs , s)← bitstring

return (b : bs , exor b s)}
< | > return ([ ],Z )

Now, we implement the transformation function:

transform :: ([Bit ],Bit)→ [Bit ]

transform ([ ], ) = [ ]

transform (b : bs , s) = (exor b s) : transform (bs , s)

In summary, the transformation consists of:

shift :: Parser [Bit ]

shift = do (bs , s)← bitstring

return (transform (bs , s))

We may notice that the above solution constructs an intermediate list of

bits that we would like to eliminate with fusion. The fusion law to be used is a

law in the style of shortcut fusion, similar to that conceived, in Chapter 3, for

the derivation of purely functional circular programs, but with the difference

that now it deals with monadic functions. Below, we present the specific

instance for lists (which is the type of the intermediate structure), and in

Section 4.4 we show that both the law and the programs schemes respond to

generic definitions that can be formulated for several datatypes.

Like in standard shortcut fusion (Gill et al. 1993), our law assumes that

the producer and the consumer (bitstring and transform in this case) are

expressed in terms of certain program schemes. In standard shortcut fusion

the consumer is required to be given by a structural recursive definition in

terms of a recursion scheme called fold (usually called foldr in the case of

lists (Bird 1998)). In our law, we also require the consumer to be given by

a structural recursive definition, but in terms of a variation of fold, called

pfold, which admits as input an additional constant parameter to be used

78



along the recursive calls:

pfoldL :: (z → b, a → b → z → b)→ ([a ], z )→ b

pfoldL (hnil , hcons) = pL

where pL ([ ], z ) = hnil z

pL (a : as , z ) = hcons a (pL (as , z )) z

Like in standard shortcut fusion, we require the producer to be able to

show that the list constructors can be abstracted from the process that gen-

erates the intermediate list. The difference with the standard case is that

we consider producers that generate the intermediate list as part of a pair

which in turn is the result of monadic computation. This is expressed by a

function called mbuildpL:

mbuildpL :: Monad m ⇒ (∀ b . (b, a → b → b)→ m (b, z ))→ m ([a ], z )

mbuildpL g = g ([ ], (:))

Having stated the forms required to the producer and the consumer it is

now possible to formulate the law.

Law 4.2.1 (pfold/mbuildp for lists)

do (xs , z )← mbuildpL g

return (pfoldL (hnil , hcons) (xs , z ))

=

mdo (v , z )← let knil = hnil z

kcons x y = hcons x y z

in g (knil , kcons)

return v

This law transforms a monadic composition, where the producer is an

effectful function but may not necessarily the consumer be, into a single

monadic function with a circular argument z . Indeed, z is a value computed

by g (knil , kcons) but in turn used by knil and kcons . An interesting feature

of this law is the fact that the introduction of the circularity on z requires

the use of a recursive binding within a monadic computation, which can be

79



expressed in terms of the so-called mdo-notation (a recursive do) supported

by Haskell (Erkök and Launchbury 2002).

To see the law in action, we write transform and bitstring in terms of

pfoldL and mbuildpL, respectively:

transform = pfoldL (hnil , hcons)

where hnil = [ ]

hcons b r s = (exor b s) : r

bitstring = mbuildpL g

where g (nil , cons) = do b ← bit

(bs , s)← g (nil , cons)

return (cons b bs , exor b s)

< | > return (nil ,Z )

Then, by applying Law 4.2.1 we obtain:

shift = mdo (bs , s)← g ([ ], λb r → (exor b s) : r)

return bs

Inlining, we get the following circular monadic program, that avoids the

construction of the intermediate list of bits:

shift = mdo (bs , s)← let gk = do b ← bit

(bs ′, s ′)← gk

return ((exor b s) : bs ′, exor b s ′)

< | > return ([ ],Z )

in gk

return bs

4.3 The Algol 68 scope rules Revisited

Let us now consider an improvement on the example we presented in Sec-

tion 3.5: the Algol 68 scope rules. Our goal was to construct a program to

deal with the scope rules of a block structured language, such that, for the

input Block program

80



[use y ;decl x ;

[decl y ;use y ;use w ; ]

decl x ;decl y ; ]

it produces the list of errors [w , x ]: at the outer level, the variable x has

been declared twice and the use of the variable w , at the inner level, has no

binding occurrence at all.

Now, we still aim to develop a semantic function that analyses a sequence

of instructions and computes a list containing the variable identifiers of the

instructions which do not obey to the rules of the language. However, when

such an instruction is found, we want to output an error message explaining

the programming error encountered.

So, for the example program considered, we want to output the messages:

"Duplicate: decl x"

"Missing: decl w"

A straightforward implementation of the semantic function, that closely

follows the solution presented in Section 3.5, may be defined:

semantics :: Prog → IO [Var ]

semantics p = do (p ′, env)← duplicate 0 [ ] p

missing (p ′, env)

Notice that function semantics now needs to be monadic (it returns a

value within the IO monad), as functions duplicate and missing need to

output the error messages. The function duplicate detects duplicate variable

declarations by collecting all the declarations occurring in a program. It is a

monadic function since it needs to output error messages resulting from the

errors it detects. The definition of such function is as follows:

duplicate :: Int → Env → Prog → IO (Prog2,Env)

duplicate lev ds [ ] = return ([ ], ds)

duplicate lev ds ((Use var) : its)

= do (its2, ds
′)← duplicate lev ds its

81



return ((Use2 var) : its2, ds
′)

duplicate lev ds ((Decl var) : its)

= do (its2, ds
′)← duplicate lev ((var , lev) : ds) its

if ((var , lev) ∈ ds)

then do putStrLn ("Duplicate: decl " ++ var)

return ((Dupl2 var) : its2, ds
′)

else return (its2, ds
′)

duplicate lev ds ((Block nested) : its)

= do (its2, ds
′)← duplicate lev ds its

return ((Block 2 (lev + 1, nested)) : its2, ds
′)

Besides detecting the invalid declarations, function duplicate also computes

a data structure, of type Prog2, that is later traversed in order to detect

variables that are used without being declared. This detection is performed

by function missing , which is monadic as it also outputs error messages:

missing :: (Prog2,Env)→ IO [Var ]

missing ([ ], ) = return [ ]

missing ((Use2 var) : its2, env)

= do errs ← missing (its2, env)

if (var ∈ (map π1 env))

then return errs

else do putStrLn ("Missing: decl " ++ var)

return (var : errs)

missing ((Dupl2 var) : its2, env)

= do errs ← missing (its2, env)

return (var : errs)

missing ((Block 2 (lev , its)) : its2, env)

= do errs1 ← do (p ′, env)← duplicate lev env its

missing (p ′, env)

errs2 ← missing (its2, env)

82



return (errs1 ++ errs2)

We would like to eliminate the intermediate structure of type Prog2 gen-

erated by duplicate. If we attempted to directly apply Law 4.2.1 for that

aim, then we would see that in this case the result of the law is a function

that returns a monadic computation which in turn yields a monadic compu-

tation (and not a value) as result, that is, something of type m (m a), for

some a. This is because the consumer is also monadic. To obtain a value

and not a computation as final result, it is simply necessary to run the com-

putation. This gives the following shortcut fusion law, which requires the

same schemes for consumer and producer as Law 4.2.1 but is able to fuse two

effectful functions.

Law 4.3.1 (Effectfull pfold/mbuildp for lists)

do (xs , z )← mbuildpL g c

pfoldL (hnil , hcons) (xs , z )

=

mdo (m, z )← let knil = hnil z

kcons x y = hcons x y z

in g (knil , kcons) c

v ← m

return v

Observe that, in this case, hnil :: z → m b and hcons :: a → m b → z →
m b, for some monad m, and therefore pfoldL (hnil , hcons) :: ([a ], z )→ m b.

Also, notice that,

mbuildpL :: Monad m ⇒ (∀ b . (b, a → b → b)→ c → m (b, z ))

→ c → m ([a ], z )

that is, mbuildpL g is a function of type c → m ([a ], z ). It is in this way

that it will be considered in Section 4.4 when we will define the generic

formulation of the laws. However, in Section 4.2 it was defined as a value of

type m ([a ], z ) because that form is more appropriate for writing monadic

parsers.

83



Now, if we write missing in terms of pfoldL

missing = pfoldL (hnil , hcons)

where hnil z = return [ ]

hcons (Use2 var) mr env

= do r ← mr

if (var ∈ (map π1 env))

then return r

else do putStrLn ("Missing: decl " ++ var)

return (var : r)

hcons (Dupl2 var) mr env

= do r ← mr

return (var : r)

hcons (Block 2 (lev , its)) mr env

= do (p ′, env ′)← duplicate lev env $ its

errs ′ ← missing (p ′, env ′)

r ← mr

return (errs ′ ++ r)

and duplicate in terms of mbuildpL

duplicate lev ds = buildpL (g lev ds)

where g lev ds (nil , cons) [ ] = return (nil , ds)

g lev ds (nil , cons) ((Use var) : its)

= do (its2, ds
′)← g lev ds (nil , cons) its

return (cons (Use2 var) its2, ds
′)

g lev ds (nil , cons) ((Decl var) : its)

= do (its2, ds
′)← g lev ((var , lev) : ds) (nil , cons) its

if ((var , lev) ∈ ds)

then do putStrLn ("Duplicate: decl " ++ var)

return (cons (Dupl2 var) its2, ds
′)

else return (its2, ds
′)

84



g lev ds (nil , cons) ((Block nested) : its)

= do (its2, ds
′)← g lev ds (nil , cons) its

return (cons (Block 2 (lev + 1, nested)) its2, ds
′)

we can apply Law 4.3.1 to semantics obtaining a deforested circular defini-

tion, which, when inlined, gives the following:

semantics its =

mdo (mr , env)← let

gk lev ds env [ ] = return (return [ ], ds)

gk lev ds env ((Use var) : its)

= do (mr , ds ′)← gk lev ds env its

return (do r ← mr

if (var ∈ (map π1 env))

then return r

else do putStrLn ("Missing: decl" ++ var)

return (var : r), ds ′)

gk lev ds env ((Decl var) : its)

= do (mr , ds ′)← gk lev ((var , lev) : ds) env its

if ((var , lev) ∈ ds)

then do putStrLn ("Duplicate: decl" ++ var)

return (do r ← mr

return (var : r), ds ′)

else return (mr , ds ′)

gk lev ds env ((Block nested) : its)

= do (mr , ds ′)← gk lev ds env its

return (mdo (mr ′, env ′)← gk (lev + 1) env env ′ nested

r ′ ← mr ′

r ← mr

return (r ′ ++ r), ds ′)

in gk 0 [ ] env its

85



r ← mr

return r

The above program is obtained by applying Law 4.3.1 twice to the semantics

program: we apply the Law to the composition of functions missing and

duplicate defined over a Block sentence

semantics p = do (p ′, env)← duplicate 0 [ ] p

missing (p ′, env)

and to the same composition defined over the nested blocks of a sentence:

missing ((Block 2 (lev , its)) : its2, env)

= do errs1 ← do (p ′, env)← duplicate lev env its

missing (p ′, env)

errs2 ← missing (its2, env)

return (errs1 ++ errs2)

Again, we have manually added an argument to function gk , in order to

reuse the definition of gk to traverse all the blocks (top level and nested ones)

that occur in a Block program.

4.4 Calculating monadic circular programs,

generically

In this section, we show that the definition of the program schemes pfold

and mbuildp, and the pfold/mbuildp laws, presented for lists in the previous

sections, are instances of generic definitions valid for a wide class of datatypes.

4.4.1 Extended shortcut fusion

Shortcut fusion laws for monadic programs can be obtained as a special

case of an extended form of shortcut fusion that captures the case when the

intermediate data structure is generated as part of another structure given

by a functor. Such extension is based on an extended form of build: Given

a functor F (signature of a datatype) and another functor N , we define

86



buildFN :: (∀ a . (F a → a)→ c → N a)→ c → N µF

buildFN g = g inF

This is a natural extension of the standard build. In fact, build can be

obtained from buildFN by considering the identity functor as N . Moreover,

buildp is also a particular case obtained by considering the functor N a =

(a, z ) (Ghani and Johann 2008).

We can now state an extended form of shortcut fusion (see (Manzino and

Pardo 2008; Ghani and Johann 2008) for more details and a proof):

Law 4.4.1 (extended fold/build) For strict h and strictness preserving

N ,

mapN (foldF h) ◦ buildFN g = g h

Similarly, we can also consider an extension for buildp:

buildpFN :: (∀ a . (F a → a)→ c → N (a, z ))

→ c → N (µF, z )

buildpFN g = g inF

and an associated shortcut fusion law.

Law 4.4.2 (extended fold/buildp) For strict h and strictness-preserving

N ,

mapN (prod (fold h) id) ◦ buildpFN g = g h

Proof 4.1 By considering N ′ a = N (a, z ), we have that buildpFN g =

buildN ′ g and mapN ′ f = mapN (prod f id). Then, the left-hand side of the

equation can be rewritten as: mapN ′ (fold h) ◦ buildN ′ g. Finally, we apply

Law 4.4.1.

The following law is an immediate consequence of the previous one.

Law 4.4.3 For strictness-preserving N and g :: ∀ a . (F a → a) → c →
N (a, z ),

mapN π2 ◦ g inF = mapN π2 ◦ g h

87



Proof 4.2

mapN π2 ◦ g inF

= { (3.3) and functor N }

mapN π2 ◦mapN (prod (fold h) id) ◦ g inF

= { Law 4.4.2 }

mapN π2 ◦ g h

4.4.2 Monadic shortcut fusion

The case we are interested in is when the functor N is the composition

of a monad m with a product: N a = m (a, z ), for some type z , and

mapN f = mmap (prod f id), where

mmap :: Monad m ⇒ (a → b)→ (m a → m b)

mmap f m = do {a ← m; return (f a)}

In such a case the producer corresponds to a monadic version of buildp:

mbuildpF :: Monad m

⇒ (∀ a . (F a → a)→ c → m (a, z ))→ c → m (µF, z )

mbuildpF g = g inF

A first monadic shortcut fusion law can be directly obtained as an instance

of Law 4.4.2. We unfold the definition of mmap to get a formulation in terms

of do-notation:

Law 4.4.4 (fold/mbuildp) For strict k and strictness preserving mmap,

do {(t , z )← mbuildpF g c; return (foldF k t , z )} = g k c

This is a version for mbuildp of the shortcut fusion law introduced by Manzino

and Pardo (Manzino and Pardo 2008), which is associated to a monadic build.

Using this law we can state a first monadic extension of the pfold/buildp

rule. Observe that, in the last step of the proof, the introduction of the

circularity on z requires the use of a recursive binding within a monadic

88



computation, expressed in terms of mdo-notation (Erkök and Launchbury

2002).

Law 4.4.5 (pfold/mbuildp) For strict h with components (h1, . . . , hn) and

strictness-preserving mmap,

do {(t , z )← mbuildpF g c; return (pfold h (t , z ))}
=

mdo{(v , z )← let ki x̄ = hi x̄ z in g k c; return v }

Proof 4.3

do {(t , z )← mbuildpF g c; return (pfold h (t , z ))}

= { (3.7) }

do (t , z )← mbuildpF g c

let ki x̄ = hi x̄ z in return (foldF k t)

= { definition of π1 }

do (t , z )← mbuildpF g c

let ki x̄ = hi x̄ z in return (foldF k $ π1 (t , z ))

= { (3.2) }

do (t , z )← mbuildpF g c

let ki x̄ = hi x̄ z in return (π1 (foldF k t , z ))

= { Law 4.4.4 and Law 4.4.3 }

mdo (v , z )← let ki x̄ = hi x̄ z in g k c

return v

When the consumer is also an effectful function, it is possible to state

two other laws, similar to Laws 4.4.4 and 4.4.5, respectively, but that deal

with fusion of effectful functions. The formulation of these laws follow the

approach presented by Chitil (Chitil 2000) and Ghani and Johann (Ghani

and Johann 2008).

89



Law 4.4.6 (effectful fold/mbuildp) For strict k :: F (m a) → m a

and strictness preserving mmap,

do {(t , z )← mbuildpF g c; v ← foldF k t ; return (v , z )}
=

do {(m, z )← g k c; v ← m; return (v , z )}

Proof 4.4

do {(t , z )← mbuildpF g c; v ← foldF k t ; return (v , z )}
= do (t , z ) ← mbuildpF g c

(m, )← return (foldF k t , z )

v ← m

return (v , z )

= do (m, z )← do (t , z )← mbuildpF g c

return (foldF k t , z )

v ← m

return (v , z )

= do {(m, z )← g k c; v ← m; return (v , z )}

Using this law we can now state a shortcut fusion law for the derivation of

monadic circular programs in those cases when both the producer and con-

sumer are effectful functions. Again, like in Law 4.4.5, it is necessary the use

of a recursive binding in terms of mdo-notation because of the introduction

of a circular value within the monadic computation.

Law 4.4.7 (effectful pfold/mbuildp) For strict h ::F (m a, z )→ m a

with components (h1, . . . , hn) and strictness-preserving mmap,

do {(t , z )← mbuildpF g c; pfold h (t , z )}
=

mdo (m, z )← let ki x̄ = hi x̄ z in g k c

v ← m

return v

90



Proof 4.5

do {(t , z ) ← mbuildpF g c; v ← pfold k (t , z )}
= do (t , z )← mbuildpF g c

m ← return (pfold k (t , z ))

v ← m

return v

= do (m, z )← do (t , z )← mbuildpF g c

return (pfold k (t , z ))

v ← m

return v

= do m ←mdo (m, z )← let ki x̄ = hi x̄ z in g k c

return m

v ← m

return v

= mdo (m, z )← let ki x̄ = hi x̄ z in g k c

v ← m

return v

4.5 Conclusions

In this Chapter we have presented rules to calculate monadic circular pro-

grams from the composition of monadic functions. The rules presented are

generic, as they can be instantiated for several algebraic data types and mon-

ads. Our rules are also generally applicable. We have shown two examples

that demonstrate their pratical interest: our rules were used to calculate sin-

gle traversal, deforested programs in the context of monadic parsing and in

the context of a programming environment.

These examples, however, consist of a single producer and consumer func-

tion composition. In the next Chapter, we show how to generalize our work

in order to optimize programs that are defined by an arbitrary number of

function compositions of the form fn ◦ ... ◦ f1 such that in each composition

91



a data structure ti and a value zi are produced.

Circular programs, monads and attribute grammars are closely related (Swier-

stra 1993). Indeed, in Chapter 2, attribute grammar techniques are used to

model and manipulate circular programs in order to derive efficient non-lazy

equivalent programs. We would like to express such transformation in a

calculational form.

92



Chapter 5

Tools and Libraries to Model

and Manipulate Circular

Programs

5.1 Introduction

In this Chapter, we present the implementation of the techniques formally

introduced in Chapter 2 as a Haskell library: the CircLib library. Using

this library, we have constructed two tools to transform Haskell and Ocaml

based circular programs into their strict counterparts. In this way, we make

this concise and elegant style of expressing multiple traversal algorithms also

available to non-lazy functional programmers. In this Chapter, we also con-

duct the first systematic benchmarking of circular, strict and deforested pro-

grams. The results show that for algorithms relying on large number of

traversals the strict, deforested programs are more efficient than the lazy

ones, both in terms of runtime and memory consumption.

This Chapter is organized as follows: in Section 5.2 we present the CircLib

library and the HaCirc and OCirc tools and in Section 5.3 we present the

results of the benchmarks we have conducted. Section reftool:conclusions

concludes the Chapter.

93



5.2 Tools and Libraries for Circular Program-

ming

5.2.1 The CircLib Library

The CircLib library is a library written in Haskell and that manipulate cir-

cular programs (its API is given in appendix .1). This library introduces

two data types to model circular programs and visit sequences in Haskell,

and it defines functions that implement all the formal definitions and tech-

niques presented in this paper. It also includes slicing functions. CircLib is

a reusable library that can be used to break-up circular dependencies. It can

be used not only to transform circular lazy programs into strict ones, but

also to express circular programs as hylomorphisms, to implement attribute

grammar systems, to express circular XML transformations, etc. This library

is the building block of the two tools described next.

5.2.2 The HaCirc Tool

The HaCirc tool is an Haskell refactor. It refactors circular programs into its

strict counterparts. The tool accepts, as input, Haskell circular programs and

produces, as output, strict Haskell programs. Furthermore, it is also possible

to obtain strict programs that use no explicit intermediate data structure.

HaCirc is also slicer of circular programs. Indeed, the tool is able to

compute circular programs’ slices, which can be obtained in two different

programming styles: as multiple traversal strict programs that use interme-

diate data structures and as deforested programs (i.e., programs with no

intermediate, traversal gluing, structures).

5.2.3 The OCirc Tool

In order to allow Ocaml programmers to express their multiple traversal pro-

grams in this elegant style of circular programming we have a similar tool

for Ocaml. This tool transforms circular programs written in the Ocaml no-

tation, into correct strict Ocaml programs.

94



There are two versions of the HaCirc and OCirc tools:

• a batch version that given as input a circular Haskell(Ocaml) program

generates its strict/deforested Haskell(Ocaml) program;

• a web-based interactive tool(s) that allows the tool(s) to be used on-

line1. The execution of such interactive version of the tool(s) requires

no further instalation.

We will describe a possible interaction with this interface by running

an example and presenting the output produced.

When loading the interface, the user is shown following web page pre-

sented in Figure 5.1.

The user may then introduce a circular program in the white text box

constructed or just select, by clicking the corresponding button, one

of the built-in circular programs. In the later case, the interactive

interface will then automatically fill the text box with the selected

program. Furthermore, the interface will allow the user to select the

type program the circular program is to be transformed into.

If we select the repmin circular program and transform it into it’s

deforested equivalent, we obtain the program presented in Figure 5.2.

The reader may also use one of the two versions of HaCirc and OCirc to

produce, for example, the Ocaml or Haskell strict programs of the repmin

program and the Table processor from the circular definitions presented in

this paper (and available in both tool versions, as we have seen for repmin

and for the Web version of HaCirc).

The slicing of circular programs can also be performed using either one

of the tool versions.

1The tools are available online at http://www.di.uminho.pt/∼jpaulo

95

http://www.di.uminho.pt/~jpaulo


Figure 5.1: Web interactive interface of the HaCirc tool.

5.3 Benchmarks

In order to benchmark the different implementations of circular programs, we

conducted several experiments. In this Section, we show the results of two of

them: we compared the running performance of the circular Table formatter

with the running performances of the programs we derived from it, i.e., the

96



Figure 5.2: The deforested version of the repmin program.

strict multiple traversal and the higher-order deforested equivalents; further-

more, we have also compared the performance of a circular program that

processes a tiny subset of the C language, called MicroC with its equivalent

derived strict and deforested programs. The Table circular program induces

a simple two traversal strict program, while the MicroC circular program

induces a six traversal program.

The results presented next were obtained in an Intel Centrino 1.4 GHz

97



with 512 MB of RAM memory, under a Linux Mandrake 10.0 OS. We have

used the ghc 6.4 compiler.

5.3.1 The Table Formatter:

The three Table formatters presented earlier were tested with three different

input tables: a table with depth 150 (a typical 3x3 matrix, with one nested

table, with depth 149), one with depth 250 and another with depth 350. The

results obtained are presented in Table 5.1.

Circular Strict Deforested
Table Mem Time Mem Time Mem Time
depth (Kb) (sec) (Kb) (sec) (Kb) (sec)

Haskell 150 260 72.85 140 71.6 130 68.55
250 450 266.69 240 260.00 220 255.65
350 600 677.04 320 646.95 300 642.93

Table 5.1: Performance results of the three different Table formatters

The results show that the three implementations have similar running

times, although the deforested program is always slightly faster than the

others. In terms of memory consumption, the deforested consumes half of

the memory needed by the circular program. A two traversal program, how-

ever, does not forces the lazy mechanism to keep a large set of suspended

computations. Next, we consider a more complex example, that relies on a

six traversal strategy.

5.3.2 The MicroC Processor:

The MicroC language processor generates assembly for a simple stack-based

machine and it includes the advanced pretty-printing algorithm that performs

four traversals to compute its prettiest representation (Swierstra et al. 1999).

As input we consider typical MicroC programs, with 1360, 2720 and 4080

lines. The runtimes (in seconds) are the accumulation of 10 executions.

The memory consumption refers to the memory used in one run, and it was

obtained with the built-in ghc memory profiler.

98



Circular Strict Deforested
Input Mem Time Mem Time Mem Time
size (Kb) (sec) (Kb) (sec) (Kb) (sec)

Haskell 1360 1600 17.63 3400 16.41 900 5.9
2720 2800 36.06 6100 32.44 1600 12.21
4080 4400 54.48 12000 47.75 3000 18.49

Table 5.2: Performance results of the three MicroC processors.

The above results show that the deforested Haskell program has the best

running time of the different implementations of the MicroC processor: it

is 2.8 times faster than the lazy program. The deforested implementation is

also always more efficient than the strict one: 2.6 times faster. One would ex-

pect, however, that the aggressive optimizations performed by this advanced

compiler would be able to perform the deforestation automatically, by using

techniques like the cata-build rule. In fact, the strict implementation builds

(intermediate) trees that are later consumed. However, as one can see in

the definition of the strict Table program, the function that builds the inter-

mediate structure also returns additional results. Thus, the cata-build rule

does not apply and the compilers are not able to perform such optimizations.

This can also be seen in the results of the memory usage of the programs.

5.4 Conclusions

The techniques presented in Chapter 2 have been implemented to build the

Haskell library CircLib which has been used to construct two tools to model

and manipulate circular programs in Haskell and Ocaml. As a result, we can

model in a strict or lazy setting a multiple traversal algorithm as a single

traversal circular function without the need of additional redundant inter-

mediate data structures and having to define complex traversal scheduling

strategies. Circular definitions are well-known and heavily used in the AG

community. With this work we make this powerful style of programming

available to other programming paradigms, namely the non-lazy functional

one. Finally, the first experimental results show that the strict deforested

99



Haskell programs are more efficient than the Haskell lazy circular programs.

100



Chapter 6

Conclusions

This thesis discussed the design, implementation and calculation of circular

programs. In Chapter 2, we have presented techniques and tools to model

and manipulate circular programs. These techniques transform circular pro-

grams into strict, purely functional programs. Partial evaluation and slicing

techniques are used to improve the performance of the evaluators and to slice

circular lazy programs, respectively.

In Chapter 3 we have presented a new program transformation technique

for intermediate structure elimination. The programs we are able of dealing

with consist in the composition of a producer and a consumer functions.

The producer constructs an intermediate structure that is later traversed by

the consumer. Furthermore, we allow the producer to compute additional

values that may be needed by the consumer. This kind of compositions

is general enough to deal with a wide number of practical examples. Our

approach is calculational, and proceeds in two steps: we apply standard

deforestation methods to obtain intermediate structure-free programs and we

introduce circular definitions to avoid multiple traversals that are introduced

by deforestation. Since that, in the first step, we apply standard fusion

techniques, the expressive power of our rule is then bound by deforestation.

We introduce a new calculational rule conceived using a similar approach

to the one used in the fold/build rule: our rule is also based on parametricity

properties of the functions involved. Therefore, it has the same benefits

101



and drawbacks of fold/build since it assumes that the functions involved

are instances of specific program schemes. Therefore, it could be used, like

fold/build, in the context of a compiler. In fact, we have used the rewrite

rules (RULES pragma) of the Glasgow Haskell Compiler (GHC) in order to

obtain a prototype implementation of our fusion rule.

The rule that we propose is easy to apply: in this thesis, we have pre-

sented a real example that shows that our rule is effective in its aim. Other

examples may be found in (Fernandes et al. 2007). The calculation of circular

programs may be understood as an intermediate stage: the circular programs

we calculate may be further transformed into very efficient, completely data

structure free programs.

In Chapter 4 we have presented rules to calculate monadic circular pro-

grams from the composition of monadic functions. The rules presented are

generic, as they can be instantiated for several algebraic data types and mon-

ads. Our rules are also generally applicable. We have shown two examples

that demonstrate their pratical interest: our rules were used to calculate sin-

gle traversal, deforested programs in the context of monadic parsing and in

the context of a programming environment.

These examples, however, consist of a single producer and consumer func-

tion composition. In the next Chapter, we show how to generalize our work

in order to optimize programs that are defined by an arbitrary number of

function compositions of the form fn ◦ ... ◦ f1 such that in each composition

a data structure ti and a value zi are produced.

Circular programs, monads and attribute grammars are closely related (Swier-

stra 1993). Indeed, in Chapter 2, attribute grammar techniques are used to

model and manipulate circular programs in order to derive efficient non-lazy

equivalent programs. We would like to express such transformation in a

calculational form.

The techniques presented in Chapter 2 have been implemented to build

the Haskell library CircLib which has been used to construct two tools to

model and manipulate circular programs in Haskell and Ocaml. As a result,

we can model in a strict or lazy setting a multiple traversal algorithm as a

single traversal circular function without the need of additional redundant

102



intermediate data structures and having to define complex traversal schedul-

ing strategies. Circular definitions are well-known and heavily used in the

AG community. With this work we make this powerful style of programming

available to other programming paradigms, namely the non-lazy functional

one. Finally, the first experimental results show that the strict deforested

Haskell programs are more efficient than the Haskell lazy circular programs.

The CircLib library, the HaCirc and OCirc tools and the benchmark results

were presented in Chapter 5.

103



Bibliography

S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay,

and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,

volume 3, pages 1–168. Clarendon Press, 1994.

R. Bird. Introduction to Functional Programming using Haskell, 2nd edition.

Prentice-Hall, UK, 1998.

Richard Bird and Oege de Moor. Algebra of Programming, volume 100

of Prentice-Hall Inernational Series in Computer Science. Prentice-Hall,

1997.

Richard S. Bird. Using circular programs to eliminate multiple traversals of

data. Acta Inf, 21:239–250, 1984.

O. Chitil. Type-inference based deforestation of functional programs. PhD

thesis, RWTH Aachen, October 2000.

R. Cockett and T. Fukushima. About Charity. Technical Report 92/480/18,

University of Calgary, June 1992.

R. Cockett and D. Spencer. Strong Categorical Datatypes I. In R.A.C.

Seely, editor, International Meeting on Category Theory 1991, volume 13

of Canadian Mathematical Society Conference Proceedings, pages 141–169,

1991.

Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons.

Fast and loose reasoning is morally correct. In POPL ’06: Conference

104



record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 206–217, New York, NY, USA, 2006. ACM.

Olivier Danvy and Mayer Goldberg. There and back again. In ICFP ’02:

Proceedings of the seventh ACM SIGPLAN international conference on

Functional programming, pages 230–234, New York, NY, USA, 2002. ACM

Press. ISBN 1-58113-487-8. doi: http://doi.acm.org/10.1145/581478.

581500.

Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-class at-

tribute grammars. Informatica (Slovenia), 24(3), 2000. URL citeseer.

ist.psu.edu/demoor00firstclass.html.

Oege de Moor, Simon Peyton-Jones, and Eric Van Wyk. Aspect-oriented

compilers. Lecture Notes in Computer Science, 1799, 2000. URL

citeseer.ist.psu.edu/demoor99aspectoriented.html.

Atze Dijkstra. Stepping through Haskell. PhD thesis, Department of Com-

puter Science, Utrecht University, The Netherlands, November 2005.

Atze Dijkstra and Doaitse Swierstra. Typing haskell with an attribute gram-

mar (part i). Technical Report UU-CS-2004-037, Institute of Information

and Computing Sciences, Utrecht University, 2004.

Joost Engelfriet and Gilberto Filé. Simple multi-visit Attribute Grammars.

Journal of Computer and System Sciences, 24(3):283–314, 1982.

L. Erkök and J. Launchbury. A Recursive do for Haskell. In Haskell ’02:

Proceedings of the ACM SIGPLAN Haskell Workshop, pages 29–37. ACM,

2002.

João Paulo Fernandes, Alberto Pardo, and João Saraiva. A shortcut fusion

rule for circular program calculation. In Haskell ’07: Proceedings of the

ACM SIGPLAN Haskell workshop, pages 95–106, New York, NY, USA,

2007. ACM.

105

citeseer.ist.psu.edu/demoor00firstclass.html
citeseer.ist.psu.edu/demoor00firstclass.html
citeseer.ist.psu.edu/demoor99aspectoriented.html


N. Ghani and P. Johann. Short Cut Fusion of Recursive Programs with Com-

putational Effects. In Symposium on Trends in Functional Programming

(TFP 2008), 2008.

J. Gibbons. Calculating Functional Programs. In Algebraic and Coalgebraic

Methods in the Mathematics of Program Construction, LNCS 2297, pages

148–203. Springer-Verlag, January 2002.

A. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD

thesis, Department of Computing Science, University of Glasgow, UK,

1996.

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to

deforestation. In Conference on Functional Programming Languages and

Computer Architecture, pages 223–232, June 1993.

Dennis Kugler Harald Baier and Marian Margraf. Elliptic Curve Cryptogra-

phy Based on ISO 15946. Technical Report TR-03111, Federal Office for

Information Security, 2007.

Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory. In

Summer School on Generic Programming, 2002. URL http://www.cs.

uu.nl/∼johanj/publications/GH.pdf.

Susan Horwits and Thomas Reps. The Use of Program Dependence Graphs

in Software Engineering. In 14th International Conference on Software

Engineering, pages 392–411, Melbourne, Australia, may 1992. ACM.

G. Hutton and E. Meijer. Monadic Parsing in Haskell. Journal of Functional

Programming, 8(4):437–444, July 1998.

Patricia Johann and Janis Voigtländer. Free theorems in the presence of seq.

In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT sympo-

sium on Principles of programming languages, pages 99–110, New York,

NY, USA, 2004. ACM.

106

http://www.cs.uu.nl/~johanj/publications/GH.pdf
http://www.cs.uu.nl/~johanj/publications/GH.pdf


Thomas Johnsson. Attribute grammars as a functional programming

paradigm. In Functional Programming Languages and Computer Archi-

tecture, pages 154–173, 1987.

Neil Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation and Auto-

matic Program Generation. Prentice-Hall Inernational Series in Computer

Science. Prentice-Hall, 1993.

Uwe Kastens. Ordered attribute grammars. Acta Informatica, 13:229–256,

1980.

Donald E. Knuth. Semantics of Context-free Languages. Mathematical Sys-

tems Theory, 2(2):127–145, June 1968. Correction: Mathematical Systems

Theory 5, 1, pp. 95-96 (March 1971).

Matthijs Kuiper and Doaitse Swierstra. Using attribute grammars to derive

efficient functional programs. In Computing Science in the Netherlands

CSN’87, November 1987.

John Launchbury and Tim Sheard. Warm fusion: Deriving build-catas from

recursive definitions. In Conf. Record 7th ACM SIGPLAN/SIGARCH Int.

Conf. on Functional Programming Languages and Computer Architecture,

FPCA’95, La Jolla, San Diego, CA, USA, 25–28 June 1995, pages 314–

323. ACM Press, New York, 1995.

Julia L. Lawall. Implementing Circularity Using Partial Evaluation. In Pro-

ceedings of the Second Symposium on Programs as Data Objects PADO II,

volume 2053 of LNCS. Springer-Verlag, May 2001.

C. Manzino and A. Pardo. Short Cut Fusion of Monadic Programs. In

Brazilian Symposium on Programming Languages (SBLP 2008), 2008.

Simon Marlow and Simon Peyton Jones. The new GHC/Hugs Runtime Sys-

tem. URL http://research.microsoft.com/Users/simonpj/Papers/

new-rts.ps.gz. 1999.

107

http://research.microsoft.com/Users/simonpj/Papers/new-rts.ps.gz
http://research.microsoft.com/Users/simonpj/Papers/new-rts.ps.gz


Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point promotion.

In POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 143–154, New

York, NY, USA, 2007. ACM Press.

Chris Okasaki. Breadth-first numbering: lessons from a small exercise in

algorithm design. ACM SIGPLAN Notices, 35(9):131–136, 2000.

Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A Calculational Fusion System

HYLO. In IFIP TC 2 Working Conference on Algorithmic Languages and

Calculi, Le Bischenberg, France, pages 76–106. Chapman & Hall, February

1997a.

Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and Masato Take-

ichi. A calculational fusion system HYLO. In Algorithmic Lan-

guages and Calculi, pages 76–106, 1997b. URL citeseer.ist.psu.edu/

onoue97calculational.html.

A. Pardo. Generic Accumulations. In IFIP WG2.1 Working Conference on

Generic Programming, Dagstuhl, Germany, July 2002.

A. Pardo. A Calculational Approach to Recursive Programs with Effects.

PhD thesis, Technische Universität Darmstadt, October 2001.

Maarten Pennings. Generating Incremental Evaluators. PhD thesis, Depart-

ment of Computer Science, Utrecht University, The Netherlands, Novem-

ber 1994.

T. Reps and T. Teitelbaum. The Synthesizer Generator. Springer, 1989.

João Saraiva. Purely Functional Implementation of Attribute Grammars.

PhD thesis, Department of Computer Science, Utrecht University, The

Netherlands, December 1999.

João Saraiva and Doaitse Swierstra. Data Structure Free Compilation. In

Stefan Jähnichen, editor, 8th International Conference on Compiler Con-

struction, CC/ETAPS’99, volume 1575 of LNCS, pages 1–16. Springer-

Verlag, March 1999.

108

citeseer.ist.psu.edu/onoue97calculational.html
citeseer.ist.psu.edu/onoue97calculational.html


Doaitse Swierstra. Tutorial on attribute grammars. In Generative Program-

ming and Component Engineering, 1993.

Doaitse Swierstra and Harald Vogt. Higher order attribute grammars. In

H. Alblas and B. Melichar, editors, International Summer School on At-

tribute Grammars, Applications and Systems, volume 545 of LNCS, pages

48–113. Springer-Verlag, 1991.

Doaitse Swierstra, Pablo Azero, and João Saraiva. Designing and Implement-

ing Combinator Languages. In Doaitse Swierstra, Pedro Henriques, and

José Oliveira, editors, Third Summer School on Advanced Functional Pro-

gramming, volume 1608 of LNCS Tutorial, pages 150–206. Springer-Verlag,

September 1999.

S. Doaitse Swierstra and Pablo Azero. Attribute grammars in a functional

style. In Systems Implementation 2000, Berlin, 1998. Chapman & Hall.

A. Takano and E. Meijer. Shortcut to Deforestation in Calculational Form. In

Functional Programming Languages and Computer Architecture’95, 1995.

F. Tip. A Survey of Program Slicing Techniques. Technical report CS-

R9438, CWI - Computer Science, Department of Software Technology,

Amsterdam, February 1994.

Janis Voigtländer. Semantics and pragmatics of new shortcut fusion rules. In

FLOPS ’08: Proceedings of the 2008 International Symposium on Func-

tional and Logic Programming, pages 163–179. Springer-Verlag, 2008.

Janis Voigtländer. Using circular programs to deforest in accumulating pa-

rameters. Higher-Order and Symbolic Computation, 17:129–163, 2004. Pre-

vious version appeared in ASIA-PEPM 2002, Proceedings, pages 126–137,

ACM Press, 2002.

P. Wadler. Theorems for free! In 4th International Conference on Functional

Programming and Computer Architecture, London, 1989.

P. Wadler. Deforestation: transforming programs to eliminate trees. Theo-

retical Computer Science, 73:231–248, 1990.

109



William Waite, Uwe Kastens, and Anthony M. Sloane. Generating Software

from Specifications. Jones and Bartlett Publishers, Inc., USA, 2007. ISBN

0763741248.

.1 The CircLib Haskell library

In this section we present the API of the Haskell library that implements the

re-schedulling of the circular definitions. We start by defining a data-type

CP , to represent circular programs, and the functions that manipulate it1:

data CP = CP{constrs :: [Constr ],

types :: [DT ],

prods :: Map Constr [DT ],

args :: Map DT [VarName ],

results :: Map DT [VarName ],

deps :: Map Constr [Dep ]

semantics :: Map Constr (Map VarName Function)}

type Var = (Constr , Int , String)

type Dep = ((Int ,Name), (Int ,Name))

where Constr , DT , VarName and Function are of type String .

dp :: CP → Rel Var Var

idp :: CP → Rel Var Var

ids :: CP → Rel (DT ,Name) (DT ,Name)

a :: CP → DT → Int → Set (DT ,Name)

ds :: CP → DT → Rel (DT ,Name) (DT ,Name)

edp :: CP → Rel Var Var

isOrdered :: CP → Bool

interface :: CP → DT → Interface

1These functions correspond to the Haskell versions of the formal definitions presented
in Section 2.3.3.

110



type Interface = [(Set (DT ,Name), Set (DT ,Name))]

We model visit-sequences we the following data-structures and function.

data VisitSequences = VS (Map Constr [VisitSubSequence ])

data VisitSubSequence = VSS{n :: Int ,

prod :: [DT ],

arg :: [VarName ],

res :: [VarName ],

instructions :: [Instruction ]}

data Instruction = Eval {variable :: Var ,

uses :: [Var ]}
| Visit{visit :: (Int , Int),

inp :: [Name ],

out :: [Name ]}

visit sequences :: CP → VisitSequences

The slicing of circular programs is perfomed by the functions:

backward slice :: CP → Criteria → VisitSequences

forward slice :: CP → Criteria → VisitSequences

type Criteria = [VarName ]

111


	João Paulo de Sousa Ferreira Fernandes.pdf
	thesis.pdf
	Introduction
	Contributions
	Structure of the Thesis

	Strictification of Circular Programs
	Introduction
	Circular Programs
	Notation
	The Table Formatter Program

	From Circular to Strict Programs
	Detection of Circular Definitions
	Partitionable Circular Programs
	Ordered Circular Programs
	The Visit-Sequence Paradigm
	Computing Strict Functions

	Slicing Circular Programs
	Class of Programs Considered
	Conclusion

	Calculation of Circular Programs
	Introduction
	Circular Programs
	Bird's method
	Our method

	Program schemes
	Data types
	Fold
	Fold with parameters

	The pfold/buildp rule
	Algol 68 scope rules
	Conclusions

	Calculation of Monadic Circular Programs
	Introduction
	Bit String Transformation
	The Algol 68 scope rules Revisited
	Calculating monadic circular programs, generically
	Extended shortcut fusion
	Monadic shortcut fusion

	Conclusions

	Tools and Libraries to Model and Manipulate Circular Programs
	Introduction
	Tools and Libraries for Circular Programming
	The CircLib Library
	The HaCirc Tool
	The OCirc Tool

	Benchmarks
	The Table Formatter:
	The MicroC Processor:

	Conclusions

	Conclusions
	Bibliography
	The CircLib Haskell library






