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Abstract—Inventory systems in reach-in refrigerators employ 

manual or smart inventory outdated methods, although efficient, 

new methods like computer vision could render better results in 

less time, with less human intervention. The objective of this work 

proposes a computer vision system to acquire an inventory of 

products placed in reach-in convenience store refrigerators. A 

comparative of different computer vision object recognition 

models was performed to select the most appropriate model for 

the application. Then, based on the model characteristics and the 

application requirements, a YOLOv4 object recognition model 

was selected. Along with a 2-dimension camera positioning rig to 

capture a live video feed of the products to count for the inventory. 

Future works could include a real size prototype and further 

development into a commercial product. 

Keywords—Computer vision, smart inventory, object 

recognition, YOLOv4, reach-in refrigerator. 

I. INTRODUCTION 

Smart inventory management has a been a great solution for 
business workflow and operations, nonetheless, the benefits 
deeply rely on the speed and accuracy of the data acquisition 
scheme. These systems acquire data through different 
technological means such as barcodes and readers, QR codes 
and cameras, RFID tags, and other systems operated by 
employees. This data acquisition scheme becomes increasingly 
difficult when handling individual items, and even more when 
the work environment is not ideal. For instance, convenience 
store refrigerators have many single products in a small space 
where product manipulation and positioning are required.  

Computer vision and deep learning have proved to be great 
solutions for simple object detection and data acquisition since 
the first object detection convolutional neural network (CNN) 
model was launched in 2012 [1]. The region-based 
convolutional neural network (R-CNN) is an object detection 

model based on CNN, a part of the deep learning family of 
algorithms [2] [3]. These algorithms have been used in artificial 
intelligence (AI), driving assistants, face detection and remote 
sensing applications. 

    After more than 10 years since Viola-Davis object detection 
algorithm [4] was released, the object detection algorithms 
based on features, progressed at a slow pace. This set in motion 
data scientists across the globe to find a better way to detect 
objects. In 2012 A. Krizhevsky et al. applied a convolutional 
neural network to train a large dataset and improve the object 
classification. This led R. Girshick et al. to propose R-CNN in 
2014. After R-CNN, deep learning object detection has been 
growing exponentially with the development of faster and 
lighter deep learning models.  

      The objective of this work is to propose a smart inventory 
system with computer vision to count products placed in reach-
in convenience store refrigerators. By diminishing human 
interaction on the data acquisition, the speed and accuracy of 
inventories will increase as well as the interval between data 
collection will be shortened. 

II. MODEL AND HARDWARE SELECTION 

A. Selecting an object recognition model 

The deep learning object detection algorithms have evolved 
into several application-oriented models. The latest state-of-the-
art models range in accuracy, inference speed, and 
computational costs. To select an appropriate model the trade-
offs must be weighed against each other. 

The top candidates for our application include: 

• Faster R-CNN [5] 

• YOLOv4 [6] 
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• Single Shot Detection (SSD) [7] 

Extensive research into these 3 models led to the next 
conclusions about each system [8]: 

• SSD: Not very effective when it comes to smaller 
objects as higher resolution images reduce the 
overall performance. 

• Faster R-CNN: Significantly more accurate than 
SSD and YOLO but significantly slower, as it 
requires multiple passes over a single image, not 
ideal for real-time applications. 

• YOLOv4: Ideal for live-video feed and good 
accuracy. 

With the previous points taken into account the best two 
candidates for our use-case were the Faster R-CNN and 
YOLOv4, as the SSD would not work well with small objects 
like the ones the proposed system is bound to count. To select 
the appropriate object recognition model for the proposed 
system the following conditions were considered: proximity 
between objects to detect, lighting conditions, and object size. 
Besides the environmental conditions, these system 
requirements should be considered for the selection of the object 
detection model: close object detection, object counting 
accuracy, computational cost, and inference speed. 

      A Faster R-CNN model would require taking still-frame 
photos of the products displayed in the refrigerator. This 
proposes several challenges. First, a wide-angle view is needed 
to capture all the products displayed, but this would only work 
for products on the top tier or the first layer. If the camera is 
moved from tier to tier, different capture angles would be needed 
to avoid occlusions. This approach would imply a higher system 
complexity, therefore, the recognized objects between frames 
would need to be identified and subtracted from frame series in 
the same tier illustrated in the following diagram (Fig. 1).  

 

Fig. 1 Camera positions for a 90° field of view lens to avoid occlusions. 

      A YOLOv4 model would require capturing a video live-feed 
and a moving camera. This proposes the same level of 
complexity in hardware as the Faster R-CNN approach but less 
logic complexity. A region of interest (ROI) line could be 
applied to the model to count detected objects that move from 
one region to another (Fig. 2) as proposed by A. Parico et al. in 
their real time fruit counter [9].  

 

Fig. 2 Camera with the video feed and ROI line. 

    To determine the object recognition model to be used, the 
available hardware options have to be considered. 

B. Selecting the hardware 

The system needs to be portable enough to reside in the back 
part of a reach-in refrigerator, it should support low 
temperatures, and have a low profile to avoid blocking the 
normal operation of the reach-in shelves. 

 
      Considering the previously mentioned requirements, the 
basic hardware components for a system with these 
characteristics are:  

• System-on-board computer with enough processing 
power to run computer vision tasks 

• Computer-vision oriented processor to run an object 
recognition model 

• Small camera 

The candidate object recognition models for the system also 
require a camera with a wide-angle field of view (FOV) (>90°) 
or a moving camera with a narrower field of view (≤90°). 
 
      Wide angle lenses distort the images, so the reproduction 
fidelity is lowered. This implies that a calibration step must be 
setup [10] before feeding the images through the object 
recognition models. A calibration step would require extra 
processing power even before using the object recognition 
model. Additionally, the camera needs to move through 
predefined positions over the length of the shelf tiers, which in 
turn, requires position sensing and software tied for each 
position. 

A narrow FOV requires the camera to move in a smooth 
motion through the length of the shelf tiers but does not require 
image calibration since the distortion is very low in these types 
of lenses. This maintains a high reproduction fidelity. In addition 
to this, position sensing becomes much simpler as only tier-
number and start/end sensors are needed. 

 



Simplicity is essential when designing a system intended to 
be deployed in a commercial environment. Thus, a narrow FOV 
camera and a live video-feed with the YOLOv4 object 
recognition model were selected as the main components of the 
system. The YOLOv4 model as any deep learning algorithm 
performs a large number of parallel operations which demand 
high computational power. This traditionally is achieved with 
graphic processing units (GPU) [6] in a computer environment. 
Since the application of the system is intended to be portable, an 
embedded hardware approach is needed. 

Embedded computer vision requires low power 
consumption while having high computational capabilities. 
Repurposing a GPU to train and deploy object recognition 
models is very effective in research environments, but it is not 
an adequate solution for portable applications. Nonetheless, 
deployment in a commercial product can be set-up with pre-
trained models; this allows the hardware to be downscaled to 
any processor that can perform a high number of parallel 
operations in a short period of time. 

  A great solution for embedding computer vision is found in 
a specific system architecture that can take any Linux-capable 
system and a dedicated vision processing unit (VPU) to 
outsource the real-time model processing [11]. A Raspberry Pi 
system-on-board computer is more than capable of running 
dedicated Linux operating systems and instructing to allocate 
external processing though USB interfaces. A Raspberry Pi 4b 
miniature computer was then selected as the base for the 
proposed system. 

Dedicated VPUs for embedded applications were developed 
by Intel Corporation in recent years under the name Movidius 
[12]. The Movidius VPUs have a software driven multi-core 
memory subsystem with multiple ports and caches that can be 
configured to allow a wide range of workloads, and wide and 
deep register files in conjunction with a variable length long 
instruction word (VLLIW) that controls multiple functional 
units. The Movidius Myriad X has 16 highly parallelizable 
vector processors named streaming hybrid architecture vector 
engines (SHAVE) that provide highly sustainable performance 
efficiency consuming ~1 Watt. The SHAVE processor is a 
hybrid stream processor architecture that combines the best 
features of GPUs, digital signal processors (DSP) and reduced 
instruction set computers (RISC). 

The Movidius Myriad X has a native 4K image processor 
pipeline which supports image sensors connected directly to the 
VPU to be used on-device for computer-vision oriented 
cameras.  

The OpenCV AI Kit (OAK)[13] employs this VPU with a 
4K sensor and a 81° FOV lens pipelined directly to the 
processor. This data path avoids a bottleneck in the proposed 
system by transmitting the model results to the Raspberry Pi 
(24Kbs data stream) whereas, a configuration of an external 4K 
camera video-feed (2.1Gps data stream) has to go through the 
Raspberry Pi to the VPU and back to the computer. An OAK-1 
camera was selected for the system. 

C. Moving the camera 

With the YOLOv4 model running on the OAK-1 hosted on 
the Raspberry Pi 4b with pre-trained models, the system is 

capable of detecting and counting the objects that move across 
the ROI line. In a reach-in refrigerator, the objects are static. In 
order to “move” the products across the ROI line, the camera 
moves horizontally along the shelve tiers. To count each product 
the camera also moves vertically from tier to tier. This represents 
a challenge as a certain level of control and repetition must be 
achieved to position the camera every time the counting process 
is performed, a system similar to that of a modern 3D printer is 
proposed.  

Three 17HS8401 NEMA-17 stepper motors with 1.8° per 
step and a load capacity of 5.5kg/cm are used to provide an x-
axis and y-axis coordinate movement. These motors are 
mounted on rolling carts along a 20x20mm v-slot extruded 
aluminum frame with static toothed belts to provide traction 
(Fig.3). 

 

Fig. 3 Toothed belt mounted on a rail with a stepper motor. 

Two motors run in parallel for the y-axis motion, while one 
motor runs along the x-axis. The initial and final position for the 
x-axis is sensed by reflective infrared optical pair sensors 
positioned at the start and end of the x-axis rail, while the y-axis 
position is sensed by a series of reflective infrared optical pair 
sensors positioned parallel to each level (Fig.4). 

 

Fig. 4 Camera movement mechanism diagram. 



     The stepper motors are driven by A4988 stepper drivers 

controlled by the Raspberry Pi which receives feedback from 

the optical sensors. This scheme allows the camera to be moved 

in a smooth fashion along all the products in each tier, and to 

repeat this for each tier in a precise manner. 
 

III. MODEL TRAINING 

The YOLOv4 model requires training for this specific 
application to achieve the best inference confidence. The 
training dataset must be composed of at least 50 images of the 
detection scene for each product. The detection scene for this 
application is the camera view of the products from behind the 
reach-in shelf. 

Training an object recognition model with modest hardware 
could take several hours with a medium sized dataset. For this 
system, training is performed through a cloud service. Cloud 
model training is available through different providers, however, 
Roboflow[14] offers this service with the most complete toolset. 

To pre-train a minimal capable model, each displayed 
product is assigned as a unique class in the model. For a full-
sized reach-in refrigerator an average of 10 classes over a 7 tier 
shelve is needed. 

Model training should be performed with different 
parameters to fine tune the detection capabilities of the system, 
and to add any new products or new product presentations. 

IV. CONCLUSIONS 

Although the proposed system may be a very powerful tool 
for smart inventory purposes, and it is intended to improve 
productivity of commercial ventures, some important aspects 
must be considered for a full commercial product deployment. 

A. Convenience 

The proposed system if further developed into a commercial 
product will be able to perform accurate inventories in a small-
time interval over several stores. This may be upscaled into a 
big-data system able to predict market tendencies and re-
stocking logistics in near real-time. 

The usage of the proposed system also allows the user to re-
assign human power to other tasks, thus reducing the labor 
needed to maintain an accurate inventory. This is very 
convenient when the system is implemented in a large enough 
scale. 

The portability, modularity, and low cost of the system 
provide a cost-efficient solution for the actual and future 
inventory needs. 

B. Future improvements and developments 

The system can be upgraded to obtain a better count 
certainty by using the object detection model in combination 
with an object tracking algorithm through a unique object ID 
system. 
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