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ABSTRACT 

 

Lactoferrin (LF) is an iron-binding glycoprotein that composes the transferrin family and is 

predominantly found in the products of the exocrine glands located in the gateways of the 

digestive, respiratory and reproductive systems, suggesting a role in the non-specific defence 

against invading pathogens. Additionally, several physiological roles have been attributed to 

LF, namely regulation of iron homeostasis, host defence against infection and inflammation, 

regulation of cellular growth and differentiation and protection against cancer development and 

metastasis. These findings have suggested LF’s great potential therapeutic use in cancer disease 

prevention and/or treatment, namely as a chemopreventive agent. This review looks at the 

recent advances in understanding the mechanisms underlying the multifunctional roles of LF 

and future perspectives on its potential therapeutic applications.  
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INTRODUCTION 

Over the past few decades, clinical and mechanistic studies have indicated many relations 

between nutrition and health, thus evidence that diet is a key environmental factor affecting the 

incidence of many chronic diseases is overwhelming. The precise extent of this contribution is 

difficult to judge, but a reduction of 35% in the age standardized incidence of cancer in the 

United States has been proposed to be achievable via “practicable dietary means” (Elliot and 

Ong, 2002; Davis and Milner, 2004; Petricoin and Liotta, 2003). Indeed, several food derived 

compounds we eat are among the most promising chemopreventive agents being evaluated. 

Chemoprevention is defined as using chemicals with the goal of preventing, interrupting or 

reversing the carcinogenic process. Since carcinogenesis is a multistage process, which usually 

takes many years in humans, there is ample opportunity to intervene and prevent the 

development of cancer. Chemopreventive agents are ultimately expected to be in widespread 

use by the general population. Therefore, they need to be non-toxic, inexpensive and available 

for use by oral via. With the demonstration of Tamoxifen ability to prevent breast cancer in 

women, the feasibility of chemoprevention in humans has now been well established (Jordan 

and Morrow, 1999) The full extent of biologically active components in our diet is unknown, 

and our understanding of their mechanisms of action is even more limited (Petricoin and Liotta, 

2003). Much of the available data has been derived from in vitro studies with purified 

compounds in forms and concentrations to which the tissues in our bodies may never be 

exposed (Davis and Milner, 2004; Petricoin and Liotta, 2003). Furthermore, nutrition research 

has traditionally concentrated on single issues (such as reducing risk of cardiovascular disease 

or cancer) in “at risk” individuals, whereas what we need to address is the question of all the 

possible effects of specific food components in a genetically heterogeneous population. This is 

especially important for determining unintended risk as well as unintended benefit (Elliot and 

Ong, 2002; Davis and Milner, 2004).  
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A promising field of research is clinical studies with cancer preventive proteins existing in milk 

(McIntosh, 1993; Tsuda et al., 2002), namely lactoferrin (LF). LF known for its inhibitory 

action on cell proliferation, as well as for its anti-inflammatory and antioxidant abilities, has 

been described to have anti-carcinogenic properties in several in vivo and in vitro studies 

(Baveye et al., 1999; Brock, 2002; Nuijens et al., 1996; Tsuda et al., 2000, 2002; Ward et al., 

2002; Ushida et al., 1999; Sekine et al., 1997a; Iigo et al., 1999; Wang et al., 2000; Matsuda et 

al., 2006; Pan et al., 2007). Nevertheless, it is still poorly understood if orally administrated LF 

is absorbed from the intestine, and if it exerts its protective effect at the site were it is expected, 

especially in the case of diseases occurring at sites distant from the gastrointestinal tract.  

Many food components in the form of biologically active proteins, peptides, lipids, and other 

substances survive the digestive processes and can enter the circulation. Thus, it is possible that 

absorbed intact peptides can exert biological activities during health and disease. Lactoferricin 

(LFCin) is a peptide fragment produced by acid-pepsin hydrolysis of LF. Although LFCin has 

attracted considerable interest because of its well established antimicrobial activity (Yamauchi 

et al., 1993), recent evidence indicates that orally or subcutaneously administrated LFCin also 

possesses potent in vivo activity against cancer cells, namely inhibiting metastasis, angiogenesis 

and tumour growth (Cho et al., 2004; Yoo et al., 1997a). However, the mechanisms by which 

LFCin exerts its action are still unknown.  

Regardless of LF reported potential, very few studies have covered an integrated and systematic 

approach to its effects as an anti-cancer agent on breast cancer (Benaissa et al., 2005; Teng et 

al., 2004; Miyamoto et al., 2005; Giancotti, 2006), although some high-throughput techniques, 

such as DNA microarrays and proteomics, have already been applied (Forozan et al., 2000; 

Perou et al., 1999; Shan et al., 2002) without a consistent application of bioinformatics tools for 

data interpretation. Therefore, it remains a large task to identify the mechanisms by which LF 

and its digested fragments exert their action and to discover innovative means to supply them to 

consumers. 
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This review aims to provide an overview of LF functions and mechanisms of interaction that 

could be exploited further in developing its potential therapeutic applications, namely in cancer 

disease prevention and/or treatment. 

 

LACTOFERRIN OCCURRENCE AND STRUCTURE 

LF was firstly recognised as a single-chain iron-binding protein (Groves, 1960; Johanson, 1960; 

Montreuil et al., 1960) and the names given to it, LF or lactotransferrin, firmly assigned it to the 

family of proteins known as the transferrins. The archetypal members of the transferrin family 

are LF, serum transferrin and ovotransferrin, with ovotransferrin being equivalent to avian 

serum transferrin, differing only in its glycosylation (Baker, 1994). These proteins are all 

glycoproteins that typically exhibit 50-70% pair wise sequence identity (Metz-Boutigue et al., 

1984; Pierce et al., 1991; Moore et al., 1997). Between LF and serum transferrins the sequence 

identity is around 60% and between LF from different species it is around 70% (Baker, 1994; 

Baker and Baker, 2005; Teng et al., 2002; Bowman et al., 1988), for example bovine LF (bLF) 

shares 69% amino acid identity with human LF (hLF) (Shah, 2000; Pierce et al., 1991). LF is 

predominantly found in the products of the exocrine glands located in the gateways of the 

digestive, respiratory and reproductive systems. Thus, LF can be found in the secreted milk, in 

tears, synovial fluids, saliva and seminal fluid (Lönnerdal, 2003). Table 1 shows a selection of 

the LF amounts reported from these various biological fluids. Additionally, LF can be found in 

blood and plasma LF is derived from neutrophils, which degranulate and synthesize the protein 

during inflammation (Britigan et al., 1994; Levay and Viljoen, 1995; Iyer and Lönnerdal, 1993; 

Van Snick et al., 1974). Some physico-chemical properties of LF are summarized in Table 2.  

Structurally, LF is folded into two lobes, representing its N- and C-terminal halves (Baker et al., 

1994), that show sequence homology with each other and can each reversibly bind one ferric ion 

along with a synergistic anion, usually bicarbonate (Baker, 1994; Steijns and Hooijdonk, 2000). 

In these respects it closely resembles transferrin, although its affinity for iron is somewhat 

higher, allowing iron to be retained at lower pH values (Mazurier and Spik, 1980; Peterson et 
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al., 2000). This gives LF a more potent iron withholding ability (Baker et al., 2002). The lobes 

are connected by a peptide of 10-15 residues, which in LF forms a 3-turn α-helix, but in 

transferrins is irregular and flexible. There are non-covalent interactions, mostly hydrophobic 

where the two lobes pack together (Haridas et al., 1995).  

 

LACTOFERRIN GENE EXPRESSION AND REGULATION 

In situ fluorescence hybridization indicated that the hLF gene is mapped in the region 3p21.3 

(Kim et al., 1998; Klintworth et al., 1997; Teng et al., 1987), organized in 17 exons and its total 

length is about 24.5 kb. A comparison of the structure of the hLF gene with that of other species 

revealed that it is more closely related to bLF than to murine LF (Furmanski et al., 1989; Geng 

et al., 1998). The positions of the introns are well matched with those of the bLF gene except 

only for exons 14 and 15. All the exon-intron boundaries of the gene conform to the GT/AG 

rule. Although LF is highly conserved among several species, its expression is both ubiquitous 

and species, tissue, and cell-type specific (Das et al., 1999; Furmanski et al., 1989; Grant et al., 

1999; Shigeta et al., 1996; Teng et al., 2002). It is differentially regulated through multiple 

signalling pathways such as steroid hormone, growth factor, and kinase cascade pathways (Das 

et al., 1997; Teng et al., 2002; Close et al., 1997). 

Expression of the LF gene is both constitutive and inducible. During the differentiation of 

myeloid cells, the LF gene responds to the developmental signals and is transcribed in the 

myelocyte and metamyelocyte stages (Berliner et al., 1995; Khanna-Gupta et al., 2000). While 

LF is constitutively expressed in the wet surface mucosa, LF is estrogen inducible in uterine 

tissue (Pentecost and Teng, 1987; Teng et al., 1986, 1989). Moreover, the presence of LF in the 

human reproductive tract has also been localized in the prostate and seminal vesicle of males 

(Goodman and Young, 1981; Wichmann et al., 1989) and is a major coat protein of human 

sperm (Hekman and Rumke, 1969).  

Since the LF gene promoter consists of multiple response elements for various signalling 

pathways such as the route for kinase cascade, the estrogenic compounds could act through 
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response elements other than ERE (estrogen response element) to activate the gene (Teng, 2006; 

Giancotti, 2006) . 

There are few studies on the regulation of LF gene expression other than that by hormones. In a 

cultured mouse mammary epithelial cell system, LF expression was induced at high cell density 

in the absence of exogenously added basement membranes or prolactin (Close et al., 1997), 

although an earlier study suggested that LF expression in a mouse mammary gland explants is 

stimulated by prolactin (Green and Pastewka, 1978). Close and co-workers (1997) demonstrated 

that LF expression in mammary epithelial cells is mediated by changes in cell shape and actin 

cytoskeleton. This observation offers an explanation for the suppression of LF expression in 

monolayer culture and in malignant tissues in which inappropriate cell shapes and cytoskeletal 

structures are manifested under these conditions. Multiple signalling pathways and diverse 

regulatory proteins regulate LF gene expression in either a positive or negative manner (Teng, 

2006). Although the mechanism of regulation is still unknown, the factors involved in LF gene 

expression could provide clues as to where LF is needed and under what conditions.   

 

LACTOFERRIN METABOLISM AND RECEPTORS 

LF is produced in neutrophils and stored in specific granules and possibly in tertiary granules 

(Iyer and Lönnerdal, 1993; Lönnerdal, 2003; Van Snick et al., 1974). The steroid-thyroid 

receptor super family works in concert to modulate LF gene expression supporting the 

hypothesis that LF levels are hormone dependent (Levay and Viljoen, 1995; Giancotti 2006; 

Teng, 2006). LF, unlike myeloperoxidase and some other granular products, is not synthesized 

as a larger precursor and was found to be unphosphorylated (Olsson et al., 1988). The 

neutrophil LF within the granules can either be secreted into the surrounding tissues or blood 

(Van Snick et al., 1974), or the granules can fuse with phagosomes (Maher et al., 1993). 

Secretion from polymorphonuclear cells into the circulation is dependent on degranulation 

factors, which in turn appear to be dependent on the activation of guanylate cyclase, cGMP and 

proteinkinase C (calcium dependent). This occurs in both aerobic and anaerobic conditions, is 
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unaffected by the presence of hydrogen sulphide and is stimulated by IL-8 and surface bound 

IgG (Maher et al., 1993; Kahler et al., 1988). Plasma LF levels generally increase in iron 

overload, inflammation, infectious diseases, and during tumour development, demonstrating a 

multifactor stimulatory mechanism for LF release from neutrophils (Levay and Viljoen, 1995, 

Bullen et al., 2006). 

LF removal from circulation appears to occur in one of two ways. First, LF can be removed 

from the circulation, as well as from the interstitial spaces, by what would appear to be receptor-

mediated endocytosis into phagocytic cells such as macrophages, monocytes and other cells of 

the RES (reticuloendothelial system), with subsequent transfer of the iron to ferritin (Olofsson 

et al., 1977; Van Snick et al., 1974, 1976). However, some controversy with regard to the cells 

involved in this way of LF removal still exists (Ismail and Brock, 1993). The alternative mode 

of LF removal would be its direct uptake by the liver by liver endothelial cells and hepatocytes 

(Hu et al., 1993). Bennet and Kokocinski (1979) showed that labelled LF was rapidly cleared 

from the circulation by the liver and spleen. Nevertheless, it is still not established whether LF, 

like transferrin, is recycled (Birgens et al., 1988). Further research is needed to fully understand 

LF metabolism in the human adult. The kidneys appear to play a role in LF clearance from the 

circulation since both LF and LF fragments were found in the urine of infants (Hutchens et al., 

1991). Both faecal and urinary elimination of LF, however, need further investigation because 

significant controversy still exists (Desai et al., 2007; Hirata et al., 2007; Yamauchi et al., 

2006).  

LF receptors have been identified in the gastrointestinal tract, on leukocytes and macrophages, 

platelets, and on bacteria. The surface of the LF molecule has several regions with high 

concentrations of positive charge responsible for one of the features that distinguishes LF from 

other transferrins and for some unique properties (Lampreave et al., 1990; Zakharova et al., 

2000; Baker, 1994; Van Berkel et al., 1997). The most striking region of positive charge 

comprises the N-terminus of the polypeptide chain (with the sequence GRRRRS in hLF) which 

projects from the protein surface and the adjacent C-terminus of helix 1 where residues 27-30 

have the sequence RKVR (Baker et al., 2002; Rochard et al., 1989). This region provides a site 
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for binding heparin (Van Berkel et al., 1997) and glycosaminoglycans (Mann et al., 1994) and is 

very likely the site that binds DNA. It may also be important for the ability of LF to bind to 

many cell types, possibly through binding to the negatively charged phospholipids groups of the 

cell membranes (Yu and Schryvers, 1993). The similarity of the N-terminal sequence 

(GRRRRS) to a common nuclear localisation signal sequence motif in eukaryotes could further 

explain the observation that LF can enter the nucleus (He and Furnmanski, 1995). Contiguous 

with the N-terminal patch is helix 1, which forms the main part of the bactericidal 

“lactoferricin” domain (Bellamy et al., 1992), which is characterised by its display of surface 

arginine residues. Despite their virtually identical fold, other transferrins do not share this 

bactericidal activity, presumably because they lack the necessary surface features. The other 

main concentration of positive charge is in the inter-lobe region, associated with the helix that 

joins the two lobes. This also appeals as a likely DNA binding region, both because of the 

charge and because of the cleft that is formed between the lobes, which could create a docking 

site.  

 

LACTOFERRIN FUNCTIONS 

Because of its close resemblance to transferrin, initial research on LF function was directed 

towards establishing functions related to its iron-binding properties, namely iron absorption, 

antimicrobial activity, and modulation of iron metabolism during inflammation. However, 

despite their structural similarities, LF differs from its serum counterpart in several important 

aspects including location and functional activity. LF has been proposed to play a role in 

intestinal iron absorption, regulation of cellular proliferation and differentiation, protection 

against microbial infection, anti-inflammatory responses, regulation of myelopoiesis, 

immunomodulation and cancer prevention (Pan et al., 2007; Ward et al., 2005; Naidu, 2002; 

Min and Krochta, 2005; Steijns and Van Hooijdonk, 2000; Baveye et al., 1999; Nuijens et al., 

1996; Levay and Viljoen, 1995; Iyer and Lönnerdal, 1993; Sanchez et al., 1992). Table 3 

summarizes some of the established physiological roles for LF and its mechanisms.  
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The reported antimicrobial activities (Santagati et al., 2005; Valenti et al., 1998; Levay and 

Viljoen, 1995) of LF highlight the many possible modes by which it can contribute to host 

protection against microbial infections at the mucosal surfaces, namely by growth inhibition as 

a result of iron scavenging (Nemet and Simonovits, 1985; Brock, 1980), disruption of the 

bacterial cell membranes (Yamauchi et al., 1993; Ellison and Giehl, 1991; Al-Nabulsi and 

Holley, 2006) or blocking of cell-virus interactions (Andersen et al., 2001; Ikeda et al., 2000; 

Siciliano et al., 1999; Giansanti et al., 2002).  

Regarding LF anti-inflammatory activity several mechanisms of action by blocking or inhibiting 

key mediators of the inflammatory response have also been proposed, such as binding to LPS 

(Miyazawa et al., 1991); inhibition of several cytokines (TNF-α and IL-1β) (Machnicki et al., 

1993; Crouch et al., 1992; Slater and Fletcher, 1987; Baveye et al., 1999) or binding to bacterial 

CpG motifs (Britigan et al., 2001). Moreover, LF was found to elevate the number and increase 

the activity of T and B lymphocytes and NK cells (Dhennin-Duthille et al., 2000; Goretzki and 

Mueller, 1998), stimulate the release of a number of cytokines (Hangoc et al., 1991), increase 

phagocytic activity and cytotoxicity of monocytes/macrophages (Birgens et al., 1984; Van 

Snick and Masson, 1976), accelerate the maturation of T and B cells, and elevate the expression 

of several types of cellular receptors (Adamik et al., 1998; Bennett and Davis, 1981; Frydecka et 

al., 2002; Zimecki et al., 1991, 1995). Many immunological mechanisms are critically 

dependent upon cell–cell interactions; the number and affinity of interactions between two cells 

can often affect the nature of downstream events. The ability of LF to bind to cell surfaces is 

likely to affect these parameters, and could thus give rise to altered immune responses (Legrand 

et al., 2005). 

 

Lactoferrin and iron metabolism 

Despite much research into the interactions of LF with cells and tissues, there is still no good 

evidence that it plays any role as an iron-transport molecule or indeed is involved in 

“mainstream” iron metabolism (Brock, 2002). Nevertheless, it is consensual that LF influences 

the iron availability (Levay and Viljoen, 1995).   
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Iron is an element necessary for many metabolic functions of cells including cell proliferation. 

Therefore, cells and organisms have developed elaborate mechanisms of uptake and storage of 

iron to facilitate the utilization of this element in metabolic processes and in cell proliferation 

and at the same time to keep concentrations of free iron at a minimum. In normal physiological 

processes, iron uptake, storage and utilization are carefully regulated. Cellular damage arising 

from free radicals, generated by available iron, is kept at a low level by cellular defences and 

DNA repair systems (Liehr and Jones, 2001).  

While iron supplementation and iron enrichment of foods is widely accepted, there have been 

persistent concerns about potential deleterious effects, because iron enhances colon and 

mammary carcinogenesis in rodents and because elevated body iron stores increase the risk of 

several cancers in humans (Weinberg, 1984, 1992; Selby and Friedman, 1988; Stevens et al., 

1988). There is also indirect, but substantial evidence supporting a role of iron metabolism in 

breast cancer. For instance, a six-fold higher tissue ferritin concentration has been measured in 

malignant carcinoma of the breast compared to normal or benign tissue (Weinstein et al., 1982; 

Elliott et al., 1993). Furthermore, transferrin and tumour cell transferrin receptor proteins were 

elevated in breast carcinoma compared to normal or benign cells (Faulk et al., 1980; Rossiello et 

al., 1984). 

All these data taken together indicate that iron enhances tumour development in humans. 

Certainly, proliferating tumour cells require iron and therefore tumour tissue may have 

increased transferrin receptor and ferritin levels.  

Current evidence suggests that while LF plays no major role in normal iron homeostasis (Ward 

et al., 2005), it may contribute to alterations in iron metabolism during infection or 

inflammation. In addition, the iron-binding function of LF may contribute to other physiological 

functions. 

 

Lactoferrin and human cancer  

Many functions have been described for LF over the years, but concerning its anti-tumour role 

and mechanisms involved there is still a big controversy on whether LF’s iron-binding activity 
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is implicated or not. Lonnerdal and Iyer (1995) state that it is likely to be the iron-binding 

properties of LF that contribute to its anti-tumour properties, since free iron may act as a 

mutagenic promoter by inducing oxidative damage to nucleic acid structure (Weinberg, 1984, 

1992,1996). It is thought that LF may bind iron locally in tissues, therefore reducing the risk of 

oxidant-induced tumourigenesis (Stevens et al., 1988). Moreover, estrogenic hormones appear 

to regulate the uptake of iron and its utilization in proliferative processes (Liehr and Jones, 

2001; Teng, 2006). Nevertheless, much research needs to be carried out in future to outline in 

more detail the regulation of iron metabolism by estrogen. Tumours may thus arise in cells, 

which are damaged by such processes and which at the same time are stimulated to proliferate 

by hormone receptor-mediated mechanisms. The possible contribution of iron to genetic lesions 

and to cell proliferation indicates that this element plays a crucial role in the development of 

estrogen-dependent neoplasms such as breast or uterine cancers (Weinstein et al., 1982; Elliot et 

al., 1993; Faulk et al., 1980; Rossiello et al., 1984). Therefore, such hormone responsive tumour 

development may be prevented by iron chelators (Ghio et al., 1992; Lund and Aust, 1990; 

Giancotti, 2006). Another possibility is the restriction of dietary iron intake and dietary iron 

supplements, or the diet supplementation with LF, as part of a strategy to reduce tumour 

development. Such studies need to be carried out in the future. 

On the other hand, several other mechanisms have been described for the LF anti-tumour role, 

such as regulation of NK cell activity (Damiens et al., 1998; Matsuda et al., 2006), modulation 

of expression of G1 proteins (Damiens et al., 1999; Xiao et al., 2004), inhibition of VEGF(165)-

mediated angiogenesis (Norrby et al., 2001), and enhancement of apoptosis (Yoo et al., 1997b; 

Sakai et al., 2006).  

Damiens and co-workers (1998) investigated LF involvement, at inflammatory concentrations, 

in cancer progression. It was reported that LF has a significant effect on NK cell cytotoxicity 

against haematopoietic and breast epithelial cell lines. By pre-treatment of either NK cells or 

target cells with LF, it was demonstrated that the LF effect is due both to a modulation of NK 

cell cytotoxicity and the target cell sensitivity to lysis. It was also shown that LF inhibits 

epithelial cell proliferation by blocking the cell cycle progression.  Furthermore, Damiens and 
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co-workers (1999) found that treatment of breast carcinoma cells MDA-MB-231 with hLF 

induced growth arrest at the G1 to S transition of the cell cycle by modulating the expression 

and the activity of key regulatory proteins. 

The effect of orally administered iron-unsaturated bLF on angiogenesis induced by VEGF165 

and IL-1-α in adult rats was assessed by Norrby and co-workers (2001). LF treatment was 

found to significantly inhibit the VEGF165-mediated response in terms of microvessel spatial 

extension, overall vascularity and incidence of crossover. Thus, the oral administration of LF 

thus appears to be of potential interest as an anti-angiogenesis treatment modality in the clinical 

setting.  

Additionally, the activity of bovine LFCin to induce apoptosis in THP-1 human monocytic 

leukemic cells was considered (Yoo et al., 1997b). The results achieved suggested that LFCin, 

but not LF itself, is able to induce apoptosis in THP-1 human monocytic tumour cells, and that 

its apoptosis-inducing activity is related to the pathway mediated by production of the 

intracellular reactive oxygen species (ROS) and activation of Ca2+/Mg2+-dependent 

endonucleases. 

Finally, there have also been a number of animal studies showing that LF can inhibit 

development of experimental tumours (Ushida et al., 1998; Tsuda et al., 2002).  

Although the results achieved by several researchers point to a clear anti-tumour role of LF 

(Benaissa et al., 2005), the mechanisms by which it is exerted are not fully understood, thus 

further work on this subject is warranted. 

 

LACTOFERRIN AS A CHEMOPREVENTIVE AGENT  

Several studies have been done to evaluate the effect of orally administrated LF in healthy or 

diseased human beings and animals (Tomita et al., 2002; Teraguchi et al., 2004). To the date, it 

has become evident that the oral administration of LF exerts various beneficial effects against 

diseases (Table 4), namely as a chemopreventive agent. For the practical use of 

chemopreventive agents, it is important to know whether their action is limited to only 
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inhibition. Therefore, use of chemopreventive agents should follow appropriate indications 

based on reliable information regarding beneficial preventive and adverse promoting or toxic 

effects (Tsuda et al., 2000). A thorough follow-up of patients or populations during and after the 

administration of chemopreventive agents is obviously necessary for effective assessment and 

conclusions to be drawn. For general public use, the agents require safety approval based on a 

long-term toxicity or carcinogenicity testing. Further development of appropriate in vivo animal 

assay systems to provide reliable information regarding organotropism and adverse effects is 

also critical for this purpose. To this regard, use of naturally occurring compounds is 

advantageous because most of them are ingested routinely as food components. Fiber, 

unsaturated fatty acid, carotenoids, flavonoids, phenolic compounds, especially polyphenols, 

and now bLF could be promising compounds in this respect. bLF as a food ingredient is thought 

to be safe, because there is a long dietary history of its use. People who live on dairy products 

must have ingested bLF for a long time, as raw milk and natural cheese contain high amounts of 

this protein. A human clinical study in chronic hepatitis C patients showed that high bLF oral 

doses, up to 7.2 g/body/day were well tolerated (Okada et al., 2002). 

Troost and co-workers (2001) demonstrated that over than 60% of administrated bLF survives 

the passage through adult human stomach and enters the small intestine in an intact form. On 

the other hand, analysis of the gastric contents revealed that LFCin B was formed at a molar 

concentration corresponding to 4.5% of ingested bLF (Kuwata et al., 1998a). When the animals 

were given free access to milk containing bLF at 40 mg/ml (482 μmol/l), the levels of bLF 

fragments containing the LFCin B region in the contents of the stomach, upper small intestine, 

and lower small intestine were approximately 200, 20 and 1 μmol/l, respectively (Kuwata et al., 

1998b; Kuwata et al., 2001). Some parts of ingested LF are likely to be not fully digested and to 

be present in the lower gastrointestinal tract. These intact bLF and partially digested bLF 

peptides, which retain biological activities, may exert various physiological effects in the 

digestive tract. 

Orally administrated LF exhibits several beneficial effects at sites other than the digestive tract. 

In the case of infants or adults with injury in the intestine, it is possible that ingested LF enters 
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the blood circulation and acts systemically. However, neither bLF nor functional bLF fragments 

(LFCin B-containing peptides and anti-bLF antibody-binding peptides) were at a level higher 

than the detection limit (1 mg/ml) detected in the portal blood of normal adult rats orally given 

bLF at a maximal dose of 5 g/kg (Wakabayashi et al., 2004). Therefore, LF-related molecules 

are not likely to be transported from the intestine into the circulation. Hence, it is rational to 

consider that oral administered bLF and its digested products act initially on the intestinal 

immune system and augment the protective immunity systemically (Teraguchi et al., 2004). 

The protective effect of LF against chemically induced carcinogenesis, tumour growth and/or 

metastasis have been demonstrated in an increasing number of animal model experiments, 

namely directed to specific organs, such as esophagus, tongue, lung, liver, colon and bladder 

(Bezault et al., 1994; Wang et al., 2000; Shimamura et al., 2004; Yoo et al., 1997a; Iigo et al., 

1999; Tsuda et al., 2002; Ushida et al., 1999; Tanaka et al., 2000; Fujita et al., 2002; Masuda et 

al., 2000; Sekine et al., 1997a; Varadhachary et al., 2004; Kuhara et al., 2000). Table 5 

summarizes the effectiveness of orally administrated LF–related compounds on cancer. Despite 

the evidence that LF possesses chemopreventive activity, little is known about (i) its anti-cancer 

activity against established tumours; (ii) its ability to potentiate chemotherapy, as described with 

other immunotherapeutics; or (iii) the immune mechanisms by which its anti-tumour activity is 

mediated. Moreover, no human clinical studies on the potential chemopreventive effect have 

been done so far.  

As discussed above, it appears that like the other biological functions of LF, its anti-tumour role 

is complex (Ward et al., 2005).  

Several researchers suggested a direct effect of LF on tumour cell growth based on the fact that 

both LF and a splice variant are downregulated or absent in many cancer cell lines and in 

experimental tumours (Campbell et al., 1992; Panella et al., 1991; Penco et al., 1999; Teng et 

al., 2004; Benaissa et al., 2005; Siebert et al., 1997; Breton et al., 2004; Rossiello et al., 1984). 

Furthermore, Damiens and co-workers (1999) found that treatment of human breast carcinoma 

cells MDA-MB-231 with hLF induced growth arrest at the G1 to S transition of the cell cycle 

by modulating the expression and the activity of key G1 regulatory proteins, including the Cdk 
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inhibitors p21 and p27, which may be mediated in part by modulation of the Akt and MAPK 

pathways. The reported effects of LF occur through a p53-independent mechanism both in 

MDA-MB-231 cells and other epithelial cell lines such as HBL-100, MCF-7, and HT-29.The 

same conclusions were achieved in another study using head and neck cell lines (Xiao et al., 

2004). In vivo studies also suggest that the inhibition of tumour cell growth by LF may be 

related to the ability of this protein to induce apoptosis of cancer cells by activating the FAS 

signalling pathway in cancerous cells (Fujita et al., 2004a, b). Fujita and co-workers (2004a) 

studied the effect of LF on the gene expression of 10 apoptosis-related molecules in colon 

mucosa of azoxymethane (AOM)-treated rats during early and late stages of colon 

carcinogenesis and found that FAS and pro-apoptotic BCL-2 members participate in the LF 

action and may contribute to suppressive effects on tumour development in the rat colon. 

Additionally, they studied (Fujita et al., 2004b) the influence of bLF on FAS-mediated 

apoptosis with regard to expression of FAS, activation of caspase-8 and caspase-3, and DNA 

fragmentation in the colon mucosa of AOM-treated rats and the results confirmed the 

suggestion that apoptosis caused by elevated expression of FAS is involved in chemoprevention 

by LF in colon carcinogenesis. 

LF was also found to stimulate the production and activation of several immune cells, including 

lymphocytes and NK cells (Legrand et al., 2004; Horwitz et al., 1984; Shau et al., 1992), in 

addition to increasing the target cell sensitivity to NK lysis (Damiens et al., 1998), thus 

immunomodulation may be critical to the anti-tumour role of LF. Damiens and co-workers 

(1998) investigated LF involvement, at inflammatory concentrations, in cancer progression. 

They reported that LF has a significant effect on NK cell cytotoxicity against haematopoietic 

and breast epithelial cell lines. By pre-treatment of either NK cells or target cells with LF, it was 

demonstrated that the LF effect is due both to a modulation of NK cell cytotoxicity and the 

target cell sensitivity to lysis. Moreover, LF was found to exert an effect on target cells 

depending on the cell phenotype, i.e. it does not modify  the susceptibility to lysis of 

haematopoietic cells such as Jurkat and K-562 cells, but does significantly increase that of the 
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breast and colon epithelial cells. Ultimately, it was demonstrated that LF inhibits epithelial cell 

proliferation by blocking the cell cycle progression. 

Marked inhibition of tumour growth and reduced lung colonization by B16-F10 melanoma 

experimental metastasis were found in mice treated with hLF injected intraperitoneal as a result 

of an enhanced NK cell activity (Bezault et al., 1994). Moreover, it has been shown that the 

protective effect of oral administration of LF in several rodent cancer models is associated with 

enhancement of the local intestinal mucosal immune response. In this regard, upregulation 

and/or enhanced activation of NK cells, CD4+ T lymphocytes and CD8+ T-lymphocytes were 

observed upon LF administration (Wang et al., 2000; Iigo et al., 1999; Kuhara et al., 2000). A 

low absorption of LF from the intestine was reported, nevertheless an enhancement of the 

systemic immune response was also observed.  

Some authors proposed that the mechanism implicated in the protective effect of LF against 

cancer cell development is mediated by IL-18 (Reddy, 2004), as LF was found to strongly 

regulate IL-18 expression in intestinal epithelium (Iigo et al., 2004; Varadhachary et al., 2004; 

Kuhara et al., 2000). Finally, LF was also shown to inhibit tumour-initiated angiogenesis in 

vitro and in vivo, which may relate to the anti-angiogenic properties of IL-18 (Shimamura et al., 

2004; Yoo et al., 1997a; Cao et al. 1999; Norrby, 2004), LF was found to participate as a 

regulator of angiogenesis, possibly by blocking endothelial function and inducing IL-18 

production.  

 

PRODUCTION OF LACTOFERRIN AND ITS DERIVATIVES 

Many methods of isolating LF from milk have been reported (Groves, 1960; Johansson, 1969; 

Law and Reiter, 1977; Wakabayashi et al., 2006), but it is quite difficult to scale up an 

experimental method to achieve industrial production. There are many problems involved in the 

manufacture of high-purity LF, including the need for mass production, reuse of the residual 

milk materials after isolation of LF, a comparatively simple manufacturing process, and high 

levels of stability and sanitation of the plant equipment. Nowadays, high-purity LF is obtainable 
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on a laboratory scale using gel filtration chromatography (Al-Mashikhi and Nakai, 1987), 

immobilized monoclonal antibodies (Kawakami et al., 1987), chelating chromatography (Al-

Mashikhi et al., 1988), hydrophobic interaction chromatography, Cibacron Blue affinity 

chromatography (Shimazaki and Nishio, 1991), immunoaffinity chromatography (Noppe et al. 

2006),  carboxymethyl cation exchange chromatography (Yoshida and Ye, 1991; Elagamy et al., 

1996), cation exchange membranes (Chiu and Etzel, 1997), adsorptive membrane 

chromatography (Plate et al., 2006), simulated moving bed technology (Andersson and 

Mattiasson 2006), semi-batch foaming process (Saleh and Hossain, 2001), and microfiltration 

affinity purification (Chen and Wang, 1991). However, none of these techniques has been used 

at commercial scales because of high processing costs (Zydney, 1998). 

Recently, an approach of industrial isolation and purification of bovine LF (approximately 20-

30 ton annually worldwide) from cheese whey and skim milk was reported (Tamura, 2004). The 

concentration of LF in cheese whey is roughly 100 mg/L and about 100-400 mg/l in bovine 

milk. Since LF exists as a cationic protein in milk and whey, it is readily adsorbed to a cation-

exchange resin and then eluted using salt solutions. The eluted crude LF is then desalted and 

concentrated using ultrafiltration and diafiltration membranes, after which it is subjected to 

pasteurization. Purified LF powder with a purity of 95% or higher is finally obtained by freeze-

drying (Tomita et al., 2002). In an alternative process, microfiltration and spray-drying are 

performed instead of pasteurization and freeze-drying, respectively. While making efforts to 

develop a practical method for the pasteurization of LF, Abe and co-workers (1991) found that 

LF is stable against heat treatment under acidic conditions, while heat treatment at a neutral pH 

causes denaturation of the protein. It is considered that heating at a pH above 4 and to a 

temperature of 90–100°C for 5–10 min as well as the UHT method are suitable and practical 

methods for the pasteurization of LF. This pasteurization process was patented, and it has been 

applied to the manufacture of a wide variety of commercial products containing LF. 

Additionally, LF was also isolated from bovine colostrum by ultrafiltration and then purified 

with a fast flow strong cation exchange chromatography system in a production scale (Lu et al., 

2007). Processes involving chromatography have some limitations at industrial scale such as 
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high cost and relatively low throughputs. Membrane filtration could represent an interesting 

alternative to chromatography for LF fractionation as membrane processes are already well 

integrated in the dairy industry. However, fouling and poor selectivity in protein separation have 

been associated with such membrane filtration processes. Different strategies have been 

investigated to overcome limitations associated with LF separation by membrane filtration 

including variation of the hydrodynamic parameters (Chilukuri et al., 2001), modification of the 

physico-chemical environment (Chaufer et al., 2000; Rabiller-Baudry et al., 2001; Brisson et al., 

2007), use of different membrane types (Mehra and Donnelly, 1993; Ulber et al., 2001) and 

alteration of the membrane surface properties (Rabiller-Baudry et al., 2001).     

Regarding LF derivatives, a pepsin hydrolysate of LF was produced by treatment with porcine 

pepsin under acidic conditions (Saito et al. 1991). After hydrolysis has been completed, pepsin 

was inactivated by heat treatment. Then the reaction mixture was filtered and concentrated by 

reverse osmosis. Finally, the hydrolysate of LF was obtained by pasteurization and freeze-

drying for use in infant formula. In addition, lactoferricin can be purified from this LF 

hydrolysate by two-step hydrophobic chromatography (Bellamy et al., 1992). The peptide is 

eluted with an acidic buffer, the eluted solution is concentrated by reverse osmosis, and finally, 

lactoferricin is produced by freeze-drying as a powder with over 95% purity. This production 

process for lactoferricin has also been patented.  The toxicity of purified LF was judged to be 

extremely low in safety tests. From the results of single-dose, 4-week, and 13-week oral toxicity 

tests, the dose of LF that caused no adverse effects was found to be 2000 mg./kg/day for rats of 

both sexes (Yamauchi et al., 2000a). In addition, LF did not exhibit any mutagenic potential in a 

bacterial reverse-mutation test (Yamauchi et al. 2000b). Based on the results of these safety tests 

and the results of clinical studies, purified LF is considered to be a highly safe food additive. 

Along with increased recognition of the biological effects of LF, as described below, the 

applications of LF have been expanded. LF-supplemented infant formula, follow-up milk, skim 

milk, yogurt, chewing gum, and nutritional supplements are being marketed. In addition to 

foods, LF is also used in skin care cosmetics, in special therapeutic diets for the relief of 

inflammation in dogs and cats, and in aquaculture feed (Wakabayashi et al., 2006). 
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CONCLUSION 

Evidence that diet is a key environmental factor affecting the incidence of many chronic 

diseases is overwhelming. Indeed, several food derived compounds we eat are among the most 

promising chemopreventive agents being evaluated. To this regard, the use of naturally 

occurring compounds, like for instance LF, is advantageous because most of them are ingested 

routinely as food components and therefore they are safe. Nevertheless, the approval of a new 

chemopreventive agent requires the development of appropriate in vivo animal assay systems to 

provide reliable information regarding organotropism and adverse effects.  

A host of interesting features of LF, namely its role on iron homeostasis, organ morphogenesis 

and host defence against infection, inflammation and cancer, have led to a wide range of 

potential applications in the medical field. Distinct mechanisms of action have been described 

for each LF’s functions which possibly work in concert to potentiate its biological effect in vivo. 

LF presents the capacity to bind to a broad variety of epithelial and immune cells, which 

probably confers this protein the ability to regulate cellular signalling pathways and 

consequently exert its protective functions, for example against cancer. Nevertheless, further 

investigations on the cellular localization and downstream molecular events that follow LF 

engagement with these receptors are needed. The protective effect of LF against chemically 

induced carcinogenesis, tumour growth and/or metastasis have been demonstrated in an 

increasing number of animal model studies, therefore suggesting its great potential therapeutic 

use in cancer disease prevention and/or treatment. However, much available data has been 

derived from studies where high doses of non homologous LF of unknown purity were used and 

to which the tissues in our bodies may never be exposed, therefore all extrapolations require a 

careful interpretation of the results.  

Finally, despite the evidence that LF possesses chemopreventive activity, its anti-cancer activity 

against established tumours, ability to potentiate chemotherapy as described with other 
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immunotherapeutics, and the immune mechanisms by which its anti-tumour activity is 

mediated, is still largely unknown. 

 

ACKNOWLEDGEMENT 

The F.C.T. (Fundação para a Ciência e a Tecnologia) provided financial support for L. 

Rodrigues through a post doctoral research grant SFRH/BPD/26064/2005. 

 

REFERENCES 

Abe, H., Saito, H., Miyakawa, H., Tamura, Y., Shimamura, S., Nagao, E., and Tomita, M. 1991. Heat 
stability of bovine lactoferrin at acidic pH. J. Dairy Sci. 74: 65–71. 

Adamik, B., Zimecki, M., Wlaszczyk, A., Berezowicz, P. and Kubler, A. 1998 Lactoferrin effects on the 
in vitro immune response in critically ill patients. Arch. Immunol. Ther. Exp. (Warsz). 46:169-176. 

Al-Mashikhi, S.A. and Nakai, S. 1987. Isolation of bovine immunoglobulins and lactoferrin from whey 
proteins by gel filtration technique. J. Dairy Sci. 70: 2486-2492. 

Al-Mashikhi, S.A., Li-Chan, E. and Nakai, S. 1988. Separation of immunoglobulins and lactoferrin from 
cheese whey by chelating chromatography. J. Dairy Sci. 71: 1747-1755. 

Al-Nabulsi, A.A. and Holley, R.A. 2006. Enhancing the antimicrobial effects of bovine lactoferrin against 
Eschericia coli O157:H7 by cation chelation, NaCl and temperature. J. Appl. Microbiol. 100: 244-
255. 

Ammendollia, M.G., Pietrantoni, A., Tinari, A., Valenti, P. and Superti, F. 2007. Bovine lactoferrin 
inhibits echovirus endocytic pathway by interacting with viral structural polypeptides. Antiviral Res. 
73 (3): 151-160. 

Andersen, J.H., Osbakk, S.A., Vorland, L.H., Traavik, T. and Gutteberg, T.J. 2001 Lactoferrin and cyclic 
lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res. 
51:141-149. 

Andersson, J. and Mattiasson, B. 2006. Separation of lactoperoxidase and lactoferrin from whey protein 
concentrate. J Chromatogr A 1107 (1-2): 88-95. 

Babina, S.E., Tuzikov, F.V., Tuzikova, N.A., Buneva, V.N. and Nevinskii, G.A. 2006. The effect of 
nucleotides on oligomeric state of human lactoferrin. Mol. Biol. (Mosk.) 40: 137-149. 

Baker, E.N. 1994 Structure and reactivity of transferrins. Adv. Inorg. Chem. 41: 389-463. 
Baker, E.N. and Baker, H.M. 2005 Molecular structure, binding properties and dynamics of lactoferrin. 

Cell. Mol. Life Sci. 62:2531-2539. 
Baker, E.N., Baker, H.M. and Kidd, R.D. 2002 Lactoferrin and transferrin: Functional variations on a 

common structural framework. Biochem. Cell Biol. 80:27-34. 
Baumrucker, C.R., Schanbacher, F., Shang, Y. and Green, M.H. 2006. Lactoferrin interaction with 

retinoid signalling: cell growth and apoptosis in mammary cells. Dom. Animal End. 30 (4): 289-303. 
Baveye, S., Elass, E., Mazurier, J., Spik, G. and Legrand, D. 1999 Lactoferrin: a multifunctional 

glycoprotein involved in the modulation of the inflammatory process. Clin. Chem. Lab. Med. 37:281- 
286.  

Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. and Tomita, M. 1992 
Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta 1121:130-136. 

Benaissa, M., Peyrat, J.P., Hornez, L., Mariller, C., Mazurier, J. and Pierce, A. 2005 Expression and 
prognostic value of lactoferrin mRNA isoforms in human breast cancer. Int. J. Cancer 114:299–306. 

Bennett, R.M. and Davis, J. 1981 Lactoferrin binding to human peripheral blood cells: an interaction with 
a B-enriched population of lymphocytes and a subpopulation of adherent mononuclear cells. J. 
Immunol. 127:1211-1216. 

Berliner, N., Hsing, A., Graubert, T., Sigurdsson, F., Zain, M., Bruno, E. and Hoffman, R. 1995 
Granulocyte colony-stimulating factor induction of normal human bone marrow progenitors results 
in neutrophil-specific gene expression. Blood 85:799-803. 



 22

Berlutti, F., Schippa, S., Morea, C., Sarli, S., Perfetto, B., Donnarumma, G. and Valenti, P. 2006. 
Lactoferrin downregulates pro-inflammatory cytokines upexpressed in intestinal epithelial cells 
infected with invasive or non-invasive Escherichia coli strains. Biochem. Cell Biol. 84: 351-357.   

Bezault, J., Bhimani, R., Wiprovnick, J. and Furmanski, P. 1994 Human lactoferrin inhibits growth of 
solid tumors and development of experimental metastases in mice. Cancer Res. 54:2310-2312.  

Birgens, H.S., Karle, H., Hansen, N.E. and Ostergaard Kristensen, L. 1984 Lactoferrin receptors in 
normal and leukaemic human blood cells. Scand. J. Haematol. 33:275-280. 

Birgens, H.S., Kristensen, L.O., Borregaard, N., Karle, H. and Hansen, N.E. 1988 Lactoferrin-mediated 
transfer of iron to intracellular ferritin in human monocytes. Eur. J. Haematol. 41:52-57. 

Bowman, B.H., Yang, F.M. and Adrian, G.S. 1988 Transferrin: evolution and genetic regulation of 
expression. Adv. Genet. 25:1-38. 

Breton, M., Mariller, C., Benaissa, M., Caillaux, K., Browaeys, E., Masson, M., Vilain, J.-P., Mazurier, J. 
and Pierce, A. 2004 Expression of delta-lactoferrin induces cell cycle arrest. Biometals 17:325-329. 

Brisson, G., Britten, M. and Pouliot, Y. 2007. Electrically-enhanced crossflow microfiltration for 
separation of lactoferrin from whey protein mixtures. J. Membrane Sci. 297:206-216. 

Britigan, B. E., Serody, J. S. and Cohen, M. S. 1994 The role of lactoferrin as an anti-inflammatory 
molecule. Adv. Exp. Med. Biol. 357:143-156. 

Britigan, B.E., Lewis, T.S., Waldschmidt, M., McCormick, M.L. and Krieg, A.M. 2001 Lactoferrin binds 
CpG-containing oligonucleotides and inhibits their immunostimulatory effects on human B cells. J. 
Immunol. 167:2921-2928. 

Brock, J.H. 1980 Lactoferrin in human milk: its role in iron absorption and protection against enteric 
infection in the newborn infant. Arch. Dis. Child. 55:417-421. 

Brock, J.H. 2002 The physiology of lactoferrin. Biochem. Cell Biol. 80:1-6. 
Bullen, J.J., Rogers, H.J., Spalding, P.B. and Ward, C.G. 2006. Natural resistance, iron and infection: a 

challenge for clinical medicine. J. Med. Microbiol. 55: 251-258. 
Campbell, T., Skilton, R.A., Coombes, R.C., Shousha, S., Graham, M.D. and Luqmani, Y.A. 1992 

Isolation of a lactoferrin cDNA clone and its expression in human breast cancer. Br. J. Cancer 65:19-
26. 

Cao, R., Farnebo, J., Kurimoto, M. and Cao, Y. 1999 Interleukin-18 acts as an angiogenesis and tumor 
suppressor. FASEB J. 13:2195-2202. 

Castellino, F.J., Fish, W.W. and Mann, K.G. 1970 Strutural studies on bovine lactoferrin. J. Biol. Chem. 
245:4269-4275. 

Chaufer, B., Rabiller-Baudry, M., Lucas, D., Michel, F. and Timmer, M. 2000. Selective extraction of 
lysozyme from a mixture with lactoferrin by ultrafiltration. Role of the physico-chemical 
environment, Lait 80: 197–203. 

Chen, J.P. and Wang, C.H. 1991. Microfiltration affinity purification of lactoferrin and immunoglobulins 
from cheese whey. J. Food Sci. 56:701-706. 

Chilukuri, V.V.S., Marshall, A.D., Munro, P.A. and Singh, H. 2001. Effect of sodium dodecyl sulphate 
and cross-flow velocity on membrane fouling during cross-flow microfiltration of lactoferrin 
solutions. Chem. Eng. Process 40: 321–328. 

Chiu, C.K. and Etzel, M.R. 1997. Fractionation of lactoperoxidase and lactoferrin from bovine whey 
using a cation exchange membrane. J. Food Sci. 62: 996-1000. 

Cho E, Smith-Warner SA, Spiegelman D, Beeson, W.L., van den Brandt, P.A.,  Colditz, G.A.,  Folsom, 
A.R., Fraser, G.E., Freudenheim, J.L., Giovannucci, E., Goldbohm, R.A., Graham, S., Miller, A.B., 
Pietinen, P., Potter, J.D., Rohan, T.E., Terry, P., Toniolo, P.,  Virtanen, M.J., Willett, W.C., Wolk, 
A., Wu, K., Yaun, S-S., Zeleniuch-Jacquotte, A. and Hunter, D.J. 2004  Dairy foods, calcium, and 
colorectal cancer: a pooled analysis of 10 cohort studies. J. Natl. Cancer Inst. 96:1015-1022. 

Close, M.J., Howlett, A.R., Roskelley, C.D., Desprez, P.Y., Bailey, N., Rowning, B., Teng, C.T., 
Stampfer, M.R. and Yaswen, P. 1997 Lactoferrin expression in mammary epithelial cells is mediated 
by changes in cell shape and actin cytoskeleton. J. Cell. Sci. 110:2861-2871. 

Crouch, S.P., Slater, K.J. and Fletcher, J. 1992 Regulation of cytokine release from mononuclear cells by 
the iron-binding protein lactoferrin. Blood 80:235-240. 

Damiens, E., El Yazidi, I., Mazurier, J., Duthille, I., Spik, G. and Boilly-Marer, Y. 1999 Lactoferrin 
inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells. J. Cell. 
Biochem. 74:486-498. 

Damiens, E., Mazurier, J., El Yazidi, I., Masson, M., Duthille, I., Spik, G. and Boilly-Marer, Y. 1998 
Effects of human lactoferrin on NK cell cytotoxicity against haematopoietic and epithelial tumour 
cells. Biochim. Biophys. Acta 1402:277-287. 

Das, P., Tiwari, G., Rupa, P. and Garg, L.C. 1999 Molecular cloning and sequence analysis of bubaline 
lactoferrin promoter. DNA Seq. 10:97-99. 



 23

Das, S.K., Taylor, J.A., Korach, K.S., Paria, B.C., Dey, S.K. and Lubahn, D.B. 1997 Estrogenic responses 
in estrogen receptoralpha deficient mice reveal a distinct estrogen signalling pathway. Proc. Natl. 
Acad. Sci. U.S.A. 94:12786-12791. 

Davis, C. and Milner, J. 2004 Frontiers in nutrigenomics, proteomics, metabolomics and cancer 
prevention. Mutat. Res. 551:51-64. 

Desai, D., Faubion, W.A. and Sandborn, W.J. 2007. Biological activity markers in inflammatory bowel 
disease. Aliment. Pharmacol. Ther. 25: 247-255. 

Dhennin-Duthille, I., Masson, M., Damiens, E., Fillebeen, C., Spik, G. and Mazurier, J. 2000 Lactoferrin 
upregulates the expression of CD4 antigen through the stimulation of the mitogen activated protein 
kinase in the human lymphoblastic T Jurkat cell line. J. Cell. Biochem. 79:583-593. 

Di Mario, F., Aragona, G., Dal Bo, N., Cavestro, G.M., Cavallaro, L., Iori, V., Comparato, G., Leandro, 
G., Pilotto, A. and Franze, A. 2003 Use of bovine lactoferrin for Helicobacter pylori eradication. 
Dig. Liver Dis. 35:706–710. 

Elagamy, E.I., Ruppanner, R., Ismail, A., Champagne, C.P. and Assaf, R. 1996. Purification and 
characterization  of lactoferrin, lactoperoxidase, lysozyme and immunoglobulins from camel’s milk. 
Int. Dairy J. 6: 129-145. 

Elliot, R. and Ong, T. 2002 Nutritional genomics. Br. Med. J. 324:1438-1442. 
Elliott, R.L., Elliott, M.C., Wang, F. and Head, J.F. 1993 Breast carcinoma and the role of iron 

metabolism. A cytochemical, tissue culture, and ultrastructural study. Ann. N. Y. Acad. Sci. 698:159-
166. 

Ellison, R.T. III. and Giehl, T.J. 1991 Killing of Gram-negative bacteria by lactoferrin and lysozyme. J. 
Clin. Invest. 88:1080-1091. 

Faulk, W.P., Hsi, B.L. and Stevens, P.J. 1980 Transferrin and transferrin receptors in carcinoma of the 
breast. Lancet 2:390-392. 

Fischer, R., Debbabi, H., Dubarry, M., Boyaka, P. and Tome, D. 2006. Regulation of physiological and 
pathological Th1 and Th2 responses by lactoferrin. Biochem. Cell Biol. 84: 303-311. 

Forozan, F., Mahlamaki, E. H., Monni, O., Chen, Y., Veldman, R., Jiang, Y., Gooden, G.C., Ethier, S.P., 
Kallioniemi, A. and Kallioniemi, O.- 2000 Comparative Genomic Hybridization Analysis of 38 
Breast Cancer Cell Lines: A Basis for Interpreting Complementary DNA Microarray Data1. Cancer 
Res. 60: 4519-4525. 

Frydecka, I., Zimecki, M., Bocko, D., Kosmaczewska, A., Teodorowska, R., Ciszak, L., Kruzel, M., 
Wlodarska-Polinska, J., Kuliczkowski, K. and Kornafel, J. 2002 Lactoferrin-induced up-regulation of 
zeta chain expression in peripheral blood T lymphocytes from cervical cancer patients. Anticancer 
Res. 22:1897-1901. 

Fujita, K., Matsuda, E., Sekine, K., Iigo, M. and Tsuda H. 2004a Lactoferrin modifies apoptosis-related 
gene expression in the colon of the azoxymethane-treated rat. Cancer Lett. 213:21-29. 

Fujita, K., Matsuda, E., Sekine, K., Iigo, M. and Tsuda, H. 2004b Lactoferrin enhances Fas expression 
and apoptosis in the colon mucosa of azoxymethane-treated rats. Carcinogenesis 25:1961-1966. 

Fujita, K., Ohnishi, T., Sekine, K., Iigo, M. and Tsuda H. 2002 Down-regulation of 2-amino-3,8-
dimethylimidazo[4,5-f] quinoxaline (MeIQx)-induced CYP1A2 expression is associated with bovine 
lactoferrin inhibition of MeIQx-induced liver and colon carcinogenesis in rats. Jpn. J. Cancer Res. 
93:616-625. 

Furmanski, P., Li, Z.P., Fortuna, M.B., Swamy, C.V. and Das, M.R. 1989 Multiple molecular forms of 
human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack 
iron-binding capacity. J. Exp. Med. 170:415-429. 

Geng, K., Li, Y., Bezault, J. and Furmanski, P. 1998 Induction of lactoferrin expression in murine ES 
cells by retinoic acid and estrogen. Exp. Cell Res. 245:214-220. 

Ghio, A.J., Zhang, J. and Piantadosi, C.A. 1992 Generation of hydroxyl radical by crocidolite asbestos is 
proportional to surface [Fe3+]. Arch. Biochem. Biophys. 298:646-650.  

Giancotti, V. 2006. Breast cancer markers. Cancer Lett. 243: 145-159. 
Giansanti, F., Rossi, P., Massucci, M.T., Botti, D., Antonini, G., Valenti, P. and Seganti, L. 2002 

Antiviral activity of ovotransferrin discloses an evolutionary strategy for the defensive activites of 
lactoferrin. Biochem. Cell Biol. 80:125-130. 

Gill, H.S. and Cross, M.L. 2000 Anticancer properties of bovine milk. Br. J. Nutr. 84:S161-S166.  
Giuffre, G., Arena, F., Scarfi, R., Simone, A., Todaro, P. and Tuccari, G. 2006. Lactoferrin 

immunoexpression in endometrial carcinomas: relationships with sex steroid hormone receptors (ER 
and PR), proliferation indices (Ki-67 and AgNOR) and survival. Oncology Rep. 16: 257-263. 

Goodman, S.A. and Young, L.G. 1981 Immunological identification of lactoferrin as a shared antigen on 
radioiodinated human sperm surface and in radioiodinated human seminal plasma. J. Reprod. 
Immunol. 3:99-108. 



 24

Goretzki, L. and Mueller, B.M. 1998 Low-density-lipoprotein receptor-related protein (LRP) interacts 
with a GTP-binding protein. Biochem. J. 336:381-386. 

Grant, D.J., Shi, H. and Teng, C.T. 1999 Tissue and site-specific methylation correlates with expression 
of the mouse lactoferrin gene. J. Mol. Endocrinol. 23:45-55. 

Green, M.R. and Pastewka, J.V. 1978 Lactoferrin is a marker for prolactin response in mouse mammary 
explants. Endocrinology 103:151-103. 

Groves, M.L. 1960. The isolation of a red protein from milk. J. Am. Chem. Soc. 82: 3345-3350. 
Hangoc, G., Falkenburg, J.H.F. and Broxmeyer, H.E. 1991 Influence of T-lymphocytes and lactoferrin on 

the survival-promoting effects of IL-1 and IL-6 on human bone marrow granulocyte-macrophage and 
erythroid progenitor cells. Exp. Hematol. 19:697-703. 

Hekman, A. and Rumke, P. 1969 The antigens of human seminal plasma with special reference to 
lactoferrin as a spermatozoacoating antigen. Fertil. Steril. 20:312-323. 

Hirata, I., Hoshimoto, M., Saito, O., Kayazawa, M., Nishikawa, T., Murano, M., Toshina, K., Wang, F.-
Y. and Matsuse, R. 2007. Usefulness of faecal lactoferrin and haemoglobin in diagnosis of colorectal 
diseases. World J. Gastroenterol. 13(10): 1569-1574. 

Horwitz, D.A., Bakke, A.C., Abo, W. and Nishiya, K. 1984 Monocyte and NK cell cytotoxic activity in 
human adherent cell preparations: discriminating effects of interferon and lactoferrin. J. Immunol. 
132:2370-2374. 

Hu, W.L., Regoeczi, E., Chindemi, P.A. and Bolyos, M. 1993 Lactoferrin interferes with uptake of iron 
from transferrin and asialotransferrin by the rat liver. Am. J. Physiol. 264:112-117. 

Hutchens, T.W., Henry, J.F., Yip, T.T., Hachey, D.L., Schanler, R.J., Motil, K.J. and Garza, C. 1991 
Origin of intact lactoferrin and its DNA binding fragments found in the urine of human milk-fed 
preterm infants. Evaluation by stable isotopic enrichment. Pediatr. Res. 29:243-250. 

Iigo, M., Kuhara, T., Uchida, Y., Sekine, K., Moore, M.A. and Tsuda, H. 1999 Inhibitory effects of 
bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin. Exp. Metastasis 17:35-40. 

Iigo, M., Shimamura, M., Matsuda, E., Fujita, K., Nomoto, H., Satoh, J., Kojima, S, Alexander, D.B., 
Moore, M.A. and Tsuda, H. 2004 Orally administered bovine lactoferrin induces caspase-1 and 
interleukin-18 in the mouse intestinal mucosa: a possible explanation for inhibition of carcinogenesis 
and metastasis. Cytokine 25:36-44. 

Ikeda, M., Nozaki, A., Sugiyama, K., Tanaka, T., Naganuma, A., Tanaka, K., Sekihara, H., Shimotohno, 
K., Saito, M. and Kato, N. 2000 Characterization of antiviral activity of lactoferrin against hepatitis C 
virus infection in human cultured cells. Virus Res. 66:51-63. 

Ismail, M. and Brock, J.H. 1993 Binding of lactoferrin and transferrin to the human promonocytic cell 
line U937. J. Biol. Chem. 268:21618-21625. 

Iwasa, M., Kaito, M., Ikoma, J., Takeo, M., Imoto, I., Adachi, Y., Yamauchi, K., Koizum, R. and 
Teraguchi, S. 2002 Lactoferrin inhibits hepatitis C virus viremia in chronic hepatitis C patients with 
high viral loads and HGV genotype 1b. Am. J. Gastroenterol. 97:766–767. 

Iyer, S. and Lonnerdal, B. 1993 Lactoferrin, lactoferrin receptors and iron metabolism. Eur. J. Clin. Nutr. 
47:232-241. 

Johanson, B. 1960 Isolation of an iron-containing red protein from human milk. Acta Chem. Scand. 
14:510-512. 

Johansson, B.G. 1969. Isolation of crystalline lactoferrin from human milk. Acta Chem. Scand. 23:683-
684. 

Jordan, V.C. and Morrow, M. 1999 Tamoxifen, raloxifene and the prevention of breast cancer. Endocr. 
Rev. 20:253-278.  

Kahler, S., Christophers, E. and Schroder, J.M. 1988 Plasma lactoferrin reflects neutrophil activation in 
psoriasis. Br. J. Dermatol. 119:289-293. 

Katsuaki, T. 2006. Functionalities and usefulness of lactoferrins (2) Clinical application of lactoferrin for 
the treatment of chronic hepatitis C. Foods & Food Ingred J Jpn 211 (9): 748-753. 

Kawakami, A., Hirayama, K., Kawakami, F., Kawakami, H., Fujihara, M. and Ohtsuki, K. 2006. 
Purification and biochemical characterization of fibroblast growth factor-binding protein (FGF-BP) 
from the lactoferrin fraction of bovine milk. Biochim. Biophys. Acta 1760: 421-431. 

Kawakami, H., Dosako, S. and Nakajima, I. 1993 Effect of lactoferrin on iron solubility under neutral 
conditions. Biochemistry 57:1376-1377. 

Kawakami, H., Shinmoto, H., Dosako, S. and Sogo, Y. 1987. One-step isolation of lactoferrin using 
immobilized monoclonal antibodies. J. Dairy Sci. 70: 752-759. 

Khanna-Gupta, A., Zibello, T., Simkevich, C., Rosmarin, A.G. and Berliner, N. 2000 Sp1 and C/EBP are 
necessary to activate the lactoferrin gene promoter during myeloid differentiation. Blood 95:3734-
3741. 



 25

Kim, C.W., Son, K.-N., Choi, S.-Y. and Kim, J. 2006. Human lactoferrin upregulates expression of 
KDR/Flk-1 and stimulates VEGF-A-mediated endothelial cell proliferation and migration. FEBS 
Lett. 580: 4332-4336. 

Kim, S.J., Yu, D.Y., Pak, K.W., Jeong, S., Kim, S.W. and Lee, K.K. 1998 Structure of the human 
lactoferrin gene and its chromosomal localization. Mol. Cells 8: 663-668. 

Klintworth, G.K., Sommer, J.R., Obrian, G., Han, L., Ahmed, M.N., Qumsiyeh, M.B., Lin, P.Y., Basti, 
S., Reddy, M.K., Kanai, A., Hotta, Y., Sugar, J., Kumaramanickavel, G., Munier, F., Schorderet, 
D.F., Matri, L.E., Iwata, F., Kaiser-Kupfer, M., Nagata, M., Nakayasu, K., Hejtmancik, J.F. and 
Teng, C.T. 1997 Familial subepithelial corneal amyloidosis (gelationous drop-like corneal 
dystrophy): exclusion of linkage to lactoferrin gene. Mol. Vis. 38:31-38. 

Konishi, M., Iwasa, M., Yamauchi, K., Sugimoto, R., Fujita, N., Kobayashi, Y., Watanabe, S., Teraguchi, 
S., Adachi, Y. and Kaito, M. 2006. Lactoferrin inhibits lipid peroxidation in patients with chronic 
hepatitis C. Hepatology Res. 36 (1): 27-32. 

Kruzel, M.L., Bacsi, A., Choudhury, B., Sur, S. and Boldogh, I. 2006. Lactoferrin decreases pollen 
antigen-induced allergic airway inflammation in a murine model of asthma. Immunology 119:159-
166. 

Kuhara, T., Iigo, M., Itoh, T., Ushida, Y., Sekine, K., Terada, N., Okamura, H. and Tsuda, H. 2000 Orally 
administered lactoferrin exerts an anti metastatic effect and enhances production of IL-18 in the 
intestinal epithelium. Nutr. Cancer 38:192-199. 

Kuhara, T., Yamauchi, K., Tamura, Y. and Okamura, H. 2006. Oral administration of lactoferrin 
increases NK cell activity in mice via increased production of IL-18 and type I IFN in the small 
intestine. J. Interferon Cytokine Res. 26 (7): 489-499. 

Kuwata, H., Yamauchi, K., Teraguchi, S., Ushida, Y., Shimokawa, Y., Toida, T. and Hayasawa, H. 2001 
Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the 
gastrointestinal tract of adult rats. J. Nutr. 131:2121-2127. 

Kuwata, H., Yip, T.T., Tomita, M. and Hutchens, T.W. 1998a Direct evidence of the generation in human 
stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin. Biochim. 
Biophys. Acta 1429:129-141. 

Kuwata, H., Yip, T.T., Yamauchi, K., Teraguchi, S., Hayasawa, H., Tomita, M. and Hutchens, T.W. 
1998b The survival of ingested lactoferrin in the gastrointestinal tract of adult mice. Biochem. J. 
334:321-323. 

Lampreave, F., Pineiro, A., Brock, J.H., Castillo, H., Sanchez, L. and Calvo, M. 1990 Interaction of 
bovine lactoferrin with other proteins of milk whey. Int. J. Biol. Macromol. 12:2-5. 

Larkins, N. 2005. Potential implications of lactoferrin as a therapeutic agent. Am. J. Vet. Res. 66: 739-
742. 

Law, B.A. and Reiter, B. 1977. The isolation and bacteriostatic properties of lactoferrin from bovine milk 
whey. J. Dairy Res. 44:595-561. 

Lee, H.Y., Park, J.H., Seok, S.H., Back, M.W., Kim, D.J., Lee, B.H., Kang, P.D., Kim, Y.S. and Park, 
J.H. 2005. Potential antimicrobial effects of human lactoferrin against oral infection with Listeria 
monocytogenes in mice. J. Med. Microbiol. 54: 1049-1054. 

Legrand, D., Elass, E., Carpentier, M. and Mazurier, J. 2005. Lactoferrin: a modulator of immune and 
inflammatory responses. Cell Mol. Life Sci. 62: 2549-2559. 

Legrand, D., Elass, E., Pierce, A. and Mazurier, J. 2004 Lactoferrin and host defence: an overview of its 
immuno-modulating and anti-inflammatory properties. Biometals 17:225-229. 

Levay, P.F. and Viljoen, M. 1995 Lactoferrin: a general review. Haematologica 80:252-267.  
Liehr, J.G. and Jones, J.S. 2001 Role of iron in estrogen-induced cancer. Curr. Med. Chem. 8:839-849. 
Longhi, G., Pietropaolo, V., Mischitelli, M., Longhi, C., Conte, M.P., Marchetti, M., Tinari, A., Valenti, 

P., Degener, A.M., Seganti, L. and Superti, F. 2006. Lactoferrin inhibits early steps of human BK 
polyomavirus infection. Antiviral Res. 72 (2): 145-152.   

Lönnerdal, B. 2003. Lactoferrin. In Advanced Dairy Chemistry, Vol I: Proteins. Eds. P. F. Fox and P.L.H. 
McSweeney. Kluwer Academic/Plenum Publishers, Norwell, MA, pp 449-466.   

Lönnerdal, B. and Iyer, S. 1995 Lactoferrin: molecular structure and biological function. Annu. Rev. Nutr. 
15:93-110. 

Lu, R.R., Xu, S.Y., Wang, Z. and Yang, R.J. 2007. Isolation of lactoferrin from bovine colostrum by 
ultrafiltration coupled with strong cation exchange chromatography on a production scale. J. 
Membrane Sci. 297:152-161. 

Lund, L.G. and Aust, A.E. 1990 Iron mobilization from asbestos by chelators and ascorbic acid. Arch. 
Biochem. Biophys. 278:61-64. 

Machnicki, M., Zimecki, M. and Zagulski, T. 1993 Lactoferrin regulates the release of tumour necrosis 
factor alpha and interleukin 6 in vivo. Int. J. Exp. Pathol. 74:433-439. 



 26

Maher, R.J., Cao, D., Boxer, L.A. and Petty, H.R. 1993 Simultaneous calcium dependent delivery of 
neutrophil lactoferrin and reactive oxygen metabolites to erythrocyte targets: evidence supporting 
granule-dependent triggering of superoxide deposition. Am. J. Physiol., Cell Physiol. 156:226-234. 

Mann, D.M., Romm, E. and Migliorini, M. 1994 Delineation of the glycosaminoglycan-binding site in the 
human inflammatory response protein lactoferrin. J. Biol. Chem. 269: 2366-23667. 

Masuda C., Wanibuchi H., Sekine K., Yano Y., Otani S., Kishimoto T., Tsuda, H. and Fukushima, S. 
2000 Chemopreventive effects of bovine lactoferrin on N-butyl-N-(4-hydroxybutyl)nitrosamine-
induced rat bladder carcinogenesis. Jpn. J. Cancer Res. 91:582-588. 

Matsuda, Y., Saoo, K., Hosokawa, K., Yamakawa, K., Yokohira, M., Zeng, Y., Takeuchi, H. and Imaida, 
K. 2006. Post-initiation chemopreventive effects of dietary bovine lactoferrin on 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in female A/J mice. 
Cancer Lett. 246: 41-46.  

Matsue, M., Tomita, S., Nyui, S., Matayuma, J. and Kiyosawa, I. 1994 Suppressive effects of lactoferrin 
on bleomycin-dependent DNA damage by the iron ion and ascorbate. Biosci. Biotechnol. Biochem. 
58:67-71. 

McIntosh, G.H. 1993 Colon cancer: dietary modification required for a balanced protective diet. Prev. 
Med. 22:767-774. 

McKeown, S.T., Lundy, F.T., Nelson, J., Lockhart, D., Irwin, C.R., Cowan, C.G., Marley, J.J. 2006. The 
cytotoxic effects of human neutrophil peptide-1 (HNP1) and lactoferrin on oral squamous cell 
carcinoma (OSCC) in vitro. Oral Oncology 42 (7): 685-690. 

Mehra, R.K. and Donnelly, W.J. 1993. Fractionation of whey-protein components through a large pore-
size, hydrophilic, cellulosic membrane. J. Dairy Res. 60: 89–97. 

Metz-Boutigue, M.-H., Jolles, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J. and 
Jolles, P. 1984 Human lactotransferrin: Amino acid sequence and structural comparisons with other 
transferrins. Eur. J. Biochem. 145:659-676. 

Mikogami, T., Marianne, T. and Spik, G. 1995 Effect of intracellular iron depletion by picolinic acid on 
expression of the lactoferrin receptor in the human colon carcinoma subclone HT29-18-C1. Biochem. 
J. 308:391-397. 

Min, S. and Krochta, J. 2005 Inhibition of Penicillium commune by edible whey protein films 
incorporating lactoferrin, lactoferrin hydrolysate, and lactoperoxidase systems. J. Food Sci. 70:87-94. 

Mistry, N., Drobni, P., Naslund, J., Sunkari, V.G., Jenssen, H. and Evander, M. 2007. The anti-
papillomavirus activity of human and bovine lactoferricin. Antiviral Res. 75: 258-265. 

Miyamoto, K., Fukutomi, T., Akashi-Tanaka, S., Hasegawa, T., Asahara, T., Sugimura, T. and Ushijima, 
T. 2005. Identification of 20 genes aberrantly methylated in human breast cancer. Int. J. Cancer 116: 
407-414. 

Miyazawa, K., Mantel, C., Lu, L., Morrison, D.C. and Broxmeyer, H.E. 1991 Lactoferrin 
lipopolysaccharide interactions. Effect on lactoferrin binding to monocyte/macrophage differentiated 
HL-60 cells. J. Immunol 146:723-729. 

Mohan, K.V., Devaraj, H., Prathiba, D., Hara, Y. and Nagini, S. 2006a. Antiproliferative and apoptosis 
inducing effect of lactoferrin and black tea polyphenol combination on hamster buccal pouch 
carcinogenesis. Biochim. Biophys. Acta 1760 (10): 1536-1544. 

Mohan, K.V., Kumaraguruparan, R., Prathiba, D. and Nagini S. 2006b. Modulation of xenobiotic-
metabolizing enzymes and redox status during chemoprevention of hamster buccal carcinogenesis by 
bovine lactoferrin.Nutrition 22: 940-946. 

Montreuil, J., Tonnelat, J. and Mullet, S. 1960 Preparation and properties of lactotransferrin of human 
milk. Biochim. Biophys. Acta 45:413-421. 

Moore, S.A., Anderson, B.F., Groom, C.R., Haridas, M. and Baker, E.N. 1997 Three-dimensional 
structure of diferric bovine lactoferrin at 2-8 A resolution. J. Mol. Biol. 274:222-236. 

Naidu, A. 2002 Activated lactoferrin – a new approach to meat safety. Food Technol. 56:40-45. 
Nemet, K. and Simonovits, I. 1985 The biological role of lactoferrin. Haematologia 18:3-12. 
Noppe, W., Plieva, F.M., Galaev, I.Y., Vanhoorelbeke, K., Mattiasson, B. and Deckmyn, H. 2006. 

Purification of lactoferrin from deffated milk. J Chromatogr A 1101 (1-2): 79-85. 
Norrby, K. 2004 Human apo-lactoferrin enhances angiogenesis mediated by vascular endothelial growth 

factor A in vivo. J. Vasc. Res. 41:293-304. 
Norrby, K., Mattsby-Baltzer, I., Innocenti, M. and Tuneberg, S. 2001 Orally administrated bovine 

lactoferrin systematically inhibits VEGF165-mediated angiogenesis in the rat. Int. J. Cancer 91:236-
240. 

Nuijens, J.H., van Berkel, P.H. and Schanbacher, F.L. 1996 Structure and biological actions of lactoferrin. 
J. Mammary Gland Biol. Neoplasia 1:285-295. 



 27

Okada, S., Tanaka, K., Sato, T., Ueno, H., Saito, S. Okusaka, T., Sato, K. Yamamoto, S. and Kakizoe, T.  
2002 Dose-response trial of lactoferrin in patients with chronic hepatitis C. Jpn. J. Cancer Res. 
93:1063-1069. 

Olofsson, T., Olsson, I. and Venge, P. 1977 Myeloperoxidase and lactoferrin of blood neutrophils and 
plasma in chronic granulocytic leukaemia. Scand. J. Haematol. 18:113-120. 

Olsson, I., Lantz, M., Persson, A.M. and Arnljots, K. 1988 Biosynthesis and processing of lactoferrin in 
bone marrow cells, a comparison with processing of myeloperoxidase. Blood 71:441-447. 

Pan, Y., Lee, A., Wan, J., Coventry, M.J., Michalski, W.P, Shiell, B. and Roginski, H. 2006. Antiviral 
properties of milk proteins and their derivatives. Int. Dairy J. 16: 1252-1261. 

Pan, Y., Rowney, M., Guo, P. and Hobman, P. 2007. Biological properties of lactoferrin: an overview. 
Aust. J. Dairy Techn. 62 (1): 31-42. 

Panella T.J., Liu Y.H., Huang A.T. and Teng C.T. 1991 Polymorphism and altered methylation of the 
lactoferrin gene in normal leukocytes, leukemic cells and breast cancer. Cancer Res. 51:3037-3043. 

Penco, S., Caligo, M.A., Cipollini, G., Bevilacqua, G. and Garre C. 1999 Lactoferrin expression in human 
breast cancer. Cancer Biochem. Biophys. 17:163-178. 

Pentecost, B.T. and Teng, C.T. 1987 Lactotransferrin is the major estrogen inducible protein of mouse 
uterine secretions. J. Biol. Chem. 262:10134-10139. 

Perou, C.M., Jeffrey, S.S., van de Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T., Pergamenschikov, A., 
Williams, C.F., Zhu, S.X., Lee, J.C., Lashkari, D., Shalon, D., Brown, P.O. and Botstein, D.  1999 
Distinctive gene expression patterns in human mammary epithelial cells and breast cancer. Proc. 
Natl. Acad. Sci. U.S.A. 96:9212-9217. 

Peterson, N.A., Anderson, B.F., Jameson, G.B., Tweedie, J.W. and Baker, E.N. 2000 Crystal structure 
and iron-binding properties of the R210K mutant of the N-lobe of human lactoferrin: implications for 
iron release from transferrins. Biochemistry 39:6625–6633. 

Petricoin, E. and Liotta, L. 2003 Clinical applications of proteomics. J. Nutr. 133:2476-2484. 
Pierce, A., Colavizza, D., Benaissa, M., Maes, P., Tartar, A., Montreuil, J. and Spik, G. 1991 Molecular 

cloning and sequence analysis of bovine lactotransferrin. Eur. J. Biochem. 196:177-184.  
Plate, K., Beutel, S., Buchholtz, H., Demmer, W., Fischer-Fruhholz, S., Reif, O., Ulber, R. and Scheper, 

T. 2006. Isolation of bovine lactoferrin, lactoperoxidase and enzymatically prepared lactoferricin 
from proteolytic digestion of bovine lactoferrin using adsorptive membrane chromatography. J. 
Chromatogr. A 1117:81-86. 

Qiu, J., Hendrixson, D.R., Baker, E.N., Murphy, T.F., St Geme, J.W., III and Plaut, A.G. 1998 Human 
milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. 
Proc. Natl. Acad. Sci. U.S.A. 95:12641-12646. 

Querinjean, P., Masson, P.L. and Heremans, J.F. 1971 Molecular weight, single-chain structure and 
amino acid composition of human lactoferrin. Eur. J. Biochem. 20:420-425. 

Rabiller-Baudry, M., Chaufer, B., Lucas, D. and Michel, F. 2001. Ultrafiltration of mixed protein 
solutions of lysozyme and lactoferrin: role of modified inorganic membranes and ionic strength on 
the selectivity. J. Membr. Sci. 184: 137–148. 

Reddy, P. 2004 Interleukin-18: recent advances. Curr. Opin. Hematol. 11:405-410. 
Roberts, A.K., Chierici, R., Sawatzki, G., Hill, M. J., Volpato, S. and Vigi, V. 1992 Supplementation of 

an adapted formula with bovine lactoferrin: 1. Effect on the infant faecal flora. Acta Paediatr. 
81:119–124. 

Rochard, E., Legrand, D., Mazurier, J., Montreuil, J. and Spik, G. 1989 The N-terminal domain I of 
human lactoferrin binds specifically to phylohemagglutinin-stimulated peripheral blood human 
lymphocyte receptor. FEBS Lett. 255:201-207. 

Rossiello, R., Carriero, M.V. and Giordano, G.G. 1984. Distribution of ferritin, transferring and 
lactoferrin in breast cancer carcinoma tissue. J. Clin Pathol. 37: 51-55 

Saito, H., Miyakawa, H., Tamura, Y., Shimamura, S., and Tomita, M. 1991. Potent bactericidal activity of 
bovine lactoferrin hydrolysate produced by heat treatment at acidic pH. J. Dairy Sci. 74: 3724–3730. 

Sakai, T., Banno, Y., Kato, Y., Nozawa, Y. and Kawaguchi, M. 2006. Pepsin-digested bovine lactoferrin 
induces apoptotic cell death with JNK/SAPK activation in oral cancer cells. J. Pharmacol. Sci. 98: 
41-48. 

Saleh, Z.S. and Hossain, M.M. 2001. A study of the separation of proteins from multi-component 
mixtures by a semi-batch foaming process. Chem. Eng. Process 40:371-378. 

Sanchez, L., Calvo, M. and Brock, J.H. 1992 Biological role of lactoferrin. Arch. Dis. Child. 67:657-661. 
Santagati, M.G., La Terra Mulle, S., Amico, C., Pistone, M., Rusciano, D. and Enea, V. 2005. Lactoferrin 

expression by bovine ocullar surface epithelia: a primary cell culture model to study lactoferrin gene 
promoter activity. Ophthalmic Res. 37: 270-278.  



 28

Sekine, K., Ushida, Y., Kuhara, T., Iigo, M., Baba-Toriyama, H., Moore, M.A., Murakoshi, M., Satomi, 
Y., Nishino, H., Kakizoe, T. and Tsuda, H. 1997b Inhibition of initiation and early stage development 
of aberrant crypt foci and enhanced natural killer activity in male rats administered bovine lactoferrin 
concomitantly with azoxymethane. Cancer Lett. 121:211-216. 

Sekine, K., Watanabe, E., Nakamura, J., Takasuka, N., Kim, D.J., Asamoto, M., Vladimir, K., Baba-
Toriyama, H., Ohta, T., Moore, M.A., Masuda, M., Sugimoto, H., Nishino, H., Kakizoe, T. and 
Tsuda, H.  1997a Inhibition of azoxymethane initiated colon tumour by bovine lactoferrin 
administration in F344 rats. Jpn. J. Cancer Res. 88:523-526. 

Selby, J.V. and Friedman, G.D. 1988 Epidemiologic evidence of an association between body iron stores 
and risk of cancer. Int. J. Cancer 41:677-682. 

Senkovich, O., Cook, W.J., Mirza, S., Hollingshead, S.K., Protasevich, I.I., Brilles, D.E. and 
Chattopadhyay, D. 2007. Structure of a complex human lactoferrin N-lobe with pneumococcal 
surface protein A provides insight into microbial defense mechanism. J. Mol. Biol. 370 (4): 701-713. 

Shah, N.P. 2000 Effects of milk-derived bioactives: an overview. Br. J. Nutr. 84:S3-S10.  
Shan, L., He, M., Yu, M. and Qiu, C. 2002 cDNA microarray profiling of rat mammary gland carcinomas 

induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 7,12-dimethylbenz[a]anthracene. 
Carcinogenesis 23:1561-1568. 

Shau, H., Kim, A. and Golub, S.H. 1992 Modulation of natural killer and lymphokine-activated killer cell 
cytotoxicity by lactoferrin. J. Leukoc. Biol. 51:343–349. 

Shigeta, H., Newbold, R.R., McLachlan, J.A. and Teng, C. 1996 Estrogenic effect on the expression of 
estrogen receptor, COUPTF, and lactoferrin mRNA in developing mouse tissues. Mol. Reprod. Dev. 
45:21-30. 

Shimamura, M., Yamamoto, Y., Ashino, H., Oikawa, T., Hazato, T., Tsuda, H. and Iigo, M. 2004 Bovine 
lactoferrin inhibits tumor induced angiogenesis. Int. J. Cancer 111:111-116. 

Shimazaki, K. 2000. Lactoferrin: A marvellous protein in milk? Animal Sci. J. 71: 329-347. 
Shimazaki, K.-I. And Nishio, N. 1991. Interacting properties of bovine lactoferrin with immobilised 

cibacron blue f3ga in column chromatography. J. Dairy Sci. 74: 404-408. 
Siciliano, R., Rega, B., Marchetti, M., Seganti, L., Antonini, G. and Valenti, P. 1999 Bovine lactoferrin 

peptidic fragments involved in inhibition of herpes simplex virus type 1 infection. Biochem. Biophys. 
Res. Commun. 264:19-23. 

Siebert, P.D. and Huang, B.C. 1997 Identification of an alternative form of human lactoferrin mRNA that 
is expressed differentially in normal tissues and tumor-derived cell lines. Proc. Natl. Acad. Sci. 
U.S.A. 94:2198-2203. 

Slater, K. and Fletcher, J. 1987 Lactoferrin derived from neutrophils inhibits the mixed lymphocyte 
reaction. Blood 69:1328-1333. 

Spik, G., Coddeville, B., Mazurier, J., Bourne, Y., Cambillaut, C. and Montreuil, J. 1994 Primary and 
three-dimensional structure of lactotransferrin (lactoferrin) glycans. Adv. Exp. Med. Biol. 357:21-32. 

Steijns, J. and van Hooijdonk, A. 2000 Occurrence, structure, biochemical properties technological 
characteristics of lactoferrin. Br. J. Nutr. 84:S11-S17. 

Stevens, R.G., Jones, D.Y., Micozzi, M.S. and Taylor, P.R. 1988 Body iron stores and the risk of cancer. 
N. Engl. J. Med. 319:1047-1052. 

Suzuki, Y. and Lonnerdal, B. 2002 Characterization of mammalian receptors for lactoferrin. Biochem. 
Cell Biol. 80:75-80. 

Tamura, Y. 2004. Production and application of bovine lactoferrin. Bulletin.IDF. 389:64-68. 
Tanaka, K., Ikeda, M., Nozaki, A., Kato, N., Tsuda, H., Saito, S. and Sekihara, H. 1999 Lactoferrin 

inhibits hepatitis C virus viremia in patients with chronic hepatitis C: A pilot study. Jpn. J. Cancer 
Res. 90:367–371. 

Tanaka, T., Kawabata, K., Kohno, H., Honjo, S., Murakami, M., Ota, T. and Tsuda, H. 2000 
Chemopreventive effect of bovine lactoferrin on 4-nitroquinoline 1-oxide-induced tongue 
carcinogenesis in male F344 rats. Jpn. J. Cancer Res. 91:25-33. 

Teng, C. 2002 Lactoferrin gene expression and regulation: an overview. Biochem. Cell Biol. 80:7-16. 
Teng, C., Gladwell, W., Raphiou, I. and Liu, E. 2004 Methylation and expression of the lactoferrin gene 

in human tissues and cancer cells. Biometals 17:317-323. 
Teng, C.T. 2006. Factors regulating lactoferrin gene expression. Biochem. Cell Biol. 84: 263-267. 
Teng, C.T., Gladwell, W., Raphiou, I. and Liu, E. 2004. Methylation and expression of the lactoferrin 

gene in human tissues and cancer cells. Biometals 17: 317-323.  
Teng, C.T., Pentecost, B.T., Chen, Y.H., Newbold, R.R., Eddy, E.M. and McLachlan, J.A. 1989 

Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology 124:992-
999. 



 29

Teng, C.T., Pentecost, B.T., Marshall, A., Solomon, A., Bowman, B.H., Lalley, P.A. and Naylor, S.L. 
1987 Assignment of the lactotransferrin gene to human chromosome 3 and to mouse chromosome 9. 
Somat. Cell Mol. Genet. 13:689-693. 

Teng, C.T., Walker, M.P., Bhattacharyya, S.N., Klapper, D.G., DiAugustine, R.P. and McLachlan, J.A. 
1986 Purification and properties of an oestrogen-stimulated mouse uterine glycoprotein (approx. 70 
kDa). Biochem. J. 240:413-422. 

Teraguchi, S., Wakabayashi, H., Kuwata, H., Yamauchi, K. and Tamura, Y. 2004 Protection against 
infections by oral lactoferrin: evaluation in animal models. Biometals 17:231-234. 

Teraguchi, S., Wakabayashi, H., Kuwata, H., Yamauchi, K. and Tamura, Y. 2004 Protection against 
infections by oral lactoferrin: evaluation in animal models. Biometals 17:231-234. 

Tomita, M., Wakabayashi, H., Yamauchi, K., Teraguchi, S. and Hayasawa, H. 2002 Bovine lactoferrin 
and lactoferricin derived from milk: production and applications. Biochem. Cell Biol. 80:109-112. 

Tomita, M., Wakabayashi, K., Yamauchi, K., Teraguchi, S. and Hayasawa, H. 2002. Bovine lactoferrin 
and lactoferricin derived from milk: production and applications. Biochem. Cell Biol. 80:109-112. 

Troost, F.J., Steijns, J., Saris, W.H.M. and Brummer, R.J.M. 2001 Gastric digestion of bovine lactoferrin 
in vivo in adults. J. Nutr. 131:2101-2104. 

Trumpler, U., Straub, P.W. and Rosenmund, A. 1989 Antibacterial prophylaxis with lactoferrin in 
neutropenic patients. Eur. J. Clin. Microbiol. Infect. Dis. 8:310–313. 

Tsuda, H., Sekine, K., Fujita, K. and Iigo M. 2002 Cancer prevention by bovine lactoferrin and 
underlying mechanisms – a review of experimental and clinical studies. Biochem. Cell Biol. 80:131-
136. 

Tsuda, H., Sekine, K., Ushida, Y., Kuhara, T., Takasuka, N., Iigo, M., Han, B.S. and Moore, M.A. 2000 
Milk and dairy products in cancer prevention: focus on bovine lactoferrin. Mutat. Res. 462:227-233. 

Ulber, R., Plate, K., Weiss, T., Demmer, W., Buchholz, H. and Scheper, T. 2001. Downstream processing 
of bovine lactoferrin from sweet whey. Acta Biotechnol. 21: 27–34. 

Ushida, Y., Sekine, K., Kuhara, T., Takasuka, N., Iigo, M. and Tsuda, H. 1998 Inhibitory effects of 
bovine lactoferrin on intestinal polyposis in the ApcMin mouse. Cancer Lett. 134:141-145. 

Ushida, Y., Sekine, K., Kuhara, T., Takasuka, N., Iigo, M., Maeda, M. and Tsuda, H. 1999 Possible 
chemopreventive effects of bovine lactoferrin on esophagus and lung carcinogenesis in the rat. Jpn. 
J. Cancer Res. 90:262-267. 

Valenti, P., Marchetti, M., Superti, F., Amendolia, M.G., Puddu, P., Gessani, S., Borghi, P., Belardelli, F., 
Antonini, G. and Seganti, L. 1998 Antiviral activity of lactoferrin. Adv. Exp. Med. Biol. 443:199-203. 

Van Berkel, P.H.C., Geerts, M.E.J., van Heen, H.A., Mericskay, M., de Boer, H.A., and Nuijens, J.H. 
1997 N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to 
heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochemistry J. 328:145-151. 

Van Snick, J.L. and Masson, P.L. 1976 The binding of human lactoferrin to mouse peritoneal cells. J. 
Exp. Med. 144:1568-1580. 

Van Snick, J.L., Masson, P.L. and Heremans, J.F. 1974 The involvement of lactoferrin in the 
hyposideremia of acute inflammation. J. Exp. Med. 140:1068-1084. 

Varadhachary, A., Wolf, J.S., Petrak, K., O’Malley, B.W. Jr., Spadaro, M., Curcio, C., Forni, G. and 
Pericle, F. 2004 Oral lactoferrin inhibits growth of established tumors and potentiates conventional 
chemotherapy. Int. J. Cancer 111:398-403. 

Wakabayashi, H., Kuwata, H., Yamauchi, K., Teraguchi, S. and Tamura, Y. 2004 No detectable transfer 
of dietary lactoferrin or its functional fragments to portal blood in healthy adult rats. Biosci. 
Biotechnol. Biochem. 68:853-860. 

Wakabayashi, H., Yamauchi, K. and Takase, M. 2006. Lactoferrin research, technology and applications. 
Int. Dairy J. 16:1241-1251. 

Wang, W.P., Iigo, M., Sato, J., Sekine, K., Adachi, I. and Tsuda H. 2000 Activation of intestinal mucosal 
immunity in tumor-bearing mice by lactoferrin. Jpn. J. Cancer Res. 91:1022-1027. 

Ward, P.P., Paz, E. and Conneely, O.M. 2005 Multifunctional roles of lactoferrin: a critical overview. 
Cell. Mol. Life Sci. 62:2540-2548. 

Ward, P.P., Uribe-Luna, S. and Conneely, O. 2002 Lactoferrin and host defence. Biochem. Cell Biol. 
80:95-102. 

Weinberg, E.D. 1984 Iron withholding: a defense against infection and neoplasia. Physiol. Rev. 64:65-
102. 

Weinberg, E.D. 1992 Roles of iron in neoplasia. Promotion, prevention, and therapy. Biol. Trace Elem. 
Res. 34:123-140. 

Weinberg, E.D. 1996 The role of iron in cancer. Eur. J. Cancer Prev. 5:19-36. 
Weinberg, E.D. 2007. Antibiotic properties and applications of lactoferrin. Curr. Pharm. Design 13 (8): 

801-811.   



 30

Weinstein, R.E., Bond, B.H. and Silberberg, B.K. 1982 Tissue ferritin concentration in carcinoma of the 
breast. Cancer 50:2406-2409. 

Wichmann, L., Vaalasti, A., Vaalasti, T. and Tuohimaa, P. 1989 Localization of lactoferrin in the male 
reproductive tract. Int. J. Androl. 12:179-186. 

Xiao, Y., Monitto, C.L., Minhas, K.M. and Sidransky D. 2004 Lactoferrin down-regulates G1 cyclin-
dependent kinases during growth arrest of head and neck cancer cells. Clin. Cancer Res. 10:8683-
8686. 

Yamauchi, K., Hiruma, M., Yamazaki, N., Wakabayashi, H., Kuwata, H., Teraguchi, S., Hayasawa, H., 
Suegara, N. and Yamguchi, H. 2000c Oral administration of bovine lactoferrin for treatment of tinea 
pedis. A placebo-controlled, double-blind study. Mycoses 43:197-202. 

Yamauchi, K., Toida, T., Kawai, A., Nishimura, S., Teraguchi, S., and Hayasawa, H. 2000b. 
Mutagenicity of bovine lactoferrin in reverse mutation test. J. Toxicol. Sci. 25: 63–66. 

Yamauchi, K., Toida, T., Nishimura, S., Nagano, E., Kusuoka, O. Teraguchi, S., Hayasawa, H., 
Shimamura, S., and Tomita, M. 2000a. 13-week oral repeated administration toxicity study of bovine 
lactoferrin in rats. Food Chem. Toxicol. 38: 503–512. 

Yamauchi, K., Tomita, M., Giehl, T.J. and Ellison, R.T. 1993 Antibacterial activity of lactoferrin and a 
pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61:719-728. 

Yamauchi, K., Wakabayashi, H., Shin, K. and Takase, M. 2006. Bovine lactoferrin: benefits and 
mechanism of action against infections. Biochem. Cell Biol. 84: 291-296. 

Yi, M., Kaneko, S., Yu, D.Y. and Murakami, S. 1997 Hepatitis C virus envelope proteins bind lactoferrin. 
J. Virol. 71:5997-6002. 

Yoo, Y.C., Watanabe, R., Koike, Y., Mitobe, M., Shimazaki, K., Watanabe, S. and Azuma, I. 1997b 
Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: 
involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 237:624-628. 

Yoo, Y.C., Watanabe, S., Watanabe, R., Hata, K., Shimazaki, K. and Azuma I. 1997a Bovine lactoferrin 
and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice. Jpn. J. 
Cancer Res. 88:184-190. 

Yoshida, S. and Ye, X. 1991. Isolation of lactoperoxidase and lactoferrins from bovine milk acid whey by 
carboxymethyl cation exchange chromatography. J. Dairy Sci. 74: 1439-1444. 

Yu, R.H. and Schryvers, A.B. 1993 Regions located in both the N-lobe and C-lobe of human lactoferrin 
participate in the binding interactions with bacterial lactoferrin receptors. Microb. Pathog. 14:343-
353. 

Zakharova, E.T., Shavloski, M.M., Bass, M.G., Gridasova, A.A., Pulina, M.O., De Filippis, V., 
Beltramini, M., Di Muro, P., Salvato, B., Fontana, A., Vasilyev, V.B. and Gaitskhoki, V.S. 2000 
Interaction of lactoferrin with ceruloplasmin. Arch. Biochem. Biophys. 374:222-228. 

Zimecki, M., Mazurier, J., Machnicki, M., Wieczorek, Z., Montreuil, J. and Spik, G. 1991 
Immunostimulatory activity of lactotransferrin and maturation of CD4-CD8– murine thymocytes. 
Immunol. Lett. 30:119-123. 

Zimecki, M., Mazurier, J., Spik, G. and Kapp, J.A. 1995 Human lactoferrin induces phenotypic and 
functional changes in murine splenic B cells. Immunology 86:122-127. 

Zydney, A.L. 1998. Protein separations using membrane filtration: new opportunities for whey 
fractionation. Int. Dairy J. 8:243-250. 



 31

 

Table 1 Occurrence of lactoferrin (hLF – human lactoferrin; bLF – bovine lactoferrin) in biological fluids  

 

 Biological fluid Amounts reported  

(mg/ml)* 

Colostral breast milk > 7 

Mature breast milk > 1-2  

Tear fluid > 2.2 

Seminal plasma > 0.4-1.9 

Synovial fluid > 0.01-0.08 

hL
F 

Saliva > 0.007-0.01 

Colostral whey > 1.5 

bL
F 

Milk > 0.02-0.2 

 
* Data adapted from Levay and Viljoen, 1995; Steijns and Van Hooijdonk, 2000; Babina et al., 2006; Shimazaki, 2000 
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Table 2 Lactoferrin (hLF – human lactoferrin; bLF – bovine lactoferrin) physico-chemical properties 

 

 bLF hLF References 

Amino acid residues 689 690 Pierce et al., 1991; Baker, 1994 

Molecular weight 77 ± 1.5 76.8 ± 1.6 Querinjean et al., 1971; Spik et al., 1994; 

Castellino et al., 1970 

Isoelectric point 8.5-9.0 8.4-9.0 Spik et al., 1994; Lampreave et al., 1990; 

Zakharova et al., 2000 
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Table 3 Reported in vitro and in vivo physiological roles of lactoferrin 

 

Physiological role Mechanism References 

Iron absorption Increasing solubility and receptor 

mediated uptake 

Kawakami et al., 1993; Mikogami et al., 1995; Levay 

and Viljoen, 1995; Ward et al., 2005 

Antioxidant Iron scavenger 

LF has the ability to bind to cell 

membranes enhancing its ability 

to prevent iron-mediated lipid 

peroxidation 

Matsue et al., 1994; 1995; Konishi et al., 2006; 

Larkins, 2005 

Antimicrobial Growth inhibition by iron 

scavenging or membrane 

disintegration 

LF has a powerful iron-binding 

capacity and shows a strong 

interaction with other molecules 

and cell surface 

Nemet and Simonovits, 1985 ; Yamauchi et al., 1993 ; 

Qiu et al., 1998 ; Weinberg, 2007 ; Santagati et al., 

2005; Lönnerdal, 2003 ; Lee et al., 2005 

Antiviral Prevention of virus attachment, 

inhibition of virus replication, 

blocking of cell-virus interactions 

Yi et al., 1997 ; Siciliano et al., 1999 ; Andersen et al., 

2001 ; Ikeda et al., 2000 ; Giansanti et al., 2002 ; 

Longhi et al., 2006; Mistry et al., 2007; Ammendolia 

et al., 2007 ; Pan et al., 2006 

Anti-inflammatory, 

immune modulating 

LPS binding, stimulation of NK 

cells, reduction of pro-

inflammatory cytokines, T-cell 

maturation. 

LF modulates the migration, 

maturation and function of the 

immune cells at the cellular level 

and at the molecular level 

Zimecki et al., 1991, 1995 ; Hangoc et al., 1991 ; 

Crouch et al., 1992 ; Yamauchi et al., 1993 ; Adamik 

et al., 1998 ; Baveye et al., 1999 ; Dhennin-Duthille et 

al., 2000 ; Britigan et al., 2001; Fischer et al. 2006; 

Berlutti et al. 2006;  Senkovich et al., 2007; Legrand 

et al., 2005; Kruzel et al., 2006 

Anti-cancer Regulation of NK cell activity, 

modulation of expression of G1 

proteins, inhibition of 

VEGF(165)-mediated 

angiogenesis, enhancement of 

apoptosis 

Bezault et al., 1994 ; Sekine et al., 1997 ; Yoo et al., 

1997b ; Damiens et al., 1998, 1999 ; Norrby et al., 

2001 ; Mohan et al., 2006a; McKeown et al., 2006; 

Kuhara et al., 2006 ; Baumrucker et al. 2006; Kim et 

al., 2006; Giuffre et al., 2006 ; Kawakami et al., 2006 
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Table 4 Effectiveness of orally administered bLF in humans.  

 

Disease Efficacy Administrated 

agent and dose 

References 

Bacterial flora: 

Faecal flora in low birth weight 

infants 

Faecal flora in infants 

 

Increase of Bifidobacterium, 

decrease of Clostridium 

Increase of Bifidobacterium  

 

bLF; 1mg/ml in 

infant formula 

 

 

Wakabayashi et al., 

2006 

Roberts et al., 1992; 

Logsdon et al., 2006 

Infection (digestive tract): 

Gastric infection with Helicobacter 

pylori 

 

Increase of eradication by 

triple therapy 

 

bLF; 0.2g/body 

 

Di Mario et al., 2003 

Infection (other than digestive tract): 

Neutropenic patients 

 

 

 

Chronic hepatitis C 

 

 

 

 

Influenza 

 

Decrease of incidence of 

bacteremia and severity of 

infection 

 

 

Decrease of ALT and HCV 

RNA in serum 

 

 

 

Attenuation of pneumonia 

through the suppression of 

infiltration of inflammatory 

cells in the lung 

 

bLF; 0.8 g/body 

 

 

 

bLF; 1.8 and 3.6 

g/body 

 

 

 

62.5 mg per mouse 

 

Trumpler et al., 1989 

 

 

 

Tanaka et al., 1999 ; 

Iwasa et al., 2002 ; 

Yamauchi et al., 2000c ; 

Konishi et al. 2006 ; 

Katsuaki, 2006 

 

Shin et al., 2005 

 

 

 



 35

Table 5 Effectiveness of orally administered LF-related compounds on cancers 

 

Cancer model Efficacy Animal Administrated 

agent and dose 

References 

Carcinogen-induced tumour in 

colon, lung, esophagus, 

bladder, liver,  tongue 

Inhibition of tumour 

development 

Rat bLF 

0.2 and 2% in diet 

Sekine et al., 1997a, b; 

Ushida et al., 1999; 

Tanaka et al., 2000; 

Masuda et al., 2000; 

Fujita et al., 2002; Mohan 

et al., 2006b 

Spontaneously developed 

intestinal polyposis 

Inhibition of polyp 

development 

ApcMin 

mouse 

bLF 

2% in diet 

 

Ushida et al., 1998 

Tumour cell injection  Inhibition of lung 

metastasis 

Mouse bLF 

0.3 g/kg 

Iigo et al., 1999 

Tumour cell injection Inhibition of tumour 

development 

Mouse rhLF 

1 g/kg 

Varadhachary et al., 2004 

 

 
 

 


