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ABSTRACT: Four organic loading disturbances were per-
formed in lab-scale EGSB reactors fed with ethanol. In load
disturbance 1 (LD1) and 2 (LD2), the organic loading rate
(OLR) was increased between 5 and 18.5 kg COD m�3 day�1,
through the influent ethanol concentration increase, and the
hydraulic retention time decrease from 7.8 to 2.5 h, respec-
tively. Load disturbances 3 (LD3) and 4 (LD4) were applied
by increasing the OLR to 50 kg COD m�3 day�1 during
3 days and 16 days, respectively. The granular sludge mor-
phology was quantified by image analysis and was related to
the reactor performance, including effluent volatile sus-
pended solids, indicator of washout events. In general, it
was observed the selective washout of filamentous forms
associated to granules erosion/fragmentation and to a de-
crease in the specific acetoclastic activity. These phenomena
induced the transitory deterioration of reactor performance
in LD2, LD3, and LD4, but not in LD1. Extending the
exposure time in LD4 promoted acetogenesis inhibition
after 144 h. The application of Principal Components
Analysis determined a latent variable that encompasses a
weighted sum of performance, physiological and morpho-
logical information. This new variable was highly sensitive to
reactor efficiency deterioration, enclosing variations
between 27% and 268% in the first hours of disturbances.
The high loadings raised by image analysis parameters,
especially filaments length per aggregates area (LfA), reveal-
ed that morphological changes of granular sludge, should be
considered to monitor and control load disturbances in high
rate anaerobic (granular) sludge bed digesters.
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Introduction

Anaerobic granules are particulate biofilms, formed
spontaneously by self-immobilization of anaerobic bacteria
in the absence of a support material (Lettinga, 1995). Hence,
each granule is a functional unit comprising of all the
different microorganisms necessary for methanogenic
degradation of organic matter (Sekiguchi et al., 1998).
Over the last three decades, numerous works, theories and
models have been developed to explain and/or stimulate the
anaerobic granulation process (Liu et al., 2003).

Biological wastewater treatment plants are normally
designed with reference to a nominal operating condition,
in which the loading rate is assumed to be constant in time.
However, in practice this steady-state assumption is seldom
met and fluctuations, both in flow and influent concentra-
tion occur, which often result in performance degradation
or even digester failure.

Anaerobic digesters run frequently at organic loading
rates (OLR) below the maximum process capacity. Stable
operation of high-rate anaerobic processes is in practice, a
difficult task. Due to the slow growth of syntrophic and
methanogenic bacteria, anaerobic digestion is quite often
unstable during influent fluctuations with volatile fatty
acids accumulation and pH decrease, leading sometimes to
process failure (Voolapalli and Stuckey, 1998). Depending
on the monitoring plan and operator’s expertise, the
influent disturbances can exhibit different configurations:
either as a short/transient overload, which only lasts few
hours, or as a longer step change of days to weeks.

Parameters involved in reactor monitoring and control,
have been limited to indicators of the liquid and the gaseous
phases and have mostly been limited to the assessment of
operational performance measurements. The impact on
microbial community structure has rarely been investigated
(McMahon et al., 2004), although the combination of
physical and biological methods for process monitoring
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Figure 1. Expanded granular sludge bed reactor.
and control, has been proposed as a way to more effectively
minimize problems of process imbalance in anaerobic
digesters during load disturbance events (Voolapalli and
Stuckey, 1998). There are evidences that microbial and
structural changes of biological aggregates can be detected
before the detection of significant process performance
deterioration after a disturbance (Abreu et al., 2007; Amaral
et al., 2004).

The link between digester performance, and the physiolo-
gical and structural characteristics of the anaerobic sludge is
particularly relevant in up-flow anaerobic sludge blanket
(UASB), expanded granular sludge bed (EGSB), or internal
circulation (IC) reactors (McMahon et al., 2004). Notwith-
standing, limited knowledge about physiological and mor-
phological changes of anaerobic granular sludge under
unsteady state operating conditions is available in the literature.

The use of quantitative image analysis techniques for
monitoring wastewater treatment processes has been
initiated by Sezgin et al. (1978), who found a well-defined
relationship between the sludge volume index (SVI) and the
filament quantity in activated sludge. Recently, Li et al.
(2007) compared several characteristics of activated sludge
flocs and granules by using different techniques including
image analysis. The statistical tool principal component
analysis (PCA) was used to relate image analysis information
with the sludge settleability in terms of SVI (Jenné et al.,
2006). The first attempts to use digital image analysis in
high-rate anaerobic digestion processes were limited to size
measurements and number counting (Dudley et al., 1993;
Jeison and Chamy, 1998). Several subsequent works
demonstrated the application of quantitative image analysis
tools to monitor granulation and granules deterioration
processes (Amaral et al., 2004; Araya-Kroff et al., 2004), to
evaluate the effect of detergents in the structure and
microbial activity of granular sludge (Costa et al., 2007) or in
the detection of structural and microbial changes of granular
sludge during a process of acetoclastic activity recovery
(Abreu et al., 2007).

Because the experimental approach of integrating
reactor performance, physiological and morphological data
may produce correlated and redundant data, a statistical
instrument should be applied in order to extract the essential
information for process monitoring and fault detection
applications. Data reduction and interpretation can be
approached through the application of multivariate
statistical methods, such as PCA (Wise and Gallagher,
1996). This method allows identifying patterns in data, and
expressing them in order to highlight their similarities and
differences. PCA is a projection method for analyze data and
reduce it from an n-dimensional space to few latent/hidden
variables (Lee et al., 2006), while keeping information on its
variability. It has been successfully applied to the monitoring
of industrial processes (Li et al., 2000) and wastewater
treatment processes (Lee et al., 2004).

This work aims at studying the effects of organic loading
disturbances on EGSB reactors performance, and on
anaerobic granular sludge morphology and physiology
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using quantitative image analysis techniques and specific
methanogenic activity measurements. Then, multivariate
statistical tools were applied to integrate the operational,
physiological, and morphological information in order to
achieve a timely monitoring of the process, with early
recognition of operational problems and recovery states.
Material and Methods

Experimental Set-Up

Four Plexiglas EGSB reactors (Fig. 1), 1.95 m height and
21 mm internal diameter were used in the experiment. The
working volume was 1.15 L and the superficial velocity was
4.0 m h�1. Temperature was kept at 37� 18C by means of an
external jacket for water circulation.
Inoculum and Substrate

Four hundred milliliters of granular sludge from a lab-scale
EGSB reactor, treating a synthetic effluent with ethanol as
sole organic carbon source, was used as the inoculum of the
four EGSB reactors used in these experiments. The biomass
was characterized in terms of specific methanogenic activity
(SMA) with acetate, and H2/CO2 as substrates, morphology
by quantitative image analysis, and volatile suspended solids
(VSS) (Table I). The reactors were fed with ethanol at a



Table I. Inocula characterization and load disturbance conditions.

LD1 LD2 LD3 LD4

Inocula characterization

Specific methanogenic activity with individual substrates (mLCH4@STP g VSS�1 day�1)

Acetate 234� 15 367� 20 234� 15 328� 12

H2/CO2 1,427� 26 1,686� 52 1,427� 26 1,720� 44

Morphology

LfA (mm�1) 20 18 20 18

TL/VSS (m gVSS�1) 1,099 1,238 1,099 1,238

VSS/TA (g m�2) 18.4 14.5 18.4 14.5

Deq macroflocs (mm) 1.06� 0.58 0.91� 0.67 1.06� 0.58 0.91� 0.67

VSS (g L�1) 14.78 33.57 14.78 33.57

Disturbance load conditions

Ethanol (g COD L�1) 5 1.6 15 15

HRT (h) 8 2.5 8 8

OLR (kg COD m�3 day�1) 15 15 50 50

Exposure time (h) 72 72 72 384

Recovery phase (h) 163 160 163 168
concentration of 1.5 g COD L�1. Sodium bicarbonate was
added as the alkalinity source (3 g L�1) and macro- and
micronutrients were added according to Zehnder et al.
(1980). When the reactors were operating in steady-state,
four organic load disturbances were applied (Table I). The
organic overload was performed by increasing the substrate
concentration (LD1, LD3, and LD4), and by decreasing
the HRT (LD2).
Routine Analysis

COD and VSS were determined according to Standard
Methods (APHA, 1989). Biogas flow rate was measured by a
Ritter Milligascounter (Dr. Ing. Ritter Apparatebau GmbH,
Bochum, Germany). Methane content of biogas was
determined by gas chromatography using a Porapack Q
(100–180 mesh) column, with Helium as the carrier gas at 30
mL min�1 and thermal conductivity detector. Temperatures
of the detector, injector and oven were 110, 110, and 358C,
respectively. Volatile fatty acids (VFA) and ethanol were
determined by high performance liquid chromatography
using an HPLC (Jasco, Japan) with a Chrompack column
(6.5� 30 mm2); sulfuric acid (0.01 N) at a flow rate of
0.7 mL min�1 was used as mobile phase. Column
temperature was set at 608C. Detection of VFA and ethanol
was made sequentially with an UV detector at 210 nm and an
RI detector, respectively.
Sludge Sampling and Dilution

A sampler specially designed to minimize the turbulence
inside the reactor was used to remove sludge samples. It
consisted of a wide bore tube connected to a 100 mL syringe.
It was introduced at the top of the reactor and biomass was
collected to the tube, along the expanded granular sludge
bed, avoiding mechanical stress. All the sludge samples were
characterized by image analysis, SMA assays, and VSS
content.
Biomass samples must be diluted for image analysis, but
an optimal value should be found. When there are no objects
in the image due to an excessive dilution, that image should
be registered and considered for calculations. However the
observer may unconsciously search objects, over estimating
them, and, if the dilution is insufficient, the objects will be
overlaid. The optimal dilution value was determined as the
lowest dilution that enabled the maximum percentage of
objects to be recognized. The percentage of recognition is
the ratio between the area of objects that are completely
inside the image and the total area of objects in the image
including those that are cut-off by the borders of the images
and cannot be completely recognized. The dilution 1:5 was
determined as the optimal one.
Specific Methanogenic Activity Assays

The specific acetoclastic activity (SAA) was measured in
presence of acetate (30 mM) and the specific hydrogeno-
trophic methanogenic activity (SHMA) was measured in the
presence of H2/CO2 80:20 (v/v), at 1 bar, according to the
previously reported pressure transducer method (Alves
et al., 2001). No nutrients were added. Methane was
measured by gas chromatography with helium as the carrier
gas and a TCD detector. All assays were performed in
triplicate.
Image Acquisition, Processing, and Analysis

For the acquisition of filaments and micro-aggregates
(Deq< 0.2 mm) images, a volume of 35 mL from the diluted
sample was distributed on a slide and covered with a
20 mm� 20 mm cover slip for visualization and image. This
volume was exactly covered by the cover slip. Each image
corresponded to a volume of 0.0445 mL. Then, more than
120 images were acquired. Image acquisition was obtained
by dividing the cover slip into 42 identical fields and taking a
Costa et al.: Monitoring of High Rate Anaerobic Reactors 447

Biotechnology and Bioengineering



photo in each square. At least three slides were examined to
minimize sampling errors.

Concerning to macro-aggregates (Deq � 0.2 mm) images,
an arbitrary volume was transferred to a Petri dish for
visualization and image acquisition. All the aggregates
present in that volume were captured in more than
120 images. Then, the VSS content in the Petri dish was
measured.

Images used to quantify filaments and micro-aggregates
were acquired through phase contrast and bright field,
respectively, on a Nikon Diaphot 300 microscope (Nikon
Corporation, Tokyo, Japan) with 100� magnification.
Images used to quantify macro-aggregates were acquired
through visualization on a Olympus SZ 40 stereo micro-
scope (Olympus, Tokyo, Japan) with 15� magnification. All
the images were digitized and saved with the help of a CCD
AVC D5CE Sony gray scale video camera (Sony, Tokyo,
Japan) and a DT 3155 Data Translation frame grabber (Data
Translation, Marlboro, MA) with 768� 576 pixel size in 8
bits (256 gray levels) by Image Pro Plus (Media Cybernetics,
Silver Spring, MD) software package.

The metric unit dimensions were further calibrated to
pixel using a micrometer slide, for each magnification.

Image processing and analysis was accomplished by
means of three programs developed in Matlab (The
Mathworks, Inc., Natick, MA), for filaments, micro, and
macro-aggregates (Amaral, 2003). In the next paragraphs a
brief description of the programs are presented.

The first step of all programs consists in divide the gray-
scale image by the background image in order to remove
background light differences.

Filaments Program

A bottom hat filter (Russ, 1995) was applied to enhance
the filaments and small aggregates that have low gray levels.
The larger aggregates, which have high gray levels, were
subsequently identified on the image resulting from the
background elimination step by applying a 10-order closing
(to enhance the aggregates), a segmentation at a fixed
threshold value, a filling of the resulting binary image (to
remove the inner holes in the aggregates) and a erosion-
reconstruction step to eliminate the debris. Filaments and
small aggregates were then isolated by segmentation at a
fixed threshold and by logic subtraction of the mask binary
image containing the large aggregates. Then, the small
aggregates were eliminated by deleting all the objects smaller
than 32 pixels (in area) or with a gyration radius below
1.2 (Pons and Vivier, 1999). The final image contained only
filaments that were characterized in terms of their length and
number.

Micro- and Macro-Aggregates Programs

Firstly, histogram equalization was performed to enhance
the micro-aggregates (this step only occurs in the micro-
aggregates program). Afterwards, the image was smoothed
by a Wiener filtering (Glasbey and Horgan, 1995). Then, it
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segmented in black (background) and white (aggregates) by
the simultaneous use of a boundary based segmentation
and a user chosen or automatically determined threshold
segmentation. The objects smaller than 3� 3 pixels
(small debris) were then removed and small gaps (6�
6 pixels or less) were filled on the remaining objects.
Subsequently, in order to remove filaments, all the objects
smaller than 2,000 pixels in area and with a gyration radius
above 1.2 (Pons and Vivier, 1999) were deleted (micro-
aggregates program). Finally, all the objects cut off by the
image boundaries were removed, and the morphological
characterization of the micro- and macro-aggregates were
performed.

Morphological parameters. The filaments image was
skeletonized and pruned (Russ, 1995). The filaments length
was determined by:

L ¼ N � 1:122 � Fcal (1)

where N is the number of pixels of the skeletonized filament
and Fcal is the calibration factor (mm pixel�1). The factor
1.122 is used in order to homogenize the different angles of
the filaments (Walsby and Avery, 1996).

The specific total filament length was calculated as:

Lspec ¼
L

Vfield

(2)

where Vfield is the volume (in mm3) corresponding to the
field of view (i.e., the image).

Filaments are not only the dispersed bulk filaments, but
include also those that are attached to an aggregate and still
have one free extremity (protruding filaments).

The aggregates program is used to determine:
The aggregate Area from which the Equivalent Diameter

(Deq) is calculated by:

Deq ¼ 2Fcal

ffiffiffiffiffiffiffiffiffiffi
Area

p

r
(3)

And, the total area (AT) occupied by aggregates in each
image from which the specific area occupied by aggregates
(Aspec) is calculated:

Aspec ¼
AT

Vfield

(4)

Finally, morphological parameters representing the
dynamic evolution of filaments and aggregates inside the
reactor were calculated as:

TL

VSS
¼ Lspec

VSS
(5)

VSS

TA
¼ VSS

Aspecð<0:2 mmÞ þ Aspecð�0:2 mmÞ
(6)



where VSS are the volatile suspended solids present in each
sample, and Aspec(<0.2 mm) and Aspec(�0.2 mm) are the specific
aggregate area ratio for aggregates of equivalent diameter
<0.2 and �0.2 mm, respectively.

A morphological parameter based on the ratio of specific
total filament length (Lspec) to total aggregates projected area
(LfA) is determined by:

LfA ¼ Lspec

Aspecð<0:2 mmÞ þ Aspecð�0:2 mmÞ
(7)
Principal Components Analysis

Variables summarizing the morphological, physiological
and performance data obtained during load disturbances
were grouped to create the dataset used to perform the PCA.
Four datasets were created, one for each load disturbance.

Principal components analysis aims at finding and
interpreting hidden complex, and possibly causally deter-
mined, relationships between features in a data set.
Correlating features are converted to the so-called factors
which are themselves noncorrelated (Einax et al., 1997).
PCA modeling, that is, the approximation of a matrix by a
model, defined by variables and a relatively small number of
outer vector products, shows the correlation structure of a
data matrix X, approximating it by a matrix product of
lower dimension (T� P0), called the principal components
(PC), plus a matrix of residuals (E):

X ¼ 1 � x0 þ T � P0 þ E (8)

where the term 1 � x0 represents the variable averages. The
second term, the matrix product T� P0, models the
structure, and the third term, E, is a matrix of residuals,
containing the deviations between the original values and
the projections, that is, contains the noise. T is a matrix of
scores that summarizes the X-variables (Scores), and P is a
matrix of loadings showing the influence of the variables on
each score. Geometrically, it corresponds to fitting a line, a
plane or a hyper plane to the data in the multidimensional
space, with the variables as axes. The scaling of the variables
specifies the length of the axes of this space.

SIMCA-P (Umetrics AB) software package was used to
perform the Principal Components Analysis. The first step
of the analysis consists in the pre-treatment of data by
standardization of the variables, that is, guarantee that each
individual variable has about the same range, avoiding that
some variables would be more important than others
because of scale effects. During this work each variable was
autoscaled by:

Zij ¼
xij � xj

sj
(9)
where xij is the value of the variable j in the sample i, xj and sj

are the mean and the standard deviation of the variable j,
respectively, and, zij is the autoscaled value of xij. At the end
of this standardization, each variable has mean zero and unit
standard deviation.

Subsequently, SIMCA-P (Umetrics AB) iteratively com-
putes one principal component at a time, comprising a score
vector ta and a loading vector pa. The score vectors contain
information on how the samples relate to each other.
Otherwise, the loading vectors define the reduced dimension
space and contain information on how the variables relate to
each other. Usually, few principal components (2 or 3) can
express most of the variability in the dataset when there is a
high degree of correlation among data.

The criterion used to determine the model dimensionality
(number of significant components) is cross validation
(CV). Part of data is kept out of the model development, and
then are predicted by the model and compared with the
actual values. The prediction error sum of squares (PRESS)
is the squared differences between observed and predicted
values for the data kept out of the model fitting. This
procedure is repeated several times until data element has
been kept out once and only once. Therefore, the final
PRESS has contributions from all data. For every dimension,
SIMCA computes the overall PRESS/SS, where SS is the
residual sum of squares of the previous dimension. A
component is considered significant if PRESS/SS is
statistically smaller than 1.0.
Results and Discussion

Reactor Performance

Four load disturbances (LD) were applied when the EGSB
reactors were operating in steady state with organic loading
rates (OLR) of roughly 5 kg COD m�3 day�1 and hydraulic
retention time (HRT) of 8 h. The COD removal efficiencies
were in the range 80–90% (Fig. 2). In LD1 and LD2 the
organic loading rates (OLR) were increased to 18.5
kg COD m�3 day�1, through the substrate (ethanol) con-
centration increase and the hydraulic retention time (HRT)
decrease to 2.5 h, respectively. The LD3 and LD4 were
performed by increasing the substrate concentration (OLR
of 50 kg COD m�3 day�1) during 3 and 16 days, respectively.

The load disturbance LD1 did not cause deterioration in
the reactor performance. After a temporary decrease, the
COD removal efficiency increased to more than 95%,
suggesting that the reactor was operating, in the pre-
disturbance conditions, far from its maximum capacity. In
contrast, when the flow rate increased in LD2, the COD
removal efficiency decreased and stabilized around 73%,
until the end of the disturbance. This led to a temporary
accumulation of acetate in the effluent that peaked to values
of 300 mg COD L�1 (data not shown).

When the OLR increased to 50 kg COD m�3 day�1 (LD3
and LD4), the COD removal efficiency decreased linearly
Costa et al.: Monitoring of High Rate Anaerobic Reactors 449
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Figure 2. Time course of organic loading rate (OLR, — ), and COD removal Efficiency (~). a: LD1, (b) LD2, (c) LD3, (d) LD4.
from 90% to 30% (Fig. 2c) in the first 40 h of disturbance.
After this period, and extending the exposure time (LD4,
Fig. 2d), the COD removal efficiency was recurrently around
35%. Few hours after the end of the shock exposure period,
all the reactors regained the pre-disturbance efficiencies
(Fig. 2).

Accumulation of acetate was observed in LD3 and LD 4,
achieving a temporary peak of 1,400 and 1,000 mg COD L�1,
respectively. A fast decrease of pH from 7.5 to <6 was
observed in the first hours of disturbances (data not shown).
In LD3, the pH remained near 6, during all the period of
shock exposure, whereas in LD4, a gradual increase in the
pH from 5.8 to 7 was observed in the last 150 h of exposure.
The pH increase was simultaneous with a decrease in acetate
concentration and an increase in the ethanol concentration
up to 5,000 mg COD L�1 in LD3 and 9,000 mg COD L�1

in LD4, suggesting an inhibition of acetogenic reaction
between ethanol and acetate.
Morphological, Structural and Physiological Data

Quantitative morphological information retrieved by image
analysis techniques can be related with the operational and
physiological information in order to interpret the impact of
load disturbances in the structure of granular sludge and
consequently its impact in the sludge bed stability.

In the organic shocks imposed by increasing the influent
concentration (LD1, LD3, and LD4) it was clearly observed a
decrease in aggregates size. The percentage of aggregates
450 Biotechnology and Bioengineering, Vol. 102, No. 2, February 1, 2009
projected area with equivalent diameter (Deq)> 1 mm
decreased to 70% in LD1, and to 58% in LD3 and LD4.
Concurrently, the % of projected area of aggregates inside
the range of Deq 0.1–1 mm increased to 28% and 40%,
respectively, in LD1 and LD3/4 (Fig. 2a, c, and d). A higher
flow of biogas production through the granular structure,
induced by the increase in the substrate concentration, is
likely responsible for the observed fragmentation, being
expectable that the respective impact could be dependent on
the magnitude of the load disturbance. In the hydraulic
shock LD2, a negligible change in size distribution was
observed (Fig. 3b). However, in this experiment, an increase
in the total filaments length per volatile suspended solids
(TL/VSS) was observed immediately (8 h) after starting the
disturbance period (Fig. 3j), likely induced by the increasing
shear stress inside the reactor, due to the higher up-flow
velocity applied. In LD1 a negligible increase of free/
protruding filaments was observed (Fig. 3i), and in LD3/4 a
peak of filaments occurred only 24 h after increasing the load
(Fig. 3k and l).

It is interesting to observe that, although the granules
were fragmented, LD1 disturbance did not impact the
reactor performance, but LD2 affected the reactor efficiency,
likely due to the erosion of filamentous bacteria from
the granules, followed by detachment and washout. There-
fore, by evaluating reactor’s performance (Fig. 2a and b), it
can be concluded that stability in the granules size
distribution is of minor importance when compared to
the capacity of filaments retention in the granular microbial
structures.



Figure 3. Time course of morphological parameters: (a–d) percentage of aggregates projected area by equivalent diameter (Deq) ranges (D, Deq � 1 mm; *,

0.1 mm
Deq < 1 mm; , Deq< 0.1mm); (e–h) dynamic between total filament length and total aggregates projected area (LfA, *), and, effluent volatile suspended solids

(effluent VSS, &); and (i–l) total filament length per volatile suspended solids (TL/VSS, ^), and volatile suspended solids per total aggregates projected area (VSS/TA, &). a, e, i:

LD1; (b, f, j) LD2; (c, g, k) LD3; and (d, h, l) LD4.
Reactor performance deterioration was also subsequent
to a high release of filaments in LD3 and LD4. Although
granular sludge is a complex structure, it is accepted that, in
general, acetoclastic bacteria are located mainly in the
core of a stratified microbial structure (Harmsen et al., 1996;
Liu et al., 2002a). This fact allows them to be more
protected against operational problems such as overloads,
pH oscillations or presence of toxic compounds (Liu
Costa et al.: Monitoring of High Rate Anaerobic Reactors 451
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et al., 2002b). In result of the observed fragmentation, the
inner core of the granules becomes exposed to the bulk
conditions, promoting the release and the selective washout
of methanogenic bacteria. Because filamentous forms
increased in the bulk, in LD2, LD3, and LD4 (Fig. 3j, k,
and l), it is worth to suggest that filamentous forms could
have been selectively washed-out during those load
disturbances, causing a decrease in the COD removal
efficiency (Fig. 2b–d). The observed decrease in the specific
acetoclastic activity (SAA), especially during LD3 and LD4
(Fig. 4), the increase of effluent VSS (Fig. 3f, g, and h) and
the kinetic characteristics of the Methanosaeta genera, which
is a very slow growing archaea may allow to speculate that
Methanosaeta genera could have been selectively washed out
during LD2, LD3, and LD4. Apparently, extending the
exposure time in LD4, the deterioration of reactor
performance was persistent and simultaneous with the
increase in effluent VSS concentration. This was likely due to
filaments release, detachment and washout, inducing
minimal values, both for filaments (Fig. 3l) and SAA (Fig. 4).

It was observed in different previous works (Abreu
et al., 2007; Araya-Kroff et al., 2004) that aggregation and
densification of aggregates was simultaneous with an
increase in the SHMA. In this respect, it is remarkable
that, particularly during the recovery phase, the SHMA
(Fig. 4) and the VSS/TA (Fig. 3) presented similar trends in
LD4.

The LfA parameter quantifies the level of biomass
aggregation by measuring the ratio between the free
filaments length and the projected area of the aggregates.
A high correlation with the total filaments length per VSS
was observed. Amaral (2003) and Costa et al. (2007)
proposed that LfA could be an early alert of washout during
influent disturbances in EGSB reactors, particularly when
Figure 4. Time course of specific acetoclastic activity (SAA, ^), and specific hyd
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toxic substances were accidentally fed. In the present study,
however the effects on the morphology caused by the over-
loads were simultaneous with the increase in the effluent
VSS. Therefore, the LfA parameter followed the trend of
effluent VSS without advance (Fig. 3e–h), forbidding an
earlier detection of the washout phenomenon.

By the end of the exposure periods, the turbulence and
instability caused by the raise in biogas production inside the
reactors, decreased. The effluent VSS decreased to values
similar to the pre-disturbance conditions (Fig. 3e–h).
During the recovery phase the morphological parameters
stabilized in values close to the initial ones, with the
exception of aggregates size distribution (Fig. 3).
Principal Components Analysis

The extraction of three principal components gathered more
than 80% of the total variability in all four datasets. The use
of other PCs did not enhance significantly the correlation
factors.

The score maps (Fig. 5) can be seen as windows in the X
space, displaying the observations as situated on the
projection planes or hyperplanes, and revealing groups,
trends, outliers and similarities between samples. Two
clusters clearly isolate the observations during the load
disturbances and the recovery period, besides the inoculum
sample, which emerge as an isolated observation. This shows
that immediately after the load disturbance, a deviation
occurred.

The information that can be obtained about the variables
and the role they play in the principal component (PC),
resides in the so-called loadings and respective loading maps
(Fig. 6). It allows deciding which variables are most
rogenotrophic methanogenic activity (SHMA, &). a: LD1, (b) LD2, (c) LD3, (d) LD4.



Figure 5. PCA score plot of the first PC (t[1]) versus the second PC (t[2]), in dataset of: (a) LD1; (b) LD2; (c) LD3; and (d) LD4. [Color figure can be seen in the online version of

this article, available at www.interscience.wiley.com.]
important for the differences observed between the samples.
The loading plots can be very useful to detect correlations
between variables. Variables close to each other, that is, with
similar coordinates, represent strongly correlated variables.
Concurrently, variables with symmetric coordinates are
correlated, although inversely proportional. Combination of
score and loading maps (Figs. 5 and 6) allows for the
visualization of the main effects/problems occurred during
EGSB reactors operation. For instance, the inoculum sample
is located in the upper part of the plot, with high score in
PC2 (Fig. 5b, t[2]). The variables that most influence this PC
are >1, >0.1, SHMA, Eff, and VSS (Fig. 6b, p[2]) that
evidenced immediate changes when the disturbance was
applied. The main clusters refer to observations with
negative (disturbance) and positive (recovery) scores in PC1
(Fig. 5b, t[1]). The variables with higher loadings in PC1
(Fig. 6b, p[1]), that is, responsible for grouping disturbance
and recovery phase observations are HRT, pH, SAA, OLR,
LfA, and TL/VSS. The LfA showed the highest variation
caused by the decrease of HRT, that is, the highest loading
(Fig. 6b, p[1]).

Some correlations should be distinguished from the
loading maps. It was observed a high positive correlation
between LfA and TL/VSS parameters in all datasets.
Previously some hypotheses were postulated, regarding
correlations between reactor performance deterioration,
biomass activity, and erosion/fragmentation of granules and
consequent filaments release and washout.

Emphasis should be given to the correlation showed in
LD3 (Fig. 6c) between the apparent granules density (VSS/
TA) and the specific hydrogenotrophic methanogenic
activity (SHMA), supporting the hypothesis presented
earlier, where densification of aggregates was simultaneous
with an increase in the SHMA (Abreu et al., 2007).

Special care should be put in the analysis of the loading
plot of LD4 (Fig. 6d), because extending the period of
disturbance, induced a new dynamic of filaments release and
washout. Consequently, the correlations detected were
poorer in this case. To elucidate this new dynamic, in
Figure 6d, it is observed a negative correlation between the
efficiency (Eff) and the % of aggregates with equivalent
diameter within the range 0.1–1 mm (>0.1). The increase of
smaller aggregates suggests the occurrence of erosion and/or
granules fragmentation. This phenomenon could have
destroyed the granules structure and architecture, likely,
exposing the inner core of acetoclastic bacteria to the bulk
conditions. The decrease in the removal efficiency was
probably associated to the selective washout of those
bacteria, evidenced by the negative correlation between the
SAA and the effluent VSS (Fig. 6d).

The increasing number of reports with methods for
monitoring and control of anaerobic digestion processes
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Figure 6. PCA loading plot of the first and second principal components ( p[1] vs. p[2]), from dataset of: (a) LD1; (b) LD2; (c) LD3; and (d) LD4. [Color figure can be seen in the

online version of this article, available at www.interscience.wiley.com.]
does not consider the integration of quantitative morpho-
logical indicators. In the present work, the application of
PCA to datasets obtained during load disturbances, allowed
the establishment of a new latent variable that encompasses a
weighted sum of performance, physiological and morpho-
logical information. This new variable can be used as a
warning indicator of operational problems during load
disturbances as can be clearly observed in Table II—
recognition of load disturbance. The variable t[1] was
calculated in the first hours of operation in the load
disturbances and the corresponding % of variation in t[1]
ranged between 27% and 268%, evidencing the high
sensitivity of the latent variable to detect the disturbance.
In LD1, the percentage of variation after 8 h was the smallest
one (27%) because this was the softer shock applied.
Simultaneously, was observed that this variable, t[1], was
also sensible to detect the recovery of the reactors
Table II. Coefficients of the first latent variable t[1] in PC1, at the beginning an

at the end of load disturbance and in the beginning of recovery phase (recogn

LD

Recognition of load disturbance

t¼ 0 h t¼ 8 h t¼ 24 h % of variation t¼

1 �1.343 �0.976 — 27 �2

2 þ1.482 �2.493 — 268 �1

3 þ2.132 �2.364 — 211 �0

4 �3.701 — 0.817 122
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(Table II—recognition of recovery state). This was possible
due to the rapid recovery in reactor performance and
morphological changes that occurred few hours after the end
of the load disturbance.

For a better understanding of principal components
analysis and the factors involved, is necessary to remember
that the score (ti) of an observation (i) on a principal
component PCj (ti PCj) is the weighted sum of the original
variables (xi). The weights ( pi PCj) are called the loadings of
the variables on that PCj. The loading of a variable is related
to its variation (Massart and Vander Heyden, 2005)

ti PCj ¼
X

pi PCj xi (10)

Analyzing the loadings associated with the new latent
variable t[1] described previously it is possible to distinguish
d after few hours of load disturbance (recognition of load disturbance), and,

ition of recovery state).

Recognition of recovery state

72 h t¼ 96 h t¼ 384 h t¼ 417 h % of variation

.119 3.938 — — 286

.069 2.229 — — 308

.875 1.344 — — 254

— — 3.329 �1.386 142



Table III. Loadings/weights of the variables in datasets associated to PC1.

Variable LD1 LD2 LD3 LD4 Observation

HRT — 0.390 — — Controlled variable

OLR �0.309 �0.390 �0.355 0.348 Controlled variable

Eff �0.134 0.245 0.320 �0.368

pH 0.197 0.336 0.345 �0.219

VSS �0.036 �0.232 �0.341 0.369

<0.1 �0.250 �0.080 �0.094 0.189 Morphological variable

>0.1 0.293 0.111 �0.283 0.295 Morphological variable

>1 �0.270 �0.097 0.283 �0.316 Morphological variable

SAA 0.211 �0.375 0.284 �0.372

SHMA �0.308 �0.018 0.196 �0.102

LfA 0.419 �0.387 �0.314 �0.284 Morphological variable

TL/VSS �0.380 0.151 0.222 �0.270 Morphological variable

VSS/TA 0.407 �0.356 �0.318 �0.186 Morphological variable
the variables that mostly influence the early detection of
reactor. The morphological parameters, with emphasis to
the LfA parameter that relates the free filaments length per
aggregates projected area emerges due to its high loadings,
that is, weights (absolute value) in all datasets (Table III).
The results clearly suggest that quantitative morphological
parameters should be considered in monitoring high rate
anaerobic reactors, especially those based on granular
sludge. It is important to mention, in this respect, that
granular sludge is a highly valuable resource used to start-up
industrial UASB reactors, EGSB reactors, or IC reactors. If
available, cost of granular sludge can attain about 300 Euro
per ton, including 2,000 km transportation. Therefore,
physiological quality but also morphological stability should
be assessed when operating in a different reactor or in
different conditions.

The integration of morphological information quantified
by image analysis, reactor performance, specific activity, and
chemometric methods constitutes a package for advanced
monitoring of anaerobic granular sludge bed reactors, which
in being tested at industrial scale with promising results.
Conclusions

The effects of organic load disturbances on the operational,
physiological and morphological properties of anaerobic
granular sludge were studied by combining quantitative
image analysis, methanogenic activity assays and perfor-
mance data.

An increase of OLR from 5 to 18.5 kg COD m�3 day�1

caused by the increase in influent concentration did not
affect the reactor efficiency. However, when the same
increase was due to the HRT decrease or the OLR was
increased to 50 kg COD m�3 day�1, the COD removal
efficiency decreased to 72% and 30%, respectively. In the last
case, increasing the exposure time caused acetogenic
inhibition. Concomitantly, granules fragmentation/erosion
was observed in organic shock loads (LD1, LD3, LD4).
However, in hydraulic shock (LD2), a negligible change in
size distribution was observed although an increase in
filaments was observed. Therefore, by evaluating reactor’s
performance, it can be concluded that stability in the
granules size distribution is of minor importance when
compared to the capacity of filaments retention in the
granular microbial structures.

It was demonstrated that the use of a multivariate
statistical tool such as PCA was appropriate to visualize and
isolate the main effects caused by the transient instabilities.
The proposed morphological parameters proved to be more
sensitive to detect promptly the problems than the normal
operating parameters. The new latent variable t[1], defined
as an weighted sum of all variables included in the dataset,
showed high variations in the first hours of disturbance and
in the recognition of the recovery state, in all datasets.
Concurrently, the high loadings/weights of the morpholo-
gical parameters enhanced the need to monitor the
anaerobic digestion process solid phase in order to achieve
an effective and timely control of the process.
Nomenclature

Reactor Performance Data
OLR
 organic loading rate
HRT
 hydraulic retention time (only used in LD2)
Eff
 chemical oxygen demand removal efficiency
pH
 pH
VSS
 effluent volatile suspended solids
Physiological Data
SAA
 specific acetoclastic activity
SHMA
 specific hydrogenotrophic methanogenic activity
Morphological Data
LfA
 total filaments length per total aggregates projected area
TL/VSS
 total filaments length per volatile suspended solids
VSS/TA
 volatile suspended solids per total aggregates projected area

(apparent granules density)
>1
 percentage of aggregates projected area with equivalent diameter

(Deq)� 1 mm
>0.1
 percentage of aggregates projected area within the range

0.1
Deq (mm)< 1 mm
<0.1
 percentage of aggregates projected area with Deq< 0.1 mm
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Alves MM, Mota Vieira JA, Álvares Pereira RM, Pereira MA, Mota M. 2001.

Effects of lipids and oleic acid on biomass development in anaerobic

fixed bed reactors. Part I. Biofilm growth and activity. Water Res

35:255–263.
Costa et al.: Monitoring of High Rate Anaerobic Reactors 455

Biotechnology and Bioengineering



Amaral AL. 2003. Image Analysis in Biotechnological Processes: Application

to Wastewater Treatment. PhD dissertation, Braga: University of

Minho, Portugal. (http://hdl.handle.net/1822/4506).

Amaral AL, Pereira MA, da Motta M, Pons M-N, Mota M, Ferreira EC,

Alves MM. 2004. Development of image analysis techniques as a tool to

detect and quantify morphological changes in anaerobic sludge. II.

Application to a granule deterioration process triggered by contact with

oleic acid. Biotechnol Bioeng 87(2):194–199.

APHA, AWWA, WPC. 1989. Standard methods for the examination of

water and wastewater. 17th edn. Washington, DC: American Public

Health Association.

Araya-Kroff P, Amaral AL, Neves L, Ferreira EC, Pons M-N, Mota M, Alves

MM. 2004. Development of image analysis techniques as a tool to detect

and quantify morphological changes in anaerobic sludge. I. Application

to granulation process. Biotechnol Bioeng 87(2):184–193.

Costa JC, Abreu AA, Ferreira EC, Alves MM. 2007. Quantitative image

analysis as a diagnostic tool for monitoring structural changes of

anaerobic granular sludge during detergent shock loads. Biotechnol

Bioeng 98(1):60–68.

Dudley BT, Howgrave-Grahm AR, Bruton AG, Wallis FM. 1993. Image

analysis to quantify and measure UASB digester granules. Biotechnol

Bioeng 42(3):279–283.

Einax JW, Zwanziger HW, Geiss S. 1997. Chemometrics in environmental

analysis. Weinheim: VCH.

Glasbey CA, Horgan GW. 1995. Image analysis for the biological sciences.

Chichester: John Wiley and Sons.

Harmsen HJM, Kengen HMP, Akkermans ADL, Stams AJM, de Vos WM.

1996. Detection and localization of syntrophic propionate-oxidizing

bacteria in granular sludge by in situ hybridization using 16S rRNA-

based oligonucleotide probes. Appl Environ Microbiol 62(5):1656–

1663.

Jeison D, Chamy R. 1998. Novel technique for measuring the size distribu-

tion of granules from anaerobic reactors for wastewater treatment.

Biotechnolgy Tech 12(9):659–662.
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