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Abstract: This paper deals with a general methodology to assess the influence of the clearance
size and the friction coefficient on the dynamic response of planar rigid multi-body systems
including revolute joints with clearance. When there is a clearance in a revolute joint, impacts
between the journal and the bearing can occur, and consequently, local deformations take place.
The impact is internal and the response of the system is performed using a continuous contact
force model.The friction effect because of the contact between joint elements is also included.The
dynamic response of the systems is obtained numerically by solving the constraint equations and
the contact-impact forces produced in the clearance joint, simultaneously with the differential
equations of motion and a set of initial conditions. Numerical results for two simple mechanisms
with revolute clearance joints are presented and discussed. In the present work, the clearance size
and friction effects are analysed separately. Through the use of Poincaré maps, both periodic and
chaotic responses of the systems are observed. The results predict the existence of the periodic
or regular motion at certain clearance sizes and friction coefficients and chaotic or non-linear in
other cases.
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1 INTRODUCTION

Over the last two decades, the dynamic modelling
of multi-body systems in general has been recog-
nized as an important tool in the analysis, design,
optimization, control, and simulation of complex
mechanisms. Clearance, friction, impact and other
phenomena associated with real joints are routinely
ignored. Therefore, the dynamics of mechanical sys-
tems is often conducted under the assumption that
the joints are ideal or perfect. The increasing require-
ment for high-speed machines and mechanisms pre-
cision, it becomes imperative to treat the joint in a
realistic way, that is, considered the joint clearances.
Joint clearances can affect the dynamic performance
of the mechanisms significantly.
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In general, the dynamic analysis of mechanical sys-
tems is assumed that the kinematic joints are ideal or
perfect, that is, clearance, local deformations, wear,
and lubrication effects are neglected. However, in a
real mechanical joint a clearance is always present.
Such clearance is necessary to allow the relative
motion between the connected bodies as well as to
permit the components assemblage. For instance, in a
journal–bearing joint there is a radial clearance allow-
ing for the relative motion between the journal and
the bearing. The presence of such joint clearance
leads to degradation of the performance of mechan-
ical systems in virtue of the impact forces that take
place. On the other hand, no matter how small the
clearance is, it can lead to vibration and fatigue phe-
nomena, premature failure and lack of precision or
even random overall behaviour. If there is no lubri-
cant in the joint, impacts occur in the system and the
corresponding impulses are transmitted throughout
the mechanical system.

The degradation of the performance of mechani-
cal systems with joint clearances has been recognized
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for a number of years [1–4]. It is well known that the
forces within joints with realistic amounts of clear-
ance, because of clearance impacts, are much higher
than would be calculated if the joint clearances were
neglected [5]. High joint impact forces can also cause
early failure; however, totally eliminating connections
clearance from a mechanical system to minimize joint
impacts is usually either expensive or impossible.

The main purpose of the present work is to study
the dynamic behaviour of planar rigid multi-body
systems with revolute clearance joints. In a revolute
clearance joint, if there is no lubricant, the journal
moves freely inside the bearing boundaries until it
reaches the bearing wall. When the journal and the
bearing are in contact, deformation takes place at the
contact zone resulting in a contact force normal to
the plane of collision. The force is proportional to
the local indentation and relative penetration veloc-
ity, and is modelled by a non-linear continuous force
model proposed by Lankarani and Nikravesh [6]. The
friction effects due to the relative tangential velocity
on the contact zone are also modelled accordingly to
modified Coulomb friction law [7]. These normal and
tangential forces are introduced into the equations of
motion of the system during the period of contact.
This approach provides accurate results, in so far the
equations of motion are integrated over the period of
contact. It thus accounts for the changes in the con-
figuration and the velocities of the system during that
contact.

Two elementary planar mechanisms with revolute
joint clearances are used as numerical examples to
illustrate the application of the presented method-
ology to the dynamic analysis of rigid multi-body
systems.

2 STATE OF THE ART

The subject of the representation of imperfect joints
has attracted the attention of a large number of
researchers that produced a number of theoretical
and experimental works devoted to the dynamic sim-
ulation of mechanical systems with joint clearances
[2–5, 8–13]. Some of these works focus on the planar
systems in which only one kinematic joint is mod-
elled as a joint clearance. Dubowsky and Freudenstein
[2, 3] formulated an impact pair model to predict the
dynamic response of an elastic mechanical joint with
clearance. In their model, springs and dashpots were
arranged as Kelvin–Voigt model. This work was sub-
sequently extended by Dubowsky and his coworkers
[14, 15]. Dubowsky [16] showed how clearances can
interact dynamically with machine control systems
to destabilize and produce undesirable limit cycle
behaviour.

Earles and Wu [17] employed a modified Lagrange’s
equation approach in which constraints were incor-
porated using Lagrange multipliers in order to predict
the behaviour of rigid mechanism with clearance in a
journal–bearing.The clearance in the journal–bearing
was modelled by a massless imaginary link, but the
simulation was restricted to the range of motion
that starts when the contact between the journal
and the bearing is terminated. Later, they investi-
gated the prediction of contact-loss in a bearing of
a linkage mechanism [18]. Mahrus [19] conducted
an experimental investigation into journal–bearing
performance. A test machine was developed on
which steady or varying unidirectional or full two-
component dynamic load can be applied to the test
journal–bearing. The corresponding journal centre
path is measured simultaneously with the load to
show the effect of the load diagram on hydrodynamic
lubrication.

Wilson and Fawcett [20] assumed that clearance
exists in the sliding bearing in a slider-crank mech-
anism in which a theoretical investigation on the
effects of parameters, such as the geometry, speed
and mass distribution of the mechanism, upon the
transverse motion of the slider was reported. They
derived the equations of motion for the different sce-
narios of the slider motion inside the guide. Grant
and Fawcett [21] proposed a method to prevent
contact-loss between the journal and bearing. Their
experimental results verified the approach for a lim-
ited class of systems, however, the method is not
universal [22]. Townsend and Mansour [23] modelled
a four bar crank-rocker mechanism with clearance
as two sets of compound pendulums in a theo-
retical study. They ignore the motion in contact
mode entirely, a close succession of small pseudo-
impacts was assumed for the simulation. Subse-
quently, Miedema and Mansour [24] extended their
previous two-mode model, for the free flight and
impact modes, to a three-mode model in which
a following mode was proposed. In their numer-
ical simulations the following mode was always
assumed to occur immediately after the impact
mode, however, this is frequently not observed in
practice [4, 5].

Haines [25] derived equations of motion that
describe the contributions at a revolute joint with
clearance but with no lubrication present. Also Haines
[11] carried out an experimental investigation on the
dynamic behaviour of revolute joints with varying
degrees of clearance. Under static loads, the deflec-
tion associated with contact elasticity in the dry
journal–bearing is found to be much greater and less
linear than predicted. Bengisu et al. [26] developed
a separation parameter for a four bar linkage, which
was based on a zero-clearance analysis. The theoreti-
cal results are compared with the experimental results
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and showed a qualitative agreement. They also pre-
dicted contact loss in a mechanism with multiple joint
clearances.

More recently, Feng et al. [27] developed an opti-
mization method to control the change of inertia
forces by optimizing the mass distribution of mov-
ing links in planar linkages with clearances at joints.
Innocenti [28] presented a method for analysis of spa-
tial structures with revolute joint clearances. Orden
[29] presented a methodology for the study of typi-
cal smooth joint clearances in mechanical systems.
This proposed approach takes advantage of the ana-
lytical definition of the material surfaces defining the
clearance, resulting in a formulation where the gap
does not play a central role, as it happens in standard
contact models.

Other researchers also included the influence of
the bodies’ flexibility in the dynamic performance
of mechanical systems besides the existence of gaps
in the joints [30–33]. Dubowsky and Moening [15]
obtained a reduction in the impact force level by
introducing bodies’ flexibility. They also observed a
significant reduction of the acoustical noise produced
by the impacts when the system incorporates flexi-
ble bodies. Kakizaki et al. [34] presented a model for
spatial dynamics of robotic manipulators with flexi-
ble links and joint clearances, where the effect of the
clearance is taken to control the robotic system.

The contribution and merit of the present work
deals with the quantification of the dynamic response
of multi-body systems composed of rigid bodies
that include revolute joints with clearance, in which
the clearance size and friction coefficient effects are
analysed and discussed.

3 MODELLING OF REVOLUTE JOINTS WITH
CLEARANCE

Figure 1(a) shows the typical configuration of a rev-
olute joint with clearance. The joint elements are the

bearing and journal, which diameters are RB and RJ,
respectively. The difference between the bearing and
journal radii is the radial clearance, c. The clearance
in realistic joints is much smaller than the size of the
bodies; however, in Fig. 1 is grossly exaggerated for
illustration. The existence of the clearance in the rev-
olute joints allows two extra degrees of freedom, that
is, the horizontal and vertical displacement and, con-
sequently, the journal and bearing can freely move
relative to each other. In addition, Fig. 1(a) shows the
relative penetration or indentation between the jour-
nal and bearing when the two bodies impact to each
other.

Three different modes of journal motion inside the
bearing are considered, namely the contact or fol-
lowing mode, the free-flight mode, and the impact
mode [8]. These three types of the journal motion are,
schematically, illustrated in Fig. 1(b). In the contact
or following mode, the journal and the bearing are
in permanent contact and a sliding motion related
to each other is assumed to exist. In this mode the
relative penetration depth varies along the circumfer-
ence of the bearing. Clearly, in practice, this mode is
ended when the journal and bearing separate from
each other and the journal enters in free flight mode.
In the free-flight mode, the journal can move freely
inside the bearing boundaries, that is, the journal
and the bearing are not in contact and, consequently,
no reaction force is developed at the joint. In the
impact mode, which occurs at the termination of
the free-flight mode, impact forces are applied and
removed in the system. This mode is characterized by
a discontinuity in the kinematic and dynamic char-
acteristics and a significant exchange of momentum
occurs between the two impacting bodies. At the ter-
mination of the impact mode, the journal can enter
either in free flight or in following mode. During the
dynamic simulation of a revolute joint with clearance,
if the path of the journal centre is plotted for each
instant, these different modes of motion can be easily
identified, as shown in Fig. 1(b).

Fig. 1 (a) Revolute joint with clearance, in which the clearance is exaggerated for clarity and
(b) modes of the journal motion inside the bearing boundaries
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The methodology employed in this work assumes
that the journal and bearing are modelled as two col-
liding bodies, being the dynamics of joint controlled
by force constraints instead of kinematic constraints
as it happens in an ideal revolute joint. Thus, accord-
ing to this concept, joints with clearance can be called
force-joints, as they deal with force constraints. A
good detail of the revolute clearance joint formulation
can be found in Flores et al. [5].

As it was mentioned, because of the existence of the
clearance in the joint, contact forces are generated at
the bodies when the journal reaches the bearing wall.
In a simple manner, the joint behaviour consists of
periods of free-flight motion followed by metal-to-
metal contact when the journal and bearing collide
to each other. In the first situation, there is no reac-
tion force at the joint. In the second case, a contact
force between the journal and bearing is developed
and the direction of this joint reaction force is parallel
to the relative position of the centres of the bear-
ing and the journal, as shown in Fig. 2(a). The joint
force magnitude upon the contact can be obtained
from the Hertzian contact theory [6], which is based
on the assumption that the dimensions of the con-
tact region between the journal and bearing is much
smaller than the radius of each body.The contact force
model proposed by Lankarani and Nikravesh [6], that
accounts for both the elastic and damping effects,
is employed in the present work to model evaluated
the contact force. The damping effect is associated
with the energy dissipated during the impact process,
together with the dissipative effect associated with the
Coulomb friction on the contact surfaces [7].

The relative penetration or indentation, δ, between
the journal and bearing can be written as,

δ = e − c (1)

where e is the absolute eccentricity and c is the radial
clearance.

The eccentricity is given by

e =
√

�X 2 + �Y 2 (2)

in which �X and �Y represent the horizontal and
vertical displacements of the journal inside the bear-
ing, respectively. These relative displacements are
obtained from the global position vectors of the bear-
ing and journal centres, respectively [8]. Thus, the
normal reaction force at the revolute joint clearance
can be expressed by [5, 6]

FN =

⎧⎪⎨
⎪⎩

0 if δ � 0

K δn

(
1 + 3(1 − c2

e )

4
δ̇

δ̇(−)

)
if δ > 0

(3)

where K generalized stiffness coefficient, δ is the rel-
ative penetration, ce is the restitution coefficient, δ̇ is
the relative penetration velocity, and δ̇(−) is the ini-
tial impact velocity. The exponent n is equal to 1.5 for
metallic contacts. For two spheres in contact the gen-
eralized stiffness coefficient is function of the radii of
the spheres i and j and the material properties as [35]

K = 4
3(σi + σj)

√
RiRj

Ri + Rj
(4)

where the material parameters σi and σj are given by

σk = 1 − ν2
z

Ez
(z = i, j) (5)

variables νz and Ez are, respectively, the Poisson’s
ration and the Young’s modulus of elasticity associ-
ated with the material of each sphere.

The contact force model developed by Lankarani
and Nikravesh [6] uses the general trend of the Hertz
contact law, in which a hysteresis damping func-
tion is incorporated with the intent to represent the

Fig. 2 (a) Contact between the journal and bearing represented by a non-linear viscous–elastic
force model and (b) contact force versus penetration depth
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energy dissipated during the impact. In fact, when
an elastic body is subjected to cyclic load, the energy
loss in the material causes a hysteresis loop in the
force-penetration relation. This contact model is only
valid for impact velocities lower than the propaga-
tion velocity of elastic waves across the bodies. The
use of the damping scheme included in this model
implies the outcome illustrated in Figs 3(a) to (c) in
which the penetration depth, δ, normal contact force,
FN, and hysteresis of an impact between two internally
spheres are presented. The generalized stiffness coef-
ficient used is 6.6 × 1010 N/m1.5. Figures 4(a) and (b)
show the time variation of the contact force and the
relation between the force and penetration depth
for different values of the coefficient of restitution.
Observing Fig. 4(b), it is important to note how the
hysteresis loop increases when the coefficient of resti-
tution decreases. When the restitution coefficient is
equal to 1.0, which corresponds to the pure Hertz
contact law there is no energy dissipation in contact.
This observation is evident in the force-penetration
depth relation of Fig. 4(b), which does not present
hysteresis loop.

In simulating the dynamics of mechanical systems
with clearance joints, it is essential to determine the
instant of contact between the bodies that constitute
the joint. The coupling of the relatively slow motion

of the overall system with the faster motion, associ-
ated with the joint clearance parameters, makes the
eigenvalues of the matrix of coefficients and indepen-
dent terms of the equations of motion widely spread.
Hence, numerical algorithms with variable step size
and order are an important feature for the compu-
tational strategy [36]. The use of these numerical
schemes plays a key role in contact problems, whose
dynamic response is quite complex and discontin-
uous, because of the sudden change in kinematic
structure caused by rapid variation of the contact
forces applied to the system and to the dramatic
change in the system stiffness, when a contact condi-
tion is achieved. Furthermore, the numerical model to
characterize the contact between the bodies requires
the knowledge of the preimpact conditions, that is,
the impact velocity and the direction of the plane of
collision [5]. The contact duration, as well as the
penetration depth, cannot be predicted from the
preimpact conditions because of the influence of
the kinematic constraint imposed by all bodies in the
overall system motion. Thus, before the first impact,
the joint elements can freely move relative to each
other and, in this phase, the step size is relatively
large and the global configuration of the system is
characterized by large translational and rotational
displacements. Therefore, the first impact between

(a) (b) (c)
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Fig. 3 Internally colliding spheres modelled by Lankarani and Nikravesh contact force model:
(a) penetration depth, δ; (b) normal contact force, FN; (c) force–penetration relation

Fig. 4 Influence of the coefficient of restitution for the Lankarani and Nikravesh continuous
contact force model: (a) contact force versus time and (b) force–penetration depth relation
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the colliding bodies is often made with a high pen-
etration depth, and, consequently, the contact forces
are large too. This forces the integration process to go
back and take a smaller step size, until a step can be
taken which is within the given error tolerance.

The journal is considered in free-flight motion
relative to the bearing until the geometric equality cri-
terion of equation (1) is verified, and, consequently,
the contact between the journal and bearing wall is
initialized. Ideally, when δ = e − c = 0, the bearing
and the journal are in contact to each other. How-
ever, because of the accumulation of computational
round-off errors, a tolerance is introduced in order
to accommodate for inaccuracies in the numerical
results. In the present work, the bearing and journal
are considered to be in contact when the penetration
depth is larger than 1.0 × 10−10 m.Therefore, when the
‘first’ penetration is within the penetration tolerance
it is assumed that such is the moment of the impact
and the position and relative velocity of the con-
tact points and the direction of the plane of collision
are recorded. It should be highlighted that with this
methodology, the step size can reach smaller values
than those needed to keep the integration tolerance
error under control.When the step size goes below the
limit, it is forced to remain at the minimum value [8].

In short, in the present work, the journal and the
bearing are elements that constitute a revolute joint
clearance and they are treated as impacting bodies.
Depending on the relative positions of the centres
of the journal and bearing during the mechanism
motion, the presented methodology can determine
whether or not the contact at the joints occurs. If it
does, contact forces are evaluated and applied to the
journal and bearing. If not, no reaction forces at the
joint are developed. The contact forces developed at
the joint clearances due to the impact are evaluated as
non-linear function of the local deformation between
the colliding bodies, as well as function of the geomet-
ric and material properties of the contacting surfaces.
The contact forces are introduced into the equations
of motion as external forces.

4 EQUATIONS OF MOTION FOR A CONSTRAINED
MULTI-BODY SYSTEM

In this section, the equations of motion for a general
mechanical system are presented [36]. The algebraic
kinematic independent holonomic constraints that
describe the configuration of a multi-body system can
written as

� = (q, t) (6)

where q is the vector of generalized coordinates that
describes the configuration of all bodies that consti-
tute the mechanical system and t is the time variable.

The equations of motion for a mechanical system can
be represented by [36]

Mq̈ + �T
qλ = g (7)

where M is the generalized mass matrix, q̈ is the vec-
tor that contains the system accelerations, �q is the
Jacobian matrix, λ is the Lagrange multipliers vector,
and g is the generalized force vector.

In dynamic analysis, a unique solution is obtained
when the constraint equations are considered simul-
taneously with the differential equations of motion,
for a proper set of initial conditions, consequently,
the constraint velocity and acceleration equations are
required. Indeed, there are methods capable of solv-
ing differential algebraic equations (DAEs) without
differentiating the constraint equations [36]. Thus,
differentiating equation (6) with respect to time yields
the velocity constraint equations

�qq̇ = −�t ≡ υ (8)

in which q̇ is the vector of generalized velocities and
υ is the right-hand side of velocity equations, which
contains the partial derivates of � with respect to
time, ∂�/∂t . It should be noticed that only rheo-
nomic constraints, associated with driver equations,
contribute with non-zero entries to the vector υ.

A second differentiation of equation (6) with respect
to time leads to the acceleration constraint equations

�qq̈ = −(�qq̇)qq̇ − 2�qt q̇ − �tt ≡ γ (9)

where q̈ is the acceleration vector and γ is the right
hand side of acceleration equations, i.e. the vector of
quadratic velocity terms, which contains the terms
that are exclusively function of velocity, position and
time. In the case of holonomic scleronomic con-
straints, that is, when � is not explicitly dependent on
the time, the term �t in equation (8) and the �qt and
�tt terms in equation (9) vanish. Equations (6), (8),
and (9) must be satisfied during the numerical simu-
lation. Equation (9) can be appended to equation (7)
and rewritten in matrix form as[

M �T
q

�q 0

] {
q̈

λ

}
=

{
g

γ

}
(10)

This system of equations is solved for q̈ and λ. Then,
in each integration time step, the accelerations vector,
q̈, together with velocities vector, q̇, are integrated in
order to obtain the system velocities and positions for
the next time step. This procedure is repeated up to
final time analysis is reached [36]. In order to keep the
constraint violations under control, the Baumgarte
stabilization method is used [37]. Furthermore, the
integration process is performed using a predictor–
corrector algorithm with variable order and step, such
the one suggestion by Shampine and Gordon [38].
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5 POINCARÉ MAPS: PERIODIC OR CHAOTIC
BEHAVIOUR

It is not surprising that non-linear behaviour can
occur widely in mechanical systems, particularly
since all have some inherent non-linearity. In multi-
body mechanical systems non-linearities arise from
intermittent motion, clearance joints, friction effect,
and contact–impact forces among others.

Dynamical systems are often used to describe a
set of variables with change over time. Mathemati-
cally, a dynamical system is described by an initial
value problem. When the behaviour of the system is
quite sensitive to initial conditions the system is called
chaotic. Indeed, the fundamental characteristic of a
chaotic physical system is its extreme sensitivity to
the initial sate. Sensitivity means that if two identical
mechanical systems are started at initial conditions y
and y + ε, respectively, where ε is a very small quan-
tity, their dynamical states will diverge from each
other quickly. Sensitive dependence does not require
exponential growth of perturbation but this is typical
for chaotic systems.

Poincaré maps are considered to be the most suc-
cessful tool for the investigation of dynamical systems
in theory as well as in applications. Poincaré maps
are mathematical abstractions which are often useful
in highlighting the behaviour of systems in terms of
periodic, quasi-periodic, and chaotic, or non-linear
motion. Especially chaotic systems are often exam-
ined through the use of Poincaré maps. A Poincaré
map consists of plotting the value of two components
from the state vector versus its derivative, i.e. y(t) and
ẏ(t) [39, 40].

Regular or periodic behaviour is insensitive to ini-
tial conditions and is represented in the Poincaré map
by a closed orbit or finite number of points. When
the periodic response becomes unstable the typical

result will be a geometrically strange object, called
strange attractor, which is a strong indicator of chaotic
behaviour. The chaotic motion is called Hamilton
when the Poincaré map points will spread all over the
map, that is, as the simulation time marches on, more
and more points will be added to the map. Chaotic
or non-periodic responses are extremely sensitive to
initial conditions and are densely filled by orbits or
points in the Poincaré map. Indeed, a complicated
looking phase in a Poincaré map is one indicator
of chaotic motion. Quasi-periodic orbits fill up the
Poincaré maps as the chaotic orbits, but they do so in
a fully predictable manner since there is no sensitive
dependence on the initial conditions [41].

In the present work, Poincaré maps are used to
illustrate the dynamic behaviour of planar rigid multi-
body systems with revolute joints with clearance and
friction.

6 DEMONSTRATIVE EXAMPLE 1: FOUR-BAR
MECHANISM

In this section, the academic four-bar mechanism is
used as an illustrative example to demonstrate how
a revolute joint with clearance affect a mechanism
behaviour. The four-bar mechanism consists of four
rigid bodies that represent the ground, crank, coupler,
and follower. The body numbers and their corre-
sponding local coordinate systems are shown in Fig. 5.
The joints of this mechanism include three ideal rev-
olute joints connecting the ground to the crank, the
crank to the coupler, and the ground to the follower. A
revolute joint with clearance exists between the cou-
pler and follower. Figure 5 shows three frames from an
animation sequence of the four bar mechanism with
a joint clearance, in which the clearance is strongly
exaggerated to demonstrate the bouncing effect.

Fig. 5 Four-bar mechanism with a revolute joint clearance between the coupler and follower. The
left-most picture corresponds to the initial simulation configuration

JMBD96 © IMechE 2007 Proc. IMechE Vol. 221 Part K: J. Multi-body Dynamics
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Table 1 Geometric and inertia properties of the four-bar
mechanism

Body nr. Length (m) Mass (kg) Moment of inertia (kg m2)

1 0.150 – –
2 0.400 3.120 0.042 25
3 0.260 2.028 0.011 85
4 0.460 3.588 0.064 02

Table 2 Parameters used in the dynamic simulation of
the four-bar mechanism

Bearing radius 10.0 mm Young’s modulus 207 GPa
Journal radius 9.8 mm Poisson’s ratio 0.3
Radial clearance 0.2 mm Integration step size 0.000 01 s
Restitution coefficient 0.9 Integration tolerance 0.000 001

The dimensions and inertia properties of each body
are listed in Table 1. The dynamic parameters, used
for the simulation and for the numerical methods
required to solve the system dynamics, are listed in
Table 2.

In order to initiate the numerical simulation, a set of
initial conditions is required and the selection of these
appropriate conditions play a crucial role in the pre-
diction of the dynamical response of the mechanical
systems. The initial conditions for the methodology
used here are based on the results of the kinematic
analysis of the four bar mechanism, in which all the
joints are assumed to be ideal or perfect. The sub-
sequent initial conditions for each time step in the
simulation are obtained from the final conditions of
the previous time step. This process is performed until
the final time of analysis is reached. The crank is the
driving link and rotates at a constant angular velocity
of 50π rad/s.

Two different kinds of results are presented. Firstly,
the four-bar mechanism is modelled considering all
the joints as ideal, in which neither clearance nor fric-
tion exists and the rotating axes of the journal and
bearing remained aligned. Secondly, the mechanism
is simulated with a revolute joint clearance, which
leads to surface contact in the links. The dynamic
response of the four-bar mechanism is obtained and
represented in Figs 6(a) and (b) by the time plots of the
velocity and acceleration of the follower. The moment
acting on the crank, which is required to maintain the
crank angular velocity constant, is plotted in Fig. 6(c).
The relative motion between the journal and bearing
centres is illustrated in Fig. 6(d). The Hertz contact
force law with hysteretic damping factor is used to
evaluate the contact force between the journal and
bearing. Note that the results are plotted against those
obtained for ideal joint, being reported for the two full
crank rotations after steady-state has been reached.

In general, the angular velocity of the follower is
not affected by the existence of the joint clearance, as

illustrated in Fig. 6(a). Indeed, there is no deviation in
the follower velocity curve when the four-bar mech-
anism is simulated with ideal and clearance joints.
In sharp contrast to the follower angular velocity, the
angular acceleration of the follower presents signifi-
cant differences between the dynamic response of the
four-bar mechanism when modelled with and with-
out joint clearance. Upon reviewing Fig. 6(b), it is clear
that the acceleration peaks are directly related to the
contact between the journal and bearing during the
simulation. These peaks are propagated throughout
the rigid bodies until the crank moment diagram, in
which some deviation from the ideal curve is also vis-
ible, as shown in Fig. 6(c). Furthermore, the system’s
response clearly repeats itself from cycle to cycle.
From Fig. 6(d) it is evident that the journal is always
in contact with the bearing wall. This observation is
logical since the two bodies are moving in the same
direction.

In order to better understand the dynamic effect
of the joint clearance on the response of the four-bar
mechanism, two dimensionless amplification param-
eters are defined for follower angular acceleration and
for the crank moment. The amplification parameter
for the follower angular acceleration is expressed by

AP(α) = αc − αi

αi
× 100 (11)

where αc and αi are the maximum angular accelera-
tion of the follower of the system with joint clearance
and ideal joint, respectively. Similarly, the amplifi-
cation parameter for crank moment can be written
as

AP(M ) = Mc − Mi

Mi
× 100 (12)

in which Mc and Mi are the maximum crank
moment of the system with joint clearance and
ideal joint, respectively. Extracting the maximum val-
ues of the follower acceleration and crank moment
from Figs 6(b) and (c), the amplification parameters
obtained are 50.82 and 38.32 per cent, respectively.
These values represent how the level of follower
angular acceleration and crank moment is increased
because of the contact within the joint clearance. In
short, the joint clearance creates significantly larger
dynamic accelerations and reaction moments on
the mechanism than those obtained for an ideal
dynamic model. Furthermore, the results have to be
understood under the assumptions adopted in this
work. Indeed, currently our model does not account
for bodies’ flexibility, which is a strong factor that
affects/reduces the high peaks on the system out-
put results. Certainly that if the bodies’ elasticity is
taken into account and structural damping also, these
peaks should be reduced. Finally, notice that many of
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Fig. 6 (a) Follower angular velocity; (b) follower angular acceleration; (c) crank moment required to
maintain the crank angular velocity constant; (d) journal centre path relative to the bearing
centre

the results published in literature when dealing with
accelerations, are filtered, which is not the case here.

Figure 7 shows the influence of the radial clearance
size on the crank reaction moment. The values of the

radial clearance used are 0.5, 0.2, 0.1, and 0.01 mm.
The crank moment diagrams tend to be close to those
obtained for ideal joint when the clearance size is
reduced. The same conclusion can be drawn from

Fig. 7 Crank moment for various radial clearances: (a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm; (d) c = 0.01 mm
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Fig. 8 Poincaré map for various radial clearances: (a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm; (d) c = 0.01 mm

Fig. 8 where the Poincaré maps are used to illustrate
the dynamic behaviour of the four-bar mechanism.
When a joint clearance is included in the mecha-
nism, the systems’ response tends to a periodic or
non-linear instead of regular or periodic. In fact, the
Poincaré map for the case simulation with a joint
clearance presents a more complex aspect in an open
orbit form, which is a strong indicator of non-linear
behaviour. The degree of non-linearity decreases with
the radial clearance size. This feature can be useful
in calculations of the acceptable range for clearance
for any type of construction where this type of joint
clearance is applied.

7 DEMONSTRATIVE EXAMPLE 2: SLIDER-CRANK
MECHANISM

In this section, the slider-crank mechanism is used to
illustrate the dynamic behaviour of the revolute clear-
ance joints in multi-body systems. Figure 9 depicts the
kinematic configuration of the slider-crank mecha-
nism, which consists of four bodies, including ground,
two ideal revolute joints, and one ideal translational
joint. A revolute clearance joint exists between the
connecting rod and slider. The body numbers and
their corresponding coordinate systems are shown
in Fig. 9.

In order to keep the analysis simple and to illustrate
the dynamic clearance joint behaviour, all the bod-
ies are considered to be rigid and the inertia due to

Fig. 9 Slider-crank mechanism with a clearance joint

the driving motor is neglected. The length and inertia
properties of each body are shown in Table 3.

In the dynamic simulation the crank is the driv-
ing body and rotates with a constant angular velocity
equal to 5000 r/min clockwise. The initial config-
uration corresponds to crank and connecting rod
collinear and the position and velocity journal centre
are taken to be zero. Initially, the journal and bear-
ing centres are coincident. Table 4 shows the dynamic
parameters used in simulations.

In order to analyse the dynamic behaviour of the
system, long time simulations were performed and
the results presented below are relative to two full

Table 3 Geometric and inertia properties of the
slider-crank mechanism

Body nr. Length (m) Mass (kg) Moment of inertia (kg m2)

2 0.050 0.300 0.000 01
3 0.120 0.210 0.000 25
4 – 0.140 –
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Table 4 Parameters used in the dynamic simulation of the
slider-crank mechanism

Bearing radius 10.0 mm Poisson’s ratio 0.3
Restitution coefficient 0.9 Baumgarte – α, β 5
Friction coefficient 0.0 Integration step size 0.000 01 s
Young’s modulus 207 GPa Integration tolerance 0.000 01

Fig. 10 Journal centre orbit for different clearance sizes:
(a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm;
and (d) c = 0.01 mm

crank rotations after steady-state has been reached.
The revolute clearance joint is modelled as dry impact
between the two bodies that constitute the journal
bearing element. When contact is detected, together
with the penetration depth and surface properties, the
normal contact force is evaluated by equation (3). The
tangential or friction force is modelled according to a
modified Coulomb law [7].

The behaviour of the revolute clearance joint is
illustrated by plotting the trajectory of the journal
inside the bearing boundaries as well as the plot of
Poincaré maps. In the present example, the slider
velocity and the slider acceleration are chosen to plot
the Poincaré maps. The effect of the radial clearance
size and friction effect are studied separately. In the
first case the influence of the radial size clearance
is performed. The range of the clearance used in the
present work is 0.5, 0.2, 0.1, and 0.01 mm. Figures 10(a)
to (d) show the journal centre trajectory inside the
bearing. The Poincaré maps are illustrated through
Figs 11(a) to (d).

Figure 10(a) shows a non-linear motion between
the journal and bearing since the motion does not

repeat from cycle to cycle. This is confirmed by
the respective Poincaré map, see Fig. 11(a), where
chaotic behaviour can clearly be observed. The
chaotic response suggests that impacts followed by
some rebounds take place. Figure 11(b) shows a
quasi-periodic motion, because the orbits fill up the
Poincaré maps in a fully predictable manner since
there is no sensitive dependence on the initial con-
ditions. It is clear that when the clearance is reduced
the dynamic behaviour tends to be periodic or regular,
which indicates that the journal follows the bearing
wall. Indeed, the close orbit in the Poincaré map of
Fig. 11(d) is clearly a periodic response. It should
be noted that for an ideal joint the Poincaré map
is almost the same as the map shown in Fig. 11(d),
which is expected in so far as all the bodies have peri-
odic motion and repeated every crank cycle. From
the Poincaré maps analysis, the journal centre path is
characterized and it is possible to distinguish between
periodic, quasi-periodic and chaotic responses.

In the second simulation of the slider-crank mech-
anism, the friction phenomenon is included in the
dynamics of the revolute clearance joint. The radial
clearance size is equal to 0.5 mm and four differ-
ent values for friction coefficient are used, namely,
0.01, 0.03, 0.05, and 0.10. The journal centre trajec-
tories inside the bearing boundaries are illustrated
in Figs 12(a) to (d). The corresponding Poincaré
maps which relate the slider acceleration versus slider
velocity are shown in Figs 13(a) to (d).

Looking at the Figs 12(a) to (d) and 13(a) to (d) it is
clear that, when the friction coefficient increases, the
dynamic response of the system tends to be simply
periodic. For low value of friction coefficient, the sys-
tem response is chaotic since the Poincaré map has a
spread of points. However, for higher values, the sys-
tem changes from chaotic to quasi-periodic and even
regular motion because the orbits on the Poincaré
maps tend to be close orbits in a rather complicated
manner. Broadly, observing Figs 12(a) to (d) and 13(a)
to (d) it can be concluded that the increase of friction
coefficient leads to a better response of the system,
that is, transition from chaotic or non-linear motion
to periodic or regular motion.

In short, multi-body systems with clearance joints
are well-known as non-linear dynamic systems, under
certain conditions exhibit chaotic response, which
is typically characterized by non-periodic response
and extreme sensitivity to initial conditions. More-
over, when the friction effect is included, the degree
of non-linearity increases. However, from the results
presented in this section, it is found that the dynamics
of the revolute clearance joint in rigid multi-body sys-
tems is quite sensitive to the clearance size as well as
to the friction coefficient, and with only small change
in one of these parameters, the response of the system
can shift from chaotic to periodic.
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Fig. 11 Poincaré maps for different clearance sizes: (a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm; (d) c = 0.01 mm

Fig. 12 Journal centre orbit for different friction coeffi-
cients: (a) cf = 0.01; (b) cf = 0.03; (c) cf = 0.05;
(d) cf = 0.10

8 CONCLUSIONS

The application of existing techniques for modelling
of impacts in multi-body systems was presented and
discussed in this paper. In particular, the influence of
the clearance size and the friction coefficient on the
dynamic response of planar rigid multi-body systems
including revolute joints with clearance was studied.
Numerical results for two simple planar mechanisms
with revolute clearance joints were used to demon-
strate the methodology and assumptions adopted
throughout this work.

For the radial clearance sizes and friction coefficient
values used in this work the trajectory of the journal
inside the bearing exhibits both periodic and chaotic
responses. This is confirmed through the use of the
Poincaré maps. When the clearance is reduced, the
dynamic response changes from chaotic to periodic
or regular behaviour. The same conclusion is drawn
when the friction coefficient is increased. Indeed, the
clearance size and friction coefficient act in a similar
way. The dynamic response, in terms of journal centre
trajectory and Poincaré maps, shows that the periodic
and non-periodic response can occur. Poincaré maps
play a key role in representing and understanding the
global behaviour of dynamical systems. This feature
can be useful in calculation of the acceptable range
for clearance during the design process.
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Fig. 13 Poincaré maps for different friction coefficients: (a) cf = 0.01; (b) cf = 0.03; (c) cf = 0.05; (d) cf = 0.10

The global results presented in this paper show that
the non-periodic response in the mechanical systems
can make the design and control processes more com-
plex tasks. The dynamic behaviour of the multi-body
systems with clearance joints is very sensitive to even
small changes of parameters, namely the clearance
size and the friction coefficient. Indeed, the system
response can be periodic or chaotic with a very small
variation of the initial parameters.

Most of the mechanical systems present some
inherent non-linearity even when modelled with ideal
joints. The non-linearity is more evident when the
system includes clearance joints together with the
friction effect. With the knowledge of non-linearities
in multi-body systems, chaotic behaviour may be
eliminated with suitable design and/or parameter
changes of a mechanical system. In these cases, non-
linear control may be necessary to achieve the desired
behaviour that may arise in the system. For the pur-
pose of eliminating any non-linear behaviour that
may arise in the mechanical systems, a non-linear
controller must be employed to ensure dynamical
stability.
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