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Abstract

A computational methodology for dynamic analysis of multibody mechanical systems with joint clearance is pre-

sented in this work. Clearances always exist in real joints in order to ensure the correct relative motion between the

connected bodies being the gap associated to them a result of machining tolerance, wear, and local deformations.

Clearance at different joints is the source for impact forces, resulting in wear and tear of the joints, and consequently the

degradation of the system performance. The model for planar revolute joints is based on a thorough geometric

description of contact conditions and on a continuous contact force model, which represents the impact forces. It is

shown that the model proposed here lead to realistic contact forces. These forces correlate well with the joint reaction

forces of an ideal revolute joint, which correspond to a null joint clearance. The application to the analysis of a simple

planar multibody system illustrates the use of the different models proposed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In general dynamic analysis of multibody mechanical

systems it is assumed that the kinematic joints are ideal

or perfect, that is, clearance, local deformations, wear,

and lubrication effects are neglected. However, in a real

mechanical kinematical joint a gap is always present.

Such clearance is necessary to allow the relative motion

between the connected bodies and to permit the com-

ponents assemblage as well. For instance, in a journal–

bearing joint there is a radial clearance allowing for the

relative motion between the journal and the bearing.

This clearance is inevitable due to the machining toler-

ances, wear, material deformations, and imperfections.

The presence of such joint gaps leads to degradation of

the performance of mechanical systems in virtue of the

impact forces that take place. Not only these impact
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forces dissipate energy but they are also a source for

vibrations and noise.

The general purpose computational tools used for

design and analysis of mechanical systems, such as

ADAMS [1] or DADS [2], have a wide number of

modeling features that require the description of rigid or

flexible bodies for which geometry, mass, center of mass,

moment of inertia, and other relevant properties are

defined. These codes also provide a large library of

kinematic joints that constrain relative degrees of free-

dom between connected bodies. The kinematic joints

available in these commercial programs are represented

as ideal joints, i.e., there are no clearances or deforma-

tions in them.

The subject of the representation of real joints draw

the attention of a large number of researchers that

produced several theoretical and experimental works

devoted to the dynamic simulation of mechanical sys-

tems with joint clearances [3–8]. Some of these works

focus on the planar systems in which only one kinematic

joint is modeled as clearance joint [6,7]. Bengisu et al. [8]

presented a study of a four-bar mechanism with multiple
ed.
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joints with clearances. Some researchers also include the

influence of the flexibility of the bodies in the dynamic

performance of multibody systems besides the existence

of gaps in the joints [5,9]. Based on different clearance

models, Claro and Fernandes [10] presented a qualita-

tive study of the performance of a slider-crank mecha-

nism with a nonperfect revolute clearance joint.

While an ideal revolute joint imposes permanent

kinematic constraints to the systems, a revolute joint

with clearance has to be dealt with a different approach,

for instance using force constraints [6]. For planar sys-

tems the existence of a radial clearance in a revolute

joint removes the two kinematic constraints associated

with the ideal revolute joint, and, hence, two extra de-

grees of freedom are introduced. Thus, the journal can

move freely inside the bearing boundaries. When the

journal reaches the bearing wall an impact takes place

and contact forces control the dynamics of the joint.

In general, there are three main modeling strategies

for mechanical systems with revolute clearance joints,

namely, the massless link approach [11–13], the spring–

damper approach [3,4,14], and the momentum exchange

approach [6,15]. In the massless link approach, the

presence of clearance at a joint is modeled by adding a

link of zero mass that has a constant length equal to the

radial clearance, as shown in Fig. 1. The result is a

mechanism that has an additional degree of freedom,

when compared with the system that has the ideal joint.

In the spring–damper approach, the clearance is mod-

eled by introducing a spring–damper element, repre-

sented in Fig. 2, which simulates the surface elasticity.

This model does not represent the physical nature of

energy transfer during the impact process. Moreover,

there is a real difficulty in quantifying the parameters of

the spring and damper elements. In the third model,

shown in Fig. 3, the journal–bearing elements are con-

sidered as two colliding bodies and the contact forces

control the dynamics of the clearance joint.

The existence of impacts in the joint lead to the

appearance of high level of contact forces during dy-

namic analysis. The difference in radius between the

bearing and the journal, which defines the radial clear-

ance size, is directly associated to the model of contact
Clearance circle

Fig. 1. Revolute clearance joint modeled by massless link ap-

proach.
forces that develop during the motion of the system. In

the first two models, the clearance is replaced by an

equivalent component, which tries to simulate its

behavior as closely as possible. The third model is more

realistic, as it allows for the contact force models to

develop as a function of the elasticity properties of

contacting surfaces and it takes into account the dissi-

pation of energy during the impact process.

The modeling of the impact in multibody systems is

well described by two types of methods, namely con-

tinuous and discontinuous approaches [16,17]. Within

the continuous approaches the methods commonly used

are the continuous force model, which is in fact a pen-

alty method, and the unilateral constraint methodology,

based on complementary approaches [18]. The contin-

uous contact force model represents the forces arising

from the collisions, assuming that the force is a contin-

uous function of deformation. In this model, when

contact is detected, a force perpendicular to the plane of

collision is applied. The contact force model can be

linear, as in the Kelvin–Voigt model, or nonlinear, as

represented by the Hertz law. For long impact durations

this method is effective and accurate in so far as the

instantaneous contact force is evaluated and introduced

into the equations of motion of the system. In the second

continuous approach, when contact is detected a kine-

matic constraint is introduced in the system equations.

Such constraint is maintained while the reaction forces
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are compressive, and removed when the impacting

bodies rebound from contact [19].

The second type of methods, the discontinuous

model, assumes that the impact occurs instantaneously

and that no change of the system configuration occurs

during contact. The integration of equations of motion

is halted at the time of impact and a momentum balance

is performed to calculate the post impact velocities of

the system components. The restitution coefficient is

employed to quantify the dissipation energy in the pro-

cess. This method is relatively efficient, however, the

unknown duration of impact limits its application,

mainly for long impact duration in which the system

configuration changes significantly and the assumption

of instantaneity of impact is no longer valid [20].

The main emphasis of this work is on the modeling

revolute clearance joints in multibody mechanical sys-

tems. The contact between the journal and the bearing is

modeled by using a continuous impact force model. The

impact forces are then introduced into the system’s

equations of motion in order to analyze the dynamic

behavior of the system.

In order to demonstrate the use of the methodology

described throughout this work, an application to a

planar slider-crank mechanism in which the revolute

joint between the connecting rod and slider has a con-

trolled clearance is presented.
2. Equations of motion for multibody systems

The position of a body reference frame is defined, in

what follows, by a set of Cartesian coordinates. The

position and orientation of rigid body i is defined by

q�i ¼ rTi pTi
� �T

; ð1Þ

where ri ¼ x y z½ �T are the translation coordinates

and pi ¼ e0 e1 e2 e3½ �T are the rotational coordi-

nates, given here by Euler parameters. The velocities and

accelerations of body i use the angular velocities x0
i and

accelerations _x0
i instead of the time derivatives of the

Euler parameters. The velocities and accelerations of

body i are given by vectors

_qi ¼ _rTi x0T
i

h iT
; ð2Þ
€qi ¼ €rTi _x0T
i

h iT
: ð3Þ

In terms of the Cartesian coordinates, the equations

of motion of an unconstrained multibody system are

written as

M€qr ¼ g; ð4Þ

where M is a mass matrix and g is a force vector that

contains the external and Coriolis forces acting on the
bodies of the system. For a constrained multibody sys-

tem the kinematical joints are described by a set of

holonomic algebraic constraints

Uðqr; tÞ ¼ 0: ð5Þ

Using the Lagrange multipliers technique the constraints

are added to the equations of motion. These are written

together with the second time derivatives of the con-

straint equation (5). The set of equations that describe

the motion of the multibody system is

M UT
q

Uq 0

� �
€qr
k

� �
¼ g

c

� �
; ð6Þ

where k is the vector of Lagrange multipliers and c is

vector that groups all the terms of the acceleration

constraint equations that depend on the velocities only,

i.e.,

c ¼ �ðUq _qÞq _qr �Utt � 2Uqt _qr: ð7Þ

Eq. (6) is a differential-algebraic equation that has to

be solved and the resulting accelerations integrated in

time. However, because they do not use explicitly the

position and velocity constraint equations there may be

a drift in the system constraints. To avoid constraints

violation during numerical integration, Baumgarte sta-

bilization is used, and Eq. (6) modified as

M UT
q

Uq 0

� �
€qr
k

� �
¼ g

c� 2a _U� b2U

� �
; ð8Þ

where a and b are positive constants that represent the

feedback control parameters for the velocities and po-

sition constraint violations. The interested reader is re-

ferred to Nikravesh [21] and Baumgarte [22] for further

details on the formulation used.

A set of initial conditions, positions and velocities, is

required to start the dynamic simulation. The selection

of the appropriate initial conditions plays a key role in

the prediction of the dynamic performance of mechan-

ical system. In the present work, the initial conditions

are based on the results of kinematic simulation of

mechanical system in which all the joints are assumed to

be ideal. The use of numerical algorithms with auto-

mated adjust step size is particularly important in con-

tact problems whose dynamic response is quite complex

due to the sudden change in kinematic configuration. In

such events, the use of a constant time step is compu-

tationally inefficient and the system could be overlooked

due to insufficient time resolution. Thus, automated time

step size adaptability is a crucial part of the dynamic

solution procedure. Moreover, the abrupt configuration

changes caused by rapid variation of contact forces re-

sults in stiff equations of motion for the system, since the

natural frequency of the system are widely spread. Thus,

the time step size must be adjusted in order to capture

both the fast and low frequency components of the
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system response [21]. The integration process is per-

formed here using a predictor–corrector algorithm with

both variable step size and order [23].
3. Kinematic aspects of revolute joints with clearance

In standard multibody models it is assumed that the

connecting points of two bodies linked by an ideal or

perfect revolute joint are coincident. The introduction of

the clearance in a revolute joint separates these two

points as observed in Fig. 3. The difference in radius

between the bearing and the journal, c ¼ RB � RJ, de-

fines the size of radial clearance. Relative to the situation

of an ideal joint, a revolute clearance joint introduces

two extra degrees of freedom in the system, that is, the

horizontal and vertical motion of the journal relative to

the bearing center. In a noncontact situation, no con-

straints or forces are introduced by the journal–bearing.

However, during the contact between the journal and

bearing, impact forces develop. Thus, a revolute clear-

ance joint does not constrain any degree of freedom

from the mechanical system like the ideal joint, but

imposes kinetic interactions that bound the journal to

move within the bearing boundaries. Thus, whilst a

perfect joint in a mechanical system imposes kinematic

constraints, a revolute clearance joint deals with force

constraints only. The dynamic behavior of the revolute

clearance joint is treated as an eccentric impact between

the journal and the bearing. When the contact takes

place, an impact force law is applied and the resulting

forces are introduced into the system’s equations of

motion.

Fig. 4 shows two bodies i and j, the extremities of

which define the bearing and journal, respectively. The

center of mass of bodies i and j are Oi and Oj, respec-

tively. Body-fixed coordinates ng are attached at the

centers of mass, while XY coordinate frame represents
Fig. 4. General revolute clearance joint in a multibody system.
the global coordinate system. Point Pi indicates the

center of the bearing, and the center of the journal is

defined at point Pj. As displayed in Fig. 4, the eccen-

tricity vector eij, which connects the centers of the

bearing and journal is given by

eij ¼ rPj � rPi ; ð9Þ

where both rPj and rPi are described in global coordinates

with respect to the inertial reference frame [21], that is,

rPk ¼ rk þ Aks
0P
k ðk ¼ i; jÞ: ð10Þ

The magnitude of the eccentricity vector is evaluated as,

eij ¼
ffiffiffiffiffiffiffiffiffi
eTijeij

q
: ð11Þ

A unit vector n normal to the plane of collision between

the bearing and journal is defined by

n ¼ eij

eij
: ð12Þ

Note that the unit vector n has the same direction as the

line of the centers of the bearing and journal.

With reference to Fig. 5, the penetration depth due to

the impact between the journal and bearing is evaluated

as,

d ¼ eij � c; ð13Þ

where eij is the module of the eccentricity vector and c is
the radial clearance size. It should be noted that the

radial clearance is a parameter specified by the user.

The candidate contact points on bodies i and j are Qi

and Qj, respectively. The position of these points in the

journal and bearing are,

rQk ¼ rk þ Aks
0Q
k þ Rkn ðk ¼ i; jÞ; ð14Þ

where Ri and Rj are the bearing and the journal radius,

respectively.
Fig. 5. Penetration depth between the journal and bearing

during impact.
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The velocity of the contact points Qi and Qj in the

global coordinate system is found by differentiating Eq.

(14) with respect to time, yielding,

_rQk ¼ _rk þ _Aks
0Q
k þ Rk _n ðk ¼ i; jÞ; ð15Þ

where the dot denotes the derivative with respect to

time.

The components of the relative velocity of contact

points in the normal and tangential plane of collision,

shown in Fig. 6, are represented by vN and vT, respec-
tively. The relative normal velocity determines whether

the contact bodies are approaching or separating. The

relative scalar velocities, normal and tangential to the

plane of collision, are found by projecting the relative

impact velocity onto the respective direction, yielding,

vN ¼ _rQj

�
� _rQi

�T
n; ð16Þ
vT ¼ _rQj

�
� _rQi

�T
t; ð17Þ

where the tangent vector t is obtained by rotating vector

n by 90� in the anti-clockwise direction.

The normal and tangential forces, fN and fT,

respectively, act at the contact points. These forces are

evaluated using a contact force model, for instance

the Hertz’s law, and a friction force model, for example

the Coulomb’s law. Similarly to the velocity analysis, the

normal vector from the plane of collision is used as

working direction for the contact forces. The contribu-

tions of the impact forces to the generalized vector of

forces, g in Eq. (8), are found by projecting the normal

and tangential forces onto the X and Y directions. These

forces that act on the contact points are transferred to

the center of mass of bodies i and j, Oi and Oj, respec-

tively. Based on Fig. 7, the forces and moments acting

on the center of mass of body i are given by

f i ¼ fN þ fT; ð18Þ
mi ¼ � yQi
�

� yi
	
f x
i þ xQi

�
� xi

	
f y
i : ð19Þ

The forces and moments corresponding to the body j are
written as,
Fig. 6. Normal and tangential contact velocities.
fj ¼ �f i; ð20Þ
mj ¼ xQj
�

� xj
	
f y
j � yQj

�
� yj

	
f x
j : ð21Þ

The forces and moments given by Eqs. (18) through (21)

are added to the generalized force vector g in Eq. (8).

But before these quantities can be calculated it is nec-

essary that the contact forces are evaluated using an

appropriate contact model.
4. Models for contact forces

The contact force model used to evaluate the impact

forces between the bearing and the journal plays a cru-

cial role in the dynamic simulation of system which

experiences impacts. The contact model must include

information on the impact velocity, physical material

properties and the geometric characteristics of the con-

tacting bodies. Furthermore, the contact force model

should also contribute to the stable integration of the

system equations of motion. These characteristics are

ensured by using a continuous contact force model in

which the force and penetration vary in a continuous

manner and for which some energy dissipation is in-

cluded. In dynamic analysis, the deformation is known

at every time step from the configuration of the system

and the forces are evaluated based on the state variables.

With the variation of the contact force during the con-

tact period, the dynamic system response is obtained by

simply including updated forces into the equations of

motion. Since the equations of motion are integrated

over the period of contact, this approach results in a

rather accurate response. Furthermore, this methodol-

ogy accounts for the changes in the system configuration

during the contact period.
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The simplest contact model that is a candidate to be

used in this work is the Kelvin–Voigt visco-elastic

model, in which a spring–damper element between the

contact bodies that represents the impact conditions.

The spring represents the elasticity of the contacting

bodies and the damper describes the energy dissipation

during the impact process [24]. In this model, both the

spring and damper are considered to be linear. During

the unloading phase, the contact force is affected by the

restitution coefficient. The linear Kelvin–Voigt contact

force model is given as [6],

FN ¼ Kd vN > 0;
FN ¼ eKd vN < 0;



ð22Þ

where K is the spring constant, d is the relative pene-

tration between the contacting bodies, e is the restitution
coefficient, and vN is the normal relative velocity. The

main difficulty with this model deals with the quantifi-

cation of the spring constant, which depends on the

geometry and physical properties of the contacting

bodies. To consider the contact force as a linear function

of penetration is not a good approximation as the

nonlinear nature of the impact phenomenon suggests a

more complex relation for contact force.

The best well-known impact force model between

two isotropic spheres is the pure Hertz contact law,

which is based on the elasticity theory [25]. The Hertz

contact law relates the contact forces as a nonlinear

power function of penetration, and can be expressed as,

FN ¼ Kdn; ð23Þ

where K is the generalized stiffness constant and d is the

relative penetration. The exponent n is equal 1.5 for

metals. The stiffness constant depends on the material

properties and the geometric characteristics of the col-

liding bodies. For two spherical contacting surfaces the

parameter K is expressed as [26],

K ¼ 4

3pðhi þ hjÞ
RiRj

Ri � Rj

� �1
2

; ð24Þ

where the parameters hi and hj are given by

hk ¼
1� m2k
pEk

ðk ¼ i; jÞ ð25Þ

being mk and Ek the Poisson’s coefficient and Young’s

modulus, respectively. Notice that the radius of curva-

ture is defined positive for convex surfaces and negative

for concave surfaces.

The Hertz contact law is a purely elastic contact

force model, that is, it does not account for the energy

dissipation during the impact. Compared to the Kelvin–

Voigt, the advantages of the Hertz model are its non-

linearity, which represents well the compression phase of
the contact between colliding bodies, and the physical

characterization of the parameter K.
Based on Hertz theory, Dubowsky and Freudenstein

[3] presented an expression, which relates the deforma-

tion and the impact force for a pin inside a cylindrical, as

follows,

d ¼ FN
hi þ hj

L

� �
ln

LmðRi � RjÞ
FNRiRjðhi þ hjÞ

� ��
þ 1

�
; ð26Þ

where Ri;j and hi;j are the same parameters given by

Eqs. (24) and (25), respectively, L is the cylinder length,

and the exponent m is equal to 3. Since Eq. (26) is a

nonlinear and implicit function for impact force, it is

necessary to use an iterative technique, such as the

Newton–Raphson method, to solve it for FN. Goldsmith

[26] suggested a similar expression to Eq. (26), but with

the exponent m equal to 1.

The ESDU-78035 Tribology Series [29] presented

some expressions for impact forces analysis, for in-

stance, for cylindrical contacts the proposed expression

that is written as,

d ¼ FN
hi þ hj

L

� �
ln

4LðRi � RjÞ
FNðhi þ hjÞ

� ��
þ 1

�
ð27Þ

in which the parameters are the same as in Eq. (26).

Hunt and Crossley [27] presented a nonlinear visco-

elastic model to represent the energy transfer during the

impact process. Based on the Hunt and Crossley work,

Lankarani and Nikravesh [16] proposed a continuous

contact force model in which a damping hysteretic fac-

tor is incorporated in order to account for the energy

dissipation. This contact force model is expressed as,

FN ¼ Kdn 1

 
þ 3ð1� e2Þ

4

_d
_dð�Þ

!
; ð28Þ

where K is the generalized stiffness constant expressed by

Eq. (24) for the case of colliding spheres, d is the relative

penetration, _d is the relative penetration velocity, and
_dð�Þ is the impact velocity. The restitution coefficient, e,
reflects the type of impact, that is, for a perfectly plastic

contact e is null, and for a perfectly elastic contact e is

equal to 1. The use of Eq. (28) is limited by Love’s cri-

terion, that is, it is only valid for impact velocities lower

than the propagation velocity of elastic waves across the

solids [28].

The force–deformation diagrams for both spherical

and cylindrical impact force models presented by Eqs.

(22), (23), (26), (27) and (28) are displayed in Fig. 8. It is

noticeable that the spherical and cylindrical force–

deformation diagrams are reasonably close. The model

expressed by Eq. (28) is largely employed for mechanical

impacts owning to its simplicity and easiness to imple-

ment in a computational program [6,15]. Further, this is

the only contact model that accounts for the energy
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Table 2

Parameters used in the dynamic simulation for the slider-crank

mechanism

Bearing radius 10.0 mm Baumgarte-a 5

Restitution

coefficient

0.9 Baumgarte-b 5

Young’s modulus 207 GPa Integration

step size

0.00001 s

Poisson’s ratio 0.3 Integration

tolerance

0.000001

Table 1

Governing properties for the slider-crank mechanism

Body

Nr.

Length

[m]

Mass

[kg]

Moment of inertia

[kgm2]

2 0.05 0.30 0.00001

3 0.12 0.21 0.00025

4 – 0.14 –
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dissipation during the impact process. The impact force

models for cylindrical contact surfaces presented are

purely elastic in so far as they do not account for the

energy dissipation. Moreover, these expressions are

nonlinear and implicit functions, which require the use

of numerical iterative methods to obtain the impact

force. This is a time consuming procedure that requires

an approximate computer implementation to eliminate

the iterative process.
5. Demonstrative application to a slider-crank mechanism

The slider-crank mechanism is chosen here to dem-

onstrate the application of the methodologies presented

in this work. The mechanism under consideration is

made of four rigid bodies, two ideal revolute joints, one

perfect translational joint and one revolute clearance

joint that connects the slider and the connecting rod, as

depicted by Fig. 9. The geometric and inertia data of the

slider-crank mechanism is listed in Table 1.

The crank, which is the driving link, rotates with a

constant angular velocity of 5000 rpm. The initial con-

figuration of the mechanism is taken with the crank and

the connecting rod collinear, and the journal and bear-

ing centers coincident. Further, the initial conditions

necessary to start the dynamic analysis are obtained
Clea rance

1η

1ξ

4η

3η2η
2ξ

3ξ

4ξX

Y

1

2

3

4

Fig. 9. Slider-crank mechanism with a revolute clearance.
from kinematic simulation of the slider-crank mecha-

nism in which all the joints are considered to be ideal.

The parameters used for the different models that

characterize the problem and for the numerical methods

required to solve the system dynamics are listed in Table

2.

The dynamic response of the slider-crank mechanism

is obtained and represented by the evolution of velocity

and acceleration of the slider, and the moment acting on

the crank, which is necessary to keep the constant

angular speed. Additionally, the relative motion between

journal and bearing centers is plotted. Coupled with the

penetration depth and surface properties, Hertz contact

law with hysteresis damping factor, given by Eq. (28), is

used to evaluate the contact force between the journal

and bearing. Figs. 10–12 show the results for the case in

which the clearance size is equal to 0.5 mm. The results

are compared to those obtained for ideal joint, and the

time interval used corresponds to two complete crank

rotations after steady-state has been reached.

In Fig. 10 it is observed that the existence of joint

clearance influences the slider velocity by leading to a

staircase like shape for the velocity versus time response.

The periods of constant velocity observed for the slider

mean that the journal can freely move inside the bearing

boundaries. The sudden changes in velocity are due to

the impact between the journal and the bearing. When a

smooth change in the velocity curve of the slider is ob-

served it indicates that the journal and the bearing are in

continuous contact. The slider acceleration is subjected

to high peaks caused by impact forces that are propa-

gated through the rigid bodies of the mechanism, as

observed in Fig. 11. The same phenomena can be ob-

served in the curve of crank moment represented by Fig.

12. As far as the path of the journal center relative to the



Fig. 10. Velocity of slider for the continuous contact force

model given by Eq. (28).

Fig. 11. Acceleration of slider for the continuous contact force

model given by Eq. (28).

Fig. 12. Crank moment for the continuous contact force model

given by Eq. (28).
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bearing center is concerned, different types of motion

between the two bodies can be observed, namely, free

flight, impact and rebound, and permanent or continu-

ous contact. These types of motion are shown in Fig.

13(d).

The journal trajectories inside the bearing for two

full crank rotations are used to illustrate the behavior

of the slider-crank mechanism when different contact

force models are used. The trajectories corresponding

to each one of the models are pictured in Fig. 13.

There it is observed that the contact models which do

not include energy dissipation have long flight paths

interrupted by short rebounds, which correspond to

the contact between journal and bearing. The contact

model by Lankarani and Nikravesh [16], which ac-

counts for energy dissipation, presents long periods of

contact between journal and bearing. In Fig. 13 the

journal trajectories are presented by continuous lines

that connect points. Each one of the points represent

the position of the journal for a given time step. It

can be observed that during the free flight the time

step adopted by the integration algorithm is much

larger that during the contact. When contact is de-
tected, the integration time step decreases significantly,

which show the importance of a varying time step

integration algorithm for problems involving contact.

In addition to the journal trajectories, the crank

moments for the different contact models and for the

slider-crank with ideal joints are presented in Fig. 14. It

is observed that all elastic contact models lead to the

high peaks for the crank moments required to drive the

crank with a constant angular velocity. The continuous

contact force model proposed by Lankarani and Nikr-

avesh presents much lower crank moment peaks,

reflecting the dissipative energy features of the model.

Such energy dissipation is also reflected by the long

periods of time for which the crank moment is similar to

that of the mechanism with ideal joints, observed in Fig.

14(e) and in Fig. 12, which is the same with a different

scale.
6. Concluding remarks

A general methodology for dynamic characterization

of mechanical systems with revolute clearance joints was

presented in this work. The basic ingredients of the

model proposed are the contact detection strategy and

the contact force models used. The proposed procedures

were demonstrated through the dynamical analysis of a

slider-crank mechanism that has a revolute joint with

clearance.

The Hertz contact theory based models are nonlin-

earity and do not account for the energy dissipation

during the impact process. Therefore, the Hertz relation

along with the modification to explain the energy dissi-

pation in the form of internal damping can be adopted

for modeling contact forces in a multibody system. The

contact models for cylindrical contact areas do not

present any advantage compared to the contact spheri-

cal models. Moreover, the cylindrical models are non-

linear and implicit functions, and the numerical iterative



Fig. 13. Journal trajectory inside the bearing for the different contact models presented here. (a) Hertz contact law; (b) Dubowsky

and Fraudenstein contact law; (c) Goldsmith contact model; (d) ESDU-78035 contact force model; (e) Lankarani and Nikravesh

continuous contact force model.
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procedure required to solve them is time consuming.

These models are purely elastic in nature and cannot

explain the energy dissipation during the impact process.

The different continuous contact force models that

use an elastic contact theory lead to comparable results

both in terms of journal trajectories and of crank mo-

ments. However, when energy dissipation is allowed to

take place the peaks of the crank moments that are re-

quired to drive the mechanism with a constant angular

speed are much lower than for the elastic models. This

observation is consistent with the comparisons of the

journal flights for the different models. It was observed

that the energy dissipation of the continuous contact
model proposed by Lankarani and Nikravesh results in

long periods of time when the journal seats in the

bearing, thus leading to a much smoother dynamic re-

sponse of the system.
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Fig. 14. Crank moment for the different contact models presented. (a) Hertz contact law; (b) Dubowsky and Fraudenstein contact law;

(c) Goldsmith contact model; (d) ESDU-78035 contact force model; (e) Lankarani and Nikravesh continuous contact force model.
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