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Abstract—Improving microwave component immunity to 
parameter deviations is of high importance, especially in the case 
of stringent performance specifications. This paper proposes a 
computationally efficient algorithm for robustness enhancement 
of compact microwave circuits. The objective is to increase the 
acceptable levels of geometry parameter deviations under which 
the prescribed performance specifications are still fulfilled. Our 
approach incorporates feature-based surrogate models utilized for 
low-cost prediction of the fabrication yield, as well as the trust-
region framework for adaptive control of design relocation and 
ensuring convergence of the optimization process. The efficacy of 
our technique is demonstrated using a broadband microstrip 
filter. 

Keywords— fabrication tolerances, tolerance, optimization, 
statistical analysis, robust design, response features, EM-driven 
design, compact components. 

I. INTRODUCTION

Most microwave design optimization procedures still do not 
account for the inevitable deviations in geometry parameters 
from nominal values. Yet manufacturing processes are never 
perfect and knowledge about material parameters, e.g., 
substrate permittivity, and operating conditions, e.g., input 
power level, is uncertain. Such uncertainties and parameter 
tolerances affect system performance and are best accounted for 
at the design stage. 

Quantification of uncertainties is computationally 
expensive, as it is usually carried out at the level of full-wave 
electromagnetic (EM) analysis. The latter is imperative for 
compact microwave components, where strong EM cross-
coupling effects cannot be adequately represented using 
simpler methods, e.g., equivalent networks. Conventional 
uncertainty quantification (UQ) procedures, such as EM-driven 
Monte Carlo simulation, may incur impractical CPU expenses, 
whereas robust design (e.g., yield optimization [1], design 
centering [2]) often turns prohibitive. Acceleration thereof can 
be achieved by means of surrogate modeling methods, both 
data-driven [3], and physics-based [4]. Popular techniques 
employed for UQ include kriging [5], neural networks [6], [7] 
and polynomial chaos expansion (PCE) [8]. Utilization of 
surrogates may lead to considerable computational savings, but 
is hindered by the curse of dimensionality [9]. This can be 
mitigated by approaches such as dimensionality reduction [10], 
or incorporation of variable-fidelity simulations [11].  

An alternative approach to utilize surrogate models for EM-
driven design purposes, including statistical analysis, involves 
the response feature technology [12]-[14]. Therein, the 
surrogate model is set up to represent selected characteristic 
(feature) points of the system responses, which allows for 
‘flattening’ the functional landscape to be handled. As a result, 
reformulating the modeling or optimization process in terms of 
response features leads to considerable computational savings 
[12], [15], [16]. 

This paper describes a novel technique for reduced-cost 
robust design of compact microwave passives. The design 
problem is to maximize input parameter tolerances for which 
the design specifications are still satisfied, i.e., 100-percent 
yield can be achieved. The yield estimation is carried out using 
feature-based regression surrogates, whereas the optimization 
process is embedded in a trust-region framework to ensure 
convergence. Verification conducted for a broadband filter 
demonstrates that robustness enhancement can be 
accomplished using only a few dozen EM analyses. At the same 
time, feature-based metamodels reliably account for system 
yield, as corroborated through EM-based Monte Carlo 
simulation. 

II. ROBUSTNESS OPTIMIZATION USING RESPONSE FEATURES

This section formulates our robustness enhancement
procedure. It is explained using a specific case study of a 
bandpass filter. 

A. Performance Requirements. Nominal Design

We denote by x = [x1 … xn]T a vector of design parameters of
the circuit at hand. The symbol f stands for the frequency. To 
conduct the optimization process, one needs to quantify the 
system performance. As an example, consider a bandpass filter 
with fL and fR being the frequencies determining the target 
operating bandwidth. Further, let Smax denote the maximum 
acceptable in-band reflection level. The filter satisfies the specs if 

  11 maxmax , : | ( , ) |L Rf f f S f S x  (1) 

In practice, additional requirements may be imposed on both 
the reflection and transmission response (e.g., maximum in-
band ripple level, etc.). Here, this is omitted for simplicity.  

Let x(0) be the nominal design, obtained by optimizing the 
filter using the objective function based on (1). We have 
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Note that x(0) does not account for any parameter uncertainties. 

B. Fabrication Yield

The statistical performance metric utilized in this work is
yield Y [2], defined as 

(0) (0)( ) ( , )
fX

Y p d x x x x  (3) 

where p(x, x(0)) is a probability density function describing 
variations of the design x w.r.t. x(0); Xf is the feasible space, i.e., 
the set of designs satisfying the specs (e.g., (1) for a filter).  

A practical way of evaluating (3) is Monte Carlo (MC) 
simulation, where the yield is estimated as 

(0) 1 (0) ( )

1
( ) ( )rN k

r k
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
 x x x   (4) 

with dx(k), k = 1, …, Nr, being random deviations generated 
according to the density function p(), and the function H(x) = 
1 if the condition (1) is met, otherwise H(x) = 0. In our 
verification experiments, p is assumed to be joint Gaussian 
distribution with zero mean and a variance . Observe that 
running MC directly at the level of EM simulation models is 
CPU intensive. 

C. Tolerance Optimization. Problem Formulation

Statistical design of high-frequency components is usually
concerned with maximization of yield. The task is to find 

* arg min{ ( )}Y 
x

x x   (5) 

In this work, robustness improvement is formulated from 
the perspective of input tolerances. We aim at maximizing the 
acceptable levels of parameter deviations for which the yield is 
still equal to unity. For simplicity, we assume a single 
parameter to control the tolerances, which is the variance  of 
independent Gaussian probability distributions describing the 
deviations. The robustness enhancement task is formulated as 

 * arg min : ( )YUx x x  (6) 

where 

 ( ) arg max ( , ) 1YU Y


 x x  (7) 

The value of the objective function (7) at x is the largest  for 
which the yield Y is still equal to one. Section II.E will elaborate 
on numerical evaluation of (7). The robustness enhancement 
concept is illustrated in Fig. 1. 

D. Feature-Based Regression Surrogates

To improve cost-efficiency of the optimization process,
here, yield evaluation is executed using response feature 
surrogates. Reformulating the design task in terms of 
appropriately chosen characteristic (feature) points of the 
system responses allows for linearizing the relationships 
between the system parameters and objective function 
variations [12]. The selection of the feature points depends on 
the problem. A prerequisite is that their coordinates should 
allow for evaluating the performance specifications imposed 
upon the circuit (cf. Fig. 2).  

The feature points at design x are written as 

1 2( ) [ ( ) ( ) ... ( )]
p

T
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For the bandpass filter considered before, the feature vector 
will take the form of  
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where f1 and f2 are the frequencies corresponding to Smax (e.g., 
–15 dB level of |S11|, and lk are the reflection levels
corresponding to local in-band maxima of |S11|, cf. Fig. 2. The
performance requirements (1) can be expressed using (9) as

1 2( ) , ( )L Rf f f f x x ,  and max( )kl Sx , k = 1, …, N – 1

(10) 
The feature points are used for low-cost evaluation of the 

system yield. Let x(i) be the ith iteration point produced by the 
robustness enhancement algorithm. We consider the feature-
based surrogate model LP

(i)(x) established at x(i), and defined as 
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The model coefficients can be found analytically as 
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where xB
(k), k = 1, …, n + 1, are the training points, and pj(xB

(k)) 
are the entries of the feature vectors P(xB

(k)) extracted from EM-
simulated circuit responses. The training vectors are xB

(1) = x(i), 
and xB

(k) = x(i) + [0 … 0 d 0 … 0]T with d at the (k–1)th position. 

E. Evaluating Objective Function UY

The function UY(x) of (7) is evaluated through numerical
integration of the density function p(), using the feature-based 
surrogate (11). This involves computation of Y(x,) for a given 
, which is realized with a large number of random observables 
xr

(j) (here, Nr = 100,000) allocated using p, according the variance 
. The yield estimation procedure is the following: 

1. For given , generate the observable set {xr
(j)}j = 1, …, Nr;

2. Evaluate LP
(i)(xr

(j)) for j = 1, …, Nr;
3. Evaluate design specs (e.g., (1) for a filter) for all xr

(j)

using surrogate-predicted features pL.k(xr
(j)), j = 1, …, Nr;

4. Compute Y(x,) according to (4).
Note that using large Nr reduces the yield estimation variance.  
The function UY(x) is calculated by solving (7), here, using a 
golden ratio search. The symbol UY

(i)(x) will be used to denote 
the objective function evaluated for feature based model LP

(i). 

F. Robustness Enhancement Algorithm

The tolerance optimization task (6) is solved iteratively
using the trust-region (TR) framework [17], which produces a 
series of x(i), i = 0, 1, …, approximating x* (x(0) is the nominal 
design) as  

( ) ( )

( 1) ( )

|| ||
arg min ( )

i i

i i
Y

d
U

 


x x
x x   (13) 

Solving of (14) is constrained to the trust region defined as 
||x – x(i)||  d(i). The TR size d(i) is adjusted based on the gain 
ratio  



 

 

 
                         (a)                                                          (b) 
Fig. 1. Tolerance optimization concept: (a) nominal design x(0) and the region 
corresponding to the maximum values of parameter deviations that ensure 100-
percent yield; (b) robust design, featuring enlarged acceptable parameter 
deviations.  

 
Fig. 2. Response features for a bandpass filter. Shown are the S-parameters and 
the feature points corresponding to –15 dB level of |S11| and local maxima of 
|S11| within the filter operating band; the feature points permit determination of 
whether the return loss characteristic satisfies the matching conditions over the 
operating bandwidth. The left- and right-hand-side panels correspond to 
designs satisfying and violating the performance specifications, respectively. 
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The denominator in (14) is the objective function improvement 
predicted using the regression model. The numerator is 
calculated using UY

#(i), defined as in Section II.C but using the 
feature-based model LP

#(i), in which the coefficient vector [l0.1 
… l0.Np]T is replaced by P(x(i+1)), extracted from EM simulation 
data at x(i+1). Using UY

#(i) is a cheap yet approximate way of 
validating x(i+1) (only one EM analysis is involved).  

The vector x(i+1) is accepted if r > 0. Otherwise, the iteration 
is repeated with a reduced d(i). The termination condition is 
||x(i+1) – x(i)|| <   (convergence in argument) OR  d(i) <  
(reducing the TR radius), with  = 10–3.  

III. VERIFICATION CASE STUDY 

For the sake of illustration, consider an upper UWB-band 
microstrip filter shown in Fig. 3 [18], and implemented on 
RO4003C substrate (r = 3.55, h = 0.305 mm); W0 = 0.66 mm. 
The performance specifications are to ensure |S11|  –15 dB for 
the operating band from 5.8 GHz to 10.6 GHz. The design 
parameters are x = [L1 L2 L3 W1 W2 W3]T, whereas the nominal 
design (optimized to minimize the in-band reflection level) is 
x(0) = [4.25 5.20 4.04 6.69 1.07 0.47]T.  

The procedure of Section II has been applied to maximize 
the input tolerance level (represented by the variance ) so that 
100-percent fabrication yields is still ensured. The final design 
obtained through optimization is x* = [4.24 5.17 4.02 6.71 1.06 
0.47]T. Table 1 provides numerical data concerning the 
acceptable tolerance levels at the nominal design and upon 
optimization. It can be observed that the improvement factor is 
almost 1.6. At the same time, the CPU cost of the robustness 
enhancement process is only 40 EM analyses of the circuit. 

L1 L2 L3

W1

W2W3W0

Symmetry plane
Via

 
 

Fig. 3. Verification circuit: ultra-wideband (UWB) filter using stepped-impedance 
resonator [13]. 

 
(a) 

 
(b) 

Fig. 4. EM-driven Monte Carlo analysis of the circuit of Fig. 2: (a) nominal design, 
(b) design found using the proposed algorithm. Black plots represent the circuit 
responses at the nominal and the optimized designs, respectively, gray plots stand 
for EM data at the random observables generated during the MC analysis. 

Table 1.  Robustness enhancement results. 

Nominal 
design 

Maximum variance   
ensuring 100-percent yield@ 

5.6 m 

Maximum parameter deviations  
ensuring 100% yield 16.7 m 

EM-based yield estimation# 100 % 

Tolerance-
optimized 

design 

Maximum variance   
ensuring 100-percent yield@ 

8.7 m 

Maximum parameter deviations  
ensuring 100% yield 26.1 m 

EM-based yield estimation# 100 % 
               Optimization cost$ 40 

@  refers to the variance of the independent zero-mean Gaussian distributions assumed to 
describe the fabrication tolerances. Maximum parameter deviations are assumed to be 3. 
# Estimation obtained using Monte Carlo simulation based on 500 random samples. 
$ Optimization cost in terms of the number of EM analyses of the circuit under design. 

 

Figure 4 shows visualization of the Monte Carlo simulation 
at the nominal and the robust design. Note a considerable 
enlargement in the spread of circuit responses corresponding to 
random observables, which indicates an improved immunity of 
the circuit to geometry parameter deviations. 

IV. CONCLUSION 

This paper proposed a novel approach to cost-efficient 
robustness enhancement of microwave passives. Our technique 
relies on fast feature-based regression surrogates. It allows for 
maximizing the input tolerance levels ensuring perfect 
fabrication yield at low CPU expenses, corresponding to a few 
dozen EM simulations of the circuit at hand. 
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