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Environment issues are more than ever important in a modern society. Complying with
stricter legal thresholds on pollution emissions raises an important economic issue. This
paper presents some ideas in the use of optimization tools to help in the planning and con-
trol of stationary pollution sources.
Three main semi-infinite programming approaches are described. The first consists in opti-
mizing an objective function while the pollution level in a given region is kept bellow a
given threshold. In the second approach the maximum pollution level in a given region
is computed and in the third an air pollution abatement problem is considered. These for-
mulations allow to obtain the best control parameters and the maxima pollution positions,
where the sampling stations should be placed.
A specific modeling language was used to code four academic problems. Numerical results
computed with a semi-infinite programming solver are shown.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Environment issues in general and atmospheric pollution in particular have deserved particular attention by decision
makers either in planning and control.

Atmospherical dispersion models are programs that use mathematical algorithms to simulate the pollutants dispersion in
the atmospherical environment and in some cases how they can chemically react in the atmosphere. Dispersion models can
be used to estimate and predict the atmospherical pollutants concentration emitted from sources as industrial plants or
vehicle traffic.

Such kind of models are important for governmental agencies in order to preserve and check the air quality. Models are
typically used to insure that existent or future industrial plants fulfill legal thresholds imposed by law.

These models are also important in defining the best decision politics in order to fulfill the legal threshold while the eco-
nomic impact is minimized.

Models can also be used in design of strategies for effective control on reducing the hazardous atmospheric pollutants.
There are several available dispersion models that can easily be obtained from the Internet (see, for example the EPA –

Environment Protection Agency – website in [1]). Dispersion models can be classified in four major classes, according to the
used methodology [2]. Box models are based on the mass conservation principle. The scenario is considered as a box and the
air mass inside it is considered uniformly distributed. Gaussian models are based on a Gaussian distribution of the plume. The
normal distribution on the plume depends on the vertical (ry) and on the horizontal (rz) standard deviations. The width of
the plume is therefore determined by the ry and rz, which are defined according to stability classes or travel time from the
source. Lagrangian/Eularian models, as in box models, consider a region of air containing an initial concentration of pollutants.
. All rights reserved.
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These models consider changes in concentration due to mean fluid velocity, turbulence of wind components and molecular
diffusion. Computational fluid dynamic models provide a complex analysis of fluid flow based on the conservation of mass and
momentum by solving the Navier–Stokes equation.

Dispersion models take as input some of the following data:

� Atmospheric conditions such as wind velocity and direction, turbulence (characterized by its stability class) and environ-
ment temperature;

� Emission parameters such as emission source position and height, source internal diameter, gas out temperature and
emission rate;

� Land elevations, localization and dimensions of any obstacles in the region to be considered.

This work deals with air pollution control of stationary sources. The resulting optimization problems belong to a well
known class of optimization problems denominated as semi-infinite programming problems [3–6]. A problem is considered
as semi-infinite when either the number of variables or the number of constraints is finite (but not both). We postpone a
formal definition until Section 3.

While the proposed approach for optimal air pollution control could be used with any of the described air dispersion
models, we will focus our attention on the Gaussian model, since it is the most widely used. Gaussian model is the core
of almost all regulatory dispersion models. In its simple version, the Gaussian model relies on several mathematical equa-
tions that can easily be coded in a mathematical language.

In this paper a simple Gaussian model is considered with the purpose of illustrating the proposed approach to air pollu-
tion control. The model is used to provide estimates of pollution in a region where mean weather conditions are assumed
(see [7]). One of the proposed problems consists of optimizing an objective function (minimum stack height) while the
air pollution is kept bellow a given threshold. Other proposed problem consists in computing the maximum air pollution
attained in a given region. Finally an air pollution abatement problem where reduction in the air pollution emissions is to
be minimized while air pollution is kept below a given threshold is shown.

We start in Section 2 by presenting the air pollution control with a Gaussian model, and the required notation. A brief
introduction is carried out in Section 3 about semi-infinite programming and the used method to solve the proposed prob-
lems. In Section 4 four academic examples coded in a modeling language are described and the numerical results are shown
in Section 5. We conclude in Section 6 and the appendix presents an example coded in the used modeling language.

2. Air pollution control – Gaussian model

The reader is pointed to [7,8] for a background reading in air pollution control and to [9,10] for some optimization models.
In order to describe the Gaussian model mathematical equations we consider a coordinate system where the origin is at

ground level. The X and Y-axis extend horizontally and are perpendicular to each other. The Z-axis extends vertically perpen-
dicular with the X and Y-axis (see Fig. 1). Let a and b be the x and y coordinates, respectively, of the pollution emission posi-
tion. The stack pollution emission occurs at some height h above the ground ðz ¼ 0Þ.

Assuming that the plume spread has a Gaussian distribution1, the concentration, C (g m�3), of gas or aerosols (particles less
than about 20 lm diameter) at position x, y, and z from a continuous source with an effective emission height, H, is given by
1 In f
Cðx; y; z;HÞ ¼ Q
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where Q (g s�1) is the uniform emission rate of pollutants, U (m s�1) is the mean wind speed affecting the plume and ry (m)
and rz (m) are the standard deviations of plume concentration distributed in the horizontal and vertical planes, respectively.
Y is given by
Y ¼ ðx� aÞ sinðhÞ þ ðy� bÞ cosðhÞ; ð2Þ
where h (rad) is the mean wind direction (0 6 h 6 2p).
In Eq. (1) the variable x does not appear explicitly in the formula, but the ry and rz standard deviations depend on the X

variable given by
X ¼ ðx� aÞ cosðhÞ � ðy� bÞ sinðhÞ: ð3Þ
Eqs. (2) and (3) provide a change of coordinates of the pollution emission point in the mean wind direction.
The second exponential term in (1) accounts for the pollutant reflection on the ground.
The Gaussian parameters ry and rz depend on the distance from the source and takes into account the atmospheric tur-

bulence. The most common tabulated data is due to Pasquill [11] and Gifford [12]. Pasquill and Gifford data were summa-
rized in [7] with additional graphs and tables.

The effective emission height, H, is the sum of the physical stack height, h (m), and the plume rise, DH (m).
act the Gaussian distribution is an analytical solution to a simplified diffusion equation that considers a mass balance on a small volume.
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Fig. 1. Coordinate system and notation.
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There are several equations to model the plume rise DH. The plume rise is directly proportional to the gas exit velocity
(how fast the plume is coming out) and the plume buoyancy (in relation with the gas out temperature). It is also inversely
proportional to the wind speed and to the stability class parameters (the more stable it is, the lower the plume will be). The
most used formula for determining the plume rising height in stable atmosphere is due to Briggs [13], given by
DH ¼ 2:6
F
Us

� �1
3

;

where F is the buoyancy flux parameter and s is the parameter of atmospheric stability.
The buoyancy parameter F is determined by
F ¼ d2VogðTo � TeÞ
4To

;

where d (m) is the internal stack diameter, Vo (m s�1) is the stack gas exit velocity, g is the acceleration of gravity
(9.806 ms�2), To (K) is the gas out temperature and Te (K) is the environment temperature.

The parameter s of atmospheric stability is determined as follows:
s ¼ g
To

dh
dz
;

where dh=dz is the potential temperature’s gradient. As a default approximation, for a stable atmosphere, dh=dz is taken as
0.020 K m�1.

To proceed with a multiple source scenario we need to further extend our notation. Let Ci, i ¼ 1; . . . ;n, be the contribution
of source i for the total pollutant concentration, where n is the number of pollution sources distributed in a given region. The
use of the i subscript also extends to the ith source specific parameters (ai, bi, hi, di, Qi, ðVoÞi, DHi and Hi).

By further assuming the pollutant as chemical inert, its concentration can be computed by superposition of the n pollu-
tion sources. The pollutant concentration at a point ðx; y; zÞ can be computed by summing up individual source contributionPn

i¼1Ciðx; y; z;HiÞ.
With the optimal air pollution control in mind we can devise the following mathematical programming problems.
In the planning phase, the computation of the minimal stack height, while keeping the pollution level below some thresh-

old C0, in a given area R, at ground level, can be formulated as follows:
min
h¼ðh1 ;...;hnÞ2Rn

Xn

i¼1

fiðhiÞ;

s:t:
Xn

i¼1

Ciðx; y;0;HiÞ 6 C0;

hlb 6 h 6 hub

8ðx; yÞ 2 R;

ð4Þ
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where fi, i ¼ 1; . . . ;n, are construction cost functions, associated with the stack height. The simple bound constraint
hlb 6 h 6 hub is to be understood as componentwise and it allows to consider legal and technical bound on the stacks,
respectively.

For a given region R, with fixed pollution sources the maximum air pollution concentration (l�) can be estimated by solv-
ing the following mathematical programming problem.
min
l2R

l;

s:t:
Xn

i¼1

Ciðx; y; 0;HiÞ 6 l

8ðx; yÞ 2 R:

ð5Þ
The points ðx�; y�Þ 2 R where
Pn

i¼1Ciðx�; y�;0;HiÞ ¼ l� are global maximizers (where the maximum pollution concentration is
attained) that make the constraint active and are the positions where the sampling stations should be placed.

Another possible formulation (see [14–17] for a similar formulation) is the determination of the pollution abatement that
is necessary in a given region to fulfill the legal threshold requirement. The minimum production cost (minimum cost with
cleaning), while the air pollution is kept bellow a given threshold, can be obtained by solving the following mathematical
programming problem:
min
ðr1 ;...;rnÞ2Rn

Xn

i¼1

fiðriÞ;

s:t:
Xn

i¼1

ð1� riÞCiðx; y; 0;HiÞ 6 C0

8ðx; yÞ 2 R;

ð6Þ
where fiðriÞ, i ¼ 1; . . . ;n, is what one pays for the abatement on source i (cleaning or not producing) and r1; . . . ; rn are the per-
centage of the pollution abatement factor.

The proposed mathematical programming problems belong to a well known class of semi-infinite programming problems
[3–6], where problem (6) is a linear SIP. In some real world applications these problems are characterized by possessing at
least a constraint that must be satisfied for a given period (infinite) of time or space. A real application can also be found in
the robust approach to portfolio optimization [6]. In the herein considered formulations the constraint considers a threshold
value to the allowed pollution level for a given region.

3. Semi-infinite programming

Many engineering problems, such as robot trajectory planning, optimal signal sets, production planning, and digital filter
design can be posed as semi-infinite programming (SIP) problems (see [4] for several SIP application). Air pollution control
has also deserved some attention in the SIP context [4,17]. In this section we give a brief overview on semi-infinite program-
ming (SIP) and about the method used to solve the proposed problems.

3.1. Semi-infinite programming overview

Semi-infinite programming problems can be described in the following mathematical form:
min
u2Rn

f ðuÞ;

s:t: giðu; vÞ 6 0; i ¼ 1; . . . ;m;

ulb 6 u 6 uub

8v 2V � Rp;

ð7Þ
where f ðuÞ is the objective function, giðu; vÞ, i ¼ 1; . . . ;m, are the infinite constraint functions and ulb, uub are the lower and
upper (simple) bounds on u.

Problem (7) can be stated in a more general form, by including finite (constraints only depending on u) equality and
inequality constraints, but this definition just suit our purpose.

These problems are called semi-infinite programming problems due to the constraints giðu; vÞ 6 0, i ¼ 1; . . . ;m. Each infi-
nite constraint of this type must be satisfied for every v 2V. These constraints could be represented by an equivalent nota-
tion as gi;vðuÞ 6 0. We can think of V as an infinite index set and therefore (7) is a problem with finitely many variables over
an infinite set of constraints.

Herein, the set V is assumed to be a cartesian product of intervals (½a1; b1� � � � � � ½ap; bp�).
Natural ways to solve the SIP problem (7) is to replace the infinite set V by a finite one, or solving a sequence of finite

subproblems (where the infinite set V is replaced by finite approximations). There are several ways of doing this. Discret-
ization, exchange and reduction type methods (see [4], for a more detailed explanation) are the major classes.
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Publicly available tools to deal with SIP problems are SIPAMPL [18] and the NSIPS [19] solver. AMPL [20] is a modeling
language for mathematical programming problems. AMPL provides an interface that allows a wide variety of solvers to ac-
cess problems coded in the AMPL language. Together with the simple and powerful modeling language, AMPL also provides
automatic differentiation. Since AMPL is limited to finite programming, SIPAMPL was developed to allow the codification of
SIP problems. SIPAMPL stands for SIP with AMPL and it comprises an extension to the AMPL modeling language to allow cod-
ing SIP problems.

SIPAMPL takes advantage of the AMPL modeling language to allow the codification of SIP problems. It provides also an inter-
face to connect to any SIP solver, a database with over than 160 coded SIP problems, an interface that allows MATLAB [21] to use
the SIP problems available in the database and a select tool for query the database for SIP problems with specific characteristics.

Although AMPL is a commercial software a limited student edition is available for free. SIPAMPL can be obtained from
www.norg.uminho.pt/aivaz, but it relies on the availability of AMPL.

NSIPS stands for Nonlinear SIP Solver. NSIPS uses the SIPAMPL interface to obtain the problem to be solved. While some
advanced skills are necessary to get NSIPS working, a full version is publicly available from the NEOS server (see www-

neos.mcs.anl.gov).
To the best of our knowledge MATLAB is the only commercial software that provides a solver for SIP in its optimization

toolbox [22] (fseminf function).

3.2. The discretization method

The following definitions are needed to describe the discretization method presented in this section:

Definition 3.1. A grid is a set of the form V½n ¼ ðn1; n2; . . . ; npÞ� ¼V \ fv ¼ ðv1; v2; . . . ; vpÞ : vi ¼ ai þ jni; j ¼ 0; . . . ;ni;

i ¼ 1; . . . ; pg, where ni ¼ ðbi � aiÞ=ni.

Definition 3.2. NLP(V½n�) is the following nonlinear programming subproblem:
min
u2Rn

f ðuÞ;

s:t: giðu; vÞ 6 0; i ¼ 1; . . . ;m;

ulb 6 u 6 uub

8v 2V½n�

ð8Þ
Discretization methods ([23–25]) try to solve a SIP problem by solving a sequence of finite subproblems where the infi-
nite set V is replaced by a finite one that is, usually, a grid of points. These methods do not guarantee an exact or near exact
solution to the SIP but will provide a solution in the finest (final) grid. These methods start with an initial approximation to
the solution (in a coarse grid) and proceed to the final grid by solving a specified number of subproblems in intermediate
grids. To keep the number of constraints in the subproblems in a manageable size the method use only a selected set of
points in each grid.

Algorithm 3.1. Conceptual algorithm

� (Step 0:) Let r be the number of requested refinements. Given a set of grid parameters (n0, n1, . . ., nr) define V½n0� and setfV½n0� ¼V½n0�. Solve the NLP(fV½n0�) and let u0 be the solution found.
� (Step k:) If there exists points in the grid V½nk�1� that makes a constraint violated, i.e., f9�v 2V½nk�1� : giðuk�1; �vÞ > 0;

i ¼ 1; . . . ;mg

then: let fV½nk�1�#V½nk�1�. Solve NLP(fV½nk�1�) and let uk�1 be the solution found. Continue in step k.
else: if k > r then stop with uk�1 as an approximate solution to the SIP problem. Otherwise set fV½nk�#V½nk�. Solve
NLP(fV½nk�) and let xk be the solution found. Go to step kþ 1.

The algorithm is presented as conceptual since the rules for constructing the sets V½n� are not defined. The reader is poin-
ter to [23–25] for further details.

The discretization methods are also known by outer approximation methods, since the SIP problem feasible region is a
subset of the finite subproblems feasible region. Since the discretization method is providing a solution on the finest grid
some infeasibility w.r.t. the SIP problem may be occurring. In order to validate the obtained solutions (u�) we are reporting
an infeasibility measure by solving m (finite) optimization problems (for each i ¼ 1; . . . ;m).
infeasibility ¼ max
i¼1;...;m

max
v2V

giðu�; vÞ: ð9Þ
4. Examples of air pollution control problems

In this section we describe four examples with data collected from the literature on air pollution control.
These problems were coded in the SIPAMPL modeling language and are publicly available in the SIPAMPL problems data-

base. For the purpose of illustration a simple example coded in SIPAMPL is provided in Appendix A.

http://www.norg.uminho.pt/aivaz
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4.1. Minimal stack height

An air pollution control problem was formulated in [26] to show the reliability of an optimization procedure, in obtaining
the global maximum of the sulfur dioxide concentration in a given region. The proposed problem data will be used herein in
minimizing the total stack height while the pollutant (sulfur dioxide) is kept bellow a given threshold.

The problem consists of a region with 10 stacks. The environment temperature (Te) is 283 K and the gas emission tem-
perature is 413 K. A wind speed (U) of 5:64 m s�1 and a wind direction (h) of 3.996 rad (	229�) are considered. The stack and
emission data for the 10 stacks is given in Table 1.

The authors provide the mathematical expression for the ry and rz, obtained from curve fitting the figures appearing in
[7].

The stack height in Table 1 was used as an initial guess for the SIP formulation and a squared region of 40km width is
considered (R ¼ ½�20000;20000� � ½�20000;20000�).

This problem is coded in the (SIP)AMPL format and is publicly available in the SIPAMPL database (file vaz1_briggs.mod).

4.2. Maximum attained pollution and sampling stations planning

Hypothetical source data from [16] is used to illustrate the computation of the maximum pollution level l� using formu-
lation (5). The source data is shown in Table 2. The region considered was R ¼ ½0;24140� � ½0;24140� (a square of approx-
imately 582 km2). The environment air temperature was 284 K, with a wind speed of 5 m s�1 and direction of 3.927 rad
Table 1
Stack and emission data

Source ai (m) bi (m) hi (m) di (m) Qi ðg s�1Þ ðVoÞi ðm s�1Þ

1 �3000 �2500 183 8.0 2882.6 19.245
2 �2600 �300 183 8.0 2882.6 19.245
3 �1100 �1700 160 7.6 2391.3 17.690
4 1000 �2500 160 7.6 2391.3 17.690
5 1000 2200 152.4 6.3 2173.9 23.404
6 2700 1000 152.4 6.3 2173.9 23.404
7 3000 �1600 121.9 4.3 1173.9 27.128
8 �2000 2500 121.9 4.3 1173.9 27.128
9 0 0 91.4 5.0 1304.3 22.293

10 1500 �1600 91.4 5.0 1304.3 22.293

Table 2
Stack and emission data for the maximum pollution level

Source ai (m) bi (m) hi (m) di (m) Qi ðg s�1Þ ðVoÞi ðm s�1Þ ðToÞi (K)

1 9190 6300 61.0 2.6 191.1 6.1 600
2 9190 6300 63.6 2.9 47.7 4.8 600
3 9190 6300 30.5 0.9 21.1 29.2 811
4 9190 6300 38.1 1.7 14.2 9.2 727
5 9190 6300 38.1 2.1 7.0 7.0 727
6 9190 6300 21.9 2.0 59.2 4.3 616
7 9190 6300 61.0 2.1 87.2 5.2 616
8 8520 7840 36.6 2.7 25.3 11.9 477
9 8520 7840 36.6 2.0 101.0 16.0 477

10 8520 7840 18.0 2.6 41.6 9.0 727
11 8050 7680 35.7 2.4 222.7 5.7 477
12 8050 7680 45.7 1.9 20.1 2.4 727
13 8050 7680 50.3 1.5 20.1 1.6 727
14 8050 7680 35.1 1.6 20.1 1.5 727
15 8050 7680 34.7 1.5 20.0 1.6 727
16 9190 6300 30.0 2.2 24.7 9.0 727
17 5770 10810 76.3 3.0 67.5 10.7 473
18 5620 9820 82.0 4.4 66.7 12.9 603
19 4600 9500 113.0 5.2 63.7 9.3 546
20 8230 8870 31.0 1.6 6.3 5.0 460
21 8750 5880 50.0 2.2 36.2 7.0 460
22 11240 4560 50.0 2.5 28.8 7.0 460
23 6140 8780 31.0 1.6 8.4 5.0 460
24 14330 6200 42.6 4.6 172.4 13.4 616
25 14330 6200 42.6 3.7 171.3 16.1 616
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(	225�). The same weather stability as in the maximum stack height example is used, while in [16] the numerical results
were obtained with a Pasquill stability class D.

This problem is also coded in the SIPAMPL format and is publicly available in its problem database (file
vaz2_briggs.mod).

4.3. Air pollution abatement

In [15] the authors describe an example of policy abatement in air pollution that uses the Sutton equation for the ex-
pected pollution concentration. A slightly different problem was used latter in a paper from Van Honstede [17]. This case
is available in the SIPAMPL database included in the Watson set of problems (see [27]).

Although the problem data proposed in [15] is valid and can be used to illustrate the potential of this formulation, it was
probably scaled. In the next paragraphs the problem proposed by Gustafson and Kortanek [15] is described and we postpone
to the end of this subsection the use of the same problem formulation with the data presented in [26].

In a given city there are three plants P1, P2 and P3, emitting the amounts e1, e2 and e3, with 0 6 ei 6 2, i ¼ 1;2;3, of a
certain pollutant. The city ordinance states that the expected pollution level must not exceed a standard C0 under the most
common weather conditions, i.e., a steady westerly wind (h ¼ 0 in the Gaussian model) of constant speed U. The city would
also like to know where to place the sampling stations and their number in order to check compliance with the ordinance.
Assuming that the revenue is proportional to the emission rate and that the total revenue of the three plants is a linear com-
bination of the emissions, the optimization problem is
Table 3
Stack d

Source

1
2
3

max
e1 ;e2 ;e32R

2e1 þ 4e2 þ e3;

s:t:
P3
i¼1

eiCðx; y;0;HiÞ 6 C0;

0 6 ei 6 2; i ¼ 1;2;3
8ðx; yÞ 2 ½�1;4� � ½�1;4�:
By setting ri ¼ 2� ei, i ¼ 1;2;3, the previous maximization problem can be rewritten as a minimization problem, yielding
min
r1 ;r2 ;r32R

2r1 þ 4r2 þ r3

s:t:
X3

i¼1

ð2� riÞCðx; y;0;HiÞ 6 C0

0 6 ri 6 2; i ¼ 1;2;3
8ðx; yÞ 2 ½�1;4� � ½�1;4�:

ð10Þ
Instead of the Sutton, the Gaussian expression is used to formulate this problem. Using the equivalence between the Sut-
ton (n ¼ 1, Cx ¼ Cy ¼ 1) and Gaussion expressions (see [15]) we have,
ry ¼ rz ¼

ffiffiffi
X
2

q
for X > 0

0 otherwise;

(

and C ¼ 0 g m�3 is considered whenever ry or rz are zero.
A wind speed of U ¼ ð 1

2p Þ
2 m s�1, emission rate Q ¼ 1 g s�1 and C0 ¼ 1

2 g m�3 were considered. The effective stack heights
and coordinates are given in Table 3 (no plume rise is considered).

The file vaz3.mod in the SIPAMPL database refers to this example.
As already mentioned the data presented in Table 3 is not meaningful in the pollution control field. To illustrate this for-

mulation in a more realistic scenario we have used the data from [26]. Using the reported data in Table 1, the objective func-
tion considered was the sum of the reductions in all sources ð

P10
i¼1riÞ while the pollution concentration, at ground level, is

kept bellow the Portuguese limit ð
P10

i¼1ð1� riÞCiðx; y;0;HiÞ 6 350 lg m�3Þ. The file vaz4_briggs.mod in the SIPAMPL data-
base refers to this example.
ata for vaz3.mod

ai bi hi

0 1 1
0 0 1
2 �1

ffiffiffi
2
p



Table 4
Numerical results for minimum stack height problem

Instance 1 Instance 2 Instance 3

h1 16.53 16.53 92.54
h2 160.81 161.12 299.45
h3 17.09 17.07 277.77
h4 192.89 192.95 300.00
h5 112.19 112.10 279.91
h6 29.58 28.30 100.79
h7 0.00 10.00 196.50
h8 148.30 146.43 267.76
h9 128.39 122.65 269.49
h10 3.51 10.00 258.89
f ðu�Þ 809.29 817.14 2343.10
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5. Numerical results

The discretization method available in the NSIPS [19] software package was selected. As already mentioned, the discret-
ization method computes a solution in the finest grid and if the grid is not fine enough some infeasibility in the infinite con-
straints can occur. If a finer grid is to be required then the dimension of the first grid or the number of grid refinements
should be changed from their default values in the solver. The default options were considered, except for the method

and disc_h options. method selects the used method and was set to disc_hett, which changes the default method to
the Hettich version of the discretization method [23]. disc_h changes the space (and consequently the number of points
used) in the initial grid (n0 in Algorithm 3.1).

5.1. Minimum stack height

In this example NSIPS was used with the option disc_h=1000 (setting n0 to ð1000;1000Þ, meaning that the initial grid
uses an equally spaced grid of 1 km step).

Numerical results are shown in Table 4. Two threshold values for the pollution level and two lower limits on the stack
height are considered, originating three different instances of the problem. In the first one a limit of 771:14 lg m�3 is con-
sidered (C0 ¼ 771:14 lg m�3) while the lower limit on the stack height is zero. In order to obtain a practical solution a max-
imum of 300 m is imposed on each stack height. The bound constraints on the stack height leads to the following problem:
2 Dec
3 Dec
4 Dec
min
ðh1 ;...;h10Þ2R10

P10

i¼1
hi;

s:t:
Pn
i¼1

Ciðx; y;0;HiÞ 6 C0;

0 6 hi 6 300; i ¼ 1; . . . ;10
8ðx; yÞ 2 ½�20000;20000� � ½�20000;20000�:
Numerical results are shown in the first column of Table 4 and one stack has height equal to zero. Portuguese legislation2

imposes a minimum stack height of 10 m. The stack height can only be inferior to 10 m if some legal3 requirements are met. One
way to prove that the requirements are met is by simulation, using a proper air pollution dispersion model. In instance 2 the
same limit C0 is considered while the lower limit on the stack height is 10 m (10 6 hi 6 300, i ¼ 1; . . . ;n). Instance 3 considers
the Portuguese4 one hour limit on sulfur dioxide C0 ¼ 350 lg m�3.

The constraint contour, for the solution found for instance 3, is presented in Fig. 2. The contour was obtained with the
MATLAB interface to SIPAMPL [28].

In order to check the feasibility of the solutions found, in the three instances, the following global optimization problem
(see problem (9)) has to be solved with high accuracy.
max
v2R

Xn

i¼1

Ciðx; y; 0;HiÞ � C0

 !
ð11Þ
Instead of solving problem (11) with a solver for global optimization, we opted to solve problem (11) with a solver for
local optimization, using the points in the final grid that make the infinite constraint active at the solution as initial guesses
ree law number 352/90 from 9 November 1990.
ree law number 78/2004 from 3 April 2004.
ree law number 111/2002 from 16 April 2002.



Fig. 2. Constraint contour of minimum stack height (instance 2 and 3, respectively).
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for the local solver. The global solution to problem (11) is expected to be in the neighborhood of the point in the finest grid
that makes the discretized constraint active.

The NPSOL [29] solver found the global maximum of problem (11), instance 1 and 2, at ð�7905:43;3134:21Þ with
infesibility ¼ 3:83� 10�5. For instance 3 the global maximum was attained at ð�11475:1;7245:85Þ with infeasibility
¼ 3:89� 10�6.
Fig. 3. Maximum pollution level contour.

Fig. 4. Air pollution abatement contour (first example).



Table 5
Numerical results for pollution abatement, problem vaz4_briggs.mod

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 f ðu�Þ

0.42 1.00 0.54 1.00 1.00 0.38 0.69 0.42 1.00 1.00 7.44

Fig. 5. Air pollution abatement contour, second example.
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5.2. Maximum pollution level and sampling stations position

The same grid spacing of the previous formulation was used in the discretization method.
The results found by the discretization method was l� ¼ 795 lg m�3. The vaz2_briggs problem constraint maximum

was attained at ðx; yÞ ¼ ð6000;9500Þ (the only active point for the constraint in the final grid). While this point is a good po-
sition where the sampling station should be placed, other local maxima of the constraint could be considered, as it can be
seen in the constraint contour Fig. 3.

When checking the infeasibility, NPSOL reports 1:72� 10�4 attained at ð6611:96;9070:38Þ.

5.3. Air pollution abatement

For the first example (vaz3.mod), the numerical result found by the discretization method is r� ¼ ð0:987;0:951;0:943Þ
with the option disc_h set to 0:05. The constraint maxima (active constraints) were attained at ðx; yÞ1 ¼ ð1:100;0:125Þ,
ðx; yÞ2 ¼ ð1:100;0:100Þ and ðx; yÞ3 ¼ ð3:675;�0:625Þ, where sampling stations should be placed to check the compliance with
the ordinance.

The contour of the air pollution abatement problem constraint is presented in Fig. 4.
When checking the infeasibility, NPSOL reports 5:50� 10�5 attained at ð1:10;0:11Þ.
Table 5 presents the numerical results obtained for the second example in this formulation. The option disc_h was set to

1000 and the initial guess is ri ¼ 0, i ¼ 1; . . . ;10, corresponding to no reduction in all sources.
Once again the obtained numerical results confirm that the scenario presented by Wang and Luus [26] would be not obvi-

ous to implement in practice. Five sources would need to use a technology with an 100% reduction and other two with a
reduction of more than 50%. Fig. 5 presents the constraint contour of problem vaz4.mod.

When checking the infeasibility, NPSOL reports 5:60� 10�7 attained at ð�9157:98;14323:00Þ.

6. Conclusions

Air pollution control problems can be posed as semi-infinite programming problems and efficiently solved by publicly
available software. In these problems an objective function is to be optimized while a given threshold for the pollution,
in a given region, is to be attained. In the present paper the plume spread was assumed to have a Gaussian distribution under
mean weather conditions and the Briggs equation was used to compute the plume rise. In the presented examples, stack and
emission data was collected from literature ([15,26]) to illustrate the proposed approach.

The formulation of air pollution control problems as SIP allows a great degree of freedom, since new objective and con-
straints can be easily introduced. The codification of the proposed problems in the SIPAMPL modeling language makes them
publicly available to the research community, either to test other objectives and/or new constraints, or as SIP benchmark
problems.
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The discretization method implemented in the NSIPS solver was used to solve the coded problems and proved to be
efficient.

Appendix A. An example coded in SIPAMPL

We have selected to present the problem described in (10) due to its simpleness. The following SIPAMPL code is self
explanatory, since comments were added throughout the code (the AMPL comment character is an # mark).
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