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Summary. The optimization of input variables (typically feeding trajectories over
time) in fed-batch fermentations has gained special attention, given the economic im-
pact and the complexity of the problem. Evolutionary Computation (EC) has been a
source of algorithms that have shown good performance in this task. In this chapter,
Differential Evolution (DE) is proposed to tackle this problem and quite promising
results are shown. DE is tested in several real world case studies and compared with
other EC algorihtms, such as Evolutionary Algorithms and Particle Swarms. Further-
more, DE is also proposed as an alternative to perform online optimization, where the
input variables are adjusted while the real fermentation process is ongoing. In this case,
a changing landscape is optimized, therefore making the task of the algorithms more
difficult. However, that fact does not impair the performance of the DE and confirms
its good behaviour.

1 Introduction

In recent years, many efforts have been devoted to the optimization of processes
in biotechnology and bioengineering, since a number of valuable products such
as recombinant proteins, antibiotics and amino-acids are produced using fermen-
tation techniques.

A problem that has received major attention is the dynamic optimization of
fed-batch bioreactors, which has traditionally been done on the substrate feed
rates as key manipulated variables. The optimization problem is usually solved
before the beginning of the fermentation process (open-loop optimal control)
and may consist on finding an expression or a sequence of values for the feed-
ing rate, that maximize a given objective function. This function will typically
be a performance index that measures the process productivity, subject to the
constraints represented by a dynamical model.
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Several optimization methods have been applied to solve this class of prob-
lems. It has been shown that for relatively simple bioreactor systems, which
are expressed as differential equation models, the optimization problem can be
solved analytically from the Hamiltonian function, by applying the Minimum
Principle of Pontryagin [3]. However, in the majority of the cases reported, de-
termination of the optimal feed rate profile has a problem of singular control,
because the control variable (feed rate) often appears linearly in the system of
differential equations. Thus, this approach fails to provide a complete solution.
Also, those methodologies become too complex when the number of state and
control variables increase.

Numerical methods make a distinct approach to dynamic optimization. The
gradient algorithms are used to adjust the control trajectories in order to it-
eratively improve the objective function [4]. In contrast, dynamic programming
methods discretize both time and control variables to a predefined number of val-
ues. A systematic backward search method in combination with the simulation
of the system model equations is then used to find the optimal path through the
defined grid. However, in order to achieve a global minimum, the computational
burden is very high [22].

An alternative approach comes from the use of algorithms from the Evolu-
tionary Computation (EC) field, which have been used in the past to optimize
nonlinear problems with a large number of variables. These techniques have been
applied with success to the optimization of feeding or temperature trajectories
[14][1], and, when compared with traditional methods, usually perform better
[19][6].

In this chapter, the application of Differential Evolution (DE) to the optimiza-
tion of input variables in fed-batch fermentation processes is proposed. The DE
is implemented and tested in several distinct variants and compared to other al-
gorithms from the EC field, such as Evolutionary Algorithms (EAs) and Particle
Swarm Optimization (PSO) .

Three case studies were used to illustrate and validate the approach and to
compare the performance of the different algorithms. Each algorithm was allowed
to run for a given number of function evaluations and the comparison among
the methods was based on their final result and on the convergence speed.

This work also tackled the complementary issue of online optimization . In
fact, in a real environment, even when the mathematical models used for open-
loop optimization are reliable and validated by experimentation, several sources
of noise can contribute to changes in the observed values of the state variables.
These issues are of particular importance when dealing with recombinant high-
cell density fermentations, as the process, besides the nonlinearities exhibited,
tends to change dramatically upon some events, like induction. Also, it is likely
that there exists a time-variance of both yield and kinetic parameters not con-
templated in most process models. These scenarios have an important impact
on the experimental results, that end up being worse than the ones predicted
after running the offline optimization.
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An alternative to cope with these model inaccuracies is the use of online
optimization algorithms that periodically generate new solutions as the process
is running, making use of the measurement of relevant state variables for update
of the internal model. In this case, the optimization is performed simultaneously,
taking into account values of the state variables measured by sensors within the
fermentation process.

The performance of DE in this online optimization task was evaluated and
compared to the results of a real-valued EA. The same case studies used in offline
optimization, are now used in order to test the performance of both algorithms.
These are firstly used to perform an offline optimization and then a simulation
of a real-world fermentation is conducted. The relevant state variables are, in
each case, disturbed by adding noise, at regular periods of time. The behavior
of both algorithms is compared, as well as the degradation in performance when
the initial offline solution is subjected to perturbations.

This chapter is organized as follows: firstly, the fed-batch fermentation case
studies are presented; next, the optimization algorithms are described; the results
of the application of the different algorithms to the case studies are presented,
followed by a discussion of the results; online optimization is described, followed
by the description of the experiments conducted and the discussion of the results;
finally, the conclusions and further work are presented.

2 Case Studies: Fed-Batch Fermentation Processes

In fed-batch fermentations there is an addition of certain nutrients to the biore-
actor along the time, in order to prevent the accumulation of toxic products,
allowing the achievement of higher product concentrations.

During this process the system states change considerably, from a low ini-
tial to a very high biomass and product concentrations. This dynamic behavior
motivates the development of optimization methods to find the optimal input
feeding trajectories in order to improve the process. The typical inputs in this
process are the substrate inflow rates time profiles.

For the proper optimization of the process, a white box mathematical model
is typically developed, based on differential equations that represent the mass
balances of the relevant state variables.

2.1 Case Study I

In previous work by the authors, a fed-batch recombinant Escherichia coli fer-
mentation process was optimized by EAs [16][17]. This was considered as the
first case study in this work.

During the aerobic growth of the bacterium, with glucose as the only added
substrate, the microorganism can follow three main different metabolic pathways:

• Oxidative growth on glucose:

k1S + k5O
μ1−→ X + k8C (1)
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• Fermentative growth on glucose:

k2S + k6O
μ2−→ X + k9C + k3A (2)

• Oxidative growth on acetic acid:

k4A + k7O
μ3−→ X + k10C (3)

where S, O, X , C and A represent glucose, dissolved oxygen, biomass, dissolved
carbon dioxide and acetate components, respectively. In the sequel, the same
symbols are used to represent the state variables’ concentrations (in g/kg); μ1
to μ3 are time variant specific growth rates that nonlinearly depend on the state
variables, and ki are constant yield coefficients.

The associated dynamical model can be described by the following equations:

dX

dt
= (μ1 + μ2 + μ3)X − DX (4)

dS

dt
= (−k1μ1 − k2μ2)X +

Fin,SSin

W
− DS (5)

dA

dt
= (k3μ2 − k4μ3)X − DA (6)

dO

dt
= (−k5μ1 − k6μ2 − k7μ3)X + OTR − DO (7)

dC

dt
= (k8μ1 + k9μ2 + k10μ3)X − CTR − DC (8)

dW

dt
� Fin,S (9)

being D the dilution rate, Fin,S the substrate feeding rate (in kg/h), W the
fermentation weight (in kg), OTR the oxygen transfer rate and CTR the carbon
dioxide transfer rate.

The kinetic behavior, expressed in the rates μ1 to μ3, was given by specific
functions of the state variables, whose description is out of the scope of the
present work but can be found in [15].

The purpose of the optimization is to determine the feeding rate profile
(Fin,S(t)) that maximizes the productivity of the process, defined as the units
of product (recombinant protein) formed per unit of time. In this case, this is
related with the final biomass obtained, when the duration of the process is pre-
defined. Thus, a performance index (PI) is defined by the following expression:

PI =
X(Tf)W (Tf ) − X(0)W (0)

Tf
(10)

The relevant state variables are initialized with the following values: X(0) = 5,
S(0) = 0, A(0) = 0, W (0) = 3. Due to limitations in the feeding pump capacity,
the value of Fin,S(t) must be in the range [0.0; 0.4]. Furthermore, the following
constraint is defined over the value of W : W (t) ≤ 5. The final time (Tf ) is set
to 25 hours.
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2.2 Case Study II

This system is a fed-batch bioreactor for the production of ethanol by Saccha-
romyces cerevisiae, firstly studied by Chen and Huang [5]. The aim is to find the
substrate feed rate profile that maximizes the final amount of ethanol.

The model equations are the following:

dx1

dt
= g1x1 − u

x1

x4
(11)

dx2

dt
= −10g1x1 + u

150 − x2

x4
(12)

dx3

dt
= g2x1 − u

x3

x4
(13)

dx4

dt
= u (14)

where x1, x2 and x3 are the cell mass, substrate and ethanol concentrations
(g/L), x4 the volume of the reactor (L) and u) the feeding rate (L/h).

On the other hand, the kinetic variables g1 and g2 are given by:

g1 =
0.408
1 + x3

16

x2

0.22 + x2
(15)

g2 =
1

1 + x3
71.5

x2

0.44 + x2
(16)

The performance index (PI) is given by: PI = x3(Tf )x4(Tf ).
The final time is set to Tf = 54 hours, and the initial values for the state

variables are the following: x1(0) = 1, x2(0) = 150, x3(0) = 0 and x4(0) =
10. Additionally, there are physical constraints over the variables, namely: 0 ≤
x4(t) ≤ 200 for all time points and the feeding rate 0 ≤ u(t) ≤ 12.

2.3 Case Study III

This case study handles a hybridoma reactor described by the equations [19]:

dXv

dt
= (μ − kd)Xv − F1 + F2

V
Xv (17)

dGlc

dt
=

F1

V
Glcin − F1 + F2

V
Glc − qGlcXv (18)

dGln

dt
=

F2

V
Glnin − F1 + F2

V
Gln − qGlnXv (19)

dLac

dt
= qLacXv − F1 + F2

V
Lac (20)

dAmm

dt
= qAmmXv − F1 + F2

V
Amm (21)
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dMab

dt
= qMabXv − F1 + F2

V
Mab (22)

dV

dt
= (F1 + F2) (23)

where the state variables Xv, Glc, Gln, Lac, Amm, Mab, V are the concentra-
tions of viable cells, glucose, glutamine, lactate, ammonia, monoclonal antibodies
and culture volume, respectively. The control variables F1 and F2 are the vol-
umetric feed rates. The complete kinetic expressions for μ, kd, qGlc, qGln, qLac,
qAmm and qMab are given in [19].

The target of the optimization process, in this case, is to increase the total
amount of monoclonal antibodies produced. So, the PI is given by:

PI =
∫ Tf

0
−qMabXv(t)V (t) (24)

Initialization values for the state variables are the following: Xv = 2.0 ×
108cells/L, Glc = 25g/L, Gln = 4g/L, Lac = 0g/L, Amm = 0g/L, Mab =
0g/L, V = 0.8L. Tf is 10 days and the value of V (t) is constrained by
V (t) ≤ Vmax.

3 Algorithms

3.1 Solution Representation and Evaluation

The optimization task addressed in this chapter is to find the best trajectory of
some input variables (e.g. substrate feed), that yield the maximum performance
index, defined in each specific case. A solution to the problem will consist in
a real-valued vector, that encodes a temporal sequence of values, one per each
time unit.

As mentioned above, the typical input variable in fed-batch fermentation pro-
cesses is the feeding trajectory or trajectories, i.e. the amount of a given substrate
to be introduced into the bioreactor, in a given time unit. Case studies I and II
have only one input variable, given by the substrate feeding rate ; case study III
has two feeding rates F1 and F2.

The size of the solution will be determined by the final time of the process
(Tf ), the discretization step (d) considered in the numerical simulation of the
model and the number of input variables NV , given by the expression: NV

Tf

d .
However, as the resulting genome would be very large (e.g. 5000 genes, for

case study I), feeding values were defined only at certain equally spaced points,
and the remaining values are linearly interpolated . The size of the genome (G)
becomes:

G = NV (
Tf

dI
+ 1) (25)

where I stands for the number of points within each interpolation interval. The
value of d used in the experiments was d = 0.005, for all case studies.
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The evaluation of each solution is performed by running a numerical simu-
lation of the defined model, given as input the feeding values. The numerical
simulation is performed using ODEToJava, a package of ordinary differential
equation solvers, using a linearly implicit implicit/explicit (IMEX) Runge-Kutta
scheme used for stiff problems [2]. The fitness value is then calculated from the
values of the state variables according to the PI defined for each case.

3.2 Differential Evolution

Differential Evolution (DE) is a population-based approach to function optimiza-
tion that generates trial individuals by calculating vector differences between
other randomly selected members of the population.

Given a function f : R
n → R to be minimised, a DE begins by randomly

generating p n-dimensional vectors. These vectors (called individuals) form a
population that will evolve over the course of the algorithm’s run. The algorithm
then proceeds to manipulate the population until a termination criterion is met.
The termination condition can be that a fixed number of function evaluations
have elapsed or no sufficient improvement is achieved.

The following is an outline of DE that uses a binomial crossover [21]. For
clarity, the computation of the new trial vector has been shown separately from
the crossover operation that selects only some of the dimensions of the trial
vector.

1. Initialize the population;
2. Evaluate the population;
3. Generate a new population where each candidate individual i is generated

in parallel according to:
(i) Randomly select 3 distinct individuals r1, r2, r3 from the population that

are different from i;
(ii) Generate a trial vector based on the scheme
(iii) Perform crossover between this vector and the vector of the current in-

dividual, with probability CR, using at least one dimension of the trial
vector.

(iv) If the candidate is not valid, change its invalid coordinates by resetting
them to the closest bound;

(v) Evaluate the candidate;
(vi) Use the candidate in the new generation if it is at least as good as the

current individual;
(vii) Replace the current individual by the candidate if the candidate is at

least as good.
4. Loop to 3 unless the termination criterion is met.

Various schemes are currently in use for DEs [20]. Each scheme varies accord-
ing to the number of difference vectors used and to whether or not the current
individual or the global best individual will be used as part of that computation.
Four schemes are considered in this paper. These are shown below along with
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the corresponding trial vector generation formula. The variables xrj , 2 ≤ j ≤ 5
represent distinct randomly selected individuals that are different from the cur-
rent individual xi and xbest is the best individual. The parameter F ∈ R is the
scale of the difference vectors and is usually set between 0 and 2 and CR is the
crossover probability.

DE/rand/1 t = xr1 + F (xr2 − xr3)
DE/rand/2 t = xr1 + F (xr2 + xr3 − xr4 − xr5)
DE/best/1 t = xbest + F (xr2 − xr3)
DE/best/2 t = xbest + F (xr2 + xr3 − xr4 − xr5)

3.3 Real-Valued EA

A real-valued Evolutionary Algorithm (EA) was also considered, since it pro-
vided good results in previous work [17][18]. The overall structure of the EA is
given by:

1. Initialize time (t = 0), generate and evaluate the initial population (P0).
2. While the termination criteria is not met:

(i) Select from Pt a subset of individuals for reproduction.
(ii) Apply the genetic operators to the individuals in order to breed the

offspring and evaluate them.
(iii) Insert the offspring into the next population (Pt+1).
(iv) Select the survivors from Pt to be kept in Pt+1.
(v) Increase current time (t = t + 1).

Regarding the reproduction step, this EA uses the following mutation and
crossover operators:

• Random Mutation, which replaces one gene by a new randomly generated
value, within the range [mini, maxi] [13]; and

• Gaussian Mutation, which adds to a given gene a value taken from a Gaussian
distribution, with a zero mean and a standard deviation given by maxi−mini

4
(i.e., small perturbations will be preferred over larger ones).

• Two-Point crossover, a standard Genetic Algorithm operator [13], applied in
the traditional way;

• Arithmetical crossover, where each gene in the offspring will be a linear com-
bination of the values in the ancestors’ chromosomes [13];

where [mini; maxi] is the range of values allowed for gene i.
Both mutation operators are applied to a variable number of genes (a value

that is randomly set between 1 and 10 in each application). In previous work,
the best result was obtained using an alternative that contemplates the use of
all genetic operators described above [17]. All operators are used with equal
probabilities to breed the offspring.

The selection procedure is done by converting the fitness value into a linear
ranking in the population, and then applying a roulette wheel scheme. In each
generation, 50% of the individuals are kept from the previous generation, and
50% are bred by the application of the genetic operators.
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3.4 Fully Informed Particle Swarm

A particle swarm optimizer (PSO) uses a population of particles that evolve
over time by flying through the search space. Particles imitate their neighbors
by approaching their best positions. In the canonical particle swarm, the two
sources of imitation are the individual’s previous best position and the best
position found by the most successful neighbor.

Due to the fact that in previous studies [11] the Fully Informed Particle Swarm
(FIPS) [12] clearly outperformed the canonical particle swarm in this class of
problems, this method will be used in this study. In this case, each particle is
defined by:

P
(i)
t = 〈xt, vt, pt, et〉

where xt ∈ R
d is the current position in the search space; pt ∈ R

d is the position
visited by the particle in the past that had the best function evaluation; vt ∈ R

d

is a vector that represents the direction in which the particle is moving, it is
called the ‘velocity’; et is the evaluation of pt under the function f : R

d → R

being optimized, i.e. et = f(pt).
Particles are connected to others in the population via a predefined topology.

This can be represented by the adjacency matrix of a directed graph M = (mij),
where mij = 1 if there is an edge from particle i to particle j and mij = 0 otherwise.

In FIPS, each particle moves in the direction of the stochastic barycenter of
the previous best position of all the neighboring particles (excluding the particle
itself). As in the canonical particle swarm, the neighbors of a particle are the
ones that share a vertex in the graph that represents the topology.

The following is an outline of a generic PSO:

1. Set the iteration counter, t = 0.
2. Initialize each x

(i)
0 and v

(i)
0 randomly. Set p

(i)
0 = x

(i)
0 .

3. Evaluate each particle and set e
(i)
0 = f(p(i)

0 ).
4. Let t = t + 1 and generate a new population, where each particle i is moved

to a new position in the search space according to:
(i) v

(i)
t = velocity update(v(i)

t−1).
(ii) x

(i)
t = x

(i)
t−1 + v

(i)
t .

(iii) Evaluate the new position, e = f(x(i)
t ).

(iv) If the new position is better than the previous best, update the particle’s
previous best position. i.e if e < e

(i)
t−1 then let p

(i)
t = x

(i)
t and e

(i)
t = e

else let p
(i)
t = p

(i)
t−1 and e

(i)
t = e

(i)
t−1.

(v) Loop to 4 until the termination criterion is met.

Clerc and Kennedy [7] introduced the use of a factor called the ‘constriction
factor’, symbolized by χ, into the velocity update equation. The velocity update
equation for FIPS is given by:

velocity update(v(i)
t−1) = χ(v(i)

t +
∑

j∈N(i)

U(0, 1) · ϕ

|N(i)| · (p(j)
t−1 − x

(i)
t−1))
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where U is the generator of pseudo-random numbers following the uniform dis-
tribution, ϕ = 4.1, χ = 0.729, N(i) is the neighborhood (the set of the particles)
of particle i. The values of ϕ and χ are given by Clerc’s formula. In this study,
the population is organized according to the von Neumann topology [10], where
each particle is connected to four others, in a torus configuration.

4 Offline Optimization

4.1 Methodology

The results reported in this text are the means of 30 runs and are presented
with 95% confidence intervals. Additionally, the use of t-tests [8] for two-sample
comparisons was adopted. In order to improve the readibility of the analysis, a
symbolic encoding of the p-values resulting from the t-tests was used. To enhance
readability of the tables and allow a straighforward comparison between the
approaches tested, different symbols are used to report whether the mean of
approach A1 is greater than the mean of A2 or vice-versa. The encoding used is
presented in Table 1.

Table 1. Encoding used in the presentation of p-values of the pairwise t-tests compar-
ing approaches A1 and A2

p-value condition symbol

p ≤ 0.001 mean(A1) > mean(A2) +++
p ≤ 0.001 mean(A1) < mean(A2) - - -

0.001 < p ≤ 0.01 mean(A1) > mean(A2) ++
0.001 < p ≤ 0.01 mean(A1) < mean(A2) - -
0.01 < p ≤ 0.05 mean(A1) > mean(A2) +
0.01 < p ≤ 0.05 mean(A1) < mean(A2) -

p ≥ 0.05 O

Given that multiple pairwise comparisons were performed, the authors used
the Holm correction for the p-values [9]. Sometimes statistical tests cannot find
a significant difference between two algorithms (e.g., because the confidence in-
terval of one of them is too wide). Nonetheless, we are interested in a reliable
method: one that consistently yields good results. Thus, an algorithm with a
good average and a narrow confidence interval is preferred in these cases.

4.2 Parameter Settings and Test Conditions

When solving a real world problem, the main concern is to have a tool that
may be applied to the problem with as few fine-tuning as possible. The main
focus of this work will be in the results and not in a thorough study about the
parameterization of the algorithms involved. It was not an aim of this work to
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go through the cumbersome task of testing the valuation of all the parameters of
these algorithms until a suitable setting for the problem at hand could be found.
Furthermore, these experiments take a long time (typically a few hours per run)
and there are usually time constraints. Thus, it was decided to use standard
configurations for each algorithm that were either validated by experimental
results or suggested by previous studies.

Due to the previous experience of the authors with the real-valued EA, each
run was stopped after 200,000 function evaluations. In the case of FIPS the
population size was 20 and the other parameters have the usual values given in
the literature. The neighborhood topology selected was the von Neumann [10].

For all DE algorithms, the population size was set to 20, F was set to 0.5,
CR to 0.6 and the schemes used were DE/rand/1, DE/rand/2, DE/best/1 and
DE/best/2. In terms of the real-valued EA, the population size was set to 200.

For each case study, 30 runs were performed with each algorithm. The value of
I was determined, for each case study, based on preliminary results, and set in the
following way: I = 200 in case studies 1 and 2, and I = 100 for the case study III.

Thus, the solution sizes are equal to 26, 55 and 21 for the three case studies.

4.3 Results

For all case studies, the results will be shown in two distinct tables. The first will
present the results obtained by each of the algorithms showing the mean and
the 95% confidence intervals for the PI. These will be shown for three distinct
steps of the optimization process: when 50,000, 100,000 and 200,000 function
evaluations were performed by each algorithm. It was decided to probe PI at
these time-steps to estimate the possibility of terminating the runs earlier whilst
still maintaining good quality solutions.

The second set of tables will help to further validate the results, showing
the pairwise t-test results, when 200 k FEs have elapsed, using the methodoloy
aforementioned. This will show the statistically significant differences among
the algorithms. In these tables, the algorithm that appears on each row will
correspond to A1 on Table 1 and the algorithm given by the column to A2.

Tables 2 and 3, 4 and 5 and finally 6 and 7, present the results obtained by
each of the algorithms on the case studies I, II and III, respectively.

Table 2. Results for case study I: mean and confidence intervals of the PI

Algorithm PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

DE/rand/1 9.4726 ± 0.0005 9.4727 ± 0.0005 9.4727 ± 0.0003
DE/rand/2 9.0669 ± 0.0390 9.4074 ± 0.0102 9.4728 ± 0.0001
DE/best/1 5.1580 ± 0.4795 5.2274 ± 0.4470 5.2315 ± 0.4443
DE/best/2 9.4423 ± 0.0626 9.4729 ± 0.0000 9.4729 ± 0.0000

EA 8.4762 ± 0.0731 8.7891 ± 0.0613 9.0037 ± 0.0497
FIPS 9.4716 ± 0.0014 9.4729 ± 0.0000 9.4729 ± 0.0000
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Table 3. Pairwise t-test with the Holm p-value adjustment for the algorithms of case
study I

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA

DE/rand/2 O
DE/best/1 - - - - - -
DE/best/2 O +++ +++

EA - - - - - - +++ - - -
FIPS O +++ +++ O +++

Table 4. Results for case study II: mean and confidence intervals of the PI

Algorithm PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

DE/rand/1 20386 ± 7 20400 ± 7 20409 ± 6
DE/rand/2 20348 ± 8 20366 ± 6 20382 ± 6
DE/best/1 19702 ± 128 19723 ± 128 19751 ± 134
DE/best/2 20229 ± 86 20263 ± 80 20281 ± 84

EA 20119 ± 48 20280 ± 35 20373 ± 17
FIPS 19821 ± 120 19822 ± 120 19822 ± 120

Table 5. Pairwise t-test with the Holm p-value adjustment for the algorithms of case
study II

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA

DE/rand/2 O
DE/best/1 - - - - - -
DE/best/2 O O +++

EA - - O +++ O
FIPS - - - - - - O - - - - - -

Table 6. Results for case study III: mean and confidence intervals of the PI

Algorithm PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

DE/rand/1 392.81 ± 3.81 393.93 ± 3.20 394.99 ± 3.13
DE/rand/2 391.66 ± 0.48 394.18 ± 0.33 395.73 ± 0.20
DE/best/1 276.40 ± 10.74 283.50 ± 12.25 289.37 ± 12.82
DE/best/2 372.90 ± 12.44 375.08 ± 12.60 378.67 ± 11.86

EA 374.83 ± 1.67 382.49 ± 0.86 387.62 ± 0.52
FIPS 362.45 ± 15.10 370.66 ± 13.68 375.69 ± 10.79

The first conclusion to be drawn from the results is a superiority of some of
the DE schemes (specially DE/rand/1 and DE/rand/2) over the EA and FIPS
as soon as 50,000 FEs. FIPS converges fast, but the quality of the solutions in
cases II and III is not at the level of the results of DE and even the EA. The EA
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Table 7. Pairwise t-test with the Holm p-value adjustment for the algorithms of case
study III

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA

DE/rand/2 O
DE/best/1 - - - - - -
DE/best/2 O O +++

EA - - - - - - +++ O
FIPS - - - +++ O O

is usually the algorithm with the slowest convergence, although it steadly im-
proves over the entire run. The worst algorithm in all problems is the DE/best/1
scheme. DE/best/2 is much better showing that in some problems having a nois-
ier setup with a greedier scheme can pay off. However, it is still a step behind
the DE/rand alternatives.

In case study I, DE/rand/1 has already obtained good solutions with only
50,000 FEs, closely followed by FIPS and DE/best/2. When 100,000 FEs have
elapsed, the quality of the solutions of the three approaches is very similar,
with the EA still trailing far behind and DE/best/1 out of the competition. Fi-
nally, with 200,000 FEs the three approaches (DE/rand/1, FIPS and DE/best/2)
maintain similar performance and the EA is still trailing behind, although
steadily improving.

In case study II, there are some changes. FIPS is not as good as the EA and
presents results similar to the ones of DE/best/1. DE/rand/1 and DE/rand/2
have similar results with 50,000 FEs, slowly improving with a larger number of
FEs. The EA is the algorithm that shows the steadier improvement but still ex-
hibits a somewhat lower performance when compared to DE/rand at 200,000 FE.

Case study III shows a similar performance for DE/rand/1 and DE/rand/2,
with DE/rand/2 having somewhat better performance for 100,000 and 200,000
FEs. In this case, the EA is again the third best alternative and the worst
performer is still DE/best/1.

5 Online Optimization

5.1 Description

During the fermentation process, some of the state variables can be measured,
but its values are scarcely used for closed-loop optimization purposes, and are
rather employed to evaluate qualitatively the performance of the process. How-
ever, it is possible to develop dynamic optimization algorithms capable of timely
reacting to this new knowledge generated by updating the corresponding internal
model and generating new solutions.

EC is a promising approach to this real-time optimization task, since the
algorithms keep a population of solutions that can be easily adapted to perform
re-optimization. Indeed, a population of solutions previously obtained can be
evaluated under the new scenario and better adapted solutions can be created
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through the use of evolution. The fact that a set of solutions is kept, and not
only the best solution, makes a faster adaptation to new conditions possible,
while taking advantage of previous optimisation efforts.

In this work, two online optimization strategies based on EAs and DE are
proposed, working in two stages: before the fermentation process starts, an offline
optimization is conducted as it is described in the previous sections. After this
preliminary step, online optimization algorithms use information gathered by
measuring the value of relevant state variables in certain points in time during
the real fermentation. These algorithms react by updating their internal model
and reaching an improved solution, that is available to be sent back to the
fermentation monitoring software.

The version of the EA/DE used to perform online optimization is similar to the
ones described for the offline problem. The DE scheme selected was DE/rand/1
due to the fact that it is the simplest to implement and the one that usually gave
the best results. When new information regarding the state variables is received,
the following steps are followed by both EA and DE:

1. a starting point (in time) is determined for the re-optimized solution, by
adding the time label of the received data with the predicted time necessary
to compute a new solution (since it is impossible to reach and therefore apply
a solution before that time);

2. the last available population is adapted by removing from the genome of each
individual the genes that encode feeding values for elapsed time periods;

3. half of the individuals in the population are replaced by new randomly gen-
erated solutions (these individuals are chosen randomly, although the best
individual is always kept). This helps in maintaining genetic diversity, a
useful feature for the optimization in changing landscapes;

4. the internal model of the fermentation used by the EA/DE is updated with
the new information available from the real process and each of the individ-
uals is re-evaluated taking this new knowledge into consideration;

5. the normal process of the DE or EA proceeds for a given number of iterations;
6. the best solution obtained is sent to the fermentation software and can be

used in the real process.

5.2 Experimental Setup

In this study, and given time and physical constraints, real fermentations were
not conducted and instead these were replaced by simulating the fermentation
process and adding noise to the value of the state variables. This process is
implemented by considering two interacting components: an optimizer, that im-
plements the optimization algorithm (DE or EA), and a noise simulator (NS),
that simulates the real fermentation process adding noise to the state variables.

This is performed by considering that there is a deviation between the model
prediction and the behaviour of the process due to several reasons (e.g. model
innacuracies or parameters changing over time). Therefore, for each sampling
time, the state variables that represent the real process are obtained from the
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simulated variables by adding noise. These new values of the state variables
would originate a deviation of the process from its optimal behavior, which had
been defined during offline optimization. To compensate for this deviation, the
new values of the state variables will be used by the optimization algorithm to
reach a new feeding profile.

The following sequence of events takes place:

1. an offline optimization is performed by the optimizer and its results are
passed on to the NS, used to compute the predicted values of the state
variables. The optimizer stops and waits for new information.

2. the variable t, which stores the simulated time in the NS is set to t = 0.
3. while t < Tf (where Tf denotes the final time of the fermentation process)

the following steps are executed:
(i) the values of all state variables at time t are disturbed by the NS by

adding/ subtracting noise, given by the original value multiplied by a
value taken from an uniform distribution with range [0, U ]. The new
values of the state variables are sent to the optimizer.

(ii) the optimizer receives this information and runs the steps for online
optimization listed in the previous section. The best solution reached is
sent to the NS that updates its model accordingly.

(iii) the NS updates t = t + Δt.

Each run for the initial optimization is stopped after 200, 000 function eval-
uations and the re-optimization process is allowed 20, 000 function evaluations.
The parameters of the DE and EA keep the values of the offline optimization
given in the previous sections The value of Δt was set to 1 (h.) in case study I,
2 (h.) in II and 0.5 (d.) in III.

5.3 Results

The results will be presented in terms of the mean of the PI values obtained in 30
runs, as well as 95% confidence intervals. The Tables 8, 9 and 10 show the results
of the algorithms obtained on case studies I, II and III, respectively. In every case,
the first column represents the parameter U used to generate noise (an increase
in this parameter implies noisier setups). The next two columns show the results
for the DE and the EA during offline optimization; columns 4 and 5 show the
results obtained for the same algorithms, but applying the noise disturbances
without changing the solutions of offline optimization (simulating the case where
there are discrepancies between model predictions and real processes but without
intervention of online optimizers) and, finally, the last two columns show the
results obtained by the online optimization.

The first conclusion to draw from the results is that, in every case study, even
a low level of noise is enough to clearly disturb the results, although that effect
is clearly more visible in case study I.

The levels of noise studied are certainly within the range of the differences
observed between model predictions and experimental results in biotechnological
processes. However, the consequences in terms of process performance when an
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Table 8. Results obtained by the DE and EAs in case study I

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 9.47 ± 0.00 8.85 ± 0.04 4.67 ± 0.70 4.79 ± 0.73 9.11 ± 0.14 8.72 ± 0.14
0.02 9.47 ± 0.00 8.83 ± 0.05 4.41 ± 0.75 4.69 ± 0.78 8.80 ± 0.24 8.53 ± 0.25
0.03 9.47 ± 0.00 8.81 ± 0.05 4.20 ± 0.76 4.35 ± 0.81 8.47 ± 0.34 8.17 ± 0.35

Table 9. Results obtained by the DE and EAs in case study II

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 20405 ± 4 20374 ± 9 20097 ± 133 20236 ± 108 20421 ± 115 20408 ± 119
0.02 20407 ± 3 20379 ± 7 19832 ± 305 19986 ± 244 20404 ± 243 20392 ± 242
0.03 20405 ± 5 20376 ± 9 19711 ± 357 19938 ± 393 20282 ± 317 20236 ± 335

Table 10. Results obtained by the DE and EAs in case study III

U Initial optim. Initial+noise Online opt.
DE EA DE EA DE EA

0.01 394.7 ± 0.2 386.3 ± 0.8 371.7 ± 8.5 367.9 ± 7.1 386.2 ± 4.8 379.8 ± 3.8
0.02 394.7 ± 0.2 385.2 ± 0.7 353.9 ± 14.9 351.2 ± 12.3 374.1 ± 9.2 371.8 ± 8.3
0.03 394.7 ± 0.2 386.1 ± 0.9 330.0 ± 23.5 343.0 ± 15.4 364.5 ± 13.0 367.6 ± 11.0

open-loop fermentation (without online optimization) is performed are quite
extreme, implying that in many cases the utility of even relatively good models
for process optimization with current state-of-the-art optimization techniques
(mostly offline approaches) is quite low.

Therefore, the results obtained with online optimization strategies indicate
that the reward obtained in terms of process productivity is probably more than
enough to justify its implementation and the corresponding costs. In fact, he
results obtained for all 3 case studies are quite close to the ones predicted by
offline optimization without added noise, thus implying that the optimization
scheme is robust to the levels of noise studied in this work. Furthermore, the
degradation of the results that is caused by the increase of U is quite graceful,
as an increase in U does not cause dramatic effects in the PI.

A comparison of the results obtained by both optimization algorithms show
that DE seems to be more effective than the EAs. The difference is very clear when
offline optimization is performed, but decreases when the level of noise increases.
In fact, the differences for U = 0.02 and 0.03 are not significant from a statistical
perspective and in case study III, the EA displays a better mean than DE for U =
0.03. Nevertheless, if an alternative has to be chosen the DE still has an advantage,
since it shows the best results (mean) in almost all scenarios.
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6 Conclusions and Further Work

This chapter compares FIPS, a real-valued EA (EA) and four distinct schemes
of Differential Evolution (DE) in three case studies of optimizing the feeding
trajectory in fed-batch fermentation processes. The best overall algorithms in
these tasks were the DE/rand/1 and DE/rand/2, that consistently obtained
good results in all the case studies and furthermore had a good convergence
speed. If a single configuration was to be chosen, the DE/rand/1 scheme would
be the selected one, since it represents the simpler alternative to implement and
obtains good results.

Fips was a good contender in one of the cases where it found good results and
was as fast as DE. However, it got stuck on local optima on the other ones. EA
was slower to converge but reliable. If one can afford the computational time
needed, it always finds good solutions. However, in some problems (specially
case study I) it requires a large number of function evaluations to achieve a
good result. Given that the computational time needed for these problems is
quite large, it is a good reason to choose DE instead.

In this work, the task of optimizing feed profiles for fed-batch fermentation
problems was also approached by proposing optimization algorithms, such as
EAs and DE, that are able to implement online optimization strategies, i.e., to
perform the optimization simultaneously with the real process. The proposed
approach was validated by conducting a number of experiments that used a
noise simulator to emulate the differences between the values predicted by the
mathematical model and the real values in the fermentation process. The results
of the experiments show that even small differences lead to important disruptions
in the behavior that was predicted by offline optimization.

The proposed approach to online optimization deals well with the noise and
exhibits properties of graceful degradation. When comparing the optimization
algorithms, the DE seems the best alternative, but its superiority seems to de-
crease when noisier settings are considered.

In future work, the priority is to validate these results by implementing the
approach to online optimization with a real fed-batch fermentation process. Fur-
thermore, other case studies will be tested and distinct optimization algorithms
will be taken into account.

Previous work by the authors [18] developed a new representation in EAs in
order to allow the optimization of a time trajectory with automatic interpolation.
It would be interesting to develop a similar approach within DE.
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