
Implementation of middleware fault tolerance support for real-time
embedded applications

F. Afonso1, C. Silva1, S. Montenegro2, A. Tavares1
1Department of Industrial Electronics, University of Minho, Portugal

2Fraunhofer Institute for Computer Architecture and Software Technology, Germany
1{fafonso, csilva, atavares}@dei.uminho.pt, 2sergio@first.fhg.de

Abstract

Critical real-time embedded systems need to apply
fault tolerance strategies to deal with operation time
errors, either in hardware or software. In this paper
we present the ongoing work to provide application
fault tolerance by means of implementing middleware
transparent support over the BOSS embedded
operating system. The middleware uses a publisher-
subscriber protocol and enables the execution of
several fault tolerance strategies with minimum burden
to the application level software*.

1. Introduction

Real-time embedded systems are applied in several
safety critical domains as aerospace, automotive and
industrial. In these applications, high dependability [1]
must be a goal in the system design. However, despite
all efforts to prevent and remove faults during system
development, some sort of fault tolerance is required to
deal with residual software faults and hardware faults
at run-time.

Fault tolerance is usually achieved by redundancy
and diversity. Hardware redundancy and software
diversity are the most common techniques for
increasing system reliability, but several other
techniques may be applied, as time redundancy (task
re-execution), information redundancy (correction
codes) and data diversity (data re-expression).

The purpose of this work is to support fault-tolerant
(FT) strategies in applications developed using the
BOSS embedded operating system. As critical
applications are usually implemented with multi-
computer systems connected by one or more networks,
the middleware was the selected layer of software to

* This work has been supported by the Portuguese Foundation for
Science and Technology (FCT).

deliver transparent fault tolerance support to
applications. However, the operating system kernel
had to be modified, because FT was expected to work
at the thread level.

2. BOSS operating system

BOSS is a real-time embedded operating system
designed for applications demanding high
dependability [2]. Simplicity is the main strategy for
achieving dependability in BOSS, as complexity is the
cause of most development faults. The system was
developed in C++, using an object-oriented framework
simple enough to be understood and applied in several
application domains.

The BIRD Satellite, designed for early detection of
fires, uses BOSS as the multi-computer control
operating system. BOSS has been ported to different
projects and platforms as PowerPC, x86 and Atmel
AVR. It also runs on top of Linux, mainly for
developing and testing purposes

BOSS was designed to support fault tolerance in
applications with hardware redundancy by including a
middleware which carries out transparent
communications between nodes. The messages
exchange is asynchronous, using the publisher-
subscriber protocol. Using this approach, no fix
communication paths are established and the system
can be reconfigured at run-time easily.

3. Fault tolerance strategies

Several FT strategies have been proposed and

applied in the last 30 years. The simplest strategy is
Rollback/Retry, also called “checkpoint and restart”
[3], which uses time redundancy. This strategy is
effective only against transient faults, like hardware
transient faults caused by electromagnetic radiation,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55609623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and even some software transient faults like as race
conditions.

In order to deal with permanent software faults,
other strategies have been proposed as Recovery
Blocks (RB) [4], Distributed Recovery Blocks (DRB)
[5] and N-Version Programming (NVP) [6].

RB and DRB perform backward error recovery like
Rollback/Retry, but use different software versions, or
variants, in each execution block. In these techniques
there are at least two software versions in RB and two
software versions in DRB, which must deliver similar
correct results. The main difference between RB and
DRB is the distributed nature of the later, allowing
concurrent running of variants in two distinct nodes
and coordination between them to define what node
will send the final output.

NVP is a FT strategy that users forward error
recovery in which multiple variants (at least 3) run
sequentially or concurrently and a decision mechanism
selects the correct response usually by majority voting.
In a multi-computer system, each variant runs in a
different node and the decision mechanism (voter) may
be replicated too.

In this work, Rollback/Retry, RB, DRB and NVP
strategies are supported. In fact, the Rollback/Retry
strategy can be implemented as an RB strategy, if we
define the primary and the recovery block as the same.
For NVP, this work will support the decision
mechanism implementation only, as the variants can be
implemented by normal application threads running in
different nodes and sending the results to the voting
thread.

4. Design

The main design goal is to provide the fault
tolerance strategies just presented with minimal burden
to the application level.

A new middleware periodic thread was created to
control and schedule all FT threads. This thread, called
MiddlewareScheduler (MS), runs at the beginning of
every clock tick interval and defines the behavior of
each FT thread.

4.1. RB design

For the execution of a RB fault-tolerant strategy
with two variants, the application thread has to define
the implementation of the following procedures:
primary block, recovery block, save state, restore state,
acceptance test and send result.

Figure 1 presents an example of a RB run when the
primary block fails and the recovery block succeeds.

The operation is started by the application thread upon
receiving an input message or waking up at a specific
time. After setting up a deadline for execution, based
on the actual time and the maximum allowed response
time, the thread suspends. In subsequent MS thread
activations, this thread verifies if the RB thread
deadline has expired and, in that case, restarts the
thread. This represents a failure in delivering the
correct response on time, but after restarting, the RB
thread is ready again for receiving the next request or
activation. If the deadline has not expired, the MS
thread commands the next actions to be performed by
the RB thread and schedules it for execution. After
executing the right operations (save/restore state, run
primary/recovery block, run acceptance test) the RB
thread suspends again and the MS thread checks the
AT result. If the RB thread succeeds in AT, the MS
thread allows it to send the results and the interaction
finishes. If the RB thread fails in both blocks it is
restarted by the MS thread.

4.2. DRB design

For applying the DRB strategy, the DRB thread
should define the same procedures of the RB strategy
but the DRB execution involves the coordination
between two nodes for delivering a unique result to the
system. This coordination is performed by message
exchanges between the middleware of both nodes,
without any intervention from the DRB threads.

Figure 2 presents a general representation of DRB
message exchanges. The “AT OK” message is sent by
the MS thread if the primary node has succeeded in
one of the two blocks. After sending this message, the
MS thread releases the primary DRB thread to send its
results, which could imply in sending an “output
message” to another node. If the primary node fails in
both AT or is unable to terminate before its deadline,
no message is sent to the shadow node. In that case,
the DRB primary node will be restarted and it will
change its role to shadow, while the shadow node will
send its results just after its deadline, and it will
assume as the primary node. In case of failure of both
primary and shadow nodes, no output will be released
and both threads will be restarted as shadow nodes. In

order to avoid this condition, an agreement protocol
had to be established to detect role conflicts and set up
alternate roles. This involves periodic status message
exchanges between MS threads when the DRB
execution is not active, and a conflict solution
procedure based on the order of the node
identifications. These messages are represented in
Figure 2 as “Status” messages.

4.3. NVP design

For voting support in the NVP strategy, an
application voter thread will have to implement the
procedures for storing a received solution, comparing
solutions and sending the correct results.

The proposed algorithm uses single match voting.
Upon receiving a solution message, the voter thread
compares the solution with the previous ones just
received and if one “equal” solution is found it is
considered as correct and the output is immediately
sent. In this case, further messages are discarded. If
only one solution message arrives and a deadline
occurs, this solution is also considered correct and it is
sent as the output. For the implementation of voting
sequential message identification is required.

Two types of voter threads were provided: a free
voter and a coordinated voter. The free voter is used
when multiple replicas of the voter thread can send its
results disregarding the presence of other voters. The
coordinated voter is used when the voting output must
be unique among the replicas, like in the configuration
of Figure 3, and involves the establishment of a master
voter thread. The voter role definition, master or slave,
is carried out by the middleware, by exchanging
periodic status messages between nodes with
coordinated voting threads.

In all strategies presented, the scheduling of FT
threads is performed by the MS thread, which selects
the active FT thread with the earliest deadline and
increases its priority to a value greater than all
priorities in the system, with exception to middleware
threads. After finishing the FT execution, FT threads
priorities are changed to its initial priority, and will
remain with this priority until the next FT activation.

5. Implementation

Two implementations were provided. The first was
based on object-oriented inheritance and application
threads are defined by single and direct inheritance of
classes Thread (for common threads), RBThread,
DRBThread or VoterThread. These FT base classes
define application specific procedures as virtual
functions and provide an empty (stub) implementation
for them. Therefore, FT application threads must
overwrite these methods. The non-virtual functions of
these base classes define the operation of the fault-
tolerant strategy in coordination with the
MiddlewareScheduler thread using the data members
of these classes to exchange information.

The second implementation uses callback functions
instead of virtual functions. In this implementation, FT
application threads inherit directly from the Thread
class. However, FT threads should call the function
defineAsFT, passing its type and callback pointers for
all application functions needed, also including a
callback for the function which runs the fault-tolerant
strategy itself. The static functions executeRB,
executeDRB and executeVoting are provided in the
Thread class as default implementations for the FT
strategies. Stub implementations are provided for
application dependent functions.

Besides its better performance, this implementation
allows changing the type of a FT thread at run-time, as
long as the definition of all application specific and
strategy specific functions.

6. Results

Coding and testing was carried out in the Linux
environment, using an on-top-of Linux implementation
of BOSS. In this configuration, BOSS kernel and the
application itself were compiled into a single
executable and run as a Linux process with FIFO
scheduling and maximum priority. Three Pentium
computers, connected by an Ethernet network, were
used. The MiddlewareScheduler thread activation
period was set to 1 ms and network incoming messages
were delivered each 2 ms. Communication was
implemented using UDP sockets and broadcast.

The three FT strategies (RB, DRB and NVP) where
tested in both implementations using a sorting
application. Each variant was implemented in a
different sorting algorithm as Bubble Sort, Insertion
Sort and Selection Sort. A random array of 2000
elements was generated and published by a Sender
thread. In each configuration, a FT thread running RB
or DRB strategy or a normal thread sorted this array
and sent it to an actuator or a voter thread (for NVP).
Faulty conditions were generated by introducing
unsorted values after sorting in each variant at compile
time. System results were checked by logging all
messages and principal function events as thread roles
changing in DRB and coordinated voting.

7. Related work

Few implementations of fault tolerance support by
the operating system or by a middleware were found.

FT-RT-Mach, an academic general purpose
operating systems, and the DEOS operating system, a
certified operating system for critical avionics
applications, use re-execution of tasks as the primary
method for achieving fault tolerance [7]. Rate
Monotonic Scheduling and Admission Control of
threads are performed by both operating systems.

ROAFTS (Real-Time Object-Oriented Adaptive
Fault Tolerant Support) is a middleware architecture
developed by University of California [8]. It was
designed to run over commercial operating systems as
UNIX and Windows NT. The middleware supports the
RB and DRB strategies, and dynamically switches the
units operating mode in response to changes in the
resource and application modes. This middleware is
applied as a component of the Time-Triggered
Message-Triggered Object structuring scheme (TMO)
model of computation [9].

Despite having the same goal of this work, these
systems do not fit to small-scale embedded systems
applications because of its intense resource utilization.

8. Summary and future work

We have presented the work in progress in
implementing of fault tolerance support mechanisms
for the BOSS embedded real-time operating system
using middleware technology. The main goal of the
work is adding fault tolerance functionality with
minimum complexity and resource commitment in
order to satisfy the requirements of high-dependable
embedded systems.

Future work will include investigating the
application of aspect-oriented programming (AOP) for
supporting fault tolerance strategies, improving the
customization of the application and its adaptability.

References

[1] A. Avizienis, J.-C. Laprie, and B. Randell,

“Fundamental Concepts of Dependability,” Technical
Report 739, Department of Computing Science.
University of Newcastle upon Tyne, 2001.

[2] S. Montenegro and F. Zolzky, “BOSS

/EVERCONTROL OS/Middleware Target Ultra High
Dependability,” Proceedings of Data Systems on
Aerospace -DASIA, Edinburgh, Scotland, 2005.

[3] D.K. Pradhan, Fault-Tolerant Computer System Design,

Prentice-Hall, Inc., 1996.

[4] B. Randell, “System Structure for Software Fault

Tolerance,” IEEE Trans. Software Engineering, vol.
SE-1, pp. 220-232, June 1995.

[5] K. Kim and O. Welch, “Distributed Execution of

Recovery Blocks: An Approach for Uniform Treatment
of Hardware and Software Faults in Real-Time
Applications,” IEEE Transactions on Computers, vol.
38, Nº 5, pp. 626-636, 1989.

[6] L. Chen and A. Avizienis, “N-Version Programming: A

Fault-Tolerance Approach to Reliability of Software
Operation,” Proceedings of FTCS-8, pp. 3-9, Toulouse,
France, 1978.

[7] L. Dong et al., “Implementation of a Transient-Fault-

Tolerance Scheme on DEOS,” Proceedings of the 5th
IEEE Real-Time Technology and Applications
Symposium, pp. 56-65, 1999.

[8] K. Kim, “ROAFTS: A Middleware Architecture for

Real-Time Object-oriented Adaptive Fault Tolerance
Support,” Proceedings of the 3rd IEEE International
High-Assurance Systems Engineering Symposium,
pp.50-57, Washington, D.C., 1998.

 [9] K. Kim, M. Ishida and J. Liu, “An Efficient Middleware

Architecture Supporting Time-Triggered, Message-
Triggered Objects and an NT-based Implementation,”
Proceeding of the 2nd IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, pp.
54-63, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

