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Abstract 
In this thesis, a detailed analysis of the most important vibration-based damage 

detection methods applied to bridge structures is addressed. Special attention is 

focused on those methods capable to detect damage only with information provided 

from a damage stage of the structure.  

For that purpose, methods based on wavelet analysis, curvature of the mode 

shapes and changes in the flexibility and stiffness matrices of the structure methods 

are selected. These methods are easy to implement to bridge structures for its  

on-line structural evaluation or for its evaluation at different damage stages.  

The selected damage detection methods are evaluated under three different 

cases: (1) damage scenarios are simulated on numerical methods for cracked beam 

structures; (2) experimental tests are carried out in the laboratory with metallic and 

concrete beams strengthened with CFRP laminates; (3) real-scale bridge structures 

are tested under different damage scenarios.  

To do an accurate simulation of the dynamic behaviour of cracked bridges, 

some of these methods are investigated and evaluated on beams with rectangular  

cross sections. Later, the methods are generalized to be applicable to more complex 

structures, like bridges, and to other cross sections, as in composite bridges. 

From the research done here, it is concluded that the performance of the 

damage detection methods depends of several factors, for example, the number of 

sensors located near the damage zones, level of noise present in the acquired 

dynamic response, location, extension and severity of the damage. Finally, it is 

recommended to do the process of damage identification in the bridge using the 

selected group of damage detection methods where successful damage detection is 

obtained when more than one method clearly indicates damage. 
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Resumo 
Na presente dissertação é apresentada uma análise comparativa detalhada da eficácia 

de métodos de detecção de dano em pontes. Uma atenção especial é dada aos 

métodos baseados, exclusivamente, na resposta dinâmica da estrutura danificada.  

Para este efeito são escolhidos os métodos baseados na análise de “wavelets”, 

na curvatura das formas modais e na modificação da matriz de flexibilidade ou de 

rigidez da estrutura. Estes métodos são de fácil implementação em pontes, tanto nos 

cases em que ser requer uma monitorização contínua do comportamento da estrutura 

como nos que é suficiente a obtenção de valores em fases discretas da vida útil das 

mesmas.  

Os métodos utilizados são avaliados em três situações distintas: (1) a 

introdução de cenários de dano em modelos numéricos de estruturas fissuradas; (2) a 

realização de ensaios experimentais em laboratório, em vigas metálicas e em vigas de 

betão armado reforçadas com lâminas de material compósito (CFRP); (3) a 

realização de ensaios dinâmicos em pontes de betão e madeira, sob diferentes 

cenários de dano.  

Para uma simulação apropriada do comportamento dinâmico de pontes 

fissuradas, alguns dos métodos existentes são investigados e avaliados em vigas com 

secções transversais rectangulares. Posteriormente, estes métodos são generalizados 

para ser aplicáveis a estruturas com secções transversais mais complexas, 

nomeadamente pontes de secções mistas aço-betão.  

Dos estudos realizados concluiu-se que a eficácia de detecção de dano dos 

métodos estudados depende de vários factores, como por exemplo: o número de 

sensores próximo da zona danificada; o nível de ruído da resposta dinâmica utilizada; 

a localização, extensão e intensidade do dano. Finalmente, recomenda-se fazer o 

processo de identificação de dano na ponte usando o grupo escolhido de métodos de 

detecção de dano onde uma detecção bem sucedida é obtida quando mais de um 

método detecta claramente o dano. 
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Resumen 
En esta tesis se realiza un análisis detallado de la eficacia de los más importantes 

métodos de detección de daño aplicados a la respuesta dinámica de puentes. Una 

atención especial es considerada a los métodos capaces de detectar daño con 

únicamente la información obtenida de la estructura dañada.  

Para el análisis de evaluación, son seleccionados los métodos basados en 

análisis de “wavelets”, en la curvatura de las formas modales y en el cambio de las 

matrices de flexibilidades y rigideces de la estructura. Estos métodos son elegidos 

debido a que pueden ser fácilmente implementados en puentes, ya se requiera una 

monitorización continua ó a través de fases discretas durante la vida útil de las 

mismas.  

Los métodos seleccionados son evaluados bajo tres diferentes casos: (1) la 

introducción de escenarios de daño en modelos numéricos de estructuras agrietadas; 

(2) la realización de ensayos experimentales en vigas metálicas y de concreto 

reforzadas con láminas de fibra de carbono (CFRP); (3) la realización de ensayos 

dinámicos en puentes ante diferentes escenarios de daño. 

Para una simulación más precisa del comportamiento dinámico de puentes 

agrietados, se investigan y evalúan algunos de estos métodos en vigas de sección 

transversal rectangular. Más adelante, estos métodos se generalizan para ser 

aplicables a estructuras más complejas como puentes y a otro tipo secciones 

transversales, como en puentes de sección compuesta.  

De estos estudios realizados, se concluye que la eficacia de los métodos de 

detección de daño evaluados depende de varios factores, por ejemplo: el número de 

sensores próximo de la zona dañada; el nivel de ruido de la respuesta dinámica 

adquirida; la localización, extensión e intensidad del daño. Finalmente, se 

recomienda hacer el proceso de identificación de daño del puente utilizando el grupo 

seleccionado de métodos de detección del daño donde una detección adecuada se 

obtiene cuando más de un método indica claramente el daño. 
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1. Introduction 

 2 

1.1 Motivation 

The structural performance of bridges decreases progressively throughout their 

service life due to many deterioration processes (fatigue, carbonation, etc). Bridges 

are considered an important part of the overall infrastructure of a country. Their 

structural failure could cause significant economical losses and even loss of human 

lives. Around the world, innumerable bridges have already exceeded their estimated 

service life and many of them have approached this limit. In the USA, 13.1 % 

(77720) of the total inventory of bridges were catalogued as structurally deficient in 

2004 (U.S. DOT, 2006). In Europe 66 % of the railway bridges are more than 50 

years old (see Figure 1.1) [Bell, 2007]. Hence the identification, location and 

evaluation of damage in bridges have gained the interest of the scientific community.  
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Figure 1.1. Railway bridge age profile in Europe.  

The structural assessment of bridges has been traditionally performed using 

visual inspection. This method could detect damage in elements easy to access by the 

inspectors. Inner damage and/or damage located in inaccessible zones have big 

probability to be undetected (Chase, 2001).  For these reasons, scientific community 

has been motivated to propose more rational methods for the evaluation of bridge 

structures. Furthermore, since the first decade of this century, modal parameters of 

bridges can be obtained easier and with lower costs than previously. Expensive 

shakers needed during the dynamic bridge tests are now not inevitable. Data 

acquisition during bridge dynamic tests can be performed with ambient vibration. 

The new modal analysis techniques called as Operational Modal Analysis (OMA) 

methods allow working just with the output data, not requiring details about the input 

force. An overview of the most famous OMA methods was given by Andersen et al. 

(1999). 

Since the 1990s, several methods based on the vibration parameters of 

structures have been proposed, but any of them have successfully applied to all the 
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possible conditions in bridges. Moreover, the lack of dynamic tests obtained from 

these structures in their damage and undamaged conditions have not permitted the 

evaluation of these methods. For this reason, the numerical simulation of cracked 

structures plays an important role. However, these methods were proposed for simple 

beams and their application to more complex structures, like bridges, has not been 

fully investigated. 

Due to these reasons, it was decided to study the detection of damage in 

bridges through their vibration parameters. It is desirable to have a damage detection 

method and/or methodology as simple as possible and applicable to the all possible 

conditions (damage, loading, ambient factors, etc.) in the bridge. Methods which can 

detect damage with only information obtained from the damage condition of the 

bridge are more appropriate for bridges since their condition before damage is rarely 

known. In this context, the application of the wavelet based methods can be useful. 

These methods detect the singularities present in the modal parameters caused by 

damage and therefore they do not require the condition of the structure before 

damage. It is also necessary to determine a numerical procedure for the simulation of 

the dynamic response of cracked bridges. In this way, evaluation of the damage 

detection methods can be practical. 

1.2 Classification of damage detection methods 

For the purpose of the evaluation of the structural condition of bridge structures, 

damage is defined as changes in the material and/or geometrical properties of the 

structures, i.e., in their boundary conditions, connectivity between elements, 

geometrical cross sections, loading, material properties and any other factor capable 

to provoke a current or future unusual structural behaviour of the bridge (Doebling et 

al., 1996). 

 Since the beginning of this century, a generation of Non-Destructive 

Techniques (NDTs) capable to get information from a bridge without disruption of 

its serviceability has been proposed. NDTs include those involving acoustics, dye 

penetrating, eddy current, emission spectroscopy, fibre-optic sensors, fibre-scope, 

hardness testing, isotope, leak testing, optics, magnetic particles, magnetic 

perturbation, X-ray, noise measurements, pattern recognition, pulse-echo, 

radiography, vibration-based damage detection and visual inspection, etc. More 

information about NDTs applied to bridge management can be found in Abudayyeh 
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et al. (2004) and SB-WP3 (2007). These NDTs can be classified as local and global 

methods. Local damage detection methods are more suitable to evaluate the 

structural performance in small localized areas of a bridge. For an efficient use of 

these local methods, it is necessary to know in advance the probable damage 

location.  In this group can be included most of the non-destructive evaluation tools 

(ultrasonic tests, impact echo methods, radar, radiographic tests, etc.).  

Global damage detection methods take advantages of the global structural 

changes of bridges caused by damage. Most of these methods are based on vibration 

monitoring. These methods are based on the assumption that structural damage 

causes variation in the structural parameters of the structure (mass, stiffness, 

flexibility) which provokes a change in the dynamic parameters of the structure 

(natural frequencies, mode shapes, damping ratio). However, these changes are too 

small for giving successful damage identification in all the cases. Furthermore, 

ambient factors as gradient of temperature between two dynamic tests may lead to 

differences of dynamic parameters of the same magnitude than those caused by 

damage. Consequently, more advanced techniques based on vibration monitoring 

have been proposed in order to amplify these small changes. These vibration-based 

damage detection methods have gained popularity due to the significant advances in 

modal analysis methods and in monitoring technologies.  

An efficient strategy of bridge maintenance should be implemented in these 

structures in order to preserve them in good structural conditions. The 

implementation of a damage detection strategy for aerospace, mechanical 

engineering and civil engineering infrastructure is called Structural Health 

Monitoring (SHM) [Sohn et al., 2003]. The SHM process involves the observation of 

a system periodically or continuously using a specific array of sensors. Acquired 

measurements are processed to detect unusual behaviour of the system that can be 

associated with damage. In this context, the process of damage detection in structures 

is classified as follows (Rytter, 1993): 

I) Detection of damage; 

II) Location of damage; 

III) Evaluation of the severity of damage and 

IV) Determination of the remaining service life of the bridge due to damage. 
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This classification increases in robustness according to the level of damage 

evaluation. In this way, level I methods consider only the determination whether the 

structure presents damage or not. Level II methods consider whether the structure is 

damaged and its location. In level III methods, the detected and located damage must 

be quantified in extension and severity, and finally in the last level IV, the remaining 

service life of the bridge needs to be determined considering the quantified damage. 

Actually, Rytter (1993) proposed another level of damage classification referring to 

the type of damage identified. To do that, information related to different kind of 

damage must be available for correlation. In general, most of the work done in 

damage detection has been focused in the levels II and III. Some methods have been 

found out to work better under certain conditions but their performance is not 

uniform for all possible scenarios. Therefore, more investigation needs to be done in 

order to determine a reliable method or methodology for the damage evaluation of 

bridges. 

Vibration-based damage detection methods can also be classified as linear and 

non-linear methods (Doebling et al., 1996). Linear damage detection methods 

suppose that the structure remains linear after damage occurs. Normally this 

condition is considered reasonable even though the structure exhibits non-linear 

behaviour after damage. This is the case of opening cracks and changes of the 

boundary conditions. On the other hand, non linear damage detection methods have 

to be used in the case of breathing cracks. These cracks open and close during 

normal operation of the bridge and an additional stiffness have to be considered 

when they close. 

OMA methods have become a powerful tool for damage identification of 

bridges. The application of these methods to bridges with linear behaviour has given 

rise to model based and non-model based damage detection methods (Maeck, 2003). 

In former methods, the structural model of the bridge is done by the finite element 

method and their modal parameters are adjusted with those obtained from the 

dynamic tests. Model updating methods fall in this category. In the latter methods, 

modal parameters obtained at different damage bridge scenarios are compared. 

Vibration-based damage detection methods, like change in the Flexibility and 

Stiffness matrix and Damage Index methods among others are included in this last 

group. Finally, there are vibration-based damage detection methods able to locate 

damage in the structure just with the information provided from the damaged 
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structure. Wavelet analysis methods and mode shape curvature methods are into this 

last category. 

The previously described classification of damage detection methods applied to 

structures is illustrated in Figure 1.2. This study is focused in methods which used 

the vibration parameters of the structures for finding indications of damage. Such 

methods commonly called as vibration-based damage detection methods will be 

briefly reviewed in Chapter 2. 

Damage Assessment

Local Global

Static Vibration basedRadar, ultrasonics,

x-ray, fibre-optic,

eddy current, etc

Non-linear Linear

Model based Non-model based

Modal data Non-modal dataSHM (time data)

Vibration based methods

Damage Index

Curvature

Change Flexibility

Direct Stiffness

Frequency change

COMAC

WPS
Empirical Modal

FEM updating Hoelder exponent

Wavelet Analysis
Decomposition 

 
Figure 1.2. Diagram for the adopted classification of damage detection methods for 
bridges (taken and adapted from Ramos, 2007). 
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1.3 Objectives and scope 

In this thesis is determined the applicability of several vibration-based damage 

detection methods applied to bridges. To accomplish this objective, the following 

activities were planned:  

• Summarize the most important contributions related to the damage 

detection methods using vibration parameters, with a special attention to 

wavelet analysis methods. For a better understanding of the last methods, the 

mathematical background of the wavelet theory will be presented. 

• Select a group of vibration-based damage detection methods. These 

methods must detect and locate damage in the structure and be easily 

implemented in bridges. Furthermore, they have to present good performance 

in other studies. A detailed description of these methods will be done as well 

as their implementation in a computer program for their further applicability 

to several defined cases. 

• Develop a procedure for the simulation of the dynamic response of 

cracked bridges. Several methods for the dynamic simulations of cracked 

structures are compared. A description of the current state of the art of these 

methods and a comparison of several of them in a numerical example will be 

done.  

• Simulate the dynamic behaviour of cracked bridges. Three examples 

are considered: in the first example, Single Degree Of Freedom (SDOF) 

systems are done to detect when the damage occurs; in the second example, 

one-span bridges are modelled as one dimensional Euler-Bernoulli beam. In 

the last example, one-span bridges are modelled as three-dimensional Finite 

Element Model (FEM).  

• The selected damage detection methods are applied to the dynamic 

parameters obtained from the numerical models before and after the 

introduction of different damage scenarios. The performance of such methods 

is evaluated under different damage severity, location, damage extension and 

sensor layouts of simulated data acquisition. 

• The evaluation of the selected damage detection methods is also 

conducted on beam specimens. Beams with different span length, material and 
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reinforcement are considered. These beams are purposely damaged and the 

efficiency of the selected damage detection methods is verified. 

• Evaluate the performance of the selected damage detection methods in  

real-scale bridges. Dynamic tests are performed on this bridge for different 

structural conditions. Applications of the damage detection methods are used 

to locate the inflicted damage in the bridge. The damage detection and the 

vibration level of footbridges are also considered. 

• Propose a methodology for the evaluation of damage in bridges. 

In the objectives above described, the dynamic response (experimental and 

numerical) used for the damage evaluation is obtained using Ambient Vibration 

Tests (AVTs) and only the acceleration response is used for the damage detection 

procedure. In fact, these two situations are commonly found in the modal 

identification of bridges and therefore they are adopted. 

1.4 Outline of the thesis 

The content of the thesis is organized as follows (see Figure 1.3):  

Chapter 2

Damage 

Chapter 3

Simulation
methods methods

Chapter 4

Numerical
examples

Chapter 5

Beam

Chapter 6

Bridge

tests

tests
 

Figure 1.3. Diagram of the outline of the thesis. 

Chapter 1 is the Introduction to this study. In this part is stated the damage 

definition as well as the damage classification. The motivation for doing the research 
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of this topic, the factors that influence the damage detection of bridges and the 

principal problems that needs to be tackled are discussed herein. 

Chapter 2 presents the state of the art related to the most important 

contributions done in vibration-based damage detection methods. A special attention 

to wavelet analysis methods and the mathematical background of the wavelet theory 

is given. From the universe of vibration-based damage detection methods, some of 

them are chosen and they are explained in more detail. 

Chapter 3 gives a review of the dynamic simulation methods of cracked 

structures. Selected methods are compared on a simulated example. In this chapter 

the importance of an adequate simulation of the dynamic behaviour of cracked 

structures is highlighted. 

Chapter 4 shows the application of the vibration-based damage detection 

methods to numerical examples. SDOF systems are done where damage is simulated 

as a decrement of the total stiffness of the system. Later, the possibility to detect 

damage on-line using the time series of the dynamic response is evaluated. In a more 

complex numerical model, a one-span bridge modelled as an Euler Bernoulli beam is 

used to compare the performance of the vibration-based damage detection methods. 

The modelled bridge represents a typical highway composite cross section bridge. 

The input force, required for the simulation of the dynamic response, is simulated as 

concentrated forces moving with constant speed along the discrete nodes defined on 

the beam. In other example, a three dimensional numerical model of a one-span 

composite cross section bridge is done. In this model, six degrees of freedom per 

node are considered. Evaluation of the damage detection methods are carried out 

considering several crack locations, intensities and two layouts of sensors. 

Chapter 5 presents the evaluation of the damage methods on two beam 

specimens. In the first part of this chapter, the results of applying the selected 

methods to steel I beams purposely damage with saw cuts in its transversal cross 

section is explained. These results are compared with those from a numerical model 

of the beam. In a second part of this chapter, the damage detection methods are 

applied to reinforced concrete beams strengthened with three different composite 

laminate contents. These beam specimens are severely damaged and results of the 

damage detection procedure are discussed and compared with numerical models of 

the beams. 
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Chapter 6 describes the applicability of the damage detection methods on two  

real-scale bridges. In the first case, damage detection methods are applied to the 

dynamic parameters obtained from the railway Övik bridge. This bridge was 

deliberately damaged as part of the experimental analysis carried out by the 

Sustainable Bridges project. The dynamic data acquisition on the bridge was 

performed after two different structural conditions. In the second case, a timber arch 

footbridge is analyzed. Damage detection methods are applied on the footbridge in 

order to detect delamination present in the arch and hanger elements. A FEM of the 

footbridge is done and updated with information provided from the experimental 

modal analysis. Besides to the application of the damage detection methods, the 

vibration level of the footbridge is determined from experimental and numerical 

studies. Moreover, the mass normalized mode shapes are calculated performing a 

second dynamic data acquisition, but now several additional masses are located in 

strategic points on the deck of the footbridge. 

Chapter 7 discusses the final conclusions and gives suggestions for further 

work to do in this topic.  
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2.1 Vibration-based damage detection methods applied to bridges –
State of the art 

The first study in vibration monitoring was carried out in 1940s. Kirmser (1944) 

reported the relationship between natural frequencies and the introduction of a crack 

in an iron beam. Since then and up to now, a vast number of vibration-based damage 

detection methods have been proposed. During this time, several researchers have 

compiled the most relevant work in damage detection methods. For instance, a 

comprehensive review of vibration-based damage detection methods was done by 

Doebling et al. (1996). The application of these methods to beams, large civil 

structures, space and composites structures were also summarized by the authors. 

Critical issues to be addressed in the damage detection field were also proposed.  

Regarding the frequency based methods; Salawu (1997) reviewed the most 

important methods. He pointed out that frequency change methods which only rely 

on the measured data are more appropriate for large civil structures. Moreover, he 

recognized that natural frequencies may not be sufficient for a unique damage 

identification. Finally, he highlighted the importance of the ambient factors in the 

damage detection process.  

Some time later, Sohn et al. (2003) presented a review of the Structural Health 

Monitoring studies done between 1996 and 2001. As opposed of the Doebling et al. 

review, the compiled studies were organized according to the statistical pattern 

recognition paradigm reported by Farrar et al. (2003). A review of the most 

important wavelet analysis methods applied to civil and mechanical structures was 

done by Kim and Melhem (2004). The advantages of these methods for the damage 

detection were highlighted. In recent years, Montalvão et al. (2006) did a revision of 

the vibration-based damage detection methods with emphasis in composite 

structures. The authors followed the damage classification proposed by Sohn et al. 

(2003) including the most recent method reported until 2006.  

In this thesis, the literature review is focused on the evaluation of the most 

promising and well-known methods capable to be applied to bridge structures. A 

special attention will be paid to the Wavelet Analysis methods which are considered 

one of the most promising methods for the damage detection in bridge structures. 

Before summarizing the studies based on wavelet analysis, the mathematical 

background of such methods will be briefly explained. 



Evaluation of vibration based damage detection methods in bridges 

 13

2.2 Wavelet theory 

Briefly, wavelets are functions that contain waves with zero mean value which drop 

to zero after some oscillations as represented in Equation (2.1).  

 (2.1) 

in this last equation,  represents time or a space variable. These functions with only 

one independent variable should satisfy the admissibility condition, i.e., they have 

finite energy (Mallat, 1989), 

 (2.2) 

This condition implies that, 

 (2.3) 

The function with these characteristics is called “mother wavelet” . Examples of 

mother wavelets are Morlet, Gaussian, Haar, Daubechies, Gabor, Mexican hat, 

Symlets and Shannon mother wavelets, among others (Poularikas, 1999). In the 

particular case of a Gaussian function, this is infinitely derivable and its derivative of 

order n may be a wavelet. For instance, the second derivative of the Gaussian 

function satisfying the admissibility condition is a mother wavelet expressed as: 

 
(2.4) 

where  is the Fourier Transform (FT) of . The graphical representation of 

this wavelet is given in Figure 2.1. 
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Figure 2.1. Gaussian 2 mother wavelet (left) and its wavelet transform (right). 
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2.2.1 Properties of Wavelet functions 

The wavelet functions have different properties enabling them to be more suitable for 

certain purposes. The most relevant properties that a wavelet function needs for a 

damage detection process are:  

Orthogonality and biorthogonality: These properties assure a fast calculation 

of their coefficients. Unfortunately, not all wavelet functions have these two 

properties. 

Compact support: This property means that the wavelet function has not zero 

values for finite intervals. This property allows representing more efficiently signals 

that have localized features. 

Vanishing moments: This property determines the degree of the polynomial 

that can be approximated. This property is used for selecting the mother wavelet 

more suitable for damage detection. A wavelet is said to have m vanishing moments 

when it fulfils: 

 (2.5) 

Regularity: It is the r-times that a function is differentiable at x0. Singularities 

in a function can be detected for its regularity. 

According to these properties, the most well-known mother wavelets are 

classified in (Ovanesova and Suarez, 2004): 

• The Haar, the Daubechies of order N, Meyer, the Symlets of order N and the 

Coiflets of order N are examples of orthogonal mother wavelets; 

• The Haar, the Daubechies of order N, the Symlets of order N and the Coiflets 

of order N mother wavelets have a compact support; 

• The Daubechies of order N, the Symlets of order N and the Coiflets of order 

N mother wavelets have an arbitrary number of vanishing moments; 

• The Morlet, Meyer and Gaussian mother wavelets are regular. On the other 

hand, the Daubechies of order N, the Symlets of order N and the Coiflets of 

order N mother wavelets have a poor regularity. 



Evaluation of vibration based damage detection methods in bridges 

 15

2.2.2 Continuous Wavelet Transform (CWT) 

Different sets of mother wavelets can be generated dilating by s scales and 

translating in space by b translations the original function. In this way, Continuous 

Wavelet Transform (CWT) is defined as the integral over time of the wavelet 

convolution. Its mathematical representation is given by,  

 (2.6) 

The results of this transformation are called wavelet coefficients and show how 

well the function correlates with the signal. These wavelet coefficients are very 

sensitive to discontinuities and singularities present in the analyzed signal. 

Considering this property, it was found that damage due to a sudden loss of stiffness 

can be detected through mode shapes with wavelet coefficients which achieve large 

amplitudes like a spike or an impulse in the damage location. This perturbation of 

wavelet coefficients due to this damage is clearer in the finest scales of the CWT. 

This procedure is the basis of the CWT damage detection.  

It is possible to recover the original signal  from its CWT if the used 

mother wavelet satisfies the admissibility condition [Equation (2.2)] defined in 

frequency domain as: 

 (2.7) 

The original signal  is reconstructed from the CWT coefficients using the 

inverse CWT defined as: 

 (2.8) 

An alternative way to express the CWT is to consider a wavelet with n vanishing 

moments. For any integer , a wavelet function can be expressed as: 

 (2.9) 

If a function  is p-times differentiable, hence: 
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 (2.10) 

Where  denotes the convolution of the functions. To better understand the scope of 

Equation (2.10), the Gaussian function , and its second derivative are considered 

(Mallat and Hwang, 1992): 

 
(2.11) 

Hence, the CWT is proportional to the second derivative of the function  

smoothed by θs. This property becomes important when it has been recognized that 

the second derivative of mode shapes can be used to locate damage (Pandey et al., 

1991). Therefore CWT of mode shapes can be also used for damage location. 

2.2.3 Discrete Wavelet Analysis (DWA) 

Discrete Wavelet Analysis (DWA) can be deduced taking advantage of the redundant 

information contained in CWT. In this way, it is possible to use dyadic values of 

dilations a and translations b based on powers of two without loss of accuracy. This 

procedure reduces the computational effort in the calculations of the wavelet 

coefficients. For this purpose, dilation is defined as  and translation parameters 

as  where  and  is the set of integers. Using these discrete 

parameters, the Discrete Wavelet Transform (DWT) is given as: 

 (2.12) 

In the same way, the inverse of the DWT is: 

 (2.13) 

As opposed to the CWT, the DWT needs, for the reconstruction of the signal, another 

additional function  referred to as the scaling function.  
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A function is considered a scaling function if satisfies the following conditions: 

 (2.14) 

For the singularity detection purpose, it is better to represent the inverse DWT as 

follows: 

 (2.15) 

In the DWA, the analyzed signal is represented by approximations and details. Thus, 

the discrete reconstruction of the function can be expressed by, 

 

(2.16) 

where cDJ and cAJ are the level J detail coefficients and the level J approximation 

coefficients, respectively. DJ is the level J detail function and AJ is the approximation 

at level J.  In Equation (2.16) cDJ and cAJ define the DWT, while DJ and AJ are parts 

of the Inverse DWT. The DWA damage detection procedure consists of selecting a 

suitable mother wavelet for the analysis. Afterwards, first level details DJ of the 

analyzed mode shape are examined looking for disturbance that can indicate damage.   

2.2.4 Hoelder exponent 

The Hoelder exponent, also known as the Lipschitz exponent, is an important tool for 

measuring the regularity of a signal. As described in wavelet properties, regularity 

measures the order which a function is r-times differentiable. Damage in structures 
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may introduce a discontinuity in its dynamic parameters. This bounded discontinuity 

has a Hoelder exponent clearly below those of its vicinity. Hence, the regularity of 

the dynamic parameters of a structure in time or space can be used for detecting or 

locating damage. Nevertheless, the calculation of the Hoelder exponent of a signal 

has not been an easy task. Previously, the Fourier Transform (FT) was used for its 

calculation. With the FT approach a global measure of the regularity of the function 

could be found, but regularity of the function and specific time or space was not 

possible. The WT can analyse a function in frequency as well as time or space 

domain and its wavelet functions present suitable properties for the calculation of the 

Hoelder exponent (e.g., regularity and vanishing moments). The Hoelder exponent of 

a function  can be deduced using WT as follows: 

If it is assumed that the function  can be approximated at  by a 

polynomial calculated with the form, 

 (2.17) 

where Pn is a polynomial associated with the Taylor expansion of  at  and  

is the constant for the polynomial member rises to n. The term associated with  can 

be seen as the residual that remains after the function is fitted with a polynomial of 

order n. The function  has a local Hoelder exponent  at  if, and only if, a 

polynomial of order  and a constant  exists, 

 (2.18) 

Taking advantage that a WT with n vanishing moments can discard polynomials up 

to order n [see Equation (2.5)] and examining the decay of wavelet coefficients as s 

tends to zero, an isolated singularity can be measured as: 

 (2.19) 

A more convenient form of Equation (2.19) for the calculation of the Hoelder 

exponent is: 

 (2.20) 
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The Hoelder exponent has been used for location of cracks on time and space 

domain. Moreover, the severity of the damage can also be estimated. In the state of 

the art related to wavelet methods, several studies using this technique are 

mentioned. 

2.2.5 Wavelet Packet Transform (WPT) 

This transform is considered as a generalization of the discrete wavelet transform and 

can be defined as the linear decomposition of the evaluated function. Thus, a set of 

wavelet packets can be determined from the wavelet mother sets, just by adding a 

modulation , 

 (2.21) 

 can be calculated from the following recursive relationships, 

 

(2.22) 

where  and  are the quadrature mirror filters associated with the scaling 

function and the mother wavelet function.  

The recursive relations between the  and the  level components are: 

 

(2.23) 

(2.24) 

(2.25) 

where H and G are the filtering-decimation operators and they are related to the 

discrete filters  and  as follows: 

 

(2.26) 



2. State of the art 

 20 

Any signal  like dynamic response functions can be represented as the 

combination of wavelet packet component functions, 

 (2.27) 

where  is the linear combination of the wavelet packet functions , 

 

(2.28) 

In WPT the signal is decomposed in approximations (A) and details (D) as 

defined in Equations (2.24) and (2.25), respectively, these two results are themselves 

decomposed into another level of decomposition. Then this process is repeated until 

the required level of accuracy is achieved (see Figure 2.2). At the bottom of the WPT 

tree,  presents good resolution in frequency and bad resolution in time, while at 

the top of the WPT tree, a bad resolution in frequency and a good resolution in time 

are obtained.  
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Figure 2.2. Wavelet Packet Transform at 3rd level of decomposition. 

The damage detection methods based on the WPT calculate the energy 

associated with each component function . The comparison of this index 

parameter between the baseline and damaged structure can be used as damage 

indicator. In the state of the art of wavelet based damage detection methods, an 

explanation of such methods is given. 
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2.2.6 Examples of the applicability of the wavelet theory for the detection 

of singularities related to damage 

The wavelet theory used for damage detection can be better understood with two 

academic examples. The wavelet analysis was done using the wavelab computer 

program (Buckheit et al., 2005). The first example tries to simulate the dynamic 

response of a structure in a particular point and is represented by a sinusoidal 

function (referred here as time function), with three different characteristic 

frequencies (2, 8 and 18 Hz).  A singularity in the function is simulated by a small 

change of its characteristic frequencies with a magnitude of 0.1 % after 10 s recorded 

as represented in Equation 2.29 and illustrated in Figure 2.3a. 

 (2.29) 

A close up of the sinusoidal function at two different times, before and after 

frequency change, did not indicate any visible difference. The Power Spectral 

Density (PSD) Function for the first and last 10 s determined using FT is shown in 

Figure 2.3b. As expected, change in frequencies could not be determined from the 

PSD function. A more robust technique able to detect small changes in the dynamic 

response is required. The application of the wavelet theory for detection of 

singularities could be a solution to identify these small changes in the function.  

The second example simulates the first mode shape of a simply supported 

beam in which the ordinate at the mid-length of the beam was increased by 0.1%. 

The function, referred as mode function, for a 20 m span, unit-normalized and 

divided in 101 nodes can be represented by: 

 (2.30) 

A visual inspection of the function of Equation (2.30) did not detect this small 

change until a close up of the function shows the change introduced (see Figure 2.4). 
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Figure 2.3. Sinusoidal function representing the a) dynamic response of a structure 
and b) its PSD function. 
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Figure 2.4. Function represented a mode shape with a singularity added to the mid-
length of the span. 

The DWA, the CWT, the Hoelder exponent and the WPT will be applied to the 

sinusoidal functions to try to detect the introduced discontinuities. As explained in 

the wavelet theory these methods need to define a mother wavelet. A trial and error 

analysis leads that a good candidate for singularity detection using DWA and WPT 

can be Daubechies 4 mother wavelet. In the case of the CWT and the Hoelder 

b) 

a) 
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exponent methods, the Gauss 4 mother wavelet demonstrated good performance for 

the detection of singularities. These mother wavelets have both four vanishing 

moments. If it is considered that the second derivative of the mode shapes can be 

used for damage detection purposes, an equivalent procedure can be done with 

wavelet analysis methods with a mother wavelet with at least two vanishing 

moments. For these two sinusoidal functions with this frequency content, four 

vanishing moments are enough for a clear detection. However, for a noisy function 

with higher frequency content, a mother wavelet with more vanishing moments may 

be required. 
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Figure 2.5. DWA method applied to: a) the time function and b) the mode function. 
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The detection of singularities using the DWA method is done in its first details. 

In fact, singularities are clearer detected in the first two details as shown in  

Figure 2.5a for the time function and Figure 2.5b for the mode function. 

The singularity is detected by one or more spikes or a disturbance in the DWA 

coefficients clearly above than those of its close neighbourhood. Considering this 

definition, singularity was detected for the detail 1 in both cases. However, there are 

some differences between the evaluated examples. Firstly, more points were 

considered for the time function than for the mode function. This caused a clearer 

detection for the first example. The performance of singularity detection increases 

when more points are included in the wavelet analysis. This fact can be extended for 

all the wavelet analysis methods. Moreover, a disturbance is present in the beginning 

and end of the function. The DWA method interprets a discontinuity at these zones. 

The extent of this effect can be reduced considering more points in the analysis as 

shown in Figure 2.5a. 
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Figure 2.6. 3D representation of CWT for singularity detection; a) time function and 
b) mode function. 
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Even when the singularity location was clearly detected by the detail 1, other 

factors present in dynamic parameters like noisy data, and influence of ambient 

factors may decrease the quality of this detection. Hence, in some circumstances, the 

detail 2 with less noise content may be used for damage detection. 
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Figure 2.7. CWT for the first three scales; a) time function and b) mode function. 

In the CWT method, the 3D representation of the time and scales (frequency) 

representation is possible as shown for the evaluated cases in Figure 2.6. In this 

figure, singularity is located in the finest scales and hidden for the effect of the high 

coefficient amplitude at the beginning and at the end of the mode function. A close 

view of the CWT coefficients at the singularity location shows the disturbance that 

indicates damage. A better way to represent CWT coefficients for damage detection 

b) 

a) 



2. State of the art 

 26 

consists of 2D representation at the finest scales. In this way, and ignoring the high 

coefficient amplitudes at the beginning and the end of the functions, the CWT 

method applied to these two examples is shown in Figure 2.7. 

As well as indicated for DWA method, the CWT can better detect singularities 

for the first scales with the best performance for the scale 1. At scales higher than 1, 

the amplitude of the spikes decreases and the disturbance caused by the singularity 

increases. Nevertheless, as shown for the mode function (Figure 2.7b), the detection 

of the singularity can still be done with good accuracy for the scale 3. When noisy 

data is being analyzed, the scale 1 could contain several spikes associated with noise 

which can hide the disturbance caused by the singularities. As an alternative, the 

scales 2 and 3 with less noise could give better detection of these singularities. 

In the Hoelder exponent method, the determination of the degree of 

differentiability of the function can detect singularities related to damage. In the 

point of this singularity, the Hoelder exponent achieves a value clearly below than its 

close vicinity. The Hoelder exponent method applied to the evaluated examples are 

shown in Figure 2.8. 
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Figure 2.8. Hoelder exponent method applied to: a) time function and b) mode 
function. 

The detection of the singularity is clearly detected from the first example than 

for the second one. According to the calculation of the Hoelder exponent using 

wavelet transform, the slope defining the Hoelder exponent at this time or space 

b) 

a) 
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point of the function should be calculated along the scales with the maximum local 

values. This requirement is fulfilled by the time function but not by the mode 

function where the local maximum is less clear as scales increase (see Figure 2.6) 

leading to a disturbance zone somewhat larger than the damage zone. 

In the last described wavelet analysis method, the WPT was used to locate 

singularities. An inspection of the WPT coefficients for different levels indicated that 

high level functions keep the information related to this singularity. However, high 

levels contain fewer points due to the number of points of the decomposed function 

decreases to the half from one level to the next one. As a result, less accuracy to 

detect singularities may be expected. For the two selected examples, the 3rd and 2nd 

WPT levels of decomposition were selected for the time and mode functions, 

respectively. The WPT coefficients obtained from the decomposition of the 

evaluated functions are shown in  Figure 2.9. 

-10

0

10

f 
  (t

)

-5

0

5

f 
  (t

)

-0.5
0

0.5

f 
  (t

)

0 10 20
-2

0
2

Time (s)

f 
  (t

)

-0.2
-0.1

0
0.1

f 
  (t

)

-0.4
-0.2

0
0.2

f 
  (t

)

-0.4
-0.2

0
0.2

f 
  (t

)

0 10 20
-0.4
-0.2

0
0.2

Time (s)

f 
  (t

)

1 3
2

3
4

5
6

7
8

3
3

3

3
3

3
3

 

0
0.5

1
1.5

f 
  (x

)

-0.001

0 

0.001

f 
  (x

)

0

1

2

f 
  (x

)

-0.001

0

0.001

f 
  (x

)

0 10 20
-0.001

0 

0.001

Length (m)

f 
  (x

)

0 10 20
-0.001

0 

0.001

Length (m)

f 
  (x

)

1 
1 

2 

2 
3 

4 

1 
2 

2 

1 
2 

2 

 
Figure 2.9. WPT decomposition a) at the 3rd level for the time function and b) at the 
1st and 2nd levels for the mode function. 
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The left side graphs showed the decomposed functions obtained from the 

approximation decompositions of the previous level, while the right side graphs 

showed the decomposed functions obtained from the detail decompositions of the 

previous level. The information related to the singularity is mainly contained in the 

right side functions. 

The examples showed in this part of the thesis are only academic and tried to 

illustrate the potential of this technique for the location and detection of damage 

which causes singularities in the dynamic parameters of the structures. Other 

important factors as noise which commonly pollutes the dynamic parameters and 

ambient factors could diminish the performance of the methods before described. 

These methods based on Wavelet Analysis have become popular because they 

do not require differentiation of the measured data and it is possible to detect damage 

only with the existing damage information. Unfortunately, the singularities detected 

with these methods in the finest scales of CWT and the first details are prone to high 

frequency disturbances related to noise. Several variants of wavelet analysis methods 

seem to be less sensitive to this factor. 

An exhaustive description of the mathematical background of the Wavelet 

Theory has been done by several authors (e.g., Mallat, 1999 and Chan, 1995). 

2.3 Wavelet analysis methods 

The FT is the most used tool for finding the frequency components of a signal. 

However, the frequency components can only be extracted from the complete 

duration of the signal. In practical cases, instead of that, frequency components are 

obtained from an average of time windows over the finite length of the signal. 

Hence, it is not suitable tool for non-stationary signals such as the impulse response 

of cracked structures. Moreover, time or space information which enables to detect 

when or where a particular event took place is lost after Fourier Transformation. For 

dealing with these problems, the short time Fourier transform (STFT) was 

implemented for determining the time and frequency components of the analyzed 

signal. However, in the STFT the time-frequency resolution is fixed and high 

resolution in time or space and frequency domain is not possible since once the 

windows size is chosen (according to the uncertainty principle).  Then, this method 

may not be suitable to find singularities in the signals related to damage. 
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The Wavelet Transform (WT) with adjustable window location and size could 

satisfactory overcome the shortcomings of the FT methods. Unlike FT where the 

signal is broken up into sinusoidal waves of different frequencies and phases, the WT 

decomposes the signal in wave functions. Mathematicians started the development of 

the Wavelet Theory since the beginning of the last century. Haar (1909) studied the 

wavelet theory trying to find a basis in space similar to Fourier’s basis in frequency 

space. Much of the work in wavelet analysis was done in the 1930s; however the 

contributions done at that time did not result in a coherent theory.  

The current mathematical background of the Wavelet Analysis used in applied 

fields was introduced by Grossmann and Morlet (1984). Some time later, Mallat 

(1989) established the wavelet theory for signal decomposition, which has been 

considered as the basis of the discrete wavelet transform. Based on Mallat’s work, 

Daubechies (1988) presented the formal mathematical formulation of the WT using a 

set of wavelet orthonormal basis functions. Mallat and Hwang (1992) proposed a 

method for the detection of singularities in a signal using wavelets. The modern 

wavelet theory was applied for the first time during 1990s in geophysics to analyze 

data from seismic surveys, information used for obtaining the layer composition in 

surface rock. Newland (1994) was the first to apply this method to vibration analysis. 

He analyzed the level of vibration of buildings caused by underground trains and 

road traffic to determine similarities between response signals in each floor.  

Other applied fields that are making use of wavelets include astronomy, 

acoustics, nuclear engineering, sub-band coding, signal and image processing, 

neurophysiology, music, magnetic resonance imaging, speech discrimination, optics, 

fractals, turbulence, earthquake-prediction, radar, human vision, and pure 

mathematics applications such as solving partial differential equations.  

In its short life, wavelet analysis methods have suffered a constant evolution 

seeking for more reliable damage detection methods. Hence, wavelet based damage 

detection methods are classified according to the damage detection classification 

proposed by Rytter (1993) and presented here in the introduction, i.e., level I, II and 

III wavelet methods. Level IV methods are not included in the wavelet classification 

as they need the participation of different fields, like fracture mechanics, fatigue life 

analysis, and/or structural design assessment. A study of the current state of the 

damage prognosis, related to level IV methods, was done by Farrar et al. (2003). 
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2.3.1 Wavelet based level I damage detection methods (Structural Health 

Monitoring) 

The detection of damage in level I methods is commonly done by comparison of the 

wavelet coefficients. In this way, Surace and Ruotolo (1994) detected damage 

applying WT to the dynamic response signal from a single accelerometer located in a 

cantilever beam before and after the introduction of a single crack.  

Hou et al. (2000) examined the potential of the discrete wavelet transform 

(DWT) for detecting the precise time when damage occurs. They proved that damage 

caused by change of stiffness in structures may be detected by spikes in the first 

details of the wavelet decomposition of the response data. For that purpose they used 

a simple numerical model with three parallel breakable springs as shown in  

Figure 2.10 . 
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Figure 2.10. Structural model with three paralleled breakable springs. 

 This model was excited first with a harmonic load and later with real 

earthquake response data recorded during the 1971 San Francisco Earthquake. Each 

spring breaks when the structural response exceeds a corresponding threshold value. 

Results obtained with the harmonic excitation after breaking two springs, which 

significantly reduced the total stiffness of each one in 20%, did not indicate any 

disturbance that could be associated with damage from the corresponded history of 

accelerations. On the other hand, a clear detection of damage was obtained using the 

detail 1 wavelet decomposition of the acceleration response.  

A cumulative fatigue effect was also simulated with the same model using a 

repetitive step reduction of the stiffness (4% each step). At that time, smaller spikes 

were present at the time that the reduction of stiffness occurred. In the case of the 

detail wavelet decomposition applied to the acceleration response at the roof of the 

Bank of California for the 1971 California Earthquake, no dominant spikes were 

identified even when the structure suffered cracks and spalling of columns and girder 

stubs. Finally, the severity of damage and noise intensity were evaluated using the 
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detail wavelet decomposition of the acceleration response obtained from the 

numerical model with harmonic excitation by means of a detectability map. It was 

concluded that damage was easier to be detected for the lowest noise levels and the 

most severe damage intensities.  

Melhem and Kim (2003) detected damage due to fatigue in a Portland cement 

concrete pavement on grade and in a simply supported prestressed concrete beam. In 

the concrete pavement, damage was not detected by the frequency decomposition 

using the Fast Fourier Transform. However, the WT contour map determined from 

the deflection response indicated an increment of the number of ridges when the 

number of applied cycles increased. In the damage analysis of the prestressed 

concrete beam, a reduction of the frequencies of the beam during the fatigue tests 

was clearly detected (e.g., 25% for the first natural frequency after 2 million cycles). 

Moreover, the WT contour map determined from the acceleration response of the 

beam indicated that the number of ridges decreased when the number of applied 

cycles increased.  

Robertson et al. (2003) investigated the possibility to apply the Hoelder 

exponent, a measure of the differentiable degree of a signal, for detecting when the 

damage occurs. Presence of damage in time histories caused singularities which are 

not differentiable and therefore presents a Hoelder exponent close to zero. The 

authors determined the Hoelder exponent of a signal based on the calculation of its 

CWT. The slope of the logarithmic Wavelet function at the logarithmic scales 

domain corresponds to the Hoelder exponent for the selected time. They applied the 

proposed method to an earthquake acceleration response where damage was added as 

two impulses at predefined time of the acceleration response in a first case, and with 

a step function on the same signal in a second case. An example of the damage 

detection methodology proposed by the authors when two impulses were added to 

the Borah Earthquake at times t=7.47 s and t=20 s with magnitudes equal twice the 

acceleration response at these times is shown in Figure 2.11. 

Using statistical process control, lower control limits (LCLs) were determined. 

Hoelder exponents below these limits were identified as singularities at this time. 

Results showed that damage was detected for the first case with impulses added to 

the acceleration response but damage was undetected for the second case with the 

step function. As a result, a new lower control limit was defined as 1.5 times the 

maximum drop of the Hoelder exponent calculated from the side of the signal 
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without singularities. Finally, a system with a loose internal part which caused a 

harmonic response was analyzed. Hoelder exponent values below the LCL were 

determined for the cases analyzed with the CWT. They concluded that the Hoelder 

exponent procedure is highly dependent on the magnitude of the jump and the 

regularity of the overall signal. 
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Figure 2.11. Typical example of the application of Hoelder Exponent method using 
Robertson et al. (2003) method; a) Impulses at times t=7.46 s and t=20 s; b) Borah 
accelerogram with impulses added; c) Hoelder exponent graph where impulses were 
detected.  

Hera and Hou (2004) applied the detail wavelet decomposition method to 

detect damage in a benchmark study problem which consisted of a four storey scale 

steel frame scale building braced in all its bays and subjected to simulated lateral 

wind at each floor as shown in Figure 2.12. 

Damage scenarios were simulated removing braces in the numerical model at a 

predefined time. Damage was detected from the detail wavelet decomposition 

(DWA) of the acceleration response in the nodes closer to the braces removed. 

Furthermore, the authors noticed the possibility to determine the location of damage 

observing that spikes were clearer in the nodes closer to the braces removed. 

However, spikes at the fourth floor were found to be of the same amplitude as those 

determined in the first floor, where damage was simulated. Moreover, artificial noise 

added to the dynamic response significantly decreased the performance of the 
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applied method. The damage detection procedure applied by these authors is shown 

in Figure 2.13. 

 
Figure 2.12. Benchmark study problem proposed by the ASCE SHM group (Johnson 
et al., 2004). 
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Figure 2.13. Typical example of the damage detection procedure adopted by Hera 
and Hou (2004). Results obtained from the ASCE benchmark study using the 
Daubechies 4. 

The identification of stiffness degradation in structures using wavelet analysis 

was addressed by Basu (2005). Two Single Degree Of Freedom (SDOF) numerical 

models with two parallel springs were used for illustrating the potential of this 

method. The first model was a bi-linear non-hysteretic model excited with an 

accelerogram.  
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Comparison between the linear and non-linear responses of the model did not 

lead to significant differences. However, comparison of the energies calculated from 

the WT at different bands (scales) showed noticeable differences. The second model 

is a continuous hysteretic model excited with white noise. Two different cases were 

simulated with this model, namely the WT of the acceleration response for a linear 

behaviour case (defined as the undamaged case) and the non-linear behaviour case 

(defined as the damaged case). Moreover, the wavelet coefficients of the input force 

were determined. Comparison of the two cases indicated differences between the 

undamaged and damaged cases. Moreover, a similitude between the undamaged case 

and the input force wavelet coefficients were determined. Basu (2005) pointed out 

that this finding may be used for indicating the presence of damage in the structure 

just with the dynamic response from the damaged structure. 

2.3.2 Wavelet based level II damage detection methods 

Wavelet analysis can also be used for determining the location of damage in a 

structure. One of the first approaches for locating damage using wavelet analysis was 

proposed by Liew and Wang (1998). They developed a numerical model of a simply 

supported beam with a transversal open non-propagating crack, modifying its 

stiffness matrix. The displacement response of the beam was determined using the 

traditional eigen theory and a wavelet approach proposed by the authors. According 

to the authors, the displacement response  of the system at time  can be 

expressed as: 

 

(2.31) 

where  is the adopted mother wavelet and  are coefficients which contain 

local information of the space domain of the structure and were used by damage 

detection purposes. 

Comparison of the first 5 modes and frequencies did not show noticeable 

changes. However, their wavelet counterparts were able to detect the location of 

damage for the higher levels of displacement wavelet coefficients. 
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Wang and Deng (1999) took advantage of the multiresolution ability of the WT 

for determining the location of damage in two numerical examples. In the first one, 

the displacement response of a simply supported beam with an open vertical crack 

subject to static and impact loading was analyzed. In the second case, the dynamic 

displacement response of a plate with a through-thickness crack was analyzed. 

Displacements of the beam were calculated using a finite difference scheme, while 

displacement response for the plate was determined using a crack-tip solution for an 

elastic body. Haar and Gabor mother wavelets were used for calculating the wavelet 

coefficients of the deflections of the beam and plate. Results indicated that simulated 

damage was detected for the higher levels of displacement wavelet coefficients with 

better performance for the Gabor mother wavelet. A sensitivity analysis of the 

number of evenly distributed signal points was also done. Damage was not detected 

when the number of signal points in the beam was less than 15 compared with the 

original 1024 using during the previous analyses. 

Hong et al. (2002) applied the CWT and the Lipschitz exponent to locate 

damage in structures. They found out that the Lipschitz exponent in the location 

when damage appears in the structure must lie between one and two. In consequence, 

the minimum number of vanishing moments of the selected mother wavelet used 

during the analysis should be at least two. The Lipschitz exponent, in the location of 

damage, is calculated from the local maximum along the scales of the CWT. Damage 

caused a singularity in the mode shapes which are detected as a disturbance in the 

CWT. This disturbance consists of coefficients with local maximums at this location. 

The slope of the logarithmic distribution of these local maximums and the scales 

defined the value of this exponent.  

A simply supported plane beam was simulated and tested in order to verify the 

assumptions before stated. It was found out that damage can be determined with 

more accuracy for the lower mode shapes. The number of sampling points and noise 

had an important influence in the value of the Lipschitz exponent. A correlation 

between exponent value and crack depth was found and it preserves even for large 

sampling distance.  

Gentile and Messina (2003) explained, in a more rational manner, the potential 

of the WT for detecting damage in structures. They highlighted the ability of the 

CWT to detect damage by means of performing an equivalent derivative of the 

signal. A certain derivative of the signal can be approached chosen the number of 
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vanishing moments of a mother wavelet. For proving this fact, a numerical model of 

an Euler-Bernoulli beam where damage was simulated with a sub-beam having a 

decrement in its Young’s modulus was done. The decrement of the Young’s modulus 

at the crack location was determined according to the next expression: 

 (2.32) 

where  is the crack depth ratio (a/h) and d represent the half-width of the notch. 

Damage location was performed applying the CWT to the mode shapes at 

certain scales. The Haar and Gaussian mother wavelet were used during the wavelet 

analysis. Damage detection was clearly better for mother wavelet with large 

vanishing moments. Moreover, damage detection was clearer at finest scales when 

the signal was not contaminated with noise. Large scales performed better with 

signal contaminated with noise; nevertheless, they lost definition for the damage 

location. Furthermore, a smoothing function was proposed for reducing the 

disturbance present in the wavelet coefficients near the boundary conditions. 

However, this effect smoothes the CWT coefficients as well reducing the disturbance 

related to damage.  

Chang and Chen (2003) developed a damage detection method based on spatial 

wavelet analysis. A cantilever Timoshenko beam with a transversal crack modelled 

as a rotational spring was done for calculating its mode shapes. Damage was located 

through the wavelet coefficients of the mode shapes determined with the Gabor 

mother wavelet. Different crack locations were proved including two cracks in the 

beam with different separation between them. Damage was successfully detected in 

all the cases especially for the finest scales. Errors during the data acquisition were 

also simulated in the mode shapes. The moving average method was used for 

denoising the modes. By definition, a moving average  at position x of a discretized 

signal f is given by: 

 (2.33) 

Damage location was detected for the simulated cases when the smoothing 

method was applied. They finally proposed that the magnitude of the wavelet 

coefficients can be used as parameter to determine the crack depth of the beam. 



Evaluation of vibration based damage detection methods in bridges 

 37

Chang and Sun (2005) proposed a method based on the Wavelet Packet 

Transform (WPT) for located damage in beam structures. The dynamic response of 

the structure between the baseline condition and the current state are required for the 

damage location procedure. Then the dynamic responses along several measuring 

points in the structure are decomposed using the WPT. In a next step, the entropy 

energies of the components of the decomposed signal are determined. Differences 

between the component energies between the healthy and damaged structure along 

the measuring points are calculated. An appropriate energy component is selected for 

all the measuring points and the curvatures of these WPT energy shapes are 

calculated. This process, called as Wavelet Packet Signature (WPS), seems to be 

highly sensitive to damage present in the structure.  

Two numerical studies, one on a 15-storey shear-beam building frame and 

another in a simply supported beam, and an experimental case on a simply supported 

reinforced concrete beam were performed for validating the proposed method. 

Damage was numerically simulated reducing the stiffness of either one or several of 

the elements in the model. Successful damage location, indicated a disturbance at the 

damaged elements, was detected for all the evaluated cases even when noise was 

numerically introduced in the models. Moreover, the intensity of the damage may be 

determined from the magnitude of this disturbance. In the experimental study, where 

only seven accelerometers were located in the beam, damage was successfully 

identified for all evaluated damage scenarios. Therefore, this method was able to 

give good results for most of the practical cases when few measuring points were 

acquired in the dynamic test. 

Another method based on the WPT was proposed by Han et al. (2005). This 

method uses a procedure similar to that proposed by Chang and Sun (2005) but now 

a new damage detection index and procedure for locating damage was proposed. 

This method determines the energies of several components of the decomposed 

dynamic response of the structure using WPT. The proposed damage index referred 

as Wavelet Packet Energy Rate Index (WPERI) calculates the summation of the 

absolute differences between the energy of the WPT components  of level j at two 

different time ranges a and b. The WPERI can be expressed as follows: 

 (2.34) 
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The damage detection procedure consists of determining by trial and error the 

minimum level of WPT decomposition sensitive to damage. The proposed index is 

calculated for the dynamic response in all the measuring points in the structure. 

Finally, threshold values are calculated based on statistical process control. In this 

way, an upper limit (UL) defined as the statistical confidence level was obtained 

from 

 (2.35) 

where  and  are the mean and standard deviation of the n determined 

WPERIs, respectively;  is the value of a standard normal distribution with zero 

mean and unit variance such that the cumulative probability is . 

For validating the applicability of the proposed method, simply supported 

beams with different damage scenarios were simulated. 30 elements were considered 

in the model subject to an impulse rectangular force applied at one node of the beam. 

Damage was introduced as reduction of the stiffness (10% and 20%) in two or 

several predefined beam elements. It was demonstrated that damage was correctly 

located in the evaluated damage scenarios when the UL was defined as 98% of 

confidence level. The proposed method was also experimentally verified in a simply 

supported steel I beam. Three damage scenarios consisted of severe reduction of its 

cross section (half of the total depth) was introduced to the beam. 26 accelerometers 

acquired the dynamic response on the beam under impulse force excitation. Results 

indicated that damage could be correctly located. This method, as well as that 

proposed by Chang and Sun (2005), needs reliable information of the healthy 

structure. Moreover, the same force must be applied in both evaluated structural 

conditions. 

2.3.3 Wavelet based level III damage detection methods 

The ability of the WT to calculate the severity of the damage in a structure has been 

done mainly proposing a factor which compares the wavelet coefficients of the 

dynamic parameters of the structures under different known damage scenarios. The 

simplest level III damage methods relate the wavelet coefficient magnitudes with the 

intensity of damage. Several of these methods have been already described into level 
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II methods because their main objective was to locate damage in the structure and 

not to quantify it.  

A more rational method for calculating the severity of damage was proposed 

by Douka et al. (2003). In this method, the location of damage is determined by the 

sudden change in the spatial variation of the CWT applied to the mode shapes of a 

beam. The size of the single open crack is calculated by an intensity factor related to 

the Lipschitz exponent of the CWT at the crack location. A numerical and 

experimental model of a cantilever beam was done for testing the proposed method. 

Damage was introduced in the numerical model as a rotational spring in the location 

of damage. The CWT applied to the fundamental mode shapes was calculated with 

the Symlet mother wavelet with four vanishing moments from scales 1 to 25 with 

unit increments. Correlations between different crack depths and the intensity factor 

were determined from the numerical model when noise was not taken into account. 

In a next step, fundamental mode shape of the cantilever beam was corrupted with 

noise. Under this condition, the Lipschitz exponent could be accurately calculated for 

crack depths larger than 50% of the total depth. Moreover, it was pointed out that 

noise introduced to the fundamental mode shape of the cantilever beam was present 

in the finest scales and does not increase regularly with the scales. In this way, a 

careful observation of the CWT can discriminate those singularities related to noise. 

In the last step, the proposed procedure was applied to an experimental cantilever 

beam.  

Results showed the induced vertical crack was correctly located; however the 

crack depth was overestimated. The proposed method is clearly influenced by the 

number of measuring points located in the structure, noise present in the modal 

parameters and accuracy of the used response signal. 

One year later, Loutridis et al. (2004) proposed the same previous procedure 

but now applied to a numerical and experimental example of a cantilever beam with 

two open vertical cracks. The results found in this study were similar to those 

obtained by Douka et al. (2003). An important point found for these authors relies on 

the dependence of the wavelet coefficients to the damage location. Two cracks 

located in the cantilever beam with the same crack depth can have different wavelet 

coefficients. This is caused by the slope of the fundamental mode shape which is 

different for the two crack positions. This problem should be taken into account 

during the evaluation of the damage severity of several cracks present in the beam. 
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Sun and Chang (2002) proposed a combined method between the WPT and the 

Neural Network (NN) for detecting, locating and quantifying damage in a structure. 

The method consists in decomposing the acceleration response of the structure in 

different components using WPT and calculates the energy of each component. This 

is equivalent to decompose the total energy of the signal into a summation of wavelet 

packet component energies corresponding to different frequency bands. A shift in the 

component energies between the healthy and damage structure is more evident for 

high levels of decomposition. For selecting the best component energies for the 

damage evaluation, a sensitivity analysis of the component energies with respect to 

the flexibility of the undamaged structure was done.  

This procedure was verified with a numerical example of a three-span 

continuous bridge made of steel and with span lengths of 15-20-15 m. A simple finite 

element model with 10 elements subject to an impact force in the middle of the 

second span was considered. Acceleration response was calculated in the same 

position where the force was applied. For the damage detection procedure, two NN 

models were done. The first one was capable to detect damage as small as 4% of 

reduction of the stiffness in one of the elements of the beam. The second NN model 

was able to locate and quantify the severity of damage for a moderate damage (10-

20% stiffness reduction in one of the elements) with reasonable accuracy. The main 

disadvantages of this method lies in that the same force must be applied in the same 

position with the same magnitude. Moreover, a training of the NN models is needed 

before the damage detection procedure can be implemented on-line. 

Law et al. (2005) proposed also a method based on the WPT component 

energies of the dynamic response of structures. The authors carried out a sensitivity 

analysis of the acceleration, strain response and WPT energy components. They 

found that acceleration response is more sensitive to change in the stiffness of the 

structure than strain response. They derived a formulation for calculating the 

sensitivity of the WPT component energies with respect to the change of stiffness of 

one element in the structure. This equation was proposed for evaluating the damage 

in structures.   

A numerical and experimental study of a simply supported beam was done to 

validate the assumptions before mentioned. Several damage scenarios were 

considered for the numerical model. Damage was simulated as reduction of the 

bending stiffness (between 5 to 15%) of one of the elements of the beam. Impulse 
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and sinusoidal excitation were considered as the force excitation for the numerical 

example. A correct location and magnitude of the reduction of bending stiffness were 

detected for all the damage scenarios including when dynamic response was 

contaminated with noise. Only damage detection was not satisfactory detected for 

one scenario determined from the strain response of the beam which confirms the 

lower sensitivity of this parameter compared with the acceleration response.  

In the experimental analysis, damage was introduced as a cut in the top and 

bottom of the cross section of the beam over a predefined length. Strain gauges were 

used for acquiring the dynamic response of the beam in seven locations evenly 

distributed along the length of the beam. Results of the proposed methods showed 

that damage was located in the zone where it was induced in the beam; however 

other points showed significant reduction in their stiffness. In opinion of the author, 

this false damage detection may be caused by the fact that damage affects its close 

neighbourhood and as a result the elements closer to the location of damage. 

Zhu and Law (2006) proposed a method for damage identification of bridge 

structures based on CWT. For that purpose, they developed a model for calculating 

the dynamic deflections of a cracked simply supported bridge and subject to a 

moving load. Damage was simulated in the model as a rotational spring with a 

compliance value for a rectangular cross section given by: 

 (2.36) 

where  is the crack depth ratio (a/h), k is the stiffness of the spring, EI is the 

bending stiffness of the cross section and h is the depth of the beam. 

Damage was detected applying the CWT to the dynamic displacement 

influence lines calculated at one selected point in the bridge beam. The method 

seemed not to be sensitive to the speed and weight of the moving load. Moreover, 

several cracks were successfully detected with this method. The detection was done 

using the Gauss 2 mother wavelet from scales one to 512 with unit increments. The 

larger scales contained the information necessary to perform the damage location. In 

this case, the scale 64 was adopted for the damage detection. The ratio of the 

logarithmic of the wavelet coefficients with and without damage at specified scale 

was the damage index proposed for estimating the damage extent. Noise was 
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numerically introduced in the numerical model but its influence was not relevant for 

the damage location procedure and determination of the damage indexes.  

An experimental test carried out on a T concrete beam with two crack patterns 

showed that damage could be located better when it was delimited to a small zone. 

The damage severity could not be estimated from the experimental tests due to the 

fact that the CWT of the influence lines were contaminated with several peaks 

associated with the entry and exit of the vehicle. 

Pakrashi et al. (2007) used the CWT for detecting and locating damage in a 

beam. As opposed to other studies which also used the CWT to detect damage, they 

improved the efficiency of this technique applying a partial windowing to the 

deflected (static or dynamic) shapes. Moreover, they proposed to measure the 

severity (crack depth) of the damage using the kurtosis of the transformed wavelet 

deflected shape. The kurtosis  of a mode shape  is represented as the ratio of 

the fourth central moment of the mode shapes to its squared variance, i.e., 

 (2.37) 

 The methodology for damage detection was proved in a simulated and 

experimental simply supported beam. The simulated dynamic parameters of the 

beam were obtained with three different damage models, namely lumped cracked 

model, continuous cracked model and smeared cracked model. Damage was 

simulated as a single open crack with different depths. This damage was tried to be 

detected using Coiflet 4 mother wavelet with 8 vanishing moments. Clearer detection 

was obtained when partial windowing of the deflected shape was applied compared 

with the CWT procedure alone. Calibration of the CWT coefficients and kurtosis 

values were done for different crack depths and noise levels. Results indicated that 

the kurtosis of the transformed wavelet deflected shapes is more robust and stable 

parameter to indicate the severity of damage under high levels of noise.  

Finally, the proposed method was verified with an experimental specimen 

where the deflected shapes were obtained from snapshots taken with a video camera 

when the beam was oscillating. The application of the CWT method after partial 

windowing of the deflected shape identified the location of the crack with a depth  

(5 mm) equal to half the total depth of the beam (10 mm). The kurtosis value 
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determined from this experiment (34.37) was closed to the value obtained from the 

calibration of the numerical model of the same beam (38.77). 

2.3.4 Non Wavelet damage detection methods 

As indicated for several authors, one of the most important characteristics of the 

wavelet analysis methods relies on the calculation of an equivalent function as the 

second derivative of the analyzed signal. The second derivative of the mode shapes 

was proposed by Pandey et al. (1991) as a candidate parameter for damage location. 

They called curvature mode shape to the second derivative of the mode shape. This 

parameter is proportional to the bending moment at a specific section and inverse 

proportional to the stiffness at the evaluated point. Therefore a decrement of the 

stiffness of the structure will cause an increment in its curvature mode shape.  

The proposed method was proved with a numerical example of a beam with 20 

nodes and two different boundary conditions, namely simply supported and 

cantilever. Damage was introduced to the numerical model as a reduction of the 

initial Young’s Modulus. As comparison with the proposed method, Modal 

assurance criterion (MAC) method and Co-ordinate Modal Assurance Criterion 

(COMAC) method were calculated as well. Damage detection procedure was done 

calculating the differences between the curvatures of the beam before and after 

damage. As an example of the applicability of the method, the value of Young’s 

Modulus was reduced in 50% in one of the elements of the beam. An increment in 

the curvature mode shapes for the evaluated cases was detected near the damaged 

element. As opposed to curvature method, MAC and COMAC method did not 

indicate any damage to the same evaluated cases.  

The authors pointed out that damage is more evident for larger decrements of 

Young’s Modulus. They also proposed that the damage detection procedure should 

be combined with the frequency change method which can be implemented with few 

sensors in the structure. After damage is located with the frequency change method, a 

full modal identification can be performed and the curvature mode shape method can 

be applied to locate the damage in the structure.  

Three years later, Pandey and Biswas (1994) proposed another parameter for 

the detection and location of damage in structures, but at this time, variation caused 

by damage was measured through the flexibility matrix of the structure calculated 

from its modal parameters. A good approximation of the flexibility matrix can be 
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obtained from a few of the lower mode frequencies and corresponding mode shapes. 

The maximum absolute values of the differences between the flexibility matrix of a 

structure before and after damage can determine the probable location of damage.  

The effect of the change of the flexibility matrix on a steel I beam was studied. 

For this purpose, a numerical finite element model of the beam with 32 elements was 

done. Three different boundary conditions were considered, namely simply 

supported, free-free and cantilever. Moreover, a simply supported beam with the 

same cross section as in the numerical model was experimentally tested to verify the 

results found in the numerical examples. Damage was simulated as a decrement in 

the Young’s modulus at selected elements in the numerical model. In the 

experimental example, damage was simulated with a splice at the mid-span of the 

beam. Removing bolts from the splice led to two different damage scenarios.  

Results indicated good detection of damage for the evaluated cases. 

Furthermore, damage was better detected in the points were the bending moment was 

higher. Fortunately, this point coincides with the most probable place of occurrence 

of damage. The authors also proposed to use the magnitude of the flexibility changes 

as an indicator of the severity of the damage.  

Ratcliffe (1997) proposed a method which determines the second derivative of 

the mode shapes using the Laplacian difference operator. The one-dimensional 

Laplacian  of a mode shape  is given by: 

 (2.38) 

 For evaluating this method, simple numerical models of a cantilever and free-

free steel beam were done. Damage was simulated reducing the total depth of the 

rectangular cross section at the damage locations. In addition to the numerical 

examples, a flat steel beam was tested to prove the numerical results. Damage in the 

experimental steel beam consisted of a saw cut 10% of the total depth. In the 

numerical examples, damage was detected for crack depths as low as 10% of the 

total depth. An alternative method was also proposed for detecting and locating 

damage as low as 0.5% of the total depth. This method calculates the differences 

between the Laplacian of the mode shape and a cubic polynomial fitting the same 

function. Spite of detecting less severe damage than the Laplacian method, the 
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alternative method was less efficient locating the damage. Moreover, both methods 

were less efficient when they were applied to high mode shapes. 

Kim and Stubbs (2002) derived a new algorithm for the prediction of the 

damage location and damage severity of structures. This new method is an 

enhancement on the two previous versions of the damage index (DI) method 

proposed by the same authors. The updated damage index method  for  vibration 

modes, at jth location can be expressed as follows: 

 

 

(2.39) 

 
 
 

(2.40) 

where  is a dimensionless factor representing the systematic change in modal 

parameters or the ith mode due to the damage;  is the eigenfrequency of the system 

and the matrix  involves only geometrical properties. 

 A similar damage severity factor was also proposed following the same 

formulation adopted in the previous two algorithms. This damage severity factor can 

be represented as: 

 (2.41) 

where Ki is the modal stiffness at the ith mode and the asterisk indicates damage 

parameter. 

For testing the efficiency of the new method, the three versions of the DI 

methods were compared on a numerical example of a two span continuous beam 

modelled with 50 elements using the Euler-Bernoulli theory. Ten damage scenarios 

were considered in this example reducing the Young’s modulus in one or two 

elements at the same time. Young’s modulus decrements had a magnitude of 10% 

and did not caused an important change in natural frequencies and mode shapes. A 

statistical approach was established for the damage location criteria. Damage was 

successfully identified when the damage index value, considered as normally 

distributed, exceeded 98% of confidence level (two standard deviations).  
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Results of this analysis showed that the use of the new DI method resulted in a 

correct damage location and the estimated severities showed an average 7.7% error 

while other two methods had more than 70% errors and damage was not located in 

all the evaluated damage scenarios. The evaluation of the three methods clearly 

showed that the proposed new DI method had the best results while the previous two 

DI methods overestimated and underestimated the severity of the evaluated damage.  

Barroso and Rodriguez (2004) applied the damage index (DI) method, 

proposed by Kim and Stubbs (1995), in the benchmark study developed by the 

ASCE task group of Structural Health Monitoring.  The benchmark study consisted 

of a numerical model of a four storey steel building of 2 × 2 bays with diagonal 

bracing elements. In the DI method, the required baseline modal parameters of the 

structure delimited the application of this method. Trying to overcome this problem, 

the authors proposed a method for calculating the baseline modal parameters of the 

structures from the dynamic data of the damaged structure. For doing that, they used 

the stiffness-mass ratio approach which determines the undamaged modal parameters 

from the assumption that stiffness of the structure before and after damage did not 

vary significantly. Several damage scenarios were considered for the benchmark 

study consisted of eliminating all braces of one or more stories or just single brace at 

each time.  

To determine the severity of the induced damage, a factor which expressed the 

fractional change of stiffness of the analyzed element was proposed. The application 

of this method to the analyzed example gave as a result that damage was successfully 

identified for the most severe cases when all braces of one or more stories were 

removed. 

Wang and Zong (2002) developed a new damage detection method and 

damage index (the Energy Transfer Ratios (ETR) index) utilizing static parameter 

identification and energy based modal parameter identification. The authors also 

conducted a state of the art of structural health monitoring literature including signal 

treatment, damage detection methods, model bridge testing and finite element 

calculation. To verify the proposed methodology, they built a 1:6 scaled composite 

cross section highway bridge following the similitude laws for static and dynamic 

modelling. Damage was simulated as vertical open saw cuts at the bottom of the steel 

I beams. Damage was also introduced to the bearings of the bridge.  



Evaluation of vibration based damage detection methods in bridges 

 47

Comparison of different damage indexes indicated that different damage 

indexes have different sensitiveness to different types of damage and their 

extensions. Natural frequencies and damping ratios were not sensitive to the damage 

introduced to the bridge. Results indicated that the ETR index is highly affected by 

noise and relies on the large amount of measured data.  

Maia et al. (2003) proposed to use the Frequency Response Functions (FRFs) 

as base for the application of several damage detection methods previously applied to 

the mode shapes. They indicated that obtaining the natural frequencies and 

corresponding mode shapes can be a time-consuming task and that the mathematical 

procedure used could add some unavoidable errors. Furthermore, much information 

is lost by using only the mode shapes. They pointed out that several methods applied 

to the mode shapes of structures can be generalized and made them applicable to 

operational mode shapes calculated from the FRFs. In this way, they evaluated the 

performance of five methods which compared the FRF mode shapes and their first 

and second derivatives before and after damage. A modified version of the  

well-known damage index (DI) method, now applied to the FRF operational mode 

shapes, was also proposed and is represented in Equation (2.42). 

 (2.42) 

where  is the damage indicator at segment i of the beam and force excitation k, 

 is the FRF operational mode shape at circular frequency  and N is the total 

number of segments of the structure. 

The damage detection procedure consists in selecting an appropriate frequency 

range in the FRF. Later, at each frequency, the location where the difference between 

the damaged and the undamaged cases is a maximum is determined and that location 

is counted as an occurrence of damage. This way is followed along all the frequency 

range. The sum of differences found along all the frequency range is also calculated 

for determining the location of damage. The proposed method was verified with a 

numerical example of a free-free beam with 99 elements subjected to an impact 

force. Damage was simulated as a reduction (from 25% to 75%) of the Young’s 

Modulus in one of its elements.  

Results indicated that damage was correctly located for the methods based on 

the first and second derivative of the operational mode shape and the FRF DI 
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method. An experimental example done in a free-free beam was tested to verify the 

results from the numerical model. The same damage scenarios and location of the 

damage adopted for the numerical examples were also considered for this 

experimental case. At that time, damage was correctly located in the cases when the 

second derivative of the FRF operational mode shapes and the FRF DI methods were 

applied.  

The authors highlighted that some improvements are needed to the proposed 

methods, for instance, the interpolation process needs to be enhanced, a noise level 

above which results cannot be reliable should be defined, a statistical process needs 

to be applied in order to determine the location of damage and improvements in  the 

experimental dynamic test of structures are also required. 

Alvandi and Cremona (2006) reviewed the performance of four vibration-

based damage detection methods with the simulated dynamic behaviour of a simply 

supported beam. These methods were chosen by the authors as they do not require a 

numerical model of the structure, only the natural frequencies and mode shapes 

before and after damage: the mode shape curvature method, the change in flexibility 

method, the change in flexibility curvature method and the DI method were the 

chosen methods. The numerical model consisted of a simply supported beam, 5 m 

long, modelled with 20 elements where damage was introduced as reduction of the 

bending stiffness in one or more elements (from 1 to 10% stiffness reduction). Then, 

simulated dynamic response was contaminated with noise from 0.1% to 3.0 %. The 

successful damage location was studied in a probabilistic way counting the number 

of positive detections under different damage scenarios.  

Results indicated that the DI methods had the better stability when noisy 

signals were considered. Damage simulated close the boundary conditions were 

difficult to detect by all the methods. The same behaviour was detected when two or 

more damage zones were simulated in the beam. The mode shape curvature, change 

of flexibility and change in flexibility curvature are able to detect localized damage 

in the structure but for complex and simultaneously damage cases are less efficient. 

Choi et al. (2008) proposed, for calculating the damage severity of timber 

beam structures, a combined method between the flexibility method, proposed by 

Pandey and Biswas (1994), and a modification of the DI method, originally proposed 

by Kim and Stubbs (1995). The modified DI method consists of mass normalization 

of mode shapes as well as unit normalization of mode shape curvatures during the 
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calculation of the DI method. The modified DI method tries to improve the location 

of damage when more than one damage zone is present in the structure.  

The proposed damage methodology was verified in timber beams trying to 

represent typical timber bridges in Australia. Damage in this study simulated timber 

decay caused by rot. This damage was induced to the beams as open windows in the 

rectangular cross section of the beams with three different depths representing the 

light, medium and severe damage scenario. The numerical simulations of the damage 

cases on the timber beams using noiseless data indicated that the modified DI method 

performed better for damage location than the original DI, especially when multiple 

damage locations were present in the beam. The proposed hybrid algorithm for 

calculating the damage severity performed well for single damage scenarios and 

reasonably estimated the severity of multiple damage scenarios. An experimental 

damage detection analysis was carried out on timber beam specimens with the same 

characteristics adopted for the numerical examples. At that time, the same results for 

damage location and severity estimation were found. Nevertheless, less accuracy for 

the damage location, due to multiple false detections, and less precision for the 

severity estimation when several multiple damage cases were evaluated, reduced the 

performance of the two proposed methods. In conclusion, the proposed methods can 

be considered accurate tools for damage location and severity estimation of medium 

and severe damage. 

2.3.5 Application to vibration-based damage detection methods to  

real-scale damaged bridges 

Few real-scale experiments have been done in deliberately damaged bridges with the 

objective to validate several vibration-based damage detection methods. In what 

follow, the most well-known experiments of this kind will be commented.  

Farrar and Jauregui (1996) carried out a comparison of five damage detection 

methods with dynamic parameters provided from the deliberately damage I-40 

highway bridge. Actually, this bridge had two independent sections, one in each 

traffic direction, each one made with a concrete deck supported on two plate girders.  

Each bridge section had three spans, 40 m long for the end spans and 50 m long for 

the middle span. A schematic representation of the I-40 bridge is shown in  

Figure 2.14. 
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 Figure 2.14. Schematic representation of I-40 highway bridge (taken from Farrar 
and Jauregui, 1996). 

The bridge, located in Albuquerque, New Mexico, USA, was replaced by new 

one and experimental modal analysis was performed on that bridge before removing 

it.  

Four damage scenarios trying to represent typical fatigue cracks presented in 

this type of bridges were simulated by notch cuts on one of the steel plate girders. In 

addition to experimental dynamic parameters, a numerical model of the bridge 

simulated the introduced damage scenarios and another simulated damages located at 

other positions was done. The five damage detection methods selected for the 

analyses were: the DI method proposed by Kim and Stubbs (1995), the curvature 

method proposed by Pandey et al. (1991), the change in flexibility method proposed 

by Pandey and Biswas (1994), the Change in Uniform Flexibility Shape Curvature 

Method proposed by Zhang and Aktan (1995) and the Change in stiffness method 

proposed by Zimmerman and Kaouk (1994).  

Results of the comparison of the performance of these damage detection 

methods led to the conclusion that the DI method was the best to detect and locate 

damage from the numerical and experimental data. The mode shape curvature 

method showed also a good performance. The remaining three methods failed 

several times to detect the different damage scenarios.  

The authors pointed out that the simple comparison of the natural frequencies 

and mode shapes were poor indicators of damage and more sophisticated methods 

such the DI and the curvature methods improved the detectability of damage. 
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Other damage detection methods have also been applied to the experimental 

data acquired in the I-40 bridge. For instance, Mayes (1995) applied the Structural 

Translation and Rotation Error Checking (STRECH) algorithm to modal parameters 

from the I-40 bridge. This method searches for changes in displacements to locate 

areas where the stiffness of the structure has been reduced. 

Sampaio et al. (1999) extended the applicability of the curvature mode shape 

and DI methods. These methods were initially proposed to be applied to the mode 

shapes of the structures. However, modal identification of large structures like 

bridges is a very time-consuming task and much useful information for damage 

detection may be lost after this process. Trying to solve this inconvenience, the 

authors proposed to apply the curvature of damage index methods to the operational 

mode shapes determined from the Frequency Response Function (FRF). For proving 

this fact, they applied this method to a numerical model of a 10 Degrees Of Freedom 

(DOFs) system connected with springs. Several damage scenarios were considered 

reducing the stiffness in one selected spring. Results showed that damage was clearly 

detected when stiffness were reduced from 20-80% with the FRF curvature and FRF 

DI methods. It was found that for a better performance of these methods, the range of 

the frequency selected for the analysis should be before the first anti-resonance or 

resonance FRF frequency. In addition to this numerical example, the methods were 

verified with experimental data acquired from the different damage scenarios 

introduced to the I-40 bridge.  

Results demonstrated that damage can be clearly identified for the most severe 

damage scenarios by the proposed methods. However, several false-detection 

locations were present when less severe damage scenarios were considered.  

Bayissa et al. (2008) developed a wavelet analysis method based on the 

statistical moments of the energy density function of the vibration responses in the 

time-scale domain. The zeroth order moment (ZOM) of the CWT of a dynamic 

response along the DOFs of the structure is determined as follows: 

 (2.43) 

where  contains the coefficients of the CWT and , , t and f are the scale 

and translation parameters, the time and space domain, respectively. 
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Later, DI and curvature methods are applied to the ZOM values in order to 

locate the damage. The proposed method was applied to a simulated plate and to the 

damaged span of the I-40 bridge. In the latter example, damage cases consisted in 

severe damage was included. The time series of the experimental analysis of the I-40 

bridge were determined from their modal parameters using the theory of random 

vibrations. Application of the proposed methodology resulted in clear damage 

detection when the ZOM-DI method was applied. In the case of the ZOM-Curvature 

method, several peaks outside the damage zone diminished the performance of this 

method. The proposed method demonstrated to be stable and gave good results under 

the present of noise contamination of the dynamic responses. 

Abdel Wahab and De Roeck (1999) applied the modal curvature method 

proposed by Pandey et al. (1991) to the modal parameters obtained from the Z24 

bridge before and after introducing artificial settlement in one of its piers. The first 

five mode shapes of the bridge of the undamaged conditions are shown in  

Figure 2.15 (IMAC XIX, 2001). 

  
f1=3.85 Hz, ξ1=0.81 % f2=4.71 Hz, ξ2=1.74 % 

  
f3=9.70 Hz, ξ3=1.58 % f4=10.23 Hz, ξ4=1.82 % 

 

f5=11.68 Hz, ξ5=2.11 % 

Figure 2.15. First mode shape of Z24 bridge before damage (determined from raw 
acceleration histories obtained from IMAC XIX Benchmark problem, 2001). 
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This kind of damage caused cracking in the main beams of the bridge near this 

pier. Application of the curvature method and a proposed curvature damaged factor 

which is the summation of the curvature differences along the considered mode 

shapes indicated that: 1) damage is clearly detected with the lower mode shapes,  

2) for a correct damage location, damage should be looked for in several modes, 3) a 

denser grid of sensors is required for calculating the curvature of higher mode 

shapes, 4) mode shapes from experimental dynamic tests frequently present 

irregularities which introduce noise to the curvature method, therefore a smoothing 

techniques was recommended to be applied to the mode shapes to reduce this effect 

and 5) damage was successfully detected for the severe scenarios considering 

settlements of 80 mm and 95 mm, however other peaks, smaller in magnitude, were 

present in the curvature graphs which can be confused for the analyst who will not 

known a priori the location of the damage. In all these analyses, the central 

difference method was used for calculating the mode shape curvatures. It is clear that 

a better method for calculating the second derivative of a function capable to deal 

with noisy data will have better performance than the evaluated method. 

Teughels and De Roeck (2004) carried out a model updating analysis of the 

Z24 bridge. 95 mm settlement of the middle pier was the damage scenario chosen for 

the analysis. This damage scenario caused cracking of the prestressed concrete 

girders in the vicinity of the pier. The numerical model used consisted of 82 beam 

elements for the prestressed concrete girders. The chosen variables to be updated 

were the Young´s modulus and the shear modulus of the girders. Moreover, the 

stiffness values of the springs modelling the soil stiffness were also updated.  

Results of the model updating procedure indicated a good correlation between 

the experimental and numerical results. Moreover, a decrement of the Young’s 

modulus at the damage zone was calculated, which indicated possible damage there. 

The results were compared with the Direct Stiffness Calculation, proposed by Maeck 

(2003), given a good agreement. 

Kullaa (2003) used statistical process control to monitor, off and on-line, the 

dynamic parameters of the Z24 bridge under three damage scenarios. This technique 

was applied to the modal parameters (natural frequencies, mode shapes and damping 

ratios) of the bridge. 

In addition to the above-mentioned vibration-based damage detection methods, 

there are other important methods. For instance, methods based on Genetic 
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Algorithms (Gomes and Silva, 2007 and Au et al., 2003), Neural Network methods 

(Yeung and Smith, 2005 and Lee et al., 2005), empirical modes decomposition 

methods (Xu and Chen, 2004 and Li et al., 2007), methods based on statistical 

information (Fugate et al., 2001 and Zhang, 2007), among others.  

The vibration-based damage detection is a topic in constant development and 

new and innovative methods are proposed all the time. In fact, an improvement of 

these discussed methods is needed to be functional for detecting small damage in all 

the possible conditions and structural configurations. The research work in this active 

area should be focused in the near future in the next activities (Yan et al., 2007 and 

Doebling et al., 1996): 

1. Dynamic simulation of structural damage. Gathered information from 

dynamic tests performed in damage bridges is always insufficient and 

limited, time consuming and costly. More accurate numerical models of 

damaged bridges would help to verify the performance of damage 

detection methods under different scenarios. 

2. Proposal of feature indices for detecting small structural damage from the 

vibration response of the bridge. These indices should not only detect, 

locate and evaluate the severity of the damage, but also identify the type 

of damage in the bridge.  

3. Proposal of more accurate feature indexes independent of complex finite 

element models of the structure and/or requiring information related to its 

baseline conditions. Finite element models may introduce more 

uncertainty in the damage detection process. Moreover, baseline 

conditions of the structure are rarely available. 

4. Evaluation of the effect of environmental conditions in the damage 

detection procedure. It is recognized that environmental conditions may 

hide damage present in the structure. Even when several sensors are 

available for measuring different environmental conditions, this gathered 

information is rarely included in the damage detection procedure. 

5. Consideration of multiple disciplines for the development of the 

vibration-based damage detection methods. These disciplines can be 

sensor technology, mathematics, finite element modelling, optimisation 

techniques, and experimental modal analysis. 
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6. Optimisation of the position of sensors for damage detection. This topic 

has been developed mainly for the extraction of modal parameters of 

structures; its application to damage detection is still a topic to be 

developed. 

7. Non-linear factors in structural damage detection. Most of the proposed 

damage detection methods consider that the structure behaves as linear 

after damage occurs. This assumption may not be valid in all the cases. 

Therefore, the research in this topic needs to be enhanced for being 

applied to complex structures like bridges. 

8. Evaluate the most promising damage detection methods in real full scale 

structures. Only few cases of deliberately damage structures with the 

purpose of evaluating vibration-based damage detection methods have 

been carried out. It has been widely proved that such experiments, like 

those done in the I-40 and the Z24 bridges, have improved the advance in 

this topic. 

All this review in the vibration-based damage detection methods leads to 

consider the overall process of damage detection a very complex issue. Much work 

has been done in this field; however there are still several problems that need to be 

addressed for the practical application of several of the discussed methods. For 

instance, the uncertainty introduced to the damage detection procedure caused by 

ambient factors. 

2.4 General description of selected vibration-based damage 
detection methods 

From the previous described vibration-based damage detection methods, ten of them 

were selected for a detailed evaluation of their applicability to bridge structures. 

These methods were selected because they do not require a mathematical model of 

the bridge in order to detect damage. Furthermore, some of these methods have 

already been applied to real-scale bridge dynamic data or dynamic simulations of 

bridge structures with good performance. Other methods, like wavelet based methods 

have shown promising characteristics for the detection of damage in other structures, 

and they can detect damage with only information of the damaged structure which 

can be considered an important advantage when the baseline conditions of many 

damage bridges is unknown. The selected damage detection methods are: 



2. State of the art 

 56 

• Comparison of several sets of mode shapes: COMAC method; 

• Curvature methods: mode shape curvature and Damage Index methods; 

• Change in structural properties: change in flexibility matrix and change in 

stiffness matrix; 

• Wavelet analysis methods: the CWT, the DWA, the WPS, the Hoelder 

exponent and the combined CWT-DI methods; 

• In addition, level I methods, like MAC and frequency change methods were 

as well evaluated. 

2.4.1 COMAC method 

One of the simplest mode shape damage detection methods is the Co-ordinate Modal 

Assurance Criterion (COMAC) method. This method measures the correlation 

between several vectors. If the modal displacements at node i of sets of mode shapes 

are identical, the COMAC value is one for this node. In contrast, disturbance in the 

damaged mode shape location may give less than one COMAC values (Ndambi et 

al., 2002). Its mathematical interpretation is given in Equation (2.44). 

 (2.44) 

where and  are the non scale mode shapes for the jth node of the ith mode for 

the baseline and damaged condition, respectively. 

In the COMAC method, an offset was introduced to the mode shapes for 

avoiding numerical errors when mode shapes are close to zero.  

Previous evaluations of this method found out that COMAC values do not 

present enough variation to clearly detect damage for all the conditions. Furthermore, 

false damage location can appear in undamaged zones restricting the applicability of 

this method. Successful detection may be obtained with this method if severe damage 

is present in the bridge. (Salgado et al., 2006; Carrión, 2002). 



Evaluation of vibration based damage detection methods in bridges 

 57

2.4.2 Curvature method 

Some time ago, it was discovered that mode shape curvature is a good parameter for 

damage detection. This method, proposed for the first time by Pandey et al. (1991), 

is based on the fact that mode shape curvature is related to the bending stiffness of 

the structure as follows 

 
(2.45) 

 where  is the mode shape curvature of the cross section, M the bending moment at 

the cross section, E the modulus of elasticity, y is the total deflection, I the moment 

of inertia at that section and  the second derivative of the summation 

of the mode shapes with respect to the longitudinal distance, x.  

In this way, if a crack appears, the bending stiffness of the beam (EI) will 

decrease causing an increment in the magnitude of the curvature.  

This method has been tested on some bridges with good results (Farrar and 

Jauregui, 1996 and Abdel Wahab and De Roeck, 1999). The best performance of this 

method was obtained with severe damage and smooth mode shapes. Under these 

conditions, location of the damage is identified with a sharp peak. In this method, 

damage can be detected only with information of the damage mode shape. Better 

results can be obtained comparing two different structural conditions of the bridge. 

The main disadvantages of this method are related to the technique used for 

obtaining the second derivatives of the mode shapes. The central difference method 

is commonly used in these cases. With this technique, small irregularities in the 

mode shapes not related to damage are also magnified, contaminating the results with 

several peaks. Other methods for obtaining second derivates have been tried. 

However, none of them so far have solved this problem, Maeck, (2003).  

2.4.3 Damage Index (DI) Method 

This method proposed by Kim and Stubbs (1995) calculates the change in the strain 

energy stored in the beam when it deforms in a particular mode shape. 

Considering an Euler-Bernoulli beam of length L in which only the flexural 

stiffness about the vertical axis is allowed, the strain energy of the beam for a mode 

shape  can be expressed as: 
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 (2.46) 

If the beam is divided in NE elements with N nodes, the contribution of the jth 

member to the ith modal strain energy is given by: 

 (2.47) 

where  are the limits of the member j and  is the jth member stiffness 

assumed as constant over the defined interval. The contribution of the jth member to 

the total strain energy of the  mode can be expressed by: 

 (2.48) 

Similar expressions can be deduced for a damaged case: 

 
(2.49) 

where the asterisk denotes parameters determined from the damaged case. In 

presence of small damage, the higher order terms can be discarded leading to: 

 (2.50) 

It was assumed in Equation (2.50) that the stiffness over the length of the beam was 

constant for the damaged and undamaged cases. Furthermore, if it is considered that 

damage will be located in small number of elements, the stiffness from the damaged 

case will not significantly change over the entire beam, i.e.,  and Equation 

(2.50) becomes: 

 (2.51) 
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To avoid numerical problems, resulting of dividing by very small numbers, the 

damage index,  is defined giving an offset to Equation (2.51) as follows: 

 (2.52) 

The DI formulation for discrete structural elements can be expressed as: 

 

(2.53) 

where  is the total number of nodes in the beam and  is the mode shape curvature. 

The DI method performed very well in previous evaluations (Farrar and 

Jauregui, 1996 and Alvandi and Cremona, 2006).  Nevertheless, its performance 

depends on the accuracy of the mode shape curvatures. Therefore, it suffers from the 

same problems as those discussed for the curvature method. 

2.4.4 Flexibility change method 

Pandey and Biswas (1994) proposed to detect damage from the changes of the 

flexibility matrix calculated using the modal parameters of the structure as follows: 

 (2.54) 

where  is the flexibility matrix of the structure,  is the mode 

shape matrix,  is the modal stiffness matrix,  is the ith circular 

frequency,  is the ith mode shape and the asterisk superscript denotes damage 

parameter. 
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The change in the flexibility matrix of the structure is obtained by the 

differences calculated from the undamaged and damaged flexibility matrix, 

 (2.55) 

A more appropriate index parameter can be determined from the maximum absolute 

value of the elements in the jth column of  as given by: 

 (2.56) 

where  are the elements of  and represent the flexibility variation at each 

degree of freedom. The largest  indicates the degree of freedom when the 

maximum variation of flexibility has occurred that indicates the location of damage. 

In the application of the Flexibility Change method, it was assumed that units, 

for vertical and transversal DOFs considered here, were m/kN. 

In the application of this method to numerical and real cases, the largest value 

of  may not coincide with the location of damage (Pandey and Biswas, 1994). 

Moreover, extended damage is difficult to locate with this method and  

mass-normalized mode shapes are recommended for a better performance of the 

method. On the other hand, as shown in further chapters, the flexibility change 

method has low sensitivity to noise present in the modal parameters. 

2.4.5 Stiffness change method 

Zimmerman and Kaouk (1994) developed a damage detection methods based on the 

changes of the stiffness matrix of a structure. The proposed index parameter is 

deduced from the eigenvalue problem of an undamaged and undamped structure: 

 (2.57) 

where M and K are the mass and stiffness matrices of the undamaged structure. 

Let  and  be the perturbations to the original mass and stiffness 

matrices, respectively, the eigenvalue problem of a damaged and undamped structure 

can be given by: 

 (2.58) 

where the asterisk denotes parameters from the damaged structure. Separating the 

perturbations and the original parameters, the index parameter  is defined as: 
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 (2.59) 

In bridge structures, damage frequently does not cause a significant change of their 

mass. Hence, without loss of accuracy the mass perturbation DM is neglected leading 

to: 

 (2.60) 

The stiffness matrix of the undamaged and damaged structure can be obtained from 

its modal parameters in a similar way that was done for the flexibility matrix: 

 

(2.61) 

In the application of the Stiffness Change method, it was implicit assumed that 

units, for vertical and transversal DOFs, were kN/m. 

The stiffness change method as well as the flexibility change method requires 

for a better performance, mass normalized mode shapes. Moreover, the accuracy of 

the calculation of the stiffness matrix increases when more modes are included in the 

analysis. 

2.4.6 Wavelet analysis methods 

The description of the wavelet analysis methods was already discussed in the section 

2.2. Here, two variants of the wavelet based methods, namely the WPS and the 

combined CWT-DI methods will be discussed. 

2.4.7 Wavelet Packet Signature (WPS) method 

This method proposed by Chang and Sun (2005) calculates the operating energy 

shape of the analyzed structure. The method is based on The Wavelet Packet 

Transform (WPT). The energy of the dynamic response at measured points is 

obtained and normalized as follows: 
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(2.62) 

where  is the linear combination of wavelet packet functions  calculated 

according to Equation (2.28);  and  are the energies of the original function 

and decomposed functions  at measuring point n, respectively,  is the 

normalized WPS energy coefficients. For calculating the energy of the decomposed 

functions, the Shannon method was used in this thesis (Coifman and Wickerhauser, 

1992). 

The WPS method has been proved to be more tolerant to noise than the 

previous Wavelet Analysis methods. However, the procedure for calculating the 

WPT demands important computational effort at high levels of decomposition where 

energy WPS components are more sensitive to damage. 

2.4.7.1 CWT-DI method 

The Damage Index (DI) method proposed by Kim and Stubbs (1995) calculates the 

modal energy stored in the beam using the curvatures of the mode shapes. As 

explained in the wavelet theory, the CWT can be considered an equivalent function 

of the second derivative of the analyzed function smoothed with the mother wavelet. 

Taking advantages of this property of the CWT, a new variant of the DI method can 

be determined as follows: 

 

(2.63) 

For a discrete evaluation of the CWT-DI method, it is more appropriate the next 

expression: 
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 (2.64) 

where the subscript j is the CWT coefficient at the jth node for the s scale. 

The performance of this method seems to be influenced by the type of mother 

wavelet used. 

2.4.8 Level I methods 

2.4.8.1 MAC method 

One of the most well-known methods to determine the correlation between two set of 

vectors is the Modal Assurance Criterion (MAC) method. This method determines 

the projection of one vector onto another in such way that both vectors are the same 

when MAC achieved a value equal to one while a MAC value close to zero indicates 

that both vectors are uncorrelated. The MAC method between two modal vectors is 

defined as (Allemang, 2003): 

 (2.65) 

where  and  are the ith mode shape for the undamaged and damaged conditions, 

respectively, and the superscript T denotes transpose of the vector. 

The MAC procedure averages the differences over all the involved nodes. 

Hence, damage that caused changes in few nodes of the mode shapes may not cause 

MAC values significantly different than one. 

A variant of the MAC method is the Normalized Modal Difference (NMD). 

This method is related to MAC method as follows: 

 (2.66) 

NMD is more sensitive than MAC method particularly for values near one 

commonly found for the comparison between undamaged and damaged modes. 
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2.4.8.2 Frequency change method 

Long ago, it was known that damage affects the modal parameters of structures. For 

instance, damage which causes a loss of stiffness will increase the natural 

frequencies of the structure. Therefore, a measure of the frequency change can 

indicate if the structure is damaged or not. The frequency change method is given 

here as the rate of undamaged and damaged natural frequencies.  

To know how a local change in stiffness can affect the modal parameters, a 

sensitivity analysis was carried out. For instance, the sensitivity of the resonant 

frequencies in a linear undamped dynamic system with multiple degrees of freedoms 

can be determined as (Zhao and Dewolf, 1999): 

 (2.67) 

where  is the natural frequency of the rth mode shape;  is the element stiffness 

matrix located in the ith row and jth column and  is the amplitude of the 

normalized mode shape in the ith location and the rth mode. 

In Equation (2.67) is evident that the frequency sensitivity to change of 

stiffness is inversely proportional to the same frequency. Stiff bridges with high 

frequencies are less sensitive to damage than flexible bridges with low frequencies. 

On the other hand, frequency sensitivity is proportional to the amplitude of the 

normalized mode shape. This implies that sensitivity is highly dependent of the 

damage location. Damage located near to supports, piers, bears and near to any node 

point have low frequency sensitivity. In fact, even when severe damage is present in 

the bridge, the frequency change hardly achieves 5%. Moreover, ambient factors can 

have an influence in the natural frequencies of the same magnitude as damage 

caused. For this reasons, vibration-based damage detection methods using just the 

comparison of resonant frequencies were not as successful as expected. In this study, 

the frequency change method is used in combination with two or more damage 

detection methods. A review of frequency change methods can be found in  

Salawu (1997).  
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3.1 State of the art 

It is a known fact that cracks in structures cause changes in their modal parameters. 

Based on this fact, the recent past has witnessed the development of several methods 

to detect, locate and quantify the extent of damage in existing structures. However, 

these methods are not fully developed up to now and a reliable damage detection 

method applied to all structural conditions does not exist. For this sake it is thought 

that the vibration analysis of cracked beam structures can help in the development 

and validation of these methods.  

The presence of a crack in a structural element provokes a local flexibility 

change near the crack tip. The introduction of damage in structural elements has been 

traditionally effectuated by means of ad hoc mathematical models at the location of 

damage. Up till now, several models based on this principle have been proposed.  

One procedure for obtaining the dynamic response of beams with open 

transversal cracks consists in dividing the beam into several elements separated from 

each other by a crack represented by a rotational spring without mass (referred here 

as local flexibility method). Based on this procedure, Rizos et al. (1990) determined 

in a cantilever beam with a crack located at an arbitrary location, the local flexibility 

introduced by a crack using the fracture mechanics theory. The three first mode 

shapes and frequencies of the numerical model of a cantilever beam were compared 

with those obtained from beam specimens with fatigue cracks. Agreement of the 

modal parameters was evident, especially for the first two mode shapes and 

frequencies. Bamnios and Trochides (1995) determined the dynamic behaviour of a 

cantilever beam with a single crack at an arbitrary location. The prediction of the 

frequency decay caused by cracks with different depths was in agreement with 

measurements taken from experiments where cracks were represented by sawing 

cuts. Fernández-Sáez and Navarro (2002) proposed closed-form expressions (lower 

bounds) for the approximated values of the fundamental frequency of cracked beams 

in bending vibration. A comparison of the variation of the fundamental frequency of 

a beam with various boundary conditions and crack depths, determined with this 

procedure and obtained by numerical simulations using a refined finite element 

model, were done. An inspection of this comparison showed that the second lower 

bound is a good approximation to the fundamental frequencies obtained with the 

finite element model, taken as a reference.  
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Other local flexibility methods applied to beams with open vertical cracks have 

been proposed by many authors, e.g., Chondros and Dimarogonas (1980) modelled a 

welded joint as cantilever beam with lumped mass at the free end and rotational 

spring represented the crack at the root; Lin (2004) obtained the dynamic behaviour 

of a simply supported beam with a single and double sided crack using the 

Timoshenko beam and Fracture Mechanics Theory; and Shifrin and Ruotolo (1999) 

who developed a local flexibility method to be explained  in section 3.2.2.  

Other solution to determine the dynamic behaviour of beams with open vertical 

cracks was proposed by Christides and Barr (1984), who developed the cracked 

Euler-Bernoulli beam theory from the Hu-Washizu variational principle. They 

derived the differential equation of equilibrium and the associated boundary 

conditions for a uniform Euler-Bernoulli beam with one or more pairs of symmetric 

cracks (double sided cracks). The modification of the stress field caused by the crack 

was considered by a local experimental function that includes a parameter that have 

to be evaluated by experiments. This theory was considered an important step in the 

development of more rigorous cracked beam vibration theories. In this context, 

Chondros et al. (1997), Chondros et al. (1998) and Chondros and Dimarogonas 

(1998) proposed a more consistent method based on the Christides and Barr theory. 

In these works, the function representing the modification of the stress field was 

obtained based on well-established Fracture Mechanics Theory. The first natural 

frequency of a bar (cantilever with longitudinal vibration, cantilever with lateral 

vibration and simply supported with lateral vibration) with a single crack at mid-span 

was calculated for different crack depth ratios using the proposed (continuous) 

method, a local flexibility solution proposed by the same authors, and the Christides 

and Barr method. These numerical frequencies were compared with those determined 

from experiments done in aluminium cracked beams. The numerical frequencies 

determined with the continuous cracked beam model fell closer than the remaining 

two compared methods. 

SaMartín et al. (2004) proposed a variant of the Christides and Barr method for 

a one-sided crack beams using the Hu-Washizu variational principle and the  

Navier-Bernoulli beam theory. In this method, the crack function, which determines 

the change of the stress field caused by the crack, was proposed in the similar form 

as done by Christides and Barr, but at that time, the change of gravity centre due to 

the crack was considered. Furthermore, this method takes into account the difference 

in behaviour caused between upper and bottom sided cracks. 
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A simplified procedure of the Christides and Barr method was proposed by 

Sinha et al. (2002). This method considers that the local flexibility in the vicinity of 

the crack determines with the Christides and Barr method can be approximated with 

a triangular reduction function. Afterwards, the stiffness matrix of the element of the 

beam with the crack is obtained considering the triangular variation of the flexural 

stiffness. The authors determined that the effective length of the flexibility reduction 

is 1.5 times the total depth of the beam. For slender beams, as usually considered in 

bridge structures, this method leads to a long discrete crack element, i.e., the crack 

element must be, at least as long as the effective  length of the flexibility reduction. 

This effect may lead to a large element in the crack location which does not allow 

having valuable information related to the mode shapes and their derivatives near the 

crack. Therefore, this method is more suitable for shallow cross sections. 

Other solutions for the dynamic behaviour of beams with open vertical cracks 

have been based on the finite element method. Calculating the stiffness matrix for the 

cracked elements has been the main objective of the methods using the finite element 

model, e.g., Zheng and Kessissoglou (2004) proposed a method based on the 

calculation of the flexibility matrix of a cracked element.  

Even when it has been recognized that cracks do not remain always open, the 

dynamic behaviour of beams with cracks that open and close, referred as breathing 

cracks, has not been extensively studied. If the static deflection due to some 

component loading (like self-weight or dead loads) is larger than the vibration 

amplitudes, then the crack remains open all the time, or opens and closes regularly  

and the problem is linear. If the static deflection is small compared with the vibration 

amplitude, the crack will open and close in time and the problem is non-linear.  

A formulation for calculating the dynamic response of beams with breathing 

cracks was proposed by Shen and Chu (1992). This method introduced a contact 

parameter  into the assumed stress, strain and displacement expressions of the 

cracked beam theory proposed by Shen and Pierre (1990). When the crack faces are 

open and under tension, , and a cracked function is introduced in the stress 

and strain expressions. Besides the crack function, the cracked beam theory proposed 

by Shen and Pierre (1990) includes another function  to model the 

modification of the displacement field due to the crack. On the other hand, when the 

crack faces are closed and under compression, , and the introduced functions 

vanish, leading to the classical Euler-Bernoulli beam. Regarding the cracked beam 
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theory proposed by Shen and Pierre, Carneiro and Inman (2001) proposed a 

modification to their formulation in order to avoid yielding complex eigenvalues and 

eigenvectors, inconsistent with the physical solution of the problem. Moreover, they 

determined that the function  can be omitted from the proposed model without 

diminishing the numerical accuracy. 

Chondros et al. (2001) proposed a method for calculating the dynamic 

behaviour of beams with breathing cracks using a bi-linear type model where cracks 

have only two states, either fully open or fully closed. In this method, the frequency 

of the crack does not depend on amplitude. It was assumed that crack transits from 

open to closed at times when the beam comes back to its undeformed shape. 

According to the authors, the ratio between the frequency of the breathing crack  

and the closed crack  may be given by: 

 (3.1) 

where  is the circular frequency obtained from the open crack model. 

 The decay of the first natural frequency caused by a crack at mid-span with 

different depths was obtained for a simply supported beam using the breathing crack 

and open crack methods proposed by the authors and experimental results. The 

comparison of the numerical and experimental results indicated closer agreement 

between the experimental results and the breathing crack model than with the 

numerical solution obtained with the open crack model. It is important to highlight 

that the breathing crack solution results in a smaller frequency decay than the open 

crack model predicts. This finding can also be determined from Equation (3.1) where 

the ratio  is always bigger than . A more detailed description of 

the methods for obtaining the vibration of cracked beams may be found in 

Dimarogonas (1996).  

From the vast number of publications done in this field, it is important to point 

out, according to Dimarogonas (1996), that there is confusion in the literature in 

discerning between a notch and a crack. Several authors have treated a crack as a 

notch, numerically, experimentally or both. Due to fatigue cracks in structures are 

experimentally difficult to obtain with the assumption done in the numerical models 

(single, open, perpendicular, across the width, etc), many authors have tried to 

represent them as notches. Nevertheless, it must be understood that no matter how 



3. Dynamic simulation methods 

 70 

thin a saw cut is, it will never behave as a crack. According to Silva and Gómez 

(1990), cracks of small depth result in about twice the change in natural frequencies 

caused by notch of the same depth. For higher depths (more than half of the total 

depth) the change in natural frequencies between a crack and a notch is about the 

same. 

In the literature related to the dynamic behaviour of cracked beam structures, 

there are some unanswered questions that can be considered topics of interest for 

further research (Dimarogonas, 1996): 

• Development of a rigorous cracked beam vibration theory, 

• Dynamic behaviour of breathing cracks, 

• The evaluation of crack beam methods under the same case study, 

• Determination of the damping change due to cracking. 

In this thesis, three methods for the dynamic simulation of cracked beam 

structures were selected, compared and evaluated. These methods were: i) Modified 

Christides and Barr method based on the Hu-Washizu variational principle;  

ii) Shifrin and Ruotolo method based on the use of rotational massless springs to 

represent cracks; iii) Zheng and Kessissoglou method based on the finite element 

model. 

3.2  Dynamic simulation methods 

All three considered methods were evaluated by introducing open vertical cracks 

with uniform depth across the width of the beam. During the analyses, three Degrees 

Of Freedom (DOFs) were considered for each node (see Figure 3.3) assuming that 

the introduced cracks did not modify considerably the initial mass of the element.   

3.2.1 Modified Christides and Barr method 

This approach, based on the Christides and Barr theory, calculates the flexibility 

along the structural element, according to a procedure proposed here, for its 

straightforward implementation in a computer program.  

Christides and Barr (1984) developed a cracked Euler-Bernoulli theory by 

deriving the differential equation and boundary conditions for a uniform Euler-

Bernoulli beam with one or more pairs of symmetric cracks. The problem was 
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reduced to one dimension integrating over the cross section after certain stress, 

strain, displacement and momentum fields of interest were selected. According to the 

authors, in many cases where analytical solutions related to St. Venant´s Principle 

are known the decay rates are found to be exponential. In a similar way, they 

proposed a local empirical function which assumed an exponential decay with the 

distance from the crack for the modification of the stress field induced by the crack. 

Application of the proposed procedure to the extended Hu-Washizu variational 

principle led to the following equation of motion for the cracked Euler-Bernoulli 

beam: 

 (3.2) 

where E is the Young’s modulus of the beam,  the mass density of the beam,  is 

the harmonic transversal oscillation of the beam and  is the cross sectional area. 

Differentiation with respect to time is shown by a dot while commas in the subscripts 

indicate differentiation with respect to the longitudinal coordinate, . The other 

variables are defined as: 

 

 

(3.3) 

where  is the cross sectional area at the crack location,  is the crack 

function, and  is a unit step function at . Equation (3.2) can be 

expressed in a more convenient way as follows: 

 (3.4) 

Equation (3.4) can be solved for different boundary conditions, for instance in 

the case of a simply supported beam with rectangular cross section (b x h) and 

symmetric pair of cracks (of depth a), Equation (3.4) takes the following form: 

 
(3.5) 
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where  determines the location of the crack and  is the coordinate where the mode 

shape of the beam is determined.  

This procedure requires that the decay rate exponent  must be determined 

experimentally for every different geometry and boundary condition, although the 

stress exponent has been reported not to change very much (Chondros et al., 1998). 

Christides and Barr (1984) determined the decay rate exponent to be equal to 

0.67 for a simply supported beam with a pair of surface cracks located at mid-span. 

However, this value was obtained from a specimen where the crack was simulated as 

a notch. According to Dimarogonas (1996) there is a difference between the 

flexibility of a beam with a crack and with a notch. A thin cut results in a local 

flexibility substantially less than the local flexibility associated with a fatigue crack. 

The procedure proposed by Christides and Barr considered a pair of symmetric 

cracks, while in bridge structures, which are the elements to be analyzed, damage is 

commonly characterized by one sided surface cracks. The deficiencies of this method 

can be compensated with the determination of  from experimental tests carried out 

on specimens with real one sided fatigue cracks.  

In this context, Chondros et al. (1998) reported the first natural frequency of a 

simply supported cracked aluminium beam of length 0.235 m, cross section width 

0.006 m and height 0.0254 m with a Young’s modulus equal to 7.2x107 kN/m2 and 

material density equal to 2.8 t/m3. In this way, the value of the decay rate exponent 

that best fit these experimental results is 2.267. The comparison between the first 

natural frequency reduction of the experimental and numerical cases versus the crack 

depth ratio (a/h) is shown in Figure 3.1. 

From Equation (3.5), when no cracks are considered  

, substituting these values in Equation (3.5) gives: 

 (3.6) 

By comparing Equations (3.5) and (3.6) it is realized that the behaviour of the 

cracked beam at a specific location is similar to the behaviour of an uncracked beam 

of longitudinally variable flexural bending stiffness. The local effect of the cracks 

over the flexural bending stiffness, , can be given, according to Equation (3.5), in 

the following form: 
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 (3.7) 
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Figure 3.1. First natural frequency ratio for a simply supported beam with a surface 
crack at mid-span versus the crack depth ratio a/h. Keys:  numerical results 
determined with the modified Christides and Barr method using =2.267; 

experimental results (Chondros et al., 1998). 

As a simplification, a linear variation of flexural bending stiffness along the 

elements was proposed here as indicated in Figure 3.2. Under each condition, the 

stiffness matrix of each Euler-Bernoulli element found using the finite element 

model may be expressed as: 

 (3.8) 

where  is the flexural bending stiffness evaluated with Equation (3.7) in the first 

node of the element;  is the length of the element; i is the element to be evaluated 

and  is the difference between the flexural bending stiffness of the first and second 

node of the element. 

In principle, the flexibility variation caused by cracks is very local and they do 

not have a significant influence in the flexibility of locations out of the vicinity of the 

cracks. Therefore, several cracks can be taken into account in the modified Christides 

symmetrical symmetrical 
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and Barr method calculating the minimum value of the flexibilities at each location 

along the beam. 
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Figure 3.2. Variation of the flexibility of a beam caused by a crack located at xj;   

proposed linear variation and         Christides and Barr Equation (3.7).  

The global stiffness matrix of the beam  was formed by assembling the 

individual stiffness matrices of the elements . Mode shapes and their 

corresponding natural frequencies were obtained from the solution of the eigenvalue 

problem for the undamped dynamic system in free vibration. It is evident from 

Figure 3.2 that the assumption of linear variation of the flexibility of the beam can be 

considered valid when a sufficient number of finite elements is considered in the 

vicinity of the crack. 

3.2.2 Shifrin and Ruotolo method 

In this method, the natural frequencies and corresponding mode shapes are obtained 

using massless rotational springs to simulate the presence of cracks. The method 

leads to a system of  linear equations for a beam with n cracks with a 

determinant order smaller than those of other similar methods. As a result, the 

computational effort required for finding the natural frequencies is reduced 

considerably. 

In this approach the beam is divided into  beams connected by massless 

springs representing the n cracks. For a uniform cross section of the beam, the 

equation of harmonic transverse oscillations of each sub-beam can be represented by: 
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 (3.9) 

where  is a natural circular frequency. 

This method calculates the natural frequencies introducing between two elements 

conditions for displacement, bending moment and shear forces. The discontinuities 

in the rotation of the beam axis at the locations of the cracks are also taken into 

account. This condition is necessary for guarantying the equilibrium between 

transmitting bending moment and rotation of the spring simulating the crack.  

 (3.10) 

where  are the flexibilities of the rotational springs. According to Rizos et al. 

(1990), for one sided cracks, these flexibilities can be expressed as:  

 (3.11) 

Considering these assumptions, the solution to the problem is obtained from 

Equations (3.12) to (3.14): 

 

 

 

(3.12) 

 

 

(3.13) 

 

 

(3.14) 

where  are unknown coefficients; n is the number of cracks;  is the 

distance measured from the left end of the beam;  is the displacement amplitude of 
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the beam at position ; and  and  denote first and second derivative of  with 

respect to the distance , respectively. The other variables are defined as: 

 

 

(3.15) 

 

(3.16) 

where  is the circular frequency; A is the cross sectional area and  is a 

transformation variable. 

 The solution of the linear system of n+4 equations given by Equation (3.14) 

for  and  needs the introduction of four more equations, which are 

obtained from the boundary conditions of the analyzed beams, Equation (3.12) for 

 and its second derivative  in the case of simply supported 

beam; and  and its first derivative  in the case of doubly 

clamped beam. Finally, the natural frequencies of the cracked beam are calculated 

from the roots of the polynomial ( ,…modes) result of the determinant of the linear 

system of equations  [four equations from Equation (3.12) plus n equations from 

Equation (3.14)] equal to nil, i.e.,: 

 (3.17) 

where the matrix  can be expressed as follows: 

 (3.18) 

The mathematical solution for a clamped-free beam was obtained by Shifrin and 

Ruotolo (1999). Solutions for simply supported, free-free, doubly clamped and 

clamped-hinged boundary conditions were obtained in this thesis and they are shown 

together with the clamped-free solution in the Appendix B. 

3.2.3 Zheng and Kessissoglou method 

Zheng and Kessissoglou (2004) proposed a finite element method to calculate the 

dynamic behaviour of cracked structures. In this procedure they incorporated the 

effect of the distance between the right hand side end node of the element and the 

crack location. This effect had been neglected in previous methods based on the 
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finite element method leading to less accurate results. This method overcomes this 

problem by adding an overall flexibility matrix  to the undamaged flexibility 

matrix  as indicated in Equation (3.19): 

 (3.19) 

The elements of the overall flexibility matrix  are calculated from: 

 

(3.20) 

 
(3.21) 

where , ,  and  are the Stress Intensity Factors (SIFs) of the uniform 

cross section of the beam for the I and II fundamental modes of fracture caused by 

the forces ,  and ;  is the section area in the location of the crack, and  and 

 are the forces on the right side of the cracked element as shown in Figure 3.3. 
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Figure 3.3. Cracked element and adopting forces for the Zheng method. 

The SIFs required for this method can be determined for several shapes of 

cross sections using the method proposed by Ricci and Viola (2006). This procedure 

determines the SIFs based on the connections between the energy released upon 

extension of the crack by  and the release upon widening of the crack by  

(Kienzler and Herrmann 1986), 

 (3.22) 

where  is the thickness of the beam at the crack location. To determine the SIFs it 

is necessary to calculate  and to estimate the non-dimensional parameter . 
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Kienzler and Herrmann (1986) showed that the corresponding change in 

energy of the beam can be calculated by: 

 (3.23) 

where G is the shear modulus, and  is the shearing factor. 

Substituting Equations (3.23) and (3.21) into to Equation (3.22) the SIFs are 

determined as follows: 

 

(3.24) 

 
(3.25) 

 
(3.26) 

 
(3.27) 

where  for plane stress and  for plane strain conditions and 

 is the Poisson ratio. 

The slope factor  can be determined by two procedures: with detailed Finite 

Element Models (FEMs) of the cracked zone and with experimental specimens 

representing the crack. Both procedures are time consuming and fall out the scope of 

this thesis. Fortunately, Kienzler and Herrmann (1986) obtained good results, in 

several applications, by assuming . Nobile (2000) determined SIFs for a 

simply supported beam with rectangular cross section. The SIFs were in reasonable 

agreement with those determined by Ricci and Viola (2006) when  and SIFs 

determined by experimental results. Furthermore, Dunn et al. (1997) obtained the 

slope factor  from a detailed finite element modelling of steel I beams subjected to 

pure bending moment. They determined that  is function of the crack depth ratio 

 as indicated in Equation (3.28), 
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 (3.28) 

Afterwards the SIFs are calculated and therefore the overall flexibility matrix, 

the stiffness matrix of the cracked element  is obtained as follows: 

 (3.29) 

where superscript  denotes transpose of the matrix. 

The natural frequencies of the beam were obtained using a conventional 

eigenvalue procedure which required a mass matrix of the beam directly determined 

from the numerical model. To calculate the corresponding mode shapes, Zheng and 

Kessissoglou proposed new interpolation functions that satisfy the local flexibility 

conditions at the locations of the cracks. 

3.3  Adopted conditions for the evaluation of the methods 

The selected methods for calculating the dynamic behaviour of cracked beam 

structures were evaluated with a beam structure of rectangular cross section with 

dimensions set to have a frequency range between 2 to 10 Hz. In this range most of 

the bridge structures with spans less than 100 m are included. Steel and concrete 

materials with Young’s modulus of 2.5 x 107 kN/m2 and 2.1 x 108 kN/m2 

respectively were chosen for the evaluation of a 10 m long beams with two different 

support conditions, namely simply supported and doubly clamped. The damping 

ratio for the undamaged beam was set to 2%.  

Two damage cases were evaluated for each type of material (steel and 

concrete). In the first, a concrete beam with a single crack at the mid-span with a 

depth of one quarter of the total depth of the cross section; and for the steel beam, a 

crack with one half of the total depth of the cross section. In the second case, four 

additional cracks were considered placed equidistant one another 0.5 m along the 

mid-span of the beam and with a depth of one seventh of the total thickness for the 

concrete cross sections and two sevenths for the steel cross sections. The geometrical 

properties of the beams, the crack locations along their length and their boundary 

conditions considered for this example are shown in Figure 3.4 and summarized in 

Table 3.1. 
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Figure 3.4. Geometrical properties of the beams taken as example. 

Table 3.1. Crack depths for the beams adopted as example. 

Steel Concrete 

I (1 crack) II (5 cracks) I (1 crack) II (5 cracks) 

Geometrical 
properties 

(mm) 
SS SC SS SC CS CC CS CC 

Dimensions 
(b x h)  

200 x 
100 

100 x 
50 

200 x 
100 

100 x 
50 

350 x 
700 

150 x 
300 

350 x 
700 

150 x 
300 

Crack depth  50 25 28.6 14.3 175 75 100 42.9 

1st frequency 
(Hz) 

2.35 2.66 2.35 2.66 10.24 9.95 10.24 9.95 

The dynamic response of the cracked beams was obtained by using the high-

order recursive algorithm proposed by Wilson (2002). The sampling frequency and 

acquisition time were set to be able to detect the first three natural frequencies. 

The analyzed beam was divided into 20 elements. The force excitation was 

considered as a vertical load with magnitude, into a predefined range, and location, 

along the beam nodes, changing randomly each step of sampling frequency. This 

procedure tried to simulate the case of ambient vibrations during the dynamic data 

acquisition i.e., forces were not considered during the modal identification instead, 

accelerations were the only information related with the dynamic response used in 

the calculations.  For this purpose, the Enhanced Frequency Domain Decomposition 

Method (EFDD) [Brincker et al., 2001] was applied to the acceleration responses 

calculated from the cracked beams to obtain the modal parameters as determined in 

experimental way. In total, 72 dynamic simulations and modal identifications were 

carried out as combination of all the cases. An example of the calculated dynamic 

response of the beam is shown in Figure 3.5. 
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Figure 3.5. Example of the simulated dynamic response of the beam. Keys: (PSD) 

uncracked; DI; DII; (Modes) mode 1; mode 2; mode 3. 

3.4  Comparison of modal parameters calculated from simulated 
Ambient Vibration Tests (AVTs) 

Natural frequencies, mode shapes and damping ratios extracted from the dynamic 

response of the cracked beams using the EFDD method (Brincker et al., 2001) were 

compared with their corresponding undamaged modal parameters. First natural 

frequencies for concrete beams were close to 10 Hz, what simulated a stiff bridge, 

whereas for steel beams this value was around 2.5 Hz, which is a typical value of 

flexible bridges. The comparison between these methods was made using the ratio 

between the undamaged and damaged conditions for the cases related to natural 

frequency and damping ratio. The comparison of mode shapes was made by using 

the Normalized Modal Difference (NMD) [Gentile and Gallino, 2008] which is a 

close estimate of the average difference between the components of two vectors to 

compare mode shapes for damage detection purposes (see section 2.4.7 of this 

thesis). The results of the comparison of the previously mentioned parameters are 

shown in Figure 3.6. 
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Figure 3.6.Comparison of the performance of dynamic simulation methods with 
modal parameters.  mode 1;  mode 2 and  mode 3. 

In Figure 3.6 NMD is the Normalized Modal Difference; , is the difference 

between the first three natural frequencies of the undamaged and damaged beam; , 

is the difference between the damping ratios of the undamaged and damaged beam; 

C, S and Z refer to Christides, Shifrin and Zheng methods, respectively, while their 
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subscripts indicate the number of cracks; S/NF indicates that no solution could be 

found with this method. 

From Figure 3.6, for the case of NMD parameter, it is possible to point out that 

the third mode shape is the most sensitive to damage. In the case of the comparison 

of frequencies, the second mode shape was the less sensitive to damage. This mode 

has an inflexion point in the location of damage which leads to small changes in the 

compared parameters.  

For the damping comparison, the first mode shapes gave the largest 

differences. Regarding the evaluated methods, the Modified Christides and Barr 

method was the most sensitive to damage, especially when 5 cracks were considered. 

This method is the easiest to apply, but it is also the less accurate. Its accuracy 

increases when the number of elements of the beam increases. The dynamic response 

when 5 cracks were simulated in a doubly clamped beam was not attained with the 

Shifrin method. The calculation of the roots from Equation (3.17) increases in 

complexity when the number of involved cracks and degrees of freedom increases. 

Furthermore, analytical solutions need to be reached for beams of different cross 

section shapes and boundary conditions. Results obtained with the Zheng method 

have a similar performance to those obtained with the Shifrin method, with the 

difference that the solution for determining the dynamic response was found with the 

Zheng method for all the evaluated cases. Besides, the Zheng method has the 

advantage to be easily implemented in a computer program for the structural analysis 

of more complex structures. Moreover, the SIFs required for this method can be 

obtained for any general cross section using the methodology described here.  

3.5 Comparison of modal parameters calculated from the cracked 
beam methods 

Additional to this simulated dynamic analysis, the three selected methods were 

compared using the frequencies and corresponding mode shapes obtained from their 

described procedures. At this time, comparison of these modal parameters was 

carried out from a crack ratio (a/h) of 0.0 (undamaged case) to 0.6 represented a 

severe damage. The results of the frequency and mode shape comparison for the first 

modal parameters are shown in Figures 3.7 and 3.8 for concrete and steel material, 

respectively. 
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a) Frequency (left) and mode comparison (right); simply supported with 1crack 
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b) Frequency (left) and mode comparison (right); doubly clamped with 1crack 
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c) Frequency (left) and mode comparison (right); simply supported with 5cracks 
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Figure 3.7. First frequency and mode shape comparison versus crack depth ratio 
(a/h) for concrete beams. Keys: Shifrin method; Zheng method and  
Modified CB method. 

For the comparison of concrete beams (Figure 3.7), it was determined that all 

methods are closely in accordance each other. The Zheng and Shifrin methods 

presented similar behaviour between them. The modified Christides and Barr 

methods presented the largest differences compared with the other two methods for 

the doubly clamped beam. In fact, the experimental exponent α was determined for 

simply supported beams. Fortunately, these differences for the doubly clamped beam 

can be considered not significant for the purpose of damage detection. As well as in 

the analysis of cracked beams with simulated AVTs, the frequency and 

corresponding mode shapes with the Shifrin method were not found for any cracked 
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depth ratio when 5 cracks were present in a doubly clamped beam. The numerical 

procedure written in Matlab (The MathWorks, 2002) was not able to find the roots of 

the resultant equation product of the determinant of the  matrix of rank 5 x 5 

equal to nil. 
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a) Frequency (left) and mode comparison (right); simply supported with 1crack 
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b) Frequency (left) and mode comparison (right); doubly clamped with 1crack 
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c) Frequency (left) and mode comparison (right); simply supported with 5cracks 
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Figure 3.8. First frequency and mode shape comparison versus crack depth ratio 
(a/h) for steel beams. Keys: Shifrin method; Zheng method and  Modified 
CB method. 

For the comparison of steel beams (Figure 3.8), the Zheng and Shifrin methods 

presented close results in frequency and mode shape decay along the crack depth 

ratios. The modified Christides and Barr method presented results clearly far from 

the other two methods. This behaviour was caused by the assumption of linear decay 

of the flexibility of the beam into to the elements. According to Sinha et al. (2002) 
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the presence of a crack causes an important disturbance in the flexibility of the beam 

on a distance 0.75 times the total depth of the cross section of the beam, in both sides 

of the crack. For shallow cross sections, as here analyzed for steel beams, the 

influence length in both sides of the crack is equal to 150 (for 100 mm depth) and  

75 mm (for 50 mm depth). Thus, the flexibility variation in the cracked element was 

not correctly determined.  

3.6  Conclusions 

In this chapter it was intended to carry out the comparison of three of the existing 

methods for obtaining the dynamic response of cracked beams. Regarding the 

procedures followed to obtain the frequencies and mode shapes of cracked beams, 

the modified Christides and Barr and Zheng methods are approximated procedures 

while the Shifrin method uses a more consistent solution and therefore was expected 

to give the most accurate results. However, results showed that the Shifrin method 

presented difficulties when obtaining the dynamic response of structures with several 

degrees of freedom and multiple cracks. Complexity for finding the roots of the 

determinant given in Equation (3.17) grows when increasing the number of cracks, 

and degrees of freedom. The Modified Christides and Barr method is the simplest, 

but it is also the less accurate. The precision of this method depends on the number 

of elements considered in the beam. Since the flexural bending stiffness variation 

along the element is considered linear, long elements near the crack position 

introduce big errors in the calculations of the modal parameters. The Zheng method 

has become a promising alternative for calculating the dynamic response of cracked 

structures since the SIFs of the general cross section can be obtained with a high 

degree of accuracy by using the procedure described here. Modal parameters 

determined through the Zheng method were as accurate as Shifrin method, except 

that the solution for the dynamic response for all the evaluated cases was only found 

for Zheng´s method. Moreover, this method can be easily implemented in a computer 

program for the evaluation of more complex structures. In conclusion, of all three 

methods evaluated, the Zheng method was considered the best method for obtaining 

the dynamic response of cracked beams and more complex structures.  
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