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Abstract: In this work, high rate anaerobic mineralization of a synthetic dairy 

effluent containing 50% COD as oleic acid was accomplished in two reactors 

operated in parallel. The anaerobic reactors were able to accommodate organic 

loading rates up to 21 kg COD m-3 day-1, HRT of 9 hours, attaining 99% of soluble 

COD removal efficiency and methane yield higher than 70%. Long chain fatty acids 

(LCFA) accumulated inside the reactor only during the last two phases of operation 

and palmitic acid was the main LCFA quantified, representing 40–100% of the total 

LCFA detected. High specific methanogenic activity was determined at the end of 

the operation, in the presence of acetate (1346±87 mg COD-CH4 gVS-1 day-1) and 

H2/CO2 (3582±309 mg COD-CH4 gVS-1 day-1). The specific activity of the 

anaerobic consortia present in the reactors during the operation was also 

determined, and a maximum value of 1170±170 mg COD-CH4 gVS-1 day-1 was 

obtained. The high performance accomplished in the reactors was a consequence 

of the discontinuous acclimation strategy applied, that produced an anaerobic 

microbial community specialized in the efficient mineralization of LCFA. 
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1. Introduction 

Energy production from renewable sources is currently a priority for economical, 

social and environmental reasons. The organic matter present in the wastewaters 

is converted into biogas, a renewable energy source, during the anaerobic 

treatment. The energy yield of this process depends on the type of organic matter 

present in the wastewater and is especially high for more reduced compounds, 

such as long chain fatty acids (LCFA), the main products of lipids hydrolysis 

(Sousa, 2007). Theoretically 1.01 L of methane at standard temperature and 

pressure can be produced from, for instance, 1 g of oleate (unsaturated LCFA, 

C18:1), whereas only 0.37 L can be produced from 1 g of glucose. Therefore, 

wastes or wastewaters with high lipid-content represent an attractive source for 

methane production (Kim et al., 2004). 

Despite the different technologies described in the literature for the anaerobic 

treatment of lipid-rich effluents, lipids conversion into biogas is considered difficult 

and tends to decrease with the increase of the organic loading rate (OLR) applied. 

Consequently, reports of reactor’s failure are quite frequent and the treatment of 

this type of wastewater is generally performed at OLR lower than 10 kg COD m-3 

day-1 (Hwu et al., 1998; Jeganathan et al., 2006; Kim et al., 2004; Pereira et al., 

2002; Rinzema, 1988). 

Several operational problems are described as the main causes for the difficult 

conversion of lipids to biogas, namely bacterial inhibition and sludge washout 

(Hwu, 1997; Jeganathan et al., 2006; Tagawa et al., 2002). These problems result 

mostly from LCFA accumulation onto the microbial aggregates, by mechanisms of 

adsorption, precipitation and entrapment (Hwu, 1997; Pereira et al., 2005). Besides 

the potential metabolic inhibition, LCFA accumulation onto the sludge can create a 

physical barrier, with consequent limitations in the transport of substrates and 

products, namely methane (Pereira et al., 2005). However, since large amounts of 

methane are produced when LCFA-loaded sludge is incubated in batch vials, a 

discontinuous operation, designed to promote LCFA accumulation during 

continuous feeding, and subsequent batch degradation of the biomass-associated 
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substrate, was proposed as a strategy for achieving efficient rates of methane 

production (Pereira et al., 2004). 

Based on this suggestion, Cavaleiro et al. (2007) studied the anaerobic treatment 

of an oleate-rich wastewater under discontinuous operation. The results obtained 

showed that sequencing feeding and degradation during the reactor start-up 

provides the ideal conditions for sludge acclimation, conducting to the development 

of a specialized microbial community capable of subsequent efficient methane 

production during continuous LCFA loadings. Therefore, this start-up strategy is a 

pre-requisite that should be applied when continuous treatment of lipid-rich 

wastewater is aimed. Clearly this kind of operation is preferable for large scale 

facilities, since wastewater is constantly generated and its energetic potential, in 

the form of biogas production, should not be wasted. 

In this work, sludge previously acclimated to oleate through discontinuous 

operation (Cavaleiro et al., 2007) was used as inoculum for the continuous high-

rate treatment of an oleate-rich wastewater, in two anaerobic reactors operated in 

parallel. Organic loading rates were steadily increased from 5 to 31 kg COD m-3 

day-1, and the optimum load that allowed the maximum methane recovery was 

assessed. 

 

 

2. Materials and Methods 

2.1. Experimental set-up 

Two anaerobic reactors were constructed in Plexiglas and were operated in 

parallel, at constant temperature (37  1 ºC). Plexiglas settlers were installed at the 

outlet of the reactors and the settled biomass was intermittently recycled (Figure 

1). Each reactor was inoculated with 3.0 L of suspended biomass, previously 

acclimated to oleate through discontinuous operation (Cavaleiro et al., 2007). The 

reactor was fed with a synthetic dairy wastewater, composed of 50 % COD-skim 

milk and 50 % COD-sodium oleate. This substrate was supplemented with 

macronutrients, micronutrients and sodium bicarbonate, as described elsewhere 

(Alves et al., 2001). 
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Figure 1. Experimental set-up. 

 

2.2. Routine analysis 

Reactors’ performance was monitored by measuring biogas production, influent 

and effluent soluble COD (centrifuged 15 min at 15000 rpm), effluent volatile fatty 

acids (VFA) and effluent solids. COD and solids were determined according to the 

Standard Methods (APHA, 1998). VFA were determined by HPLC (Jasco, Japan) 

using a Chrompack organic analysis column (30×6.5 mm) and a mobile phase of 5 

mM H2SO4 at a flow rate of 0.7 mL min-1. The column was set at 60 °C and the 

detection was made spectrophotometrically at 210 nm. Biogas production was 

measured with a wet gas meter W-NK-0.5B (Shinagawa Corporation Factory, 

Japan) and the methane content was analyzed in a Pye Unicam GC-TCD gas 

chromatograph (Cambridge, England), using a Porapack Q (100-180 mesh) 

column. Helium was used as carrier gas (30 mL min-1) and the temperatures of the 

injection port, column and detector were 110, 35 and 110 ºC, respectively. 

 

2.3. Biomass sampling 

A total of nine biomass samples were collected from each reactor during the 

experiment, as detailed in Table 1. All samples were characterized in terms of long 

chain fatty acids accumulation and specific methanogenic activity was determined 

in samples 1 and 9, in the presence of acetate and H2/CO2. 
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Table 1. Biomass sampling during the experiment 

Sample n. º Sampling time (days) Key moment of the operation 

1 0 Beginning of phase C-I 

2 145 Beginning of phase C-IV 

3 194 Beginning of phase C-V 

4 211 During phase C-V 

5 251 During phase C-V 

6 301 During phase C-V 

7 341 During phase C-VI 

8 356 During phase C-VI 

9 422 End of the operation (phase VII) 

 

2.4. Long chain fatty acids quantification 

Saturated and unsaturated long chain fatty acids (LCFA) from C12 to C18, present 

in the liquid phase or associated to the biomass (solid phase), were extracted and 

quantified according to the method described by Neves et al. (2008). Free fatty 

acids present in the samples were esterified with propanol in acid medium at high 

temperature (100 ºC) for 3.5 hours, and extracted with dichloromethane. 

Quantification was made in a gas chromatograph (CP-9001 Chrompack) equipped 

with a flame ionization detector. Fatty acids were separated on a TR-WAX (eq.CP-

Sil 52 CB) 30 m x 0.32 mm x 0.25 m capillary column, using helium (He) as 

carrier gas at a flow rate of 1.0 mL min-1. Initial oven temperature was 50 ºC for 2 

min, followed by a 10 ºC min-1 ramp to 225 ºC and a final isothermal for 10 

minutes. Detector and injector temperatures were 250 ºC and 220 ºC, respectively. 

 

2.5. Specific methanogenic activity 

Specific methanogenic activity (SMA) was determined in batch assays with acetate 

(30 mM) and H2/CO2 (80:20 v/v) as substrates. The basal medium used in these 

experiments was described elsewhere (Pereira et al., 2004) and vials were 

prepared with 2 - 5 g VS L-1. All batch tests were performed in triplicate and were 

incubated at 37 ºC and 150 rpm. Methane content of the biogas was measured by 

gas chromatography, as described in section 2.2. Methane production values were 

corrected for standard temperature and pressure (STP) conditions and background 
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production rate due to residual substrate consumption, measured in the blank 

controls, was subtracted. 

 

2.6. Operation mode 

The OLR applied to both reactors was steadily increased from 5 to 31 kg COD m-3 

day-1 (Table 2), by decreasing the hydraulic retention time (HRT) and keeping 

constant the concentration fed (7.4  1.6 g COD L-1). OLR was increased only 

when COD removal efficiency was constant for more than 3 HRT and, 

simultaneously, the methane yield was higher than 60 %. R1 and R2 were 

operated in parallel during 337 days, but at this point a comparison between 

continuous and batch operation was tried. For that, the feed to R2 was stopped 

while keeping R1 in continuous. After 19 days in batch conditions, continuous 

feeding was restarted in R2 and maintained until the end of the operation (Table 2). 

 

 

3. Results and discussion 

The performance data collected in reactors R1 and R2 during the 422 days of 

operation are presented in Table 2 and Figure 2. The reactors were operated in 

parallel from phase C-I to C-V, and the results obtained were very similar, showing 

that good reproducibility is possible during the anaerobic biodegradation of LCFA 

based effluents. Also, very high performance was observed during this period of 

time, with average COD removal efficiency of 98 ± 13 % and methane yields higher 

than 72 % (Figure 2a and Table 2). A maximum methane yield of 98 % was 

obtained during phase C-IV in both reactors. Methane production rate increased 

fast and proportionally to the applied OLR, showing that there was no inhibition of 

the anaerobic consortia (Figure 2b). A comparison with other studies reported in 

the literature for lipid or LCFA-rich wastewater (Hwu et al., 1998; Jeganathan et al., 

2006; Kim et al., 2004; Pereira et al., 2002; Rinzema, 1988) show that up to date 

these are the best results reported in terms of applied OLR and corresponding 

methane yields. 
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Table 2. Operating conditions and performance data 

Reactor Phase Time 

(days) 

HRT 

(days) 

OLR applied 

(kg COD m-3 day-1) 

COD removal 

efficiency (%) 

Methane 

yield (%) (a) 

R1 

C-I 0 - 33 1.50  0.10 5.0  0.4 77.6  18.8 81.5 

C-II 33 - 89 0.97  0.02 7.8  1.0 96.0  15.1 79.5 

C-III 89 - 145 0.72  0.01 9.8  2.2 98.0  31.6 86.0 

C-IV 145 - 194 0.49  0.03 11.5  2.2 99.6  27.5 98.4 

C-V 194 - 328 0.37  0.01 20.6  4.0 99.1  27.6 71.5 

C-VI 328 - 364 0.30  0.00 26.1  4.2 96.4  22.5 60.9 

C-VII 364 - 422 0.26  0.00 31.2  7.9 91.3  34.5 57.0 

R2 

C-I 0 - 33 1.50  0.10 5.0  0.9 82.4  31.0 82.4 

C-II 33 - 89 0.98  0.03 8.0  1.0 96.0  16.3 73.9 

C-III 89 - 145 0.73  0.01 9.2  2.0 97.6  30.4 83.2 

C-IV 145 - 194 0.49  0.03 11.7  2.9 98.9  35.9 98.0 

C-V 194 - 328 0.37  0.01 22.0  4.0 98.7  25.3 73.3 

C-VI 328 - 337 0.29  0.00 32.4 94.3 42.2 (b) 

 337 - 356 - [Batch] 0.0 [Batch] 0.8 8.4 (b) 

 356 - 364 0.30  0.00 25.7  0.6 76.3  2.2 34.2 

C-VII 364 - 422 0.28  0.02 29.1  7.2 85.8  33.0 52.9 
(a) Standard deviation lower than 10%. (b) Calculated considering the total amount of COD removed 

during the continuous feeding and in the batch phase (t = 328 – 356 days). 

 

When the OLR was increased to 26-30 kg COD m-3 day-1 (phases C-VI and C-VII) 

reactors’ performance clearly declined. A steady decrease of the COD removal 

efficiency was observed, reaching minimum values of 73 % and 65 % in R1 and 

R2, respectively (Table 2), and the methane yields decreased until 57 % in R1 and 

53 % in R2. Methane production rate decreased and became more unstable, 

suggesting that the applied OLR near 20 kg COD m-3 day-1 should not be 

exceeded. VFA and LCFA accumulation was also observed in the last two phases 

of operation (Figure 2c and Figure 3). 

After the first 30 - 40 days, VFA levels stabilized below 50 mg COD L-1 in terms of 

individual acids, and only increased again during phase C-VI and C-VII, although 

never exceeding 1000 mg COD-total VFA L-1 (Figure 3). 
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Figure 2. (a) OLR applied during the experiment in R1 (----) and R2 (); COD removal 

efficiency in R1 () and R2 (). (b) Methane production rate in R1 (o) and R2 (▲). (c) Total 

LCFA quantified during the experiment in R1 () and R2 (◊). 

C-I C-II C-III C-IV C-V C-VI C-VII 
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During all the operation, acetic and propionic acids were the main VFA quantified 

(Figure 3a and b) and valeric acid was only detected during phase C-VII (Figure 

3e), possibly as a result of cell lysis (Grobicki and Stuckey, 1991). During the batch 

period in R2, acetic and propionic acid levels became insignificant (lower than 25 

mg COD L-1), but higher values were transiently detected in R2 after the restart of 

the continuous feeding, comparatively to R1.  
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Figure 3: VFA quantified in R1 () and R2 (◊) during the experiment: (a) acetic acid, (b) 

propionic acid, (c) iso-butyric acid, (d) n-butyric acid and (e) valeric acid. 

 

Total LCFA accumulation was only observed during the last two phases, reaching 

maximum values of 443  36 and 790  58 mg COD-LCFA g VS-1 in R1 and R2, 

respectively (Figure 2c). A comparison with other studies (Pereira et al., 2004 and 
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(c) (d) 
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C-VII C-IV C-I C-III C-V C-VI C-II 
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2005) show that these values are relatively low, especially when considering the 

high OLR applied in this study, which reflects the good biodegradation capacity of 

both consortia. Palmitic acid was the dominant LCFA, representing 40 – 100 % of 

all LCFA detected, although oleic (0 – 28 %), stearic (0 – 20 %) and myristic (3 – 

20 %) acids were also present in the samples collected during the operation. 

Throughout the batch period imposed to R2, LCFA values became insignificant, 

due to the degradation of the accumulated substrate. 

The SMA of the microbial communities present in the reactors R1 and R2 at the 

end of the operation showed that the methanogens were very active, in the 

presence of acetate (1346  87 mg COD-CH4 g VS-1 day-1) and in the presence of 

H2/CO2 (3582  309 mg COD-CH4 g VS-1 day-1). The specific activity of the whole 

anaerobic consortia present inside the reactors during the experiment was also 

calculated, considering the methane production rate recorded along time and the 

VSS levels measured periodically in the reactors (Figure 4). A maximum value of 

1170  170 mg COD-CH4 g VS-1 day-1 was determined, when the applied OLR was 

higher than 26 kg COD m-3 day-1. The maximum value reported up to date in the 

literature for the anaerobic treatment of oleate is 600 mg COD-CH4 g VS-1 day-1 

(Hwu, 1997), which is around 50 % of the obtained in the present work. 
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Figure 4: Specific activity of the anaerobic consortia present inside the reactors during the 

operation, as a function of the OLR applied. 
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The batch period applied to R2 in phase C-VI aimed the study of the influence on 

the subsequent reactor performance of allowing the degradation of the 

accumulated substrate. A comparison between the results obtained in R1 and R2 

during phases C-VI and C-VII show that apparently the batch phase did not have a 

stimulating effect on the efficiency of LCFA conversion to methane, since the 

performance of both reactors became similar soon after continuous feeding was 

restarted in R2. This fact is probably a consequence of the sludge acclimation and 

of the high OLR applied. 

 

 

4. Conclusions 

This work clearly demonstrates that efficient methane production is possible during 

continuous high rate anaerobic treatment of LCFA based effluents. The anaerobic 

reactors were able to accommodate organic loading rates up to 21 kg COD m-3 

day-1, HRT of 9 hours, attaining 99 % of soluble COD removal efficiency and 

methane yield higher than 70 %. The high performance accomplished in the 

reactors was a consequence of the discontinuous acclimation strategy applied, that 

produced an anaerobic microbial community specialized in the efficient 

mineralization of LCFA. 
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