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In this work we consider the relation between the jump length probability density function and the
line shape function in resonance radiation trapping in atomic vapors. The two-sided jump length
probability density function suitable for a unidimensional formulation of radiative transfer is also
derived. As a side result, a procedure to obtain the Maxwell distribution of velocities from the
Maxwell-Boltzmann distribution of speeds was obtained. General relations that give the asymptotic
jump length behavior and the Lévy flight parameter � for any line shape are obtained. The results
are applied to generalized Doppler, generalized Lorentz, and Voigt line shape functions. It is
concluded that the lighter the tail of the line shape function, the less heavy the tail of the jump length
probability density function, although this tail is always heavy, with ��1. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2364889�

I. INTRODUCTION

The convectionless, random motion of a particle in iso-
tropic, homogeneous three-dimensional space is in most
cases governed by the diffusion equation,1–5

�p�r,t�
�t

= D�2p�r,t� , �1�

where D is the diffusion coefficient of the particle in the
medium and p�r , t� is the probability density function �PDF�
for the position of the particle. Usually the particle in ques-
tion is a material one �atom, molecule, etc.� and the motion is
thermal in origin. However, the diffusive motion, properly
defined, also applies to photons, as will be discussed here.

The diffusion equation, once believed to be of universal
validity, can be obtained from a more fundamental relation, a
distribution of jump lengths and waiting times,4 f�r , t�, pro-
vided some conditions hold. If jump length and waiting time
are independent, a PDF of jump lengths f�r� and a PDF of
waiting times between jumps, g�t�, can be defined. For Eq.
�1� to hold, the diffusion coefficient D must be finite. It can
be written as

D =
�r2�
6�

, �2�

where � is the average waiting time between jumps, assumed
here to be finite, and

�r2� = �
0

�

r2f�r�dr . �3�

However, Brownian-type �normal� diffusion is not the
only possibility for particle motion.2–6 For instance, the sec-
ond moment of f�r� may a priori be infinite. This at first
physically strange result has indeed been identified in a few
cases.2–8 When it happens the diffusion coefficient is also
infinite and the diffusion equation does not hold. One then
has a special type of anomalous diffusion, called superdiffu-
sion or hyperdiffusion. In such a case f�r� decays very
slowly when r→� �it is said to be heavy tailed or “fat”
tailed�, the particle’s motion is a Lévy flight, and its trajec-
tory defines a fractal.2–5,8 The appropriate generalization of
the diffusion equation in an infinite, isotropic three-
dimensional space is an integrodifferential equation,

�p�r,t�
�t

=
1

�
�� f�r,r��p�r�,t�dr� − p�r,t�	 , �4�

where f�r ,r�� is the average probability that a jumping par-
ticle initially at point r� reaches the volume element around
point r in one jump. For isotropic media, f�r ,r�� should only
depend on distance. Integration of this probability over all
directions then gives f�
r−r�
�= f�r�. Equation �4� is a par-
ticular form of the so-called master equation for stochastic
processes,1 it being implicit that the transit time from point
r� to point r is negligible. The concept of Lévy walk4,5 has
been introduced for cases where the transit time is finite, and
is usually a function of the distance traveled. The problem of
radiation trapping should also be formulated as a Lévy walk,
whenever the propagation time of the photons becomes sig-
nificant in comparison with the excited state lifetimes.

For resonance radiative trapping in atomic vapors, the
relevant particles are quanta. The photons are absorbed and
reemitted many times in the medium, changing their fre-
quency in the process. For this reason, the motion of the
photons does not obey a diffusion equation, and is conve-a�Fax: 351-218464455. Electronic mail: berberan@ist.utl.pt
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niently described instead by the above integrodifferential
equation, called in this context the Holstein-Biberman
equation.9–11 In the case of complete frequency redistribu-
tion, i.e., when the frequency of the emitted photon is inde-
pendent of the frequency of the previously absorbed photon,
the jump length PDF can be written as8

f�r� = �
−�

�

��x�2e−��x�rdx , �5�

where r is a dimensionless distance, x is a renormalized fre-
quency, and ��x� is the spectral line shape function �normal-
ized absorption and emission spectra, so that �−�

+���x�dx=1�
of the resonance line in question. Complete frequency redis-
tribution applies whenever the collision frequency is higher
than the emission rate, so that the momentum of an emitting
atom is uncorrelated with the momentum it had previously
while absorbing the exciting photon. This is the case in most
laboratory experiments, where the propagation time of the
photons is also negligible in comparison with the excited
state lifetimes.

Superdiffusivity is a consequence of the heavy-tailed na-
ture of f�r�. The flight of the particles is superdiffusive
whenever for large r,

f�r� � r−�1+��, �6�

with ��2.2–6 This parameter must also obey ��0 owing to
the normalization of f�r�. Note that for ��1 the first mo-
ment �r� is also infinite. One-sided �i.e., defined for r�0
only� Lévy distributions imply2 ��1.

A powerful alternative formulation of the diffusion prob-
lem that encompasses the ordinary diffusion equation �Eq.
�1�� is the bifractional diffusion equation, which contains a
generalized diffusion coefficient and can be solved by the
methods of fractional calculus.4–6 For the present case, in
particular, it follows that the characteristic distance traveled,
rc�t�, appropriately defined in order to remain finite,4,5 scales
with time as4–6

rc�t� � t1/�. �7�

For normal diffusion �=2.
It was previously argued7 and later demonstrated8 that

the motion of the photons was superdiffusive in the case of
Doppler �or Gaussian� and Lorentz �or Cauchy� spectral line
shapes,

�D�x� =
1

�
e−x2

, �8�

�L�x� =
1

�

1

1 + x2 . �9�

The respective Lévy parameters, obtained by means of ad
hoc arguments,8 are �=1 and �= 1

2 . In this way, the Doppler
line shape corresponds to the so-called ballistic case,4 rc�t�
� t, and the Lorentz line shape leads to an extreme case of
superdiffusive behavior, with rc�t�� t2.

In this work we introduce a distribution of effective
opacities H�k� �Sec. II� and then derive general relations that
give the asymptotic behavior of the one-sided jump length

PDF f�r� and the Lévy parameter � for any given line shape
��x� �Sec. III�. The moments of the jump length PDF are
evaluated in Sec. IV. The two-sided jump length PDF g�z�
along an arbitrary axis is next derived �Sec. V�. Finally, the
results are applied to generalized Doppler, generalized Lor-
entz, and Voigt line shape functions �Sec. VI�. The main
conclusions are summarized in Sec. VII.

II. DISTRIBUTION OF EFFECTIVE LINE OPACITIES

The jump length PDF in Eq. �5� is written in terms of the
dimensionless distance r, given by r=n	0l /��0�, where n is
the number density of particles, assumed to be homoge-
neously distributed, 	0 is the particle’s center-of-line absorp-
tion cross section, and l is the path length. Parameter r is
therefore proportional to the center-of-line opacity k0 �also
called center-of-line optical depth�, which is given by k0

=n	0l. The opacity for any other frequency is given by
k�x�=n	0��x�l. The dimensionless distance used here needs
to be translated into physical distances for actual systems and
it is therefore useful to estimate orders of magnitude for the
quantities involved. Number densities for neutral vapors and
plasmas fall approximately in the range of 108–1018 cm−3.
Using a resonance center-of-line absorption cross section of
10−13 cm2 and for a number density of 1016 cm−3, dimension-
less distances between 0.1 and 103 correspond to path
lengths from 0.5 �m to 5 mm. On the other hand, consider-
ing an average value of 105 cm−3 for interstellar space con-
ditions and using an absorption cross section of 10−9 cm2,
the 0.1–103 range of dimensionless distances now translates
into path lengths from 5 m to 50 km.

It is convenient to rewrite Eq. �5� in the following form:

f�r� = �
0

�

H�k��ke−kr�dk , �10�

where H�k� is a PDF of effective line opacities. When the
effective opacity distribution is a delta function, it follows
from Eq. �10� that the jump length PDF is exponential. This
is the case for monochromatic radiation. However, real spec-
tral line shape functions imply the existence of photons with
a wide range of frequencies, hence broad distributions of
opacities.

In the general case, the H�k� PDF can be related to the
line shape ��x� function by means of Eq. �5�. In fact, it
follows from Eq. �10� that kH�k� is the inverse Laplace trans-
form of f�r�, given in turn by Eq. �5�. Application of the real
inversion formula for the Laplace transform �with parameter
c=0�,12

kH�k� =
1

�
�

0

�

�Re�f�i
��cos�k
�

− Im�f�i
��sin�k
��d
 , �11�

gives

H�k� =
1

k
�

−�

�

��x�2��k − ��x��dx , �12�

and, assuming a symmetric line shape,
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H�k� =
2

k
�

0

�

��x�2��k − ��x��dx . �13�

Making the change of variable y=��x�, Eq. �13� becomes

H�k� = −
2

k
�

0

��0�

y2���y���y − k�dy , �14�

it being assumed that ��x� is nonzero for all x, and where
��y� is the inverse function of ��x�, ��y�=�−1�y�. Equa-
tion �14� can be rewritten as

H�k� = �− 2k���k� if k  ��0�
0 if k � ��0� .

� �15�

This equation explicitly relates the distribution of effective
opacities with the line shape function. It will be next used
�Sec. III� to study the asymptotic behavior of the jump length
PDF and will be applied in Sec. VI to several specific line
shapes.

III. ASYMPTOTIC BEHAVIOR OF THE JUMP LENGTH
PDF

Using Eq. �15�, Eq. �5� becomes

f�r� = − 2�
0

��0�

k2���k�e−krdk . �16�

In order to obtain the asymptotic behavior of f�r� for large r,
it is convenient to perform the change of variable y=kr,

f�r� = − 2r−3�
0

��0�r

y2���y/r�e−ydy . �17�

In this way, the asymptotic behavior of f�r� for large r is

f�r� � r−3�
0

�

y2���y/r�e−ydy . �18�

Integration by parts of Eq. �16� leads to

f�r� = 2�
0

��0�

�2 − kr�k��k�e−krdk , �19�

and performing the same change of variable y=kr,

f�r� = 2r−2�
0

��0�r

�2 − y�y��y/r�e−ydy , �20�

hence an alternative form for the asymptotic behavior of f�r�
for large r is

f�r� � r−2�
0

�

�2 − y�y��y/r�e−ydy . �21�

If the line shape function has a power-law asymptotic behav-
ior for large x �the “wings”�,

��x� � x−p �p � 1� , �22�

then the inverse function goes as

��k� � k−1/p, �23�

for small k, and Eq. �18� becomes

f�r� � r1/p−2�
0

�

y1−1/pe−ydy = ��2 − 1/p�r1/p−2, �24�

and therefore

f�r� � r1/p−2, �25�

i.e., the parameter � of Eq. �6� is

� = 1 −
1

p
�p � 1� . �26�

IV. MOMENTS OF THE JUMP LENGTH PDF

The moments of f�r� can be computed using the H�k�
PDF,

�rn� = �
0

�

rnf�r�dr = n!�
0

� H�k�
kn dk = n!�k−n� , �27�

as results from Eq. �10�. Using Eq. �13�, it follows from Eq.
�27� that

�r� = �
0

� H�k�
k

dk = 2�
0

�

dk → � , �28�

implying that ��1, independently of the line shape
function,8 as long as ��x� is nonzero everywhere. Equation
�5� may thus be viewed as a special integral transform that
converts any two-sided nonzero line shape function ��x�
into a one-sided PDF with all moments infinite, i.e., with a
heavy tail.

V. TWO-SIDED JUMP LENGTH PDF

Equation �5� is a one-sided PDF, as r�0. It is possible
to obtain from Eq. �5� a two-sided PDF, g�z�, that refers to
the distribution of jumps projected on an arbitrary axis �see
the Appendix�. This gives the jump length PDF for isotropic
homogeneous three-dimensional �3D� space, irrespective of
the azimuthal dependence, and is therefore the PDF to be
used in a unidimensional representation of radiation migra-
tion like the commonly used cases of plane parallel stratified
stellar atmospheres or the idealized one-dimensional �1D�
geometries in laboratory scale atomic vapor ensembles.11

This PDF is

g�z� = �

z


� f�r�
2r

dr = �
1

� f�
z
u�
2u

du . �29�

Using Eqs. �5� and �29�, the two-sided jump length PDF is
obtained as

g�z� =
1

2
�

−�

�

��u�2E1�
z
��u��du , �30�

where E1�x� is the exponential integral function, defined as
E1�x�=�x

� exp�−u� /udu=�1
� exp�−xu� /udu. It follows from

Eq. �29� that for all the cases discussed the asymptotic be-
havior of g�z� is identical to that of f�r�.
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VI. RESULTS FOR SELECTED LINE SHAPES

For the Lorentz line shape �Eq. �9�� p=2, hence8 �= 1
2 .

For the Doppler line shape �Eq. �8��,

��k� = − ln��k� , �31�

and Eq. �18� gives

f�r� � r−2�ln r�−1/2 � r−2. �32�

Therefore8 �=1, as mentioned above.
One may also consider more general line shape func-

tions, in order to better understand the relation between the
asymptotic behaviors of ��x� and of f�r�. We shall consider
a generalized Lorentz line shape,

�GL�x� =
N

1 + 
x
p
�p � 1� , �33�

where N is a normalization constant,

N =
1

2�
p sin��/p� , �34�

as well as a generalized Doppler line shape,

�GD�x� = N exp�− 
x
�� �� � 0� , �35�

with

N =
1

2��1 + 1/��
. �36�

The generalized Doppler line shape �Eq. �35�� encompasses
the Laplace distribution ��=1�, and the symmetric stretched
��1�, and compressed ���1� exponentials, as well as the
Gaussian distribution ��=2�.

The one-sided jump length PDFs of the generalized Lor-
entz and Doppler line shapes are shown in Figs. 1 and 2,
respectively, for representative values of the respective pa-
rameters. The asymptotic behavior starts to be observed for
opacities between 5 and 30, depending on the line shape and
on the numeric value of the corresponding parameter.

The two-sided jump length PDFs of the generalized Lor-
entz and Doppler line shapes are shown in Figs. 3 and 4,
respectively, for representative values of the respective pa-
rameters. These PDFs are infinite for z=0, owing to the sig-
nificant contribution of jumps almost orthogonal to the z axis
�note that this already occurs for an exponential jump length
PDF, as discussed in the Appendix�.

The opacity distribution functions are

HGL�k� =
2N

pk
�N

k
− 1�1/p−1

�0  k  N� �37�

and

FIG. 1. One-sided jump length PDF �Eq. �5�� for the generalized Lorentz
line shape �Eq. �33�� for p=1.3, p=2 �Lorentz�, and p=2.7.

FIG. 2. One-sided jump length PDF �Eq. �5�� for the generalized Doppler
line shape �Eq. �35�� for �=0.5 �stretched exponential�, �=1 �Laplace�, and
�=2 �Doppler�.

FIG. 3. Two-sided jump length PDF �Eq. �29�� for the generalized Lorentz
line shape �Eq. �33�� for p=1.3, p=2 �Lorentz�, and p=2.7.

FIG. 4. Two-sided jump length PDF �Eq. �29�� for the generalized Doppler
line shape �Eq. �35�� for �=0.5 �stretched exponential�, �=1 �Laplace�, and
�=2 �Doppler�.
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HGD�k� =
2

�
�− ln� k

N
�	1/�−1

�0  k  N� �38�

�see Figs. 5 and 6�. It is apparent that an increase in the
parameters p and � gives more weight to the higher effective
opacities.

Equation �26� applies to the generalized Lorentz line
shape, hence �=1−1/ p, and the most extreme superdiffu-
sive behavior is obtained for p→1 �see also Figs. 1, 3, and
5�. From Eq. �7�, this also implies that rc�t�� t1/�1−1/p�

� t1/�p−1� for p→1.
For the generalized Doppler line shape, on the other

hand, it can be concluded from Eq. �18� or �21� that �=1
holds irrespective of the value of �. One thus arrives to the
general result that the lighter the tail of ��x�, the less heavy
the tail of f�r�, although this tail is always heavy, as ��1.
The superdiffusive nature of the random flight originates
from the fact that whenever the frequency goes into the tail
of the spectral distribution, the mean free path increases
enormously. In a simulation, the long but infrequent jumps
must be generated with precise weights. For this purpose, the
use of the effective opacity PDF is preferable to the direct
use of line shape functions.

Trajectories generated from the generalized Lorentz and
Doppler line shapes by the Monte Carlo method are shown
in Figs. 7–9. Figure 7 shows that the overall topology of the
points visited by the fractal random walk depends mainly on
the shape of the spectral distribution. Within each type, an
increase in the value of parameters � or p reduces the im-
portance of the larger jumps �see the overall scales and es-

pecially the series of results for the Lorentz distributions�.
Figures 8 and 9 show the self-similar character of the trajec-
tories.

The Voigt line shape,11,13

�V�x� =
a

�3/2�
−�

+� e−u2

a2 + �x − u�2du , �39�

which is the convolution of the Gaussian and Cauchy line
shapes, is frequently used to take into account the joint effect
of natural broadening �pure Lorentz� or collisional broaden-
ing �to a first approximation described by a Lorentzian line
shape� and of Doppler broadening. Parameter a measures the
relative importance of the Lorentz linewidth with respect to
the Doppler linewidth. For a=0 the line shape is pure Dop-
pler, while for a=1 it is already very close to pure Lorentz in
the entire frequency range, as shown in Fig. 10. The Voigt
line shape function is known to have Doppler character close
to the line center, and to be dominated by the Lorentz func-
tion in the wings, provided a�0. Therefore, for any nonzero
value of parameter a, the asymptotic behavior of the Voigt
line shape is identical to that of the Lorentz function. The
effective opacity PDF for the Voigt line shape was numeri-
cally computed and is shown in Fig. 11 for several values of

FIG. 5. PDF of effective opacities for the generalized Lorentz line shape
�Eq. �37�� for p=1.3, p=2 �Lorentz�, and p=2.7.

FIG. 6. PDF of effective opacities for the generalized Doppler line shape
�Eq. �38�� for �=0.5 �stretched exponential�, �=1 �Laplace�, and �=2
�Doppler�.

FIG. 7. Single trajectories of 50 000 jumps each for the generalized Lorentz
and Doppler line shapes in infinite 3D medium �box length in parentheses�.
All trajectories were obtained with the same random number sequence.

FIG. 8. Single trajectories for the generalized Lorentz line shapes of Fig. 7
displaying self-similar behavior �10% of the whole scale zoomed on the
right�.
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parameter a. It is again observed that for a=0.5 it is close to
Lorentz’s, whereas for a=10−4 it coincides with the Doppler
PDF for most of the opacities.

VII. CONCLUSIONS

In this work, we considered the relation between the
one-sided jump length PDF and the line shape function in
resonance radiation trapping in atomic vapors. General rela-
tions that give the one-sided jump length PDF and the Lévy
parameter � for any line shape were obtained. The two-sided
jump length probability density function along an arbitrary
axis was also derived. As a side result, a procedure to obtain
the Maxwell distribution of velocities from the Maxwell-
Boltzmann distribution of speeds was obtained. The results
were applied to generalized Doppler, generalized Lorentz,
and Voigt line shape functions. It was concluded that the
lighter the tail of the line shape function, the less heavy the
tail of the one-sided jump length PDF, although this tail is
always heavy, as ��1. An important theoretical aspect that
remains to be tackled is the effect of partial frequency redis-
tribution on the above results. The experimental study of
resonance radiation trapping in atomic vapors with an em-
phasis on its spatial aspects may provide a clear physical
example of a superdiffusive Lévy flight.
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APPENDIX: CALCULATION OF THE TWO-SIDED JUMP
LENGTH PDF

Without loss of generality, the axis for which the two-
sided jump length PDF is computed may be conveniently
taken to be the z axis. In spherical coordinates, z=r cos �.
Given the assumption of isotropy, the PDFs of r and of � are,
respectively, f�r� and 1/2 sin �. Considering at first only
non-negative values of z and using the random variable
transformation theorem,1 the PDF for z is given by

g�z� = �
0

� �
0

�/2 �
0

2�

��z − r cos ��
1

4�
sin �f�r�d�d�dr

=
1

2
�

0

� �
0

�/2

��z − r cos ��sin �f�r�d�dr , �A1�

or, making the change of variable u=cos �,

g�z� =
1

2
�

0

� �
0

1

��z − ur�f�r�dudr , �A2�

that can in turn be transformed into

g�z� =
1

2
�

0

� f�r�
r ��

0

r

��v − z�dv�dr

=
1

2
�

0

�

��v − z���
v

� f�r�
r

dr�dv , �A3�

hence it is obtained that

g�z� = �
z

� f�r�
2r

dr �z � 0� . �A4�

Given the symmetry of the problem, the final result, valid for
any z, is

FIG. 9. Single trajectories for the generalized Doppler line shapes of Fig. 7
displaying self-similar behavior �40% of the whole scale zoomed on the
right�.

FIG. 10. The Voigt line profile �Eq. �39�� for several values of the a
parameter.

FIG. 11. PDF of effective opacities for the Voigt line shape �Eq. �39�� as a
function of the a parameter.
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g�z� = �

z


� f�r�
2r

dr = �
1

� f�
z
u�
2u

du . �A5�

A side comment is appropriate at this point: a well-known
procedure in the elementary kinetic theory of gases is the
calculation of the Maxwell-Boltzmann distribution of speeds
from the Maxwell distribution of velocities.14 Mutatis mutan-
dis, Eq. �A5� allows to do the opposite, i.e., to obtain the
Maxwell distribution of velocities from the Maxwell-
Boltzmann distribution of speeds.

The simplest case that can be considered for application
of Eq. �A5� is an isotropic random walk in 3D with constant
step length, f�r�=��r− l�. It is then obtained that g�z�
=1/ �2l� for −lz l and g�z�=0 otherwise. Another case of
interest is that of an exponential distribution of step lengths,
f�r�=r0

−1 exp�−r /r0� where r0 is the average jump length. For
this PDF one obtains g�z�= �2r0�−1E1�
z
 /r0�, where E1�x� is
the exponential integral function, defined as E1�x�
=�x

� exp�−u� /udu=�1
� exp�−xu� /udu.
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