
EngOpt 2008 - International Conference on Engineering Optimization
Rio de Janeiro, Brazil, 01 - 05 June 2008.

Project Management – Multiple Resources Allocation

Anabela P. Tereso∗ Madalena M. Araújo† Rui S. Moutinho‡ Salah E. Elmaghraby§

∗anabelat@dps.uminho.pt †mmaraujo@dps.uminho.pt ‡rumout@gmail.com §elmaghra@eos.ncsu.edu
∗†‡: Departamento de Produção e Sistemas

Universidade do Minho

4800-058 Guimarães

PORTUGAL

§: North Carolina State University

Raleigh, NC 27695-7906

USA

1. Abstract
Given a project network under stochastic conditions, the goal is to determine the optimal resource
allocation to the activities in order to minimize the total project cost. This cost includes the resource
cost and the tardiness cost. In this work we consider the multiple resources case, which is an extension of
the models previously developed by the first author and other researchers, considering a single resource.
We assume that all the resources are independent and abundant.

The work consists mainly of two parts: formalization of the new models, and their implementation
in Java. In order to formalize the models, it was necessary to establish an allocation strategy for the
multiple resources. This is required to ensure the desired equality of expected durations yielded by each
resource in the same activity. We study four different allocation strategies: two of them are derived from
the stochastic nature of the work content by equalizing the expected durations, thus determining the
allocation vectors; and the other two go down to the level of all possible values to devise an allocation
method (among all the allocation vectors, selects those leading to equal expected durations). Then the
probability distributions of the variables required for analysis and evaluation were determined.

Although the research has covered four strategies, one proved to be inferior compared to the others,
and another was too complex to be easily implemented. The remaining two are strong rivals with neither
dominating the other, and one of them was arbitrarily chosen for implementation.

The implementation covers three algorithms: Dynamic Programming Algorithm, Electromagnetic Al-
gorithm and Evolutionary Algorithm. Concurrent programming was exploited to enhance performance.
We report on the performance of our application over a representative set of project networks.

2. Keywords: Project Management and Scheduling, Stochastic Activity Networks, Resource Alloca-
tion, Multiple Resources, Dynamic Programming, Electromagnetic Algorithm, Evolutionary Algorithm

3. List of Acronyms
PLC: Project Live Cycle

AoA: Activity-on-Arc

DP: Dynamic Programming

GOA: Global Optimization Algorithm

EMA: Electromagnetic Algorithm

EVA: Evolutionary Algorithm

RCPSP: Resource Constraint Project Scheduling Problem

DPA: DP-based Algorithm

DAG: Directed Acyclic Graph

SRPCO: Single Resource Project Cost Optimization

MRPCO: Multiple Resources Project Cost Optimization

QORAS: Quantity Oriented Resource Allocation Strategy

DORAS: Duration Oriented Resource Allocation Strategy

WBRAS: Waste Balance Resource Allocation Strategy

DC-Pair: Duration-Cost Pair

OF: Objective Function

4. Introduction and Review of Previous Work
This paper addresses the work first described on [1], and gives an overview of the developments to date
on the expansion of the previous work to the multiple resources scenario.

We are concerned with the planning stage of the PLC (Project Live Cycle). Given a project which
activities are represented in an AoA (Activity-on-Arc) network; we wish to evaluate the optimal allocation
vector so as to minimize the total project cost. This latter is composed of two parts: the cost of the
resource usage and the penalty for defaulting on a prescribed due date. Furthermore, the activities are
assumed to be multimodal and stochastic in nature.

The minimization of project’s total cost under stochastic conditions has been addressed before. These
contributions varied from the initial DP (Dynamic Programming) oriented approach (on Matlab) to the
application of global optimization algorithms (on Java).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55609423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


After the first DP implementation in Matlab [2], a GOA (Global Optimization Algorithm), the EMA
(Electromagnetic Algorithm) was implemented, still in Matlab [3]. Seeking better performance, the first
two approaches were re-implemented in Java [4, 5]. Then, another GOA, the EVA (Evolutionary Algorithm)
was also applied to this problem [6]. The Java implementations exploited a distributed platform.

All these studies considered the projects with only one resource. Our work is still under the RCPSP
(Resource Constraint Project Scheduling Problem) for minimization of total project cost but with an
arbitrary number of resources. Thus, our work objectives are:
• To develop new models involving multiple resources projects. One for each optimization method:
DPA (DP-based Algorithm), EMA and EVA;

• Implementation of the new models in Java; exploiting concurrent programming.
Furthermore, we shall assume the following premisses:
• The AoA representations will not have any dummy activities and are DAG (Directed Acyclic Graph)

with only one initial node and one and only one final node;
• The project has a well determined set of resources available;
• The project activities can consume only a subset of the project resources;
• The quantity cost per unit is fixed. That means that the cost of the resources consumption do not

changes during the execution of the project, e.g., interests according to delays.
• The resources are independent from each other, meaning that any resource may be used concur-

rently with others without any restrictions;
• The resources are abundant. There are no allocation restrictions concerning either concurrent or

sequential activities.

5. Allocation Strategies
On SRPCO (Single Resource Project Cost Optimization) models so far implemented, the behavior of an
activity was fully described by its single resource. However, on the new MRPCO (Multiple Resources Project
Cost Optimization) models we need to describe that behavior with each resource. So, each resource will
have its own work content and allocation constraints according to each activity’s needs.

5.1. The Impact of Resource Multiplicity
The extension of the project cost evaluation from the SRPCO model is quite straightforward. The multi-
plicity of resources simply induces a sum of the allocation cost of each resource of each activity. Thus,
the total project cost C is

C = E

[∑
a∈A

∑
r∈Ra

(cr × xa

r ×W a

r) + cL×max
0,Υn−T

] (1)

where the following notation applies:

A: set of project activities;
Ra: project resources subset needed by activity a
cr: quantity cost per unit of resource r
xa
r: allocated quantity of resource r on activity a

W a

r ∼ Exp (λa
r): Work content of resource r on

activity a
Υn: Evaluated realization time of last node
T : Schedule project realization time

To each resource allocation to an activity is associated an individual duration Y a

r evaluated similar
to the SRPCO model.

Y a

r =
W a

r

xa
r

(2)

The actual activity duration – Y a – is, therefore, the maximum of those individual ones.

Y a = max
r∈Ra

Y a

r

 (3)

Clearly it makes little sense to expend more of a resource (and incur a higher cost) to have the
activity duration under this resource less than its duration under any other resource. Thus, it is desired
to have

Y a

i = Y a

j , ∀i, j ∈ Ra (4)

2



or, since there are random variables involved,

E [Y a

i ] = E
[
Y a

j

]
, ∀i, j ∈ Ra (5)

To ensure allocation vectors leading to the desired equality, at least three strategies can be devised.

5.2. Quantity Oriented Strategy
The QORAS (Quantity Oriented Resource Allocation Strategy) starts from the equality of individual dura-
tions in expectation and rearranges the equation so that the resources are all expressed relative to one
of them, which shall be referred to as the “base” resource. This is possible because when considering ex-
pectations there are no longer random variables to deal with and one can easily transform the allocation
problem of several resources into just one. The remaining allocations are immediately known through
knowledge of the “base” resource allocation.

Despite its simplicity and intuitive appeal, this strategy needs frequent corrections to the allocations
in order to ensure that they remain in their feasible regions and the proportionality relations between
them are preserved. This corrective mechanism becomes increasingly complex and hard to implement
as the number of resources per activity increases. Furthermore, this strategy fails in situations where
the desired equality is impossible to realize.

5.3. Duration Oriented Strategy
This approach – DORAS (Duration Oriented Resource Allocation Strategy) – depends on sampling the
work content. Then, the samples of the individual durations are determined by evaluating the possible
durations according to the feasible allocation values.

The approach proceeds by evaluating the possible common durations via intersecting all the com-
binations of the sampled individual durations. Then, it filters those intervals leaving only the larger
ones (those that yielded more feasible resources). If the filtering results in just one interval, we have in
hand the possible equal durations yielded by all resources, and the desired equality is satisfied. Else, it
chooses the interval with the higher value. Either way, the durations of the selected interval are used to
retrieve the allocation vector (of the involved resources) leading to each of them. Those resources not
contributing to the selected interval, are put equal to their minimum values.

This strategy is too complex to be implemented. Its algorithms experience exponential growth in
both number of activities and resources. However, it copes rather well with any number of resources
and with the cases when the equality of individual durations is impossible to achieve.

5.4. Waste Balanced Strategy
In the WBRAS (Waste Balance Resource Allocation Strategy) we establish a mechanism that ensures always
equal individual durations; see Figure 1.

r1 r2 r3 r4 r5

Y a
3

Y a = Y a
4 maintenance phase

execution phase
Y a

3 duration yield by resource r3 (execution)
Y a

4 duration yield by resource r4 (execution)

Y a duration of the activity

Figure 1: WBRAS: Activity duration with balanced individual durations

If we designate the time from the moment when a resource ceases to be needed to the end of the
activity execution as “maintenance time”, then we are able to quantify the inequality of individual
durations. Each resource that lies unused may carry maintenance fees: storage, lifetime decline; etc.
Thus, we may conceptualize an activity as being a set of sub-activities in parallel, one per each resource,
and composed of an execution phase followed by a maintenance phase. The maintenance duration for a
resource r ∈ Ra is simply the difference of the activity duration and the individual duration yielded by
r alone. In Figure 2 on the next page we can see this conceptualization for a single activity.

3



ni ni

b1 b2 b3

nj nj

a

e1 e2 e3

m1 m2 m3

Figure 2: WBRAS: Extended activity concept (3 sub-activities where ei are the execution phases; mi the
maintenance phases and bi the balance nodes)

By having that maintenance duration, we can apply to it a (time) unit cost; and so we can incorporate
the maintenance cost into the resource allocation cost (the previously defined one). This way we ensure
optimal allocations through the project total cost. It is important to notice that in order for this strategy
to be correctly applied, the project must be explicitly “maintenance aware”. By this we mean that the
actual project cost to be optimized must be the sum of the project cost of allocations including the
maintenance costs. If we then discard the maintenance portion we would not know whether or not the
allocation cost is the optimal. In fact, this strategy induces a new factor that characterizes the project.

6. Optimization Models for Multiple Resources
We base our models on the WBRAS. From this strategy we get the maintenance durations depending on
the activity duration, which is a random variable. Thus, the maintenance duration is a random variable
and, consequently, the maintenance cost is also a random variable.

Since the DP-based approach is based upon decisions made accordingly to stages, we must take care
of both the randomness nature and the dependency of the maintenance duration/cost. On the other
hand, the GOA-based model is quite straightforward. In the next two sections we explain the two models.

6.1. DP-Based Model
This section assumes previous background knowledge of the references cited in section 4 on page 1.

All the random variables present on the model are, ultimately, dependent on the work content of the
resources. So, by creating representative samples for those work contents, we can derive samples for all
the other random variables.

A representative sample of size n of a work content W ∼ Exp (λ) is created by evaluating the sample
values ωi, i = 1, . . . , n where each one has probability equal to 1/n and

E [{ωi | i = 1, . . . , n}] =
ω1 + · · ·+ ωn

n
=

1
λ

= E [W ] (6)

One way of describing the relationship between an activity duration and its maintenance cost is
through the following set, for an arbitrarily fixed activity allocation vector:

Φa =

{(
ψ,
∑
i∈Ra

(si (ψ − ψi))

)∣∣∣∣∣ψ = max
i∈Ra

ψi , ∀ψi ∈ Ya

i

}
(7)

Each Ya

i is a sample of an individual duration resulting from the allocation of each resource i to
activity a. ψ represents a sample value of the maximum of the individual durations, hence a sample
value of Y a. The si values are the maintenance cost per unit time of each resource. Thus, each
element of Φa associates an activity duration sample value (the first component of the element) with the
maintenance cost (the second component of the same element). Each one of elements in Φa will be named
as DC-Pair (Duration-Cost Pair) and the ensemble represents the sample values of the relation between
the activity duration and the maintenance cost. Each pair has the probability of realization equal to
the probability of the first component because of the strict relationship between the two components of
each pair in Eq. (7).

The sample Φa yields a distribution of the two parameters involved in the DC-Pair. This distribution
approximates the real distribution of these parameters and the approximation improves with increase in
the sample size.

4



For the evaluation of the realization times of the nodes on the AoA representation, we need to cope
with the newly defined Φa, ∀a ∈ A. More precisely, the realization of a node must contemplate the new
factor – maintenance cost. Consequently, the states now must be vectors of DC-Pair instead of only
realization times. Thus, given such a state1 sl we want to estimate the realization of a node. To achieve
that estimation we must know the distributions for the activities which connect the state nodes to the
target one. But then we need to specify that transition. Thus when, say, we go from state node n to
node k through activity a we must add the activity duration to the realization time of the node n and
store the maintenance cost of the activity, hence the following equation:

Φ[n,a] = {(αn + αa, βa)|∀ (αa, βa) ∈ Φa} , (αn, βn) state on node n (8)

Notice that we do not want to add the maintenance cost of the state node. This will ensure that no cost
is duplicated further on.

The actual estimation on the realization of a node will be determined from one of two scenarios.
If the node is already contemplated on the state, then nothing is to be determined (its realization is
already known). Else, we must set its realization time as the maximum of all the “arriving” activities
contributions (durations) and add all the maintenance costs from them. Already on Eq. (8) we described
the transition from a state node through an (arriving) activity to another node. Now, we must have a
function that wraps those transitions in order to describe the above behavior:

DCmax
Φ1, . . . ,Φn

 =

{(
n

max
i=1

αi ,

n∑
i=1

βi

)∣∣∣∣∣∀ (αi, βi) ∈ Φi

}
(9)

Hence, the estimate realization of a node k (denoted as Υk), given a state sl is:

Υk =


{(αk, βk)} , node k contemplated on state sl

DCmax
(n,a)∈P

Φ[n,a]

 , otherwise (10)

where (αk, βk) is the state on node k case it is contemplated on state sl and P is the AoA network
part preceding node k, with each element representing a predecessor node and the activity on the arc
connecting it to node k.

The cost of resource utilization in an activity (referred to as “the quantity cost of an activity”) is
evaluated differently from the maintenance cost. So, let C a

Q be the quantity cost of activity a:

C a

Q =
∑
r∈Ra

(cr × xa

r ×W a

r) (11)

Let F denote the set of all “fixed activities” (those which resources’ allocation are not decision
variables but rather fixed), the resource quantity cost of the fixed activities (denoted by rcfQ) is given
by

rcfQ = E

[∑
a∈F

C a

Q

]
=
∑
a∈F

∑
r∈Ra

(cr × xa

r ×E [W a

r]) (12)

Finally, indexing the decision activities by their stage, the first stage formula for the DP-based model
is:

f1(s1|F) = rcfQ + min
X1

E[C 1
Q + E

[
sumpair

(
cL ×̇U

)]] (13)

where U reflects the tardiness of the project:

U = DCmax
0,Υn−T

 (14)

where Υn represents the realization of the last node and Υn−T means subtracting the constant T to
all of the first components of the elements of Υn. The notation h when h is a constant refers to the

1We use the same notation for both maintenance cost per unit time and states. That should not pose a problem as the
correct meaning shall be transparent from the context.

5



DC-Pair distribution composed by only one element (of probability 1) in which the first component is
equal to h and the second equal to zero. Thus

0 = {(0, 0)} T = {(T, 0)} (15)

The function ×̇ multiplies cL with the first component of each element of U; resulting in a new
distribution whose elements associate the tardiness cost (fist component) to the maintenance cost (second
component). Then, the function sumpair adds those two costs on each element; thus resulting in a
distribution whose elements are the sums. Both ×̇ and sumpair do not alter the probability of the initial
pairs. So, the probability of each sum is equal to the one of the original pair.

The formula for stages k > 1 is2:

fk(sk|F) =
∑

(α,β)∈s′k

β + min
Xk

E[C k

Q + E [fk−1(sk−1|F)]
] (16)

where s′k = sk \ sk−1. Then, the main formula of the model is:

f(sK = 0) = min
F

fK(sK |F)
 (17)

where sK = 0 means the initial state. This is associated with the initial node and represents zero
duration and zero maintenance cost.

6.2. GOA-Based Model
The GOA implementations will rely on the Monte Carlo Simulation over the work contents. Thus, for
the evaluation of the total project cost it is only required to process the realization (execution and
maintenance durations) of each node; evaluate the total maintenance cost and add it to the tardiness
cost and quantity allocation cost. Because of the random nature of the choice of values for the work
contents, we no longer have to deal with random variables. Thus the model is linear.

Let us denote by C a

M the maintenance cost associated of the activity a ∈ A evaluated as:

C a

M =
∑
r∈Ra

(sr × (Y a−Y a

r)) (18)

Recall from above evaluation of C a

Q and Υn that both involve deterministic values in this context.
The GOA will minimize the following function:

f =
∑
a∈A

(
C a

Q + C a

M

)
+ cL×

(
max

0,Υn−T
) (19)

7. Implementation on Java
The models were implemented in Java 1.6. A single command line application was created to deal with
all the models and runtime specifications: optimization engine; with or without parallel exploitation;
engine configurations; etc.

7.1. AoA Representation
A complete library for AoA network manipulation, including basic construction, was implemented to deal
with the new activities with multiple resources.

7.2. Distributions
To help work with distributions, a complete library of classes was implemented. These can sample a
continuous distribution or even create a partition of a given interval. For example, one of the classes
can create sample distributions of the exponential distribution with arbitrary number of sample values.
Also, the classes allow operations like the sum or maximum of distributions.

2For ease of notation we make an abuse of language: despite sk being a vector we address each of its components as it
were a set; hence the use of ∈ and set difference.

6



7.3. Combinatorics
The frequent need for walking through all the possible combinations of a number of (partitioned) variables
led to the creation of classes providing linear addressing of those. Thus, instead of computing complex
nesting “for” cycles, we can simply walk from the first combination to the last, deterministically and
linearly. Also it is possible to process asynchronously subsets of the combinations: useful for distributed
systems.

7.4. DP Model Specifics
The implementation of the DP model follows the natural recurrence of the model. This brings weaker
performance to the application but achieves more accurate results.

7.5. GOA Model Specifics
Both EMA and EVA use entities mapped as vectors. This causes a problem when applied to activities with
multiple resources. Thus, instead of representing each activity on each vector component, we concatenate
all the allocation vectors of the activities and mark the start and end locations. The GOA proceeds like
usual and at the end we re-assemble the activities allocation vectors.

The EMA algorithm was adapted from the original imperative-oriented form to an object-oriented
form; allowing easy addition of improvements like the concurrent programming. The EVA algorithm was
also tuned up.

7.6. Parallelism Exploitation
The DPA can be divided in several independent tasks: one per each allocation combination of the fixed
activities. Also, the GOA involve several replication runs before giving the final (better) result. Thus, we
enable these tasks to be processed concurrently.

For the GOA, usually the evaluation of the OF (Objective Function) value is not immediately required
as other operations need to be performed first. For example, in the EMA the computation of the forces
do not take all the OF values at once; and on the EVA the OF values are only required at the time of
selection. We exploited this fact by enabling the OF value evaluation to be asynchronous. That is,
instead of evaluating one-at-a-time without doing nothing else; it is possible to instruct each entity to
evaluate its own OF value while the main process continues the underlying operations. Later, when the
OF values are actually needed they will (hopefully) be ready; otherwise the main process waits (but only
as needed, not always).

8. Results
The implementation was tested on Windows Vista with Java virtual machine 1.6 at 64 bits. The
processor was a Duo T7300 and 2GB of RAM. All the tests still running after 5 hours were canceled.

All the tested projects have all the resources with the allocation interval set as [0.5, 1.5]. The tests
cover the application of the DPA, EMA and EVA at both single-thread and multi-thread mode. Also, two
different configurations were applied on the EMA and EVA: k = 500 and k = 5000. K is the number of
random values used for the work contents (Monte Carlo Simulation). The DPA was performed with work
content sample sizes of 4 elements.

The results between single-threaded and multi-threaded runs were consistent with each other. For
brevity, we only present one allocation vector (the one resulting from the single-threaded run) for both
cases. The allocation vectors are presented respecting the natural order of the resources indexation. For
example, if an activity a has the resources r1, r3 and allocation vector Xa = (1, 2) then xa

1 = 1, xa
3 = 2.

The DPA outputs allocation vectors for the first decision activity and for all the fixed activities. The
difference between the decision and fixed allocation vectors is made through the use of Xa = {1, 2} for
the decision activities and Xa = (1, 2) to all the others.

In the topology figures, the thicker edges signal a decision activity.

7



8.1. Test A

1

2

3

a1

a3

a2

Figure 3: AoA Topology with 3 activities and 3 nodes

Table 1: Project A.a – Single Resource
T = 16

cL = 2

a1 a2 a3

λa
1 0.2 0.1 0.07

cr sr

r1 1.0 0.0

Table 2: Project A.a – Runtime Statistics
DPA EMA (k = 500) EMA (k = 5000) EVA (k = 500) EVA (k = 5000)

Linear 0:00:00.203 0:00:01.450 0:00:05.445 0:00:01.294 0:00:04.977
Concurrent 0:00:00.171 0:00:00.889 0:00:03.385 0:00:01.450 0:00:03.728

Table 3: Project A.a – Allocation Results
a1 a2 a3 OF value

DPA {1.0} (1.0) 43.7
EMA(k = 500) (0.911) (0.888) (0.851) 37.531
EMA(k = 5000) (0.872) (0.911) (0.854) 38.988
EVA(k = 500) (0.874) (0.887) (0.84) 37.291
EVA(k = 5000) (0.892) (0.879) (0.841) 38.68

Table 4: Project A.b – Multiple Resources (configuration one)
T = 41

cL = 2

a1 a2 a3

λa
1 0.07 0.09
λa
2 0.1 0.04
λa
3 0.2

cr sr

r1 1.0 1.0
r2 1.1 2.0
r3 1.0 0.5

Table 5: Project A.b – Runtime Statistics
DPA EMA (k = 500) EMA (k = 5000) EVA (k = 500) EVA (k = 5000)

Linear 0:00:00.842 0:00:02.910 0:00:12.745 0:00:02.106 0:00:09.790
Concurrent 0:00:00.827 0:00:01.436 0:00:07.285 0:00:01.779 0:00:06.193

Table 6: Project A.b – Allocation Results
a1 a2 a3 OF value

DPA {1.5, 1.0, 1.0} (0.5) 113.147
EMA(k = 500) (1.164, 0.814, 0.5) (1.096) (0.5) 84.742
EMA(k = 5000) (1.223, 0.856, 0.501) (1.102) (0.501) 88.108
EVA(k = 500) (1.195, 0.836, 0.5) (1.087) (0.5) 84.335
EVA(k = 5000) (1.118, 0.782, 0.5) (1.113) (0.5) 87.234

Table 7: Project A.c – Multiple Resources (configuration two)
T = 61

cL = 2

a1 a2 a3

λa
1 0.1 0.03
λa
2 0.2 0.06 0.07
λa
3 0.03 0.09
λa
4 0.04 0.04 0.07

cr sr

r1 1.0 1.0
r2 1.1 2.0
r3 1.0 0.5
r4 2.0 0.1

Table 8: Project A.c – Runtime Statistics
DPA EMA (k = 500) EMA (k = 5000) EVA (k = 500) EVA (k = 5000)

Linear > 5h 0:00:07.660 0:00:58.812 0:00:03.978 0:00:29.160
Concurrent > 5h 0:00:04.410 0:00:31.153 0:00:03.339 0:00:16.680

8



Table 9: Project A.c – Allocation Results
a1 a2 a3 OF value

DPA aborted
EMA(k = 500) (0.568, 0.5, 1.421) (1.072, 0.547, 1.072, 0.804) (0.64, 0.504, 0.64) 274.8
EMA(k = 5000) (0.557, 0.5, 1.393) (1.053, 0.536, 1.054, 0.79) (0.621, 0.507, 0.622) 281.107
EVA(k = 500) (0.533, 0.5, 1.331) (1.048, 0.542, 1.048, 0.786) (0.523, 0.5, 0.523) 269.528
EVA(k = 5000) (0.507, 0.5, 1.267) (1.058, 0.533, 1.058, 0.805) (0.542, 0.5, 0.567) 276.860

8.2. Test B

1

2

3

4

5

a1

a2

a3

a4

a5

a6

a7

Figure 4: AoA Topology with 7 activities and 5 nodes

Table 10: Project B.a – Single Resource
T = 66

cL = 5

a1 a2 a3 a4 a5 a6 a7

λa
1 0.08 0.06 0.09 0.05 0.07 0.03 0.04

cr sr

r1 1.0 0.0

Table 11: Project B.a – Runtime Statistics
DPA EMA (k = 500) EMA (k = 5000) EVA (k = 500) EVA (k = 5000)

Linear 0:00:50.607 0:00:04.461 0:00:34.351 0:00:03.270 0:00:18.189
Concurrent 0:00:30.467 0:00:02.808 0:00:16.707 0:00:02.714 0:00:11.123

Table 12: Project B.a – Allocation Results
a1 a2 a3 a4 a5 a6 a7 OF value

DPA {1.5} (1.0) (1.0) (1.5) 205.541
EMA(k = 500) (1.364) (0.87) (1.117) (0.882) (1.127) (1.053) (1.319) 209.633
EMA(k = 5000) (1.265) (0.872) (1.209) (0.894) (1.093) (1.027) (1.301) 218.927
EVA(k = 500) (1.415) (0.939) (1.249) (0.891) (1.064) (1.024) (1.316) 209.182
EVA(k = 5000) (1.432) (0.925) (1.201) (0.886) (1.075) (1.055) (1.374) 216.076

Table 13: Project B.b – Multiple Resources (configuration one)
T = 129

cL = 5

a1 a2 a3 a4 a5 a6 a7

λa
1 0.02 0.04 0.03 0.04 0.07
λa
2 0.08 0.04 0.06 0.05 0.08

cr sr

r1 1.0 1.0
r2 1.1 2.0

Table 14: Project B.b – Runtime Statistics
DPA EMA (k = 500) EMA (k = 5000) EVA (k = 500) EVA (k = 5000)

Linear 0:42:07.293 0:00:07.846 0:01:05.208 0:00:04.524 0:00:35.318
Concurrent 0:25:52.130 0:00:04.337 0:00:33.150 0:00:03.572 0:00:19.516

Table 15: Project B.b – Allocation Results
a1 a2 a3 a4 a5 a6 a7 OF value

DPA {1.5, 0.75} (1.0) (0.5) (1.0) 393.297
EMA(k = 500) (1.5, 0.5) (0.5) (1.5) (0.5) (1.339, 0.804) (0.658) (1.104, 0.966) 361.883
EMA(k = 5000) (1.5, 0.5) (0.5) (1.5) (0.5) (1.272, 0.763) (0.643) (1.146, 1.002) 376.068
EVA(k = 500) (1.5, 0.5) (0.5) (1.499) (0.5) (1.274, 0.764) (0.659) (1.22, 1.068) 360.236
EVA(k = 5000) (1.5, 0.5) (0.5) (1.484) (0.5) (1.282, 0.769) (0.651) (1.191, 1.043) 374.425

Table 16: Project B.c – Multiple Resources (configuration two)
T = 155

cL = 5

a1 a2 a3 a4 a5 a6 a7

λa
1 0.04 0.02 0.04 0.07
λa
2 0.02 0.07 0.04
λa
3 0.03 0.09 0.05 0.024

cr sr

r1 1.0 1.0
r2 1.1 2.0
r3 1.0 0.5

9



Table 17: Project B.c – Runtime Statistics
DPA EMA (k = 500) EMA (k = 5000) EVA (k = 500) EVA (k = 5000)

Linear > 5h 0:00:10.904 0:01:32.493 0:00:05.522 0:00:48.126
Concurrent > 5h 0:00:05.709 0:00:49.470 0:00:03.915 0:00:24.757

Table 18: Project B.c – Allocation Results
a1 a2 a3 a4 a5 a6 a7 OF value

DPA aborted
EMA(k = 500) (1.5) (0.5) (1.5) (0.667, 0.519) (1.436, 0.575) (0.564, 0.564, 0.939) (1.429) 429.936
EMA(k = 5000) (1.5) (0.5) (1.499) (0.656, 0.51) (1.453, 0.582) (0.575, 0.575, 0.958) (1.45) 447.548
EVA(k = 500) (1.494) (0.5) (1.499) (0.679, 0.529) (1.452, 0.681) (0.575, 0.575, 0.958) (1.421) 433.6
EVA(k = 5000) (1.5) (0.5) (1.5) (0.653, 0.51) (1.427, 0.571) (0.548, 0.548, 0.914) (1.359) 441.731

9. Discussion and Conclusion
For small networks with few resources, the DPA is acceptable and is even faster than the GOA with large
samples (high k). But, as soon as the networks grow by the number of resources the DPA quickly rises
to run times far beyond 5 hours, while the GOA stay between few seconds to a couple of minutes; even
with very large k. The EVA is the algorithm that results in the best performance.

The performance of all algorithms reflects the benefits of the concurrent programming.
The resulting allocations and OF values obtained by the several algorithms are consistent with each

other.
The large k = 5000 showed no improvement on the results produced with the GOA.
We conclude that the simple (recurrent) implementation of the DPA is not suitable for practical tests,

while the GOA represent a good alternative in both performance and OF values. A new implementation
of the DPA is, therefore, desirable in order to expand the spectrum of tested projects.

10. References

[1] R. Moutinho. Gestão de Projectos – Alocação de Múltiplos Recursos. Relatório de estágio, Univer-
sidade do Minho, December 2007.

[2] A. P. Tereso, M. M. T. Araújo, and S. E. Elmaghraby. Adaptive Resource Allocation in Multimodal
Activity Networks. International Journal of Production Economics, 92(1):1–10, November 2004.

[3] A. P. Tereso, M. M. T. Araújo, and S. E. Elmaghraby. The Optimal Resource Allocation in Stochastic
Activity Networks via the Electromagnetism Approach. Ninth International Workshop on Project
Management and Scheduling (PMS’04), April 2004.

[4] A. P. Tereso, J. R. M. Mota, and R. J. T. Lameiro. Adaptive Resource Allocation to Stochastic
Multimodal Projects: A Distributed Platform Implementation in Java. Control and Cybernetics
Journal, 35(3):661–686, 2006.

[5] A. P. Tereso, R. A. Novais, and M. M. T. Araújo. The Optimal Resource Allocation in Stochastic Ac-
tivity Networks via the Electromagnetism Approach: A Platform Implementation in Java. Reykjav́ıc,
Iceland, July 2006. 21st European Conference on Operational Research (EURO XXI). Submitted to
the “Control and Cybernetics Journal” (under revision).

[6] A. P. Tereso, L. A. Costa, R. A. Novais, and M. T. Araújo. The Optimal Resource Allocation
in Stochastic Activity Networks via the Evolutionary Approach: A Platform Implementation in
Java. Beijing, China, May 30 – June 2 2007. International Conference on Industrial Engineering and
Systems Management (IESM’ 2007). Full paper published in the proceedings (ISBN 978-7-89486-
439-0) and submitted to the “Computers and Industrial Engineering”.

10


