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Abstract. Genome-scale model reconstruction represents a major tool in the field of Metabolic 
Engineering .This paper reports on a study about data integration issues in the process of ge-
nome-scale reconstruction of the metabolic model of the bacterium Zymomonas mobilis, a 
promising organism for bioethanol production. Data is retrieved from the Entrez Gene, KEGG, 
BioCyc and Brenda databases, and the several processes involved in data integration from these 
sources are described, as well as the data quality issues. 
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1   Introduction 

Genome-scale reconstructed metabolic models are based on the well-known stoichiome-
try of biochemical reactions and can be used for simulating in silico the phenotypic be-
haviour of a microorganism under different environmental and genetic conditions, thus 
representing an important tool in metabolic engineering [1]. However, while the recon-
struction of the metabolic network of an organism is likely to become a widespread pro-
cedure, starting with the fully sequenced and (partially) annotated genome sequence, it is 
currently far from being a standardized methodology [2]. This is due in part to the lack of 
uniform computational tools for model reconstruction, but primarily to the difficulties as-
sociated with the extraction of information other than what is available from the anno-
tated genome. 

In this paper, we address the reconstruction of the metabolic model of Zymomonas 
mobilis ZM4, among the most promising microorganisms for ethanol fuel production 
[3]. The genome-scale metabolic reconstruction is imperative for the feasibility of on-
going studies since there is no available genome-scale metabolic model for this organ-
ism. The number of reports in current literature studying its in vivo physiology  
remains small and there is a limited use of the metabolic engineering experimental 
and computational tools in the understanding of its metabolic pathway interconnectiv-
ity [4]. Therefore, genome-scale metabolic modeling stands out as one of the most 
promising approaches to obtain in silico predictions of cellular function based on the 
interaction of the cellular components [5,2]. 
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This work is focused on the first steps of metabolic network reconstruction aiming 
at delivering valuable forms of automation that can assist on the collection and proc-
essing of the information required. This case study is invaluable, because of its impor-
tance as an ethanologenic source and the scarce availability of data to support related 
research. However, the workflow was planned in order to account for data issues in an 
organism-independent way. All the processes and analysis guidelines proposed can be 
applied to the reconstruction of models of other organisms, adjusting only data re-
trieval processes from particular repositories. 

The main focus of this work lays on data integration planning, in particular on the 
assessment of data quality. Handling the diversity and quality of the contents along 
with data formats and structure is determinant to obtain a consistent repository. Most 
of the times, biologists rely on particular data sources, which they are familiar with. 
Understanding the reasoning that drives the expert while manually searching for data, 
allows the identification of the basic set of elements from each source and, far more 
important, how data sources can be linked together. From then on, source information 
extraction and preliminary processing can be fully automated and multi-source data 
integration can be achieved. 

The establishment of a fully automated dataflow is inconceivable because data quality 
poses challenging issues that require expert non-trivial evaluation. Intra-source data qual-
ity is often disputable. Misspellings, nulls, duplicates and inconsistencies may undermine 
data acquisition and further integration. Multi-source integration raises additional quality 
concerns due to the scarce use of standard nomenclatures that raises terminological is-
sues, namely term novelty, homonymy and synonymy. However, data processing can ac-
count for the most common issues, delivering descriptive quality-related statistics and 
proposing, when possible, candidate solutions to the integration and data quality issues. 

2   Information Requirements  

The genome-scale reconstruction of a metabolic network encompasses several steps 
[1], as depicted on Fig. 1. : (1) genome annotation; (2) identification of the biochemi-
cal reactions from the annotated genome sequence and available literature; (3) deter-
mination of the reaction stoichiometry including cofactor requirements; (4) definition 
of compartmentation and assignment of reaction localizations; (5) determination of 
the biomass composition; (6) measurement, calculation, or fitting of energy require-
ments; and (7) definition of additional constraints.  

The process is laborious and requires substantial manual evaluation of the 
stoichiometry of different reactions in the network: whereas it typically takes 10% of 
the reconstruction time to collect 90% of all reactions from the annotated genome se-
quence, the remaining 90% of the time is spent collecting the remaining 10% of data 
from literature. The present work discusses the shadowed steps of the figure, namely 
the identification of reactions and collection of stoichiometric data. 

For the microorganisms with fully sequenced genomes, the process of reconstruct-
ing the metabolic network starts with a careful inspection of the data obtained from 
the genome annotation. The process can be initiated by consulting a public repository 
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Fig. 1. An illustration of the metabolic network reconstruction process 

of genome sequence data, such as GOLD [6], TIGR [7] or NCBI [8]. Important data 
to be extracted from these sources include gene or open reading frame (ORF) names, 
assigned cellular functions, sequence similarities, and, for enzyme encoding genes, 
the Enzyme Commission (EC) number(s) corresponding with the gene products. From 
the complete set of sequenced genes, only the genes encoding enzymes and mem-
brane transporters are used for the reconstruction. 

At the end of this process, the names of the genes assigned during genome annota-
tion, the names of the reactions, reactants and products for each reaction should all be 
included in the reaction list. Typically, the initial reconstruction only considers genes 
that code for enzymes with EC numbers assigned. Public pathway databases, such as 
BRENDA [9] or KEGG [10] provide detailed information about each individual reac-
tion catalyzed by a enzyme with assigned EC number.  

Then, the reaction set has to be complemented with reactions catalyzed by enzymes 
that do not have EC numbers assigned, with transport and exchange reactions, and 
with reactions known to exist in a given organism, but for which no corresponding 
genes have been found during annotation. This can only be accomplished by thorough 
curation of publications and biochemistry textbooks. Curation may be fully manual or 
comprise the use of Biomedical Text Mining techniques. Either way, due to termino-
logical issues and the challenges posed by unstructured text processing, it is laborious 
and time-consuming. 

Despite the many obstacles faced, this information validates the data deduced from 
the genome and discarding questionable reactions with poor annotation based on low 
sequence similarity and those for which no evidence has been found in literature. 
Also, it supports the selection of reaction(s) specific to the organism being recon-
structed from the multiple potential reactions associated with each given EC number 
in public databases. Furthermore, special cases with more complex than one-gene-to-
one-enzyme-to-one-reaction relations need to be considered: (1) many enzymes ac-
cept several different substrates; (2) isoenzymes are encoded by different genes, but 
each of them catalyzes the same reaction(s); (3) for reactions catalyzed by enzyme 
complexes, several genes are associated with one or more reactions [1]. Information 
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about reaction stoichiometry can also be found in public databases only for enzymes 
with assigned EC numbers. For all other reactions, stoichiometric information should 
be based on the literature data.  

3   Data Integration 

Our workflow is illustrated in Figure 2 and encompasses the following steps: (1) data 
loading from original sources into temporary tables; (2) single-source debugging; (3) 
single-source quality-related processing; (4) detection of conflicts on multi-source in-
tegration; (5) semi-automatic conflict resolution; (6) multi-source contents integra-
tion; and (7) enforcement of data quality. 

3.1   Data Source Description 

The parameters related to genome annotation were taken from the NCBI’s Entrez 
Gene [11]. The list of reactions and stoichiometry data was delivered by integrated 
contents from KEGG, BioCyc and Brenda. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is an information re-
pository that contains several kinds of biological data, with the purpose of linking ge-
nomic information with higher order functional information [12]. KEGG is composed 
by 19 highly integrated databases, each one belonging to one of three categories: Sys-
tems, Genomic or Chemical [13]. Due to this widespread hyperlinking, KEGG was 
considered one of the “central” data sources of this project. KEGG’s data is organized 
in organism-specific and class-specific subdirectories where data is kept in text files. 
Currently, we extract information from databases of the genomic and chemical cate-
gories and also information about pathways.  

BRaunschweig ENzyme DAtabase (BRENDA) - is the main collection of enzyme 
functional data available and its data is primarily collected from literature [14]. We 
use it to complement the enzyme data extracted from generic data sources (for exam-
ple KEGG or BioCyc). BRENDA is a very extensive database characterized by the 
fact that it is not limited to specific organisms or aspects of enzymes, covering a wide 
range of information for all enzymes [15]. 

In BRENDA, the information is organized by EC number, and within each EC 
number, it is further organized by organism and by the documents from which it was 
extracted. One organism can have more than one enzyme with the same EC number, 
but since in the primary literature EC numbers are rarely associated to specific se-
quences, discriminating between the enzymes with the same EC number is not possi-
ble [16]. BRENDA’s contents are delivered in two text files. 

BioCyc is a collection of Pathway/Genome Databases (PGDBs), quite popular 
among biological researchers [17]. It is a very extensive data source containing more 
than 160 different PGDBs, each one covering a specific organism. BioCyc reposito-
ries contain information about most eukaryotic and prokaryotic species whose ge-
nome has been sequenced [18]. BioCyc is available in the form of database dumps or 
as flat files (the latter was chosen).  
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Fig. 2. Workflow for the data integration process 

3.2   Data Quality Issues 

Data quality issues can be classified into single-source and multi-source issues and, 
within these, schema and instance-related issues. The quality of a data source depends 
on schema and integrity constraints. Sources without a schema (e.g. flat files) raise a 
higher number of errors and inconsistencies. Database systems are expected to en-
force a data model and application-specific integrity constraints. Usually, schema-
related problems (e.g. uniqueness and referential violations) occur due to the lack of 
integrity constraints, data model limitations and poor schema design or because integ-
rity constraints were limited to prevent control overhead.  

Single-source quality issues get worse when performing data integration. Each 
source may contain dirty data and the data in the sources may be represented differ-
ently, overlap or contradict. At the schema level, data model and schema design  
differences are to be addressed by the steps of schema translation and schema integra-
tion, respectively. Naming conflicts arise when the same name is used for different 
entities (homonyms) or different names are used for the same entity (synonyms). 
Structural conflicts occur in many variations and refer to different representations of 
the same entity, different component structure, different data types, different integrity 
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constraints, etc. In addition to schema-level conflicts, data problems from single 
sources can occur with different representations in different sources (e.g., duplicated 
or contradicting records).  

KEGG. The initial analysis of KEGG (Table 1) revealed some issues in the com-
pound data, namely some data such as mass and formula are missing. However, the 
percentage of records with missing data is relatively small. 

Table 1. Characteristics of the KEGG compound data for Zymomonas mobilis 

Number of compounds 15050 
Compounds without formula 2322 
Compounds without mass 3457 
Compounds without formula & mass 2322 

 
In KEGG, it is considered that in a organism there is only one enzyme for each EC 

number. This fact makes it difficult to integrate KEGG with data sources that have 
more detailed enzymatic information (like BioCyc). Also, the study of reaction-
enzyme associations (Table 2) revealed that some enzymes in catalogue are not asso-
ciated with any reaction. One serious problem in KEGG is that pathway data is stored 
in an image format, hard to parse, and consequently, to combine with other formats of 
data. This situation appears to be changing however since the KEGG pathway data is 
being migrated into an XML format (KGML). 

Table 2. Characteristics of the KEGG enzymatic data for Zymomonas mobilis 

Number of enzymes 413 
Number of reactions 942 
Number of enzymes associated with reactions 380 

 
BRENDA. Two main difficulties were found during BRENDA’s data processing: (1) 
EC numbers are formal record identifiers, but often the identifier field has comments 
that constrain the integration of the records; (2) the identification of the compounds 
that affect the enzymes (e.g. inhibitors, cofactors and activators) is only  
provided by name. After analyzing EC number field values, it was possible to estab-
lish a parsing schema that allows adequate record crossing. Compound name resolu-
tion is far more delicate and brings a high error probability to the integration. Since 
the names are the only identifiers available there was no other choice but to use them 
as the basis for the integration. In order to verify the viability of the integration, a 
terminology comparison study was undertaken (Tables 3 and 4). 

This study showed that there are relatively few name conflicts when the BRENDA 
compound data is compared with KEGG and BioCyc. Consequently, the integration 
of the BRENDA data with the information from these two databases should not be a 
problem. However, KEGG and BioCyc are not databases specific for compounds, so 
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Table 3. Number of compounds in BRENDA entries about Zymomonas mobilis and the num-
ber of compounds successfully associated/number of conflicts found during the association of 
the BRENDA compounds with information from other data sources 

Compounds found / Conflicts N compounds KEGG BioCyc CHEBI 
BRENDA cofactors 13 13 / 0 7 / 0 8 / 5 
BRENDA inhibitors 52 37 / 3 15 / 0 13 / 24 
BRENDA activating compounds 11 5 / 0 1 / 0 2 / 4  

 
there is no guarantee that all or even most of the possible names for a compound are 
present. For this reason, the BRENDA data was also compared with ChEBI, a com-
pound specific database [19]. The larger number of conflicts obtained with ChEBI 
leads to the conclusion that the integration of the compound data from BRENDA with 
the one extracted from other data sources, given the redundancy of the names of the 
compounds, is far more difficult that it was originally expected. In fact, the only way 
of insuring a correct integration is manual curation. Another potentially serious prob-
lem with data obtained from BRENDA is the fact that in this database there is only a 
small quantity of information about Zymomonas mobilis, specifically only 29 entries. 

BIOCYC. The greatest obstacles to the integration of the BioCyc and KEGG genomic 
data is the scarce use of standard identifiers. The only common gene is the name of the 
genes and this identifier, similarly to the name of the compounds, is subject to a great de-
gree of redundancy. Furthermore, only some of the genes have names associated in the 
database. In fact only 663 out of 1998 genes can be integrated (Table 4). Since there is no 
way to solve the problem only with the information from BioCyc and KEGG, the possi-
bility of using a third database should be considered, preferably with links to both  
BioCyc and KEGG.  

Table 4. Characteristics of the BioCyc genomic data for Zymomonas mobilis 

Total number of Genes 1998 
Genes with no redundant name 663 
Genes with redundant names 54 

 
Another problem with the BioCyc data is the fact that the EC number is not associ-

ated with the enzymes but rather with reactions. This problem is solved, since when a 
reaction has an EC number it can be considered that all enzymes that catalyze that re-
action have that EC number. This method allows the association of an EC number to 
most enzymes identified in the BioCyc data (Table 5). 

The integration of the KEGG and BioCyc pathway data presents another challenge, 
because the information is kept in quite different formats. In KEGG, this data is kept 
as images with hyperlinks in certain regions and in BioCyc the data is stored in text 
format. Because of their differences, it is not possible to integrate both types of data 
and it will be necessary to include both or choose only one. There was one more diffi-
culty with the BioCyc database: the references to external database sources in BioCyc 
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Table 5. Characteristics of protein and enzyme data from BioCyc for Zymomonas mobilis 

Proteins 2007 
Enzymes 610 
Reactions 880 
Enzyme-reaction associations 837 
Reactions with enzymes 636 
Enzymes to witch may be associated an encumber 542 

 
are stored in an unusual format: (PID "56544468" NIL |kaipa| 3390578134 NIL NIL). 
It was found that the first word is a code for the database and the second is the data-
base id. Since there is not data that associates the database code to the corresponding 
database in BioCyc the association has to be done manually (through consulting the 
BioCyc site) before integrating the data. Fortunately, there are only a few databases 
codes in BioCyc. 

3.3   Integration Strategy 

The data integration strategy is divided in three stages, each corresponding to the in-
tegration of one of the data sources into a shared database, the Data Staging Area 
(DSA). The data sources are loaded to the DSA in a specific order: KEGG first, then 
BioCyc and finally BRENDA. When information from a data source is added into the 
DSA the data is compared with the ones already present in the DSA. It is then added 
if it is not present or used to complement the information already in the DSA in the 
case that part of the new information is already present. The new data is compared 
with the data already in the DSA normally by the use of non redundant identifiers (e.g 
CAS number for compounds) or by the comparison of a set of factors that combined 
can be used as a nearly non redundant identifier. 

The loading of the KEGG information into the DSA is the first step. There is a 
problem in the KEGG data that affects the integration of BioCyc: in KEGG it is con-
sidered that only one enzyme is associated to one EC number. This problem was 
solved by observing that in KEGG genes, the product of the gene is identified, includ-
ing its EC number (in the case it is an enzyme). To overcome this difficulty, we cross 
the information from the KEGG enzyme and gene data, to identify the individual en-
zymes associated with an EC number. After solving this issue, the remaining of the 
loading is handled smoothly. 

The integration of BioCyc starts with the compound data, since it is the easiest to 
integrate, followed by the gene and the protein data. This is a two step process: in the 
first phase, all the proteins are compared with the ones already in the DSA, through 
the genes that code them to determine which ones are added and which are comple-
mented; the second step is the identification of the new enzymes that can only be exe-
cuted during the integration of the reaction data. Next, the reaction data is integrated. 
The reactions are not directly compared with the ones already in the DSA, instead 
they are compared with the enzymes that catalyze them and their reactants and prod-
ucts. The process ends with the integration of the pathway data. 

The integration of BRENDA starts by comparing the EC numbers in its entries 
with the ones in the DSA; when the values match, the BRENDA data is associated 
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with that record. BRENDA data includes references to compounds that affect the re-
action, such as inhibitors or cofactors. Determining if these compounds are already in 
the DSA or if they must be added is difficult, since the only identification is the name 
of the compound. Since there can be multiple enzymes associated with EC numbers, 
this means that the same BRENDA data will probably be linked with the same  
enzymes. 

4   Conclusions 

In this work, we approached a number of issues related to the process of genome-
scale reconstruction of the metabolic model of the bacterium Zymomonas mobilis. 
These were mainly related to data quality issues and the implementation of suitable 
data integration processes. A number of problems were identified and useful guide-
lines for their solution were proposed. This work is on-going and it will proceed by 
enlarging the set of handled conflicts and integrating other data sources. 
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