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Pui Yeu Phoon a,1, Federico Gómez Galindo b,*, António Vicente b, Petr Dejmek a

a Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
b IBB-Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica, Universidade do Minho,

Campus de Gualtar, 4710-057 Braga, Portugal

Received 1 October 2007; received in revised form 3 December 2007; accepted 9 December 2007
Available online 31 December 2007
Abstract

Pulsed electric fields in combination with vacuum infusion have been utilized to impregnate cells with trehalose, aiming at substan-
tially improving the freezing tolerance of spinach leaves. Spinach samples were first treated with ten trains of bi-polar, rectangular electric
field pulses with a nominal electric field strength of 580 V/cm and immediately immersed in a 40% (w/w) solution of trehalose under
vacuum for 20 min. The samples were kept in the trehalose solution for 2.5 h at atmospheric pressure, immersed in deionised water
at 4 �C overnight, frozen in liquid nitrogen and thawed in water at room temperature. The leaves were evaluated for cell damage with
microscopic observations and wilting tests. The results provided evidence that the impregnation with trehalose by the combined actions
of electric fields and vacuum impregnation drastically improved the freezing tolerance of the spinach leaves.
� 2008 Published by Elsevier Ltd.
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1. Introduction

Freezing is an excellent and fairly widespread method
for preserving food products, including fruits and vegeta-
bles, providing a high stability to health-beneficial micro-
nutrients such as folates (Phillips et al., 2005). However,
the freezing of vegetables, for example spinach, may alter
quality characteristics such as flavour and texture, which,
in turn, could affect its marketing potential.

In a typical industrial process, vegetables such as spin-
ach are usually frozen quickly so as to produce small ice
crystals. However, these crystals may grow larger over time
through recrystallization. Recrystallization in frozen foods
can result in membrane damage, a reduced water-holding
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capacity (high drip loss), loss of nutrients (Breton et al.,
2000), lipid oxidation and the formation of off-flavours
(Stanley, 1991).

Cryoprotection of horticultural products has been a mat-
ter of concern for the food industry in its search for efficient
ways of improving the quality of frozen-thawed products
(Gómez Galindo and Sjöholm, 2004). Research on the cryo-
protection of plant tissues has made considerable progress
through a better understanding of the natural protective
mechanisms of plant tissues during winter survival. The
accumulation of osmotically active substances, also called
compatible solutes (COS), in the cytosol of the cells is part
of this protective mechanism. COS are synthesized by many
organisms ranging from bacteria to animals and plants in
response to desiccation, osmotic stress, salt stress or low
temperature (Taiz and Zeiger, 2002). This chemically heter-
ogeneous group of substances comprises some amino acids
(e.g. proline), quaternary ammonium compounds (e.g.
betaine), numerous sugars (e.g. sucrose and trehalose) and
several other substances (see Yancey, 2005 for a review).
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The protective role of sugars has been widely studied.
There is a wealth of information on their stabilizing effects
on biological molecules, cells and organisms, which indi-
cates their functional role in the stress tolerance of many,
although not all, organisms (Hincha et al., 2006). Apart
from decreasing the chemical potential of water and the
freezing point in the cytosol, the hydrophilic nature of sug-
ars is well-suited for stabilizing the cell membrane through
hydrogen bonding between the hydroxyl groups on the
sugar and the polar residues in phospholipids. This prevents
dehydration effects in membranes (Danyuluk et al., 1998).

Attempts have been made to improve the resistance of
horticultural products to freezing damage by treating the
tissues with cryoprotectants. Industrial techniques, such a
vacuum impregnation (VI), have been used to promote
compositional changes on porous tissues (e.g. apples), by
filling porous fractions of the product with an external
solution of the cryoprotectant. Resistance to freezing dam-
age has then been improved through the reduction of freez-
able water (Martı́nez-Monzó et al., 1998). However, when
applying VI, the solution containing the cryoprotectant is
located in the apoplast, whereas in nature, cryoprotectants
accumulate inside the cell conferring their protective effects
to the plant tissues.

Sugars could be forced inside the cells through osmotic
dehydration, by immersing the tissue in a hypertonic solu-
tion. To accelerate the mass transfer during this operation,
pulsed electric fields (PEF) have been used to affect plasma
membrane permeability properties (Ade-Omowaye et al.,
2002; Taiwo et al., 2003). However, these operations will
induce permanent damage on cell membrane properties
and cell death (Mavroudis, 2003), consequences that will
not provide cryoprotection to the tissue.

The present study reports preliminary results on the use
of PEF in combination with VI to obtain a cryoprotectant
solution inside the cells of spinach leaves, showing a sub-
stantial improvement of their freezing tolerance. PEF
causes a transient increase in the transmembrane potential
difference, modifying the plasma membrane organization
and bringing it, locally, to a permeable state (Sabri et al.,
1996). By strict control of the electropulsation parameters,
the permeabilization may evade affecting the cell viability.
Such a process can be used for transporting substances
such as cryoprotectants across the cellular distance impreg-
nating the cells.

2. Materials and methods

2.1. Raw material

Spinach (Spinacia oleracea) leaves (8.0 ± 0.5 g dry
matter/100 g sample) were purchased in 150 g sealed bags
at the local market (Southern Sweden). The bags were
stored at 4 �C and the experiments were carried out 3–7
days before the declared expiration date of the spinach.
Each time leaves were removed from the bags, these were
resealed and stored cold until more leaves were required.
2.2. Sample preparation

Rectangular samples, 3.0 cm long, 0.5 cm wide and
0.06 cm thick, were cut from the spinach leaves using a
sharp blade. To ensure that the thickness of each sample
was even, the thickness was measured with a caliper in 2–
3 different regions. All leaf samples were free from major
portions of conductive tissue.

2.3. Treatments

2.3.1. Electrical treatment

The rectangular samples were placed in between two flat
stainless steel electrodes (36 mm long and 9 mm wide) were
they received electric pulses at room temperature. The sand-
wich structure of electrodes and sample was wrapped with
scotch tape (Scotch MagicTM) to minimize sample evapora-
tion. The electric pulses were delivered by a CythorLabTM

electroporator (ADITUS AB, Lund, Sweden), and the
parameters of the treatment were programmed by a com-
puter software package (PulseEditTM, ADITUS AB, Lund,
Sweden). Ten trains of bi-polar, rectangular electric field
pulses with a nominal electric field strength of 580 V/cm
(the nominal field strength is here defined as the applied
voltage divided by the separation between the electrodes,
i.e. 0.06 cm) were used. Each train lasted 20 ms and con-
sisted in 25 ls pulses. The resting period between the trains
was 10 s to avoid heating of the samples (Fig. 1).

The CythorLabTM was programmed to measure the
electrical impedance of the sample in the range 10 Hz to
100 Hz at a given time after the treatment. For these mea-
surements, the CythorLabTM generated bi-polar current
pulses with an amplitude of ±1 mA and a wave train length
of 131 ms. The results were expressed as the change in
admittance (reciprocal of the impedance, dY%) with time,
compared to pre-electroporation values.

2.3.2. Vacuum impregnation
The VI treatment was carried out at 20 �C in a chamber

connected to a vacuum pump. The spinach samples were
immersed in a 40% (w/w) solution of trehalose for 25 min.
This duration comprised a gradual increase of the vacuum
for 3 min, a holding time of 20 min at �86 kPa (man) and
a gradual release of the vacuum for 2 min. The VI process
assured a volume fraction of trehalose in the spinach tissue
of around 20%. After the impregnation, the samples were
kept in the trehalose solution for 2.5 h (relaxation time).
They were then taken out and their surfaces were blotted
to remove excess solution. Trehalose, being only 45% of
the sucrose sweetness, is not likely to adversely influence
the taste of the leaves.

2.3.3. Combination of treatments

Spinach samples were treated with a combination of
PEF and VI prior to freezing and thawing. The various
procedures and their corresponding processing steps are
shown in Fig. 2, where spinach leaves were treated with
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Fig. 2. A combination of treatments for improving the freezing tolerance
of spinach leaves. Each unit operation was performed as described in the
Section 2.
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Fig. 3. The effect of the pre-pulsation impedance of spinach samples on
the change of admittance (reciprocal of the impedance, dY%) as a function
of the time after electroporation. Average curves of at least three replicates
are shown. dY% is calculated as the difference (in percentage) between the
admittance values at a certain time after pulsation and the pre-pulsation
value.

Fig. 1. A simplified diagram of the PEF treatment design. Ten trains of bi-polar, rectangular electric field pulses with a nominal electric field strength of
580 V/cm were applied as described in the Section 2. Pulse characteristics are shown in the figure.
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and without PEF. Ten samples were treated with each pro-
cess and the VI was applied to the leaf samples immediately
after the electroporation treatment. The other processing
steps were carried out as follows: the resting step was per-
formed by submerging the samples in deionised water over-
night at 4 �C to regain turgor. Freezing was done by
submerging the individual samples in liquid nitrogen for
7 s. The samples were then immediately thawed in water
at room temperature.

2.4. Analyses

2.4.1. Microscopic observations
The cell integrity was evaluated by using fluorescein

diacetate (FDA, Sigma–Aldrich, USA) as described by
Gómez Galindo et al. (2005a) with some modifications.
Leaf samples were cut into sections of �0.5 � 0.1 cm using
sharp blades and immediately placed in 10 ml of deionised
water. One hundred microlitres of 0.01% (w/v) FDA in
acetone was added to the water, giving rise to a final
FDA concentration of 2.4 � 10�6 M. The sections were
incubated in the FDA solution for 4.5 h in darkness and
at room temperature. The stained sections were rinsed with
deionised water and examined under fluorescent light
conditions in an epi-fluorescence microscope (Olympus
BX-50/BX-FLA, Japan). Undamaged cells could be easily
identified by a bright fluorescence.

2.4.2. Wilting test
The turgidity of the treated spinach samples was evalu-

ated by simply holding the centre of the sample with a
small pincer and observing whether the leaves would bend
or not.

3. Results and discussion

3.1. Sample recovery after electroporation is dependent on its

initial impedance

Fig. 3 shows the effect of the pre-pulsation impedance of
the spinach samples on the change in admittance (recipro-
cal of the impedance, dY%) as a function of the time after
electroporation. The change in electrical admittance (dY%)
was used to evaluate the progress of the cell membrane per-
meabilization and the recovery of the spinach after the PEF
application (Angersbach et al., 2002; Bazhal et al., 2003).
According to Fig. 3, where average curves from at least
three measurements are displayed, this recovery was depen-
dent on the initial impedance of the leaves. When the initial
impedance of the leaves was in the range of 5000–6500 X,
the admittance displayed an increase of approximately



Fig. 4. The freezing tolerance of spinach leaves after different treatments.
Left panel: Typical results (10 measurements) from the wilting test,
performed as described in the Section 2, showing the turgidity of the
samples. Right panel: Typical results (10 measurements) from microscopic
observations using fluorescein diacetate to identify viable cells. Viable cells
are distinguished by a bright fluorescence. (a) A fresh spinach leaf. (b) A
leaf frozen in liquid nitrogen for 7 s and immediately thawed in water at
room temperature. (c) Spinach leaves subjected to ‘‘Process 1”, as
described in the Section 2 and schematised in Fig. 1. (d) Spinach leaves
subjected to ‘‘Process 2”, as described in the Section 2 and schematised in
Fig. 1.
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250% of the initial value and showed no recovery 1 h after
electroporation. For an initial impedance ranging from
7000 to 8500 X, the admittance showed an increase of
around 100% of the initial value and a continuous decrease
down to around 20% 1 h after PEF application. The sam-
ples were fully recovered 2.5 h after electroporation (not
shown). When the initial impedance of the leaves was
around 9000 X, the admittance increased approximately
30% and a full recovery of the cells was obtained within
25 min.

It has been demonstrated (Arora and Palta, 1991) that a
partially damaged cell membrane has the ability to recover
even if the damage has caused a significant ion leakage.
The ATPase activity, which uses the chemical energy of
ATP, is required for this recovery process, as it helps the
cell to take up the leaked ions against the concentration
gradient. It is a long-term physiological process and may
take several hours (Arora and Palta, 1991). Our observa-
tion that the capacity of the leaves to recover after PEF
treatment is apparently affected by their initial impedance
might be associated with differences on the electric current
flowing through the tissue during the electropulsation. A
higher current might cause higher damage to the cells,
affecting the recovery process. The different values of initial
impedance may be a consequence of differences on cell wall
structure.

3.2. The combination of PEF and VI improves the freezing

resistance of spinach leaves

Spinach samples with initial impedance values in the
range 7000–8500 X were used for the subsequent process-
ing operations. The FDA and the wilting tests demon-
strated that the application of ‘‘Process 1” (Fig. 2)
resulted in viable, turgid spinach leaves (see Fig. 4c for a
typical result). These results strongly suggested that the
applied processing steps allowed the uptake of trehalose
by the tissue, thus dramatically increasing the freezing
resistance of the samples. The time scale for restoring the
atmospheric pressure after the VI treatment corresponded
to the time required for the sample to recover after the
PEF treatment (Fig. 3). This suggests that the cell mem-
branes leaked cellular contents when the vacuum was
increased, as well as during most of the holding time, and
that these contents were mixed with the incoming trehalose
solution. The uptake of the leaked cellular contents during
recovery may have facilitated the uptake of the cryoprotec-
tant inside the cells. The active transport of trehalose has
been proven in yeasts (Stambuk et al., 1996; Malluta
et al., 2000) but remains to be demonstrated in leaves such
as spinach. However, this idea was supported by the results
from ‘‘Process 2” (Fig. 2) as the FDA and the wilting tests
showed non-viable cells and totally wilted leaves (see
Fig. 4d for a typical result). This was thus considered evi-
dence that the impregnation of the trehalose in the extracel-
lular space alone, as expected after the VI process, was
insufficient for cryoprotection and that the leakage/recov-
ery process provoked by PEF was a key event providing
freezing resistance to the leaves.

The freezing tolerance of any organism can never be
explained by the action of merely one compound (Hincha
et al., 2006). In addition to sugars, many other physiolog-
ical adaptations must take place to allow an organism to
survive extreme stresses such as freezing or desiccation
(see Smallwood and Bowles, 2002 for a review). The capac-
ity of spinach to undergo the complex series of metabolic
events associated with the cold acclimation process has
been widely reported in the literature (Somersalo and Kra-
use, 1990; Turan et al., 2007). Moreover, these metabolic
events might continue during storage if the harvesting
has been done under specific climatic conditions (Gómez
Galindo et al., 2005a,b). Since the samples for this study
were obtained in the local market, the information con-
cerning the pre- and post-harvest history of the spinach
was insufficient. Therefore, the influence of the initial phys-
iological status of the tissue on the freezing tolerance that
was gained with trehalose by the combination of PEF
and VI requires further investigation.
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4. Concluding remarks

The preliminary results presented herein provide evi-
dence that the impregnating spinach leaves with the cryo-
protectant trehalose with the aim of improving the
freezing tolerance of spinach leaves could be achieved only
when the VI process was used in combination with PEF.
The combined unit operations probably allowed trehalose
to be present in both the extracellular and intercellular
spaces. Trehalose would then be able to protect the cell
from both sides, probably in combination with possible
effects of metabolic events having taken place in the leaves
during pre- and post-harvest.
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Gómez Galindo, F., Sjöholm, I., 2004. Applying biochemical and
physiological principles in the industrial freezing of vegetables: a case
study on carrots. Trends Food Sci. Technol. 15, 39–43.
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