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Abstract

This paper addresses the evaluation of the compressive properties of chestnut wood under compression perpendicular to the grain,
using destructive and non-destructive methods. Three non-destructive methods (ultrasonic testing, Resistograph and Pilodyn) are pro-
posed and the possibility of their application is discussed based on the application of simple linear regression models. Timber specimens
were tested up to failure, divided in two different groups for assessing a possible load history related degradation, namely New Chestnut
Wood (NCW), never been used structurally, and Old Chestnut Wood (OCW), obtained from structural elements belonging to ancient
buildings. The specimens were also divided into four groups according to the orientation of annual growth rings towards load and wave
propagation direction. The results show, in general, good correlations between compression strength and stiffness with non-destructive
techniques via ultrasonic testing, Resistograph and Pilodyn. However, the orientation of the loading direction with respect to the annual
growth rings must be taken into account. This conclusion, and the observation that NCW and OCW shows correlations and regression
models usually different, add additional complexity to the quantitative use of non-destructive evaluation techniques for the assessment of
the mechanical behaviour of timber elements.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Timber is an anisotropic material showing significant
mechanical properties differences when loaded parallel or
perpendicular to grain. A ratio between parallel and per-
pendicular strength of 30:1 in tension and 5:1 in compres-
sion is generally found for hardwoods species. In the case
of traditional timber buildings, given the marginal strength
of wood in tension perpendicular to grain, the structural
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system is usually conceived in such a way that any load
transferred perpendicular to grain must be in compression.
Therefore, wood compressive behaviour perpendicular to
the grain is of crucial importance for design and safety
assessment purposes.

In rehabilitation works of ancient timber structures,
in situ inspection and evaluation of mechanical properties
represent a first step towards diagnosis, structural analysis
and possible remedial measures. Structural assessment
comprises the need for answers regarding strength of sound
timber elements, as well as regarding the effect of local
damage due to biological attack (usually associated with
excessive moisture). Non-destructive evaluation (NDE)
plays a key role here, usually adopted for qualitative eval-
uation. Gradual steps towards quantitative evaluation have
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Fig. 1. Specimens used in the testing program: (a) nominal dimensions in
mm and (b) annual growth rings orientation with respect to the loading
direction.
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been made recently since the removal of samples and their
destructive testing is time-consuming, unpractical and,
often, even not feasible.

The efficiency and reliability of NDE methods can be
increased if extensive laboratorial tests are used to provide
correlations with the mechanical characteristics of wood
[1,2]. In particular, the last decades witnessed developments
in the NDE techniques, equipments and methods that
allow increasing their accuracy. NDE can be grouped in
Global Test Methods (GTM) and Local Test Methods
(LTM) [3,4]. The former includes e.g. the application of
the ultrasonic and vibration methods [5,6]. The latter plays
usually a leading role in the support of visual inspection,
being the Resistograph [7] and the Pilodyn [8] the most
common techniques. The general characteristic of all meth-
ods is their easy usage and transport, plus the fast in situ
application.

The most relevant material properties when dealing with
compression perpendicular to the grain are the compressive
strength and the elasticity modulus. Experimentally, these
properties can be obtained according to different stan-
dards, being the Brazilian Standard NBr 7190 [9] adopted
in the present paper. Wood micro-structure leads to behav-
iour in compression perpendicular to the grain character-
ized by an absence of a clear failure of the material
associated with very high strains. In addition, the loading
direction with respect to the annual growth rings leads to
very different stress–strain diagrams. In fact several authors
consider the loading direction more important than the dif-
ferences between wood species [10,11].

Some authors pointed out that wood behaviour in radial
compression is strongly dependent on its anatomical fea-
tures [10,12,13], but others authors believe that elastic
behaviour is more dependent on density than on anatomi-
cal characteristics [14,15]. In practical situations, the influ-
ence of the loading direction seems less relevant due to the
difficulties of finding, in a real structure, timber elements
exhibiting a particular orientation. Therefore, tests should
be made using random loading directions. It must be also
taken into account that the failure mode observed for a
45� slope, which provides the lowest strength values for
transversal compression [16], is common in prismatic stan-
dardized specimens without apparent defects, but it is
rarely observed either when structural dimensions speci-
mens are used or in engineering applications.

The testing set-up and procedure also seems to have
direct influence on the derivation of strength and elastic
properties. Depending on shape and dimensions, thickness
and stressed area, different relations between strength and
elastic properties of wood may be obtained [17,18].

The impact of load history and time over strength and
stiffness of structural timber elements has raised some dis-
cussions but generally, if no damaging action occurred,
there is no loss of mechanical properties. This observation
is also due to the large range of strength values generally
obtained for each wood species and grade (coefficient of
variation around 20–40%). Usually, inspection of old tim-
ber structures show that large deformations, that could
possibly have been linked to exceptional loading condi-
tions, are often the result of using green round or square
elements and excessive moisture conditions during the his-
tory of the structure.

The objective of this paper is to discuss the possibility of
using NDE methods for the evaluation of strength and
stiffness of chestnut wood (Castanea sativa Mill.) in com-
pression perpendicular to grain. This wood is usually pres-
ent in historical Portuguese buildings, given not only its
mechanical and durability properties, but also its aesthetic
characteristics. The effect of annual rings orientation
towards load direction and the effect of age-related degra-
dation are taken into account. Regression analyses are car-
ried out in order to obtain correlations between mechanical
properties and density and non-destructive methods.

2. Test specimens

The average size of the specimens adopted in the testing
program was originally 50 · 50 · 300 mm3. Ultrasonic tests
were carried out in these specimens and, afterwards, each
specimen was cut in three smaller samples of 50 · 50 ·
100 mm3: two specimens were tested in laboratory up to
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failure, and the third specimen was used for the additional
non-destructive tests (Resistograph and Pilodyn 6J), see
Fig. 1a. The specimens were divided in different groups tak-
ing into account the orientation of the annual growth rings
with respect to the direction of loading. This approach
is absolutely necessary for adequate insight in the experi-
mental results. Four groups were considered: (i) radial,
(ii) diagonal, (iii) tangential and (iv) diffuse, as shown in
Fig. 1b.

In total, 160 specimens of chestnut wood were tested up
to failure. The specimens were also divided in two groups:
New Chestnut Wood (NCW), which has never been used
structurally even so it comes from logs that could be used
as such, and old chestnut wood (OCW), which was used
as part of structural elements belonging to ancient build-
ings (date and precise origin unknown). The old logs have
been obtained from a specialist contractor claiming that
the wood has been in service for over 50 years. All wood
comes from the Northern region of Portugal.

Before testing, the specimens were conditioned in a cli-
matic room capable of keeping constant temperature
(20 ± 2 �C) and humidity (65 ± 5%). The tests specimens
were considered conditioned when the density variation
was smaller than 0.5% in a period of 2 h, as recommended
by the EN 408 standard [19]. The densities were measured
using an electronic weighing machine with a precision of
0.01 g.

3. Characterization of physical and mechanical properties

3.1. Density

Density was measured according to EN 408 standard
[19]. Given the conditioning of the specimens, the average
density qm is determined for a moisture content of 12%,
given by

q12% ¼
m12%

V 12%

ð1Þ

Here, m indicates the mass and V indicate the volume.
Table 1 presents the results for the average density and
the coefficient of variation organized according to two
group types (loading orientation and age).

On average and for the complete 160 specimens sample,
the densities of OCW and NCW groups are similar (differ-
ences smaller than 2%). Density differences between the
smaller groups defined by loading orientation are larger,
but still with a maximum of 5%: the maximum average
density of a group is 599.8 kg/m3 for tangential OCW
Table 1
Density and number of specimens

Radial Diagonal T

NCW OCW NCW OCW N

No. specimens 19 12 22 30 1
qm (kg/m3) 579.8 607.9 593.8 587.2 5
CV (%) 8.4 5.2 7.6 6.4 6
and the minimum density of a group is 567.9 kg/m3 for tan-
gential NCW. This indicates that, optimally, a larger sam-
ple would be required in each group.

3.2. Uniaxial compression tests

Mechanical testing was carried out using a Baldwin uni-
versal testing machine, with a load cell of 300 kN. A power
supply Schenk equipment was used, together with a HBM
system (Spider 8) for the acquisition and amplification of
the data, see Fig. 2a. Strain gages were attached to all faces
of the specimens (typically a DD1 type from HBM, with a
range of ±2.5 mm, a sensitivity of ±2.5 mV/V and a linear
deviation of ±0.05%), see Fig. 2b.

The adopted test procedure follows the Brazilian Stan-
dard NBr 7190 [9], which includes two loading–unloading
cycles before continuously increasing loading up to failure.
The loading rate is 6 · 10�3 mm/s in the loading–unloading
phase, and 6 · 10�2 mm/s in the failure phase, being the
stress–strain diagrams recorded continuously. The com-
pressive strength fc,90 perpendicular to the grain is defined
as the conventional value determined by a residual defor-
mation of 2&. The stiffness of wood, in the direction per-
pendicular to the grain, is determined by its modulus of
elasticity Ec,90. This secant modulus is conventionally
defined as the slope of the linear part in the stress–strain
relationship, between 10% and 50% of the conventional
failure stress, given by

Ec;90 ¼
r50% � r10%

e50% � e10%

ð2Þ

where r10% and r50% are the stresses corresponding to 10%
and 50% of the failure conventional stress, and e10% and
e50% are the strains corresponding to the values of r10%

and r50%. Finally, the Poisson ratios are calculated equally
as secant values for the same stress range of the conven-
tional failure stress.

An electronic device registered the air temperature and
relative humidity during the tests. The average values of
temperature and relative humidity were 24 ± 2 �C and
52 ± 12%, respectively. The time elapsed between the tests
and withdrawal of the specimens from the climatic cham-
ber (less than 24 h) did not affect the conditioning of the
specimens.

The results of the uniaxial compression tests are again
presented taking into account the loading orientation and
age, Table 2. The values for the coefficient of variation
are relatively large (average CV of 16%) but well within
the variability found for wood species tested in compres-
angential Diffuse Total

CW OCW NCW OCW NCW OCW

9 12 20 26 80 80
67.9 599.8 600.2 594.1 585.4 597.2
.6 4.6 4.4 6.4 6.8 5.7



Table 2
Mechanical properties of chestnut wood in compression perpendicular to the grain

Ec,90

(N/mm2)
fc,90

(N/mm2)
Ec,90

(N/mm2)
mRL

(–)
mTR

(-)
mLT

(–)
fc,90

(N/mm2)
Ec,90

(N/mm2)
mRL

(–)
mTR

(–)
mLT

(–)
fc,90

(N/mm2)

Radial (total) Radial (NCW) Radial (OCW)
Average 787 7.56 783 0.04 0.33 0.13 7.45 794 0.05 0.32 0.16 7.74
CV(%) 17 24 15 17 11 13 22 19 27 18 18 28

Diagonal (total) Diagonal (NCW) Diagonal (OCW)
Average 606 6.81 612 0.06 0.36 0.18 6.99 601 0.06 0.35 0.17 6.67
CV (%) 11 17 12 16 9 13 19 9 17 8 16 16

Tangential (total) Tangential (NCW) Tangential (OCW)
Average 543 6.92 526 0.05 0.28 0.19 6.58 569 0.06 0.33 0.17 7.47
CV (%) 13 23 14 18 13 13 14 10 8 9 7 10

Diffuse (total) Diffuse (NCW) Diffuse (OCW)
Average 583 6.55 552 0.04 0.26 0.16 6.22 607 0.04 0.27 0.15 6.81
CV (%) 18 17 11 22 16 13 10 21 22 12 18 21
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sion perpendicular to grain. The main conclusion is that
the difference in the results between old and new wood is
moderate to very low. The design of new timber structures
and the design of strengthening for existing timber struc-
tures can be carried out using the same mechanical data,
as indicated in [20]. The results also indicate that the com-
Fig. 2. Test set-up: (a) general view and (b) specimen with attached strain
gages (top view).
pressive strength and stiffness perpendicular to the grain
reaches a maximum in the radial direction. The differences
between diagonal, tangential and diffuse loading directions
are, on average, only moderate.

Fig. 3 shows the most common failure patterns
observed, described as follows:

� in radial compression, the dense latewood layers are
arranged in series between weak earlywood bands and
the limiting factor is the ‘‘weak-layered’’ earlywood,
see Fig. 3b. The initial failure is caused by the weakest
layer, followed by other ‘‘weak-layers’’ upon increasing
load, in a process that decrease the cross-section height.
At the end of the test, a large compaction of ‘‘weak-lay-
ers’’ is found;
� the diagonal behaviour can be classified as an intermedi-

ate situation between radial and tangential behaviour:
(i) the initial failure occurs in an initial earlywood
‘‘weak-layer’’, followed by other ‘‘weak-layers’’ upon
increasing load, in a process that decrease the cross-sec-
tion height; (ii) at a certain stage, failure shifts to early
bond failure between earlywood and latewood layers.
With increasing load, separation between these layers
can be observed, similar to the tangential behaviour
(see Fig. 3c);
� the tangential behaviour can be explained by the early

bond failure between earlywood and latewood layers.
With increasing load, separation between these layers
can be observed. Also, buckling failure can be observed
as a result of the low slenderness that individual early-
wood and latewood layers possess along their axes, see
Fig. 3d.

4. Description of non-destructive test procedures

4.1. Resistograph tests

The Resistograph is a commercial testing equipment
based in micro-drilling wood at constant speed, and mea-



Fig. 3. Behaviour in failure: (a) initial specimen, (b) typical radial failure, (c) typical diagonal failure, and (d) typical tangential failure.
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suring the energy required for maintaining that speed. The
Resistograph is usually adopted to obtain density profiles
and, in the present testing program, drilling was made par-
allel to plane RT (planes TL and LR), which, in real cases,
represents the accessible faces of timber elements. For each
specimen, three independent profiles have been carried out
and the results shown represent the average of the readings.

For all the specimens, as a function of the obtained
graphs with the Resistograph, a resistographic measure
(RM) was calculated. The selected resistographic measure
represents the ratio between the integral of the area of
the diagram and the length l of the drilled perforation
(see Eq. (3)). Using this scalar measure, the Resistograph
results can be easily compared with the values of density
and of the elastic properties.

RM ¼
R l

0
Area

l
ð3Þ
Fig. 4. Test set-up for ultrasonic testing: indirect method, direct method,
parallel to the grain, and direct method, perpendicular to the grain.
4.2. Pilodyn 6J tests

The Pilodyn 6J is a device that, through the release of a
spring, transforms the elastic potential energy into impact
energy. This way the penetration of a metallic needle with
2.5 mm of diameter can be measured and the depth is
inversely proportional to the density of the wood. Planes
TL and LR of the specimens were again used for measure-
ments. The Pilodyn 6J was used only with the aim of



Table 3
Influence of the ring orientation in the UPV (indirect method)

UPV (m/s) UPV (m/s) UPV (m/s) UPV (m/s)

Radial Diagonal Tangential Diffuse

NCW OCW NCW OCW NCW OCW NCW OCW

Average 4481.5 4619.9 4474.5 4403.7 4527.2 4834.7 4587.6 4431.8
CV (%) 5.1 6.7 5.6 4.0 3.5 2.6 3.4 2.0

Total
Average 4535.1 4432.6 4646.2 4499.5
CV (%) 5.9 4.7 4.5 3.2
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correlating the density and elastic properties with the depth
reached with the needle of the device (surface hardness or
resistance to superficial penetration). For each specimen,
three independent impact tests have been carried out and
the results shown represent the average of the readings.

4.3. Ultrasonic tests

The ultrasonic tests were carried out using the equip-
ment Pundit/Plus, with cylinder-shaped transducers of
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Fig. 5. Relation between RM and density: (a) NCW and (b) OCW.
150 kHz. Although three methods were used in the frame-
work of a more general approach, see Fig. 4 (indirect
method; direct method parallel to the grain, and direct
method perpendicular to the grain), the only method
reported in this paper is the Indirect Method, since it is
the most appropriate in practical cases. The Indirect
Method can be used for evaluating different zones of the
element (global or local evaluation) and only needs a face
of the element to be accessible. Regarding the direct
method parallel to the grain, it requires access to the ends
of the elements (in most cases not possible) and allows only
a global evaluation of the material (it is not possible to
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and (b) OCW group.
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evaluate weak or critical zones in the element). Finally, the
direct method perpendicular to the grain, only gives a local
evaluation of the element and it needs access to two oppo-
site faces of the element.

The transmission technique of elastic waves based on
the indirect method was used in all the faces, for the case
of diagonal and diffuse tests specimens. For the case of
radial and tangential tests specimens, the transducers were
used in two opposite faces, depending on the orientation of
annual growth rings.

In all tests, coupling between the transducers and speci-
mens was assured by a conventional hair gel and a constant
pressure was applied by means of a rubber spring, allowing
adequate transmission of the elastic wave between the
transducers and the specimen under testing.

The propagation velocity of the longitudinal stress
waves in an elastic media depends essentially on the stiff-
ness and the density of the media. For prismatic, homoge-
neous and isotropic elements and for those with section
width smaller than the stress wavelength, the relation:

Edin ¼ u2 � q ð4Þ
holds, where Edin represents the dynamic modulus of elas-
ticity (N/mm2); u is the propagation velocity of the longitu-
dinal stress waves (m/s), usually denoted by UPV
(ultrasonic pulse velocity), and q is the density of the spec-
imens (kg/m3).

Table 3 presents the influence of the ring orientation in
the propagation of stress waves, which is marginal for the
indirect method. In the case of the direct method, the influ-
ence of the ring orientation is rather severe and must be
taken into account.

5. Correlations based in the NDT methods

5.1. Correlations with density

Fig. 5 shows the correlations between the resistographic
measure and the density for the NCW and OCW groups.
The scatter in the results is too high and no correlation
can be found between the two quantities. In addition, the
difference between the groups of NCW and OCW is also
too large. For practical purposes, it is not recommended
to use this measure as a quantitative indicator. Considering
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all tests together, a lower 95% confidence limit is given by
the following expression:

q ¼ 456:8þ 0:27 �RM ð5Þ
Fig. 6 shows the correlations between the pin depth of

the Pilodyn and the density for the NCW and OCW
groups. The scatter in the results is moderate and a reason-
able correlation between the two quantities is found. The
results are independent of the orientation of the annual
growth rings and the wood age. Considering all tests
together, the average correlation is given by the following
expression (r2 is equal to 0.78):

q ¼ 1115:16� 60:1 �Depth ð6Þ
It is noted that the pin penetrates only 6–14 mm into

wood. This means that it penetrates only between one
and three annual growth rings. Therefore, the result is only
superficial and care must be taken in practical applications,
taking into account if the outer surface is deteriorated due
to biological attack.
180 200 220 240 260 280 300 320 340 360
300

400

500

600

700

800

900

1000

1100

1200

1300

E
c,

90
 (

N
/m

m
2 )

RM (Bits)

Radial

 NCW
 OCW
 Linear Fit of NCW
 Linear Fit of OCW

r 2= 0.58

Ec,90 = -212.2 + 3.65xRM

r 2= 0.56

Ec,90 = -7625 + 31.81xRM

160 180 200 220 240 260 280 300 320 340 360 380
300

400

500

600

700

800

E
c,

90
 (

N
/m

m
2 )

RM (Bits)

Tangential

 NCW
 OCW
 Linear Fit of NCW
 Linear Fit of OCW

r 2= 0.67

Ec,90 = -406.87 + 3.9xRM

r 2= 0.52

Ec,90 = 71.97 + 1.76xRM

a b

dc

Fig. 8. Relation between RM and Ec,90 for the: (a) radial group, (b) diagonal gr
considered.
5.2. Correlations with the elasticity modulus

Fig. 7 shows the correlations between Edin and Ec,90

using the indirect method. As expected [21], very good lin-
ear correlations were found but it is necessary to use differ-
ent correlations according to the load orientation and
wood age. In the comparison of the same loading direction
but different ages, it is striking that the slope of the linear
correlations is equal in the case of the radial specimens, it
is similar in the case of the diagonal and tangential speci-
mens (analysed separately), and it is totally different in
the case of the diffuse specimens. This is obviously due to
the possibility of rather different configurations of the
annual growth rings for the diffuse specimens. Also, these
results are in agreement with the discussion provided in
the previous section. It is noted that the correlations with
Edin are much better than with the UPV, meaning that
the knowledge of the wood density, see Eq. (4), is of utmost
importance for obtaining reliable correlations. Considering
all tests together, a lower 95% confidence limit is given by
the following expression:
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Ec;90 ¼ �74:4þ 0:035 � Edin ð7Þ
Fig. 8 shows the correlations between the resistographic

measure and the elasticity modulus for the NCW and
OCW groups. Weak linear correlations were found but it
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is necessary to use different correlations according to the
load orientation and wood age. For practical purposes, it
is not recommended to use this measure as a quantitative
indicator. Considering all tests together, a lower 95% con-
fidence limit is given by the following expression:

Ec;90 ¼ 68:11þ 0:98 �RM ð8Þ
Fig. 9 shows the correlation between the depth reached

with the needle of the Pilodyn device and the elasticity
modulus for the NCW and OCW groups. No correlation
was found and it is not recommended to use this measure
as a quantitative indicator. Still, a lower 95% confidence
limit is given by the following expression:

Ec;90 ¼ 714:36� 82:46 �Depth ð9Þ
5.3. Correlations with the uniaxial compressive strength

Fig. 10 shows the correlations between Edin and fc,90

using the indirect method. Good linear correlations were
found but, again, it is necessary to use different correlations
according to the load orientation and wood age. If the
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comparison is made for the same loading direction but dif-
ferent ages, it is even more striking that the slope of the lin-
ear correlations is equal in the case of the radial, diagonal
and tangential specimens (analysed all separately), and it is
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Fig. 12. Relation between pin depth (Pilodyn) and fc,90 for the NCW and
OCW groups.
totally different in the case of the diffuse specimens. Con-
sidering all tests together, a lower 95% confidence limit is
given by the following expression:

fc;90 ¼ �2:33þ 5:82 � Edin ð10Þ
Fig. 11 shows the correlations between the resisto-

graphic measure and the uniaxial compressive strength
for the NCW and OCW groups. Weak linear correlations
were found but it is necessary to use different correlations
according to the load orientation and wood age. For prac-
tical purposes, it is not recommended to use this measure as
a quantitative indicator. Considering all tests together, a
lower 95% confidence limit is given by the following
expression:

fc;90 ¼ 0:67þ 0:011 �RM ð11Þ
Fig. 12 shows the correlation between the depth reached

with the needle of the Pilodyn device and the elasticity
modulus for the NCW and OCW groups. Again, no corre-
lation was found and it is not recommended to use this
measure as a quantitative indicator. Still, a lower 95% con-
fidence limit is given by the following expression:
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fc;90 ¼ 7:67� 0:85 �Depth ð12Þ
6. Conclusions

The analysis of the tests carried out in timber specimens
indicates that results must take into account the orientation
of the annual growth rings, not only in terms of numerical
values but also in terms of observed failure modes. In this
paper, both new and old sound chestnut wood are consid-
ered in the testing program.

As a first conclusion, it is possible to confirm that load
history and time do not change the mechanical and physi-
cal properties of sound wood. The design of new timber
structures and rehabilitation projects can be carried out
using similar mechanical and physical values for new and
old chestnut wood. A second conclusion is that transverse
elasticity modulus and compressive strength reach a maxi-
mum for radial orientation of loading, and the global
behaviour can be explained by the relation between early-
wood and latewood.

Finally, novel correlations have been proposed for den-
sity, elasticity modulus and compressive strength perpen-
dicular to the grain, using the resistograph, pilodyn and
ultrasonic testing. With respect to density, the resistograph
must be used carefully because no correlation could be
found, while the results for the pilodyn provide good cor-
relations that are independent of the wood age. With
respect to mechanical characteristics, reasonable correla-
tions have been obtained in general taking into account
the wood age and loading orientation. As this is not rea-
sonable for practical purposes, expressions with a lower
95% confidence have been proposed.

The correlations obtained with the dynamic modulus of
elasticity via ultrasonic testing were very good but this
requires the knowledge of the density, which adds complex-
ity to the non-destructive testing technique.
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