
Properties Preservation during Transformation?

Daniela da Cruz1, Jorge Sousa Pinto1, and Pedro Rangel Henriques1

University of Minho - Department of Computer Science,
CCTC - Centro de Ciências e Tecnologias da Programação

Campus de Gualtar, 4715-057, Braga, Portugal
{danieladacruz,jsp,prh}@di.uminho.pt

Abstract. To prove the correctness of a program (written in a high
level programming language) with respect to a specification (a set of
proof obligations) does not assure the correctness of the machine code
that the end-user will run after compilation and deployment phases. The
code generated by the compiler should be verified again to guarantee
that its correctness was preserved, and then that it can be executed in
safety.

In the context of a Ph.D. work in the area of software analysis and
transformation, we are looking for a suitable approach to prove that the
software properties (validated at source level) are kept during translation.

In this position paper we introduce our architectural proposal, and dis-
cuss the platform and we are building for Java+JML on the top of Eclipse.

KEYWORDS: program verification and validation, proof carrying code, software
analysis and transformation.

1 Introduction

The intention of this position paper is twofold. On one hand we want to bring
to discussion our idea of a suitable platform for the generation and verification
of proof-carrying code (PCC), that we will use to assure that a transformation
process keeps a set of proof obligations. On the other hand, we want to make
a note on the actual testbed that we are developing to experiment ideas in this
context; that framework is based on Java as programming language and JML
(Java modeling language) as the specification language used to set the invariants,
pre- and post-conditions to be complied by the program. Only a subset of both
languages is being considered.

Before the detailed discussion of our platform, we include in the rest of this
section the basic concepts and definitions that constitute the theoretical back-
ground in this research area.

? This work is supported by a MAPi/FCT Ph.D. grant nu. SFRH/BD/33231/2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55609030?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Verification Conditions. Our context is the following: the behavior of a program
is specified through the use of pre-conditions and post-conditions. Programs are
verified against their specifications using some program logic, typically some
variant of Hoare Logic [4].

A popular architecture for a program verification system is based on two
stages: a first component, called a Verification Condition Generator (VCGen)
uses a program logic to generate a set of first-order proof obligations, the verifi-
cation conditions, that are then passed on to a generic theorem prover. This is a
more flexible approach than using a dedicated proof tool for reasoning directly
with the program logic. The two-stage approach allows, for instance, to generate
proof obligations for more than one theorem prover, and is more easily adaptable
to modifications in the programming language, since the VCGen is in general a
much simpler component than a theorem prover.

Proof-Carrying Code. PCC [7] is a program verification technology based on the
generation of verification conditions from compiled, rather than source code. The
novelty of the approach is that the application’s executable code contains itself
the formal proof that should be verified by the host system. It is appropriate
in situations in which the client who executes the code has no access to the
sources, or even if it has, does not trust the compiler to be correct. Also the
client must be sure that the binary received is undamaged. So, it is not only a
problem of the compilation process, but also the deployment of the executable
code itself cannot be trusted. The executable code comes equipped with a proof
certificate that testifies that the program conforms to its specification (annotated
in the code). Both are generated by the code provider, but the key idea is that
the client can generate the verification conditions and then mechanically check
whether the given certificate successfully discharges those conditions. For this
the client needs only trust relatively simple components – a low-level VCGen
and a proof checker.

The standard way to generate the certificate is through certifying compila-
tion [8]; however, Barthe and colleagues have proved that non-optimizing compi-
lation of a subset of Java preserves verification conditions [2], i.e. a source-level
VCGen and a bytecode-level VCGen will generate exactly the same proof obli-
gations to be discharged. The certificate can be generated as the result of a
standard bytecode-level program verification process. Notice that for the proofs
at source-level the certificate is generated according to a source-level program
verification process and so, different from the previous one. The present work
takes precisely this point of view.

The Java Modelling Language. JML [6] is a standard annotation language for
Java programs that supports the so-called design by contract approach to soft-
ware development. It allows programs to be annotated with preconditions, post-
conditions, frame conditions, invariant properties, and model-level fields and
methods.

Its strength come from using the same syntax for expressions as the source
language (making specification tasks available to programmers in general), and



from being a federated effort: the design-by-contract approach to software devel-
opment is supported by a number of tools for different tasks, including dynamic
checkers, unit test generators, and even applications that can be used to help
write specifications.

A number of existing program verification systems are based on JML as
specification language; these are based on either (i) a translation of Java+JML
programs into some simpler intermediate language, composed with a VCGen for
this language [3, 1]; or (ii) a complex Hoare-style Logic for a subset of sequential
Java [9, 5]. However, to the best of our knowledge, no direct definition of a VCGen
for the full language has been published.

The Satisfiability Modulo Theories Library, SMT-Lib [10], is a library of bench-
marks for Satisfiability Modulo Theories. SMT deals with the satisfiability of
logical formulas with respect to combinations of background theories (expressed
in classical first-order logic with equality) for which specialized decision proce-
dures exist (such as, for instance, the theory of lists, of arrays, linear arithmetic,
and so on). We elect SMT-Lib’s concrete syntax to represent first-order proof
obligations, with all the inherent advantages of using a standard language used
by many theorem provers.

The Bytecode Modeling Language, BML [11], is a notation for formally specifying
the behavior and interfaces of Java classes and methods at byte-code level in the
form of annotations.

BML has basically the same syntax as JML with two exceptions:

1. Specifications are not written directly in the program code, they are added
as special attributes to the byte code; and

2. the grammar for expressions only allows byte-code expressions.

2 Our Approach, the proposed Architecture

In [13], Colby et al proposed an approach based on certifying compilers; their
approach, by compiling in a completely automatic way high-level source pro-
grams into optimized PCC binaries, was an evolution of the semi-automatic
theorem-proving techniques presented earlier [8], and led to a more practical
PCC technology.

As explained above, we adopt here Barthe’s approach. So, the difference
between Colby’s approach and ours relies on the fact that we build up a front-
end (the so-called Verification Condition Generator) between the specification
languages and the proof systems (at both sides, the source code producer and
the user of the executable code).

In concrete term we are building a PCC platform for Java programs, using
JML and BML, respectively as source and machine level specification languages.
The process is basically split into four major steps:

– Translation of JML annotations into a set of proof obligations (PO’s) written
in SMT language;



– Compilation of the Java programs into Java byte-code, using an existing
compiler (javac);

– Translation of JML annotations into BML annotations that are weaved into
the generated Java Bytecode using code instrumentation techniques, as will
be referred below.

– Translation of BML annotations into proof obligations (PO’s) also specified
in SMT language.

The generic architecture depicted in Fig. 1 describes precisely the steps above;
VCgen s is the VCgen applied to the source code and VCGen b is the VCgen
applied to the byte-code.

Fig. 1. The architecture of our PCC implementation

The theorem prover used in each side will be a first order logic (Hoare logic)
capable of interpret the SMT language.

Below, an example is given for the first step referred above. Listing 1.1 shows a
Java program with max method (that returns the maximum value of two integers)
annotated with JML — the annotation defines a post-condition. Listing 1.2 shows
the result of translating the annotations into the SMT language.

Listing 1.1. Max method annotated with JML�
1 pub l i c c l a s s Operat ions {

3 /∗@ ensure s \ r e s u l t >= x && \ r e s u l t >= y &&
@ \ f o r a l l i n t e g e r z ; z >= x && z >= y ==> z >= \ r e s u l t ;

5 @∗/
pub l i c s t a t i c i n t max( i n t x , i n t y ) {

7 i f (x>y ) re turn x ;
e l s e re turn y ;

9 }
}� �



Listing 1.2. Proof obligations generated for the max example�
( f o r a l l (? x c unsor ted )

2 ( f o r a l l (? y c unsor ted )
( i m p l i e s t rue

4 ( and
( i m p l i e s

6 (> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?x ) )
( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?y ) ) )

8 ( and (> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?x ) )
( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?x ) ) )

10 ( and (> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?x ) )
( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?y ) ) )

12 ( f o r a l l (? z c unsor ted )
( i m p l i e s ( and (> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ? z ) )

14 ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?x ) ) )
(> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ? z ) )

16 ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?y ) ) ) )
(> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ? z ) )

18 ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?x ) ) ) ) ) ) ) )
( i m p l i e s

20 ( not (> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?x ) )
( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?y ) ) ) )

22 ( and (> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?y ) )
( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?x ) ) )

24 ( and (> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?y ) )
( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?y ) ) )

26 ( f o r a l l (? z c unsor ted )
( i m p l i e s ( and (> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ? z ) )

28 ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?x ) ) )
(> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ? z ) )

30 ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?y ) ) ) )
(> ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ? z ) )

32 ( i n t e g e r o f i n t 3 2 ( c s o r t in t32 ?y ) ) ) ) ) ) ) ) ) ) ) )� �
Code instrumentation is a mechanism that allows modules of programs to be

completely rewritten at runtime. With the advent of virtual machines, this type
of functionality is becoming more interesting because it allows the introduction
of new functionality after an application has been deployed, easy implementa-
tion of aspect-oriented programming, performing security verifications, dynamic
software upgrading, among others.

The value added by our proposal at this point is the weaving of the BML an-
notations into Java Bytecode files, after the compilation of Java source programs
by a traditional compiler that does not need to be modified.

Two of the most important libraries in this area of code instrumentation
for Java are BCEL [14], which provides a high-level API for manipulating Java
Bytecode, and JOIE [12] that also allows Java objects to be instrumented.

The VCGen algorithms implemented will basically follow [2] – we will be able
to prove, empirically, that the PO’s generated at both levels are equivalent. In



a second phase of this project, we will extend the algorithms to richer subsets
of Java, and our implementation will be an invaluable tool for identifying PO-
preserving extensions.

3 Conclusion

In this article we have presented an approach to implementing a source-level PCC
system; in our proposal we build a front-end (a Verification Condition Generator)
between the specification languages (Java and JML) and the proof systems, that
allows for the interactive construction of proofs of properties of programs at
source-level, and then replicate this process at bytecode level.

At the present moment we are in the first phase of the process: the translation
of the JML annotations into the proof obligations in SMT language. To implement
this step we are using a well known compiler generator — ANTLR [15]. To have
a full recognizer of the Java language with JML annotations we took an existing
Java grammar and used a code instrumentation like technique. That is, starting
from the original Java grammar we studied where the JML annotations could
appear and introduced the corresponding fragments of JML grammar at each
point.

The next step will be the development of a new Java-JML compiler that will
reuse the Java compiler and translate each JML fragment into a BML fragment
that, using again code instrumentation, will be weaved into the Java byte-code.

After that we will work on the low-level (or machine level) VCGen in order to
finish the testbed that will allow us to make some experimentations in the area of
theorem proving. For the limited subset of Java used in [2], proof obligations are
guaranteed to be the same at both levels; we intend to further extend the VCGen
algorithms to richer languages while still guaranteeing the preservation of proof
obligations. Our testbed will help us in this task by allowing us to immediately
recognize the features that violate this preservation.

The final objective of this research project will be to understand how this
approach to PCC can be applied to a broader area that is under our present
interest: generic program transformations.

References

1. Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs. In
Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors, FMCO, volume 4111 of Lecture Notes in Computer Science, pages 364–387.
Springer, 2005.

2. Gilles Barthe, Tamara Rezk, and Ando Saabas. Proof obligations preserving compi-
lation. In Theodosis Dimitrakos, Fabio Martinelli, Peter Y. A. Ryan, and Steve A.
Schneider, editors, Formal Aspects in Security and Trust, volume 3866 of Lecture
Notes in Computer Science, pages 112–126. Springer, 2005.



3. Jean-Christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus plat-
form for deductive program verification. In Werner Damm and Holger Hermanns,
editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages 173–177.
Springer, 2007.

4. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969.

5. Bart Jacobs and Erik Poll. A logic for the java modeling language jml. In Heinrich
Hußmann, editor, FASE, volume 2029 of Lecture Notes in Computer Science, pages
284–299. Springer, 2001.

6. Gary T. Leavens, Clyde Ruby, K. Rustan, M. Leino, Erik Poll, and Bart Jacobs. Jml:
notations and tools supporting detailed design in java. In OOPSLA ’00: Addendum
to the 2000 proceedings of the conference on Object-oriented programming, systems,
languages, and applications (Addendum), pages 105–106, New York, NY, USA, 2000.
ACM.

7. G. C. Necula. Proof-carrying code. In Proceedings of POPL’97, pages 106–119.
ACM Press, 1997.

8. George C. Necula and Peter Lee. The design and implementation of a certifying
compiler. In PLDI, pages 333–344, 1998.

9. Arnd Poetzsch-Heffter and Peter Müller. A programming logic for sequential java.
In S. Doaitse Swierstra, editor, ESOP, volume 1576 of Lecture Notes in Computer
Science, pages 162–176. Springer, 1999.

10. Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2008.

11. Lilian Burdy, Marieke Huisman, and Mariela Pavlova. Preliminary design of BML:
A behavioral interface specification language for Java bytecode. In Fundamental
Approaches to Software Engineering (FASE 2007), volume 4422 of Lecture Notes in
Computer Science, pages 215–229. Springer-Verlag, 2007.

12. Geoff Cohen, Jeff Chase, and David Kaminsky. Automatic program transformation
with JOIE. In 1998 USENIX Annual Technical Symposium, pages 167–178, 1998.

13. Christopher Colby, Peter Lee, and George C. Necula. A proof-carrying code archi-
tecture for java. In Computer Aided Verification, pages 557–560, 2000.

14. M. Dahm. Byte code engineering with the bcel api, 2001.
15. Terence Parr. The Complete Antlr Reference Guide. Pragmatic Bookshelf, 2007.


