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0. General 
 

The determination of geomechanical parameters is one of the main issues where higher 

uncertainty lies. The natural heterogeneity of the formations together with the punctual 

character of the most commonly used tests hinders the establishment of accurate 

geological/geotechnical models. This is especially true in the preliminary stages of the 

projects where limited access to the rock mass exists. The rock mass characterisation is 

normally carried out using in situ and laboratory tests together with the application of 

empirically based rock mass classification systems. These tools together with 

experience provide a relatively sound basis for geotechnical engineers in their projects.  

 

In the recent years, many advances have been reached in every field of rock mass 

characterisation. New tests, with particular emphasis for dynamic methods, and 

improvements on the classification systems are available and constitute as important 

aids for present and future projects. Also in the numerical fields, developments have 

been reached. In the Artificial Intelligence (AI) scope, for instance, several successful 

applications have been developed which prove that these tools can be important in 

decision support.  

 

During construction, a great amount of geotechnical information is produced which, 

normally, is not properly stored and analysed. Data Mining techniques, which use AI 

tools, can help in a more correct analysis of this data taking advantage on the embedded 

knowledge in a database. The gathered data can be used to update the geotechnical 

model. This is normally carried out based only on the engineering experience which 

turns the process variable and user dependent. Bayesian techniques can provide a 
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framework for a general updating procedure in order to reduce uncertainties. In this 

work, a general approach to Data Mining and Bayesian updating techniques and how 

they can be used in geotechnical engineering will be performed. This approach will be 

complemented by simple application examples. 

 

 

1. Knowledge discovery in databases and Data Mining 
 

1.1 Introduction 

 

Currently, there is a great expansion of information that needs to be stored and 

processed. It is important to use computational tools to explore this data which often 

presents high complexity and can hold valuable information such as trends or patterns 

that can be very useful (Goebel & Gruenwald, 1999). 

 

In the past, two major approaches have been used for this goal: classical statistics and 

knowledge from experts. However, the number of human experts is limited and they 

may overlook important details, while classical statistic analysis does not give adequate 

answer when large amounts of complex data are available. The alternative is to use 

automated discovery tools to analyze the raw data and extract new and useful 

knowledge (Hand et al., 2001). 

 

Due to the awareness of the great potential of this subject there has been an increasing 

interest in the Knowledge Discovery from Databases (KDD) and Data Mining (DM) 

fields. These terms are often confused. KDD denotes the overall process of transforming 

raw data into knowledge and DM is just one step of the KDD process, aiming at the 

extraction of useful patterns from the observed data. The knowledge derived through 

DM is often referred to as models or patterns and it is very important that this 

knowledge is both novel and understandable. 

 

The KDD process consists in the following steps (Figure 1): 

 

• Data selection: the application domain is studied and relevant data is collected. 
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• Pre-processing or data preparation: noise or irrelevant data is removed, multiple 

data sources may be combined and prior knowledge can be incorporated. 

• Transformation: data is transformed in appropriate forms for the DM process. 

• DM: intelligent methods are applied in order to extract models or patterns. 

• Interpretation: results from the previous step are studied and evaluated. 

 

 
Figure 1 - Phases of the KDD process (Fayyad et al., 1996) 

 

DM is a relatively new area of computer science that lies at the intersection of statistics, 

machine learning, data management, pattern recognition, artificial intelligence and 

others. DM is thus emerging as a class of analytical techniques that go beyond statistics 

and concerns with automatically find, simplify and summarize patterns and 

relationships within large data sets. 

 

There are several DM techniques, each one with its own purposes and capabilities. 

Examples of these techniques include Multiple Regression Analysis, Decision Trees and 

Rule Induction, Neural and Bayesian Networks, Learning Classifier Systems and 

Instance-Based algorithms (Lee & Siau, 2001; Berthold & Hand, 2003). 

 

1.2 Data Mining 

 

DM consists in the searching and inference of patterns or models in the data which can 

represent useful knowledge. Depending on what kind of patterns to be found, DM tasks 

are normally classified into two categories: descriptive and predictive. Descriptive tasks 

characterize the general properties of the data while predictive perform inference on 

data in order to make predictions (Han & Kamber, 2000). Descriptive models intend to 

summarize data in convenient ways to improve the understanding of data while 

predictive models aim to forecast the unknown value of a variable given known values 

of other variables (Hand, 2001). In the following items the main DM tasks, models and 

techniques will be described. 
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1.2.1 Tasks 

 

Classification is the process of finding a model (or function) which describes different 

classes in data in order to allow associating a new object to a class according to its 

characteristics. Normally, the derived model is induced by the classification algorithm 

based on the analysis of a training set of data. In other words, classification categorizes 

a certain object into one of several predefined classes. Each object belongs to a certain 

class among a pre-defined set of classes. The objective of the classification algorithm is 

to find some relation between attributes and one class in order that the classification 

process can use that relation to predict the class of a new and unknown object. 

 

Figure 2 presents a hypothetical classification example of a rock mass classification 

system. It is intended to develop a simpler system only based on the uniaxial 

compressive strength (UCS in MPa) and the Rock Quality Designation (RQD) as 

classification parameters based on the results of application of another more complex 

system. The algorithm is applied over a set of examples of the classification system 

(training data) to find the classification rules. Their accuracy is tested over a different 

set of examples not used for training (testing data). If the model shows acceptable 

results it can be used to classify new cases. 

 
Training Data       

UCS RQD Class  Classification Algorithm  Classification rules 

60 80 Excellent      

0.9 50 Fair      
1 

If  UCS>60 ^ RQD>70 

Then Class = Excellent 

12 60 Good      … … 

2 40 Fair          

… … …      

    Testing Data   New Cases 

    UCS RQD Class   UCS RQD Class 

    15 55 Good   1 45 Fair 

    90 72 Excellent   … … … 

    … … …      

Figure 2 – Classification example with rock mass classification data 
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Regression is a predictive model, very similar to classification, used for continuous 

values (in classification the variables are categorical). In fact, the main difference is the 

nature of the response variable which is, in this case, numerical instead of nominal.  

 

Regression allows obtaining other important information. Using this technique, it can be 

possible to know the relative importance of each parameter in the prediction of the 

target variable. This information can be very useful for the comprehension of the 

physical phenomenon supporting the inferred model. Moreover, regression presents 

flexibility concerning the input parameters allowing that empirical and/or specialized 

knowledge is considered in the models. For instance, it is possible to consider an input 

variable that, based on experience, should be in the model, even though it leads to a 

small predictive improvement. Inversely, it is possible to exclude variables which one 

considers should not appear in the model or lead to a substantially reduced model 

complexity in exchange of some predictive accuracy loss. Finally, it is possible to 

explore interaction between input variables in the sense that the influence of one input 

in the target variable depends on the values taken by others. 

 

Association or dependencies deal with finding interesting relationships between items 

of a given data set. These models describe significant dependencies between variables 

through the identification of groups of highly associated data. These dependencies can 

exist at two levels: 

 

• Structural: the model presents locally dependent variables in a graphical way. 

• Quantitative: the model specifies the strengths of the dependencies using a 

numerical scale.  
 
 
Clustering is the process of grouping similar objects into classes. In classification an 

object is associated in one of several predefined classes while in clustering the classes 

must be determined by the data. It is a kind of learning by observation other than 

learning by examples as in classification. Cluster analysis is also referred as 

unsupervised learning. The clusters are defined by finding groups in data which presents 

certain similarities. These similarities are evaluated by metrics or probability tools. 
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1.2.2 Models and techniques 

  
The main issue of the DM task is building a model to represent data. In this step of the 

KDD process learning occurs by adopting a search algorithm for training. This process 

occurs over a training set until a given criteria is met. After training the model is built 

and its quality is normally evaluated over a test set not used for training.  

 

There are several different models but there is no universal one to efficiently solve all 

the problems (Harrison, 1998). Each one presents specific characteristics (advantages 

and drawbacks) which make them better suited in a certain case. This section will 

present the modelling techniques used in this work with exception to the linear and 

multiple regression which is a widely known topic. 

 

Decision trees and rule induction 
 

A decision tree is a direct and acyclic flow chart that represents a set of rules 

distinguishing classes or values in a hierarchical form. These rules are extracted from 

the data, using rule induction techniques, and appear in an “If-Then” structure, similar 

to the rule presented in Figure 2, expressing a simple and conditional logic. Source data 

is spitted into subsets, based on the attribute test value and the process is repeated in a 

recursive manner. Graphically they present a tree structure and are formed by three 

main components (Figure 3): 

 

• The top node or root that represents all the data. 

• Branches which connect nodes. Each internal node represents a test to an attribute 

while the branches denote the outcome of the test. 

• Leafs which are terminal nodes represent classes or values. 

 



Course on Geomechanical Parameter Evaluation in Rock Engineering Practice 

Figure 3 – Example for a decision tree 

 

Considering again the previous example of the hypothetical classification system, in 

Figure 3 it is presented a possible classification tree for this case where the different 

components are identified. Each path between the root to a leaf correspond to a decision 

rule. In this case an example of a decision rule could be: 

 

If UCS<70 and RQD<50 then class = Bad 

 

After a tree is learned it can be used to classify or calculate the value of a new object. 

There are two types of decision trees namely classification and regression trees (Berry 

& Linnof, 2000). These two types of trees use the same structure. The only difference is 

the type of the target variable. Classification trees are used to predict the class to which 

data belongs while regression trees are used to estimate the value of a continuous 

variable based on induced mathematical expressions. 

 

The greatest benefits of decision trees approach are that they are easy to understand and 

interpret. They use a “white box” model i.e. the induced rules are clear and easy to 

explain as they use a simple conditional logic. Additionally, they can deal with 

categorical and continuous variables. The main drawback is that they get harder to 

manage as the complexity of data increases leading to increasing number of branches in 

the tree. 
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Artificial Neural networks 
 

Artificial Neural Networks (ANN) were conceived to imitate the biological networks of 

neurons found in the brain. They are formed by groups of connected artificial neurons in 

a simplified but very similar structure to the brain neurons. Like the biological 

structures, ANN can be trained and learn from a set of examples to find solutions to 

complex problems, recognize patterns and predict future events. The acquired 

knowledge can then be generalized to solve new problems. This means that they are 

self-adaptive systems. 

 

ANN are complex parallel computational structures based on connected processing 

units (neurons) organized in layers. Neurons communicate using signals through 

input/output connections and each connection has an associated weight. The neuron 

multiplies each input with the weight of the associated connection. The total input is the 

sum of all weighted inputs. Finally, an activation function is applied in order to relate 

the input (stimulation) to the output (response) (Sakellariou and Ferentinou, 2005). This 

way, the artificial neuron (Figure 4) is composed by three main elements (Cortez, 

2002): 

 

• A set of connections which represent synapses. 

• The neuron which reduce several inputs to one output. 

• An activation function which limits the output amplitude of the neuron and 

introduce a non-linear component. 

 

 
Figure 4 – Scheme of an artificial neuron configuration 
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where a is a slope parameter. In an ANN, neurons can be connected and organized in 

many different ways (Santos & Azevedo, 2005). The most used organization is the 

Multi-layer networks which are composed by different parallel layers. The first is the 

input and the last the output layer. Intermediate ones are called hidden layers (Figure 5). 

 

Input Hidden Layer Output

x1

x2

xn

y1

yn

 
Figure 5 – Scheme of a Multi-Layer network 

 

The connection structure of neurons in a network is normally called architecture or 

topology. There are several architectures, each one with its own potentialities, but the 

most used is the multilayer feed-forward (also represented by Figure 5). 

 

The learning process of an ANN is carried out using specific algorithms with very well 

defined rules. Supervised learning is one of the main method where examples of the 

inputs together with the correspondent outputs are used in the training process. This 

allows the network to learn the patterns embedded in the examples. During training, the 

outputs of the network are compared with the real values resulting in an error measure. 

This error is used to adjust the weights of the connections in order to minimize it in an 

iterative process. 

 

There are several different models that have been implemented on ANN. Perceptron 

networks were the first to be developed. They are one layered feed forward networks 

with several inputs and outputs. Perceptrons are very simple to use however they are 

only applicable to problems with low complexity. 
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Back-propagation networks are the most widely used paradigm in supervised learning. 

They consist in networks where neurons are distributed on two or more layers. The 

back-propagation algorithm performs learning in multilayer feed-forward networks. It is 

based on the selection of an error function whose value is determined by the difference 

between the outputs of the network and the real values. 

 

Back-propagation networks are powerful learning tools and have been used with 

success in several applications. They are able to learn from noisily and highly non linear 

data and can recognize different sets of data within a broader data set. 

 

Model evaluation 

 

After generating the models it is necessary to evaluate their future performance. 

Normally, this is carried out applying the model to a set of examples not uses to induce 

the model. Holdout and cross-validation are two common techniques for assessing the 

models accuracy, based on randomly-sampled partitions of the data. 

 

In the holdout method data is randomly partitioned into two independent sets, a training 

set and a test set. Typically, two thirds of the data are allocated to the training set and 

the remaining to the test set. Nevertheless, there is no theoretical background to support 

these values. The training set is used to induce the model whose accuracy is estimated 

with the test set. The estimate is pessimistic since only a portion of the initial data is 

used to derive the classifier. 

 

In cross-validation, data is randomly partitioned into k mutually exclusive subsets 

randomizing for each one the cases within the training and test set. Training and testing 

is performed k times and the overall error of the model is taken as the average of the 

errors obtained in each iteration. The values of k can vary between 2 and n (number of 

cases) however a commonly considered value is 10. It allows using all the available 

cases in training and test. The accuracy of this technique involves a considerable 

computational effort (Cortez, 2002). 

 

There are several evaluation techniques that can be applied to the models depending if it 

is a regression or classification problem. In regression problems the goal is to induce the 
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model which minimizes an error measurement e between real values and the ones 

predicted by the model. The most used error measurements are the following: 

 

Mean Absolute Deviation: 
N

e
MAD

N

i
i∑

== 1                                                             1 

 

Sum Squared Error: ∑
=

=
N

i
ieSSE

1

2                                                                           2 

 

Mean Squared Error: 
N

SSEMSE =                                                                         3 

 
Root Mean Squared Error: SSERMSE =                                                           4 

 

where N is the number of examples. More than one measurement should be used when 

evaluating the performance of a model since they measure different types of errors. 

Another way to evaluate the capabilities of the models is to compute the determination 

coefficient (R2) which is very common in many statistical applications. 

 

For classification problems one of the most used techniques is the confusion matrix 

(Kohavi & Provost, 1998). It is used to evaluate the results of a classification indicating 

the predicted values versus the correct ones. In the lines are disposed the real classes 

while in the columns the predictions performed by the model. In the main diagonal it is 

indicated the number of correct guesses while the remaining indicate errors. In Table 1 

it is presented the confusion matrix for an example with two classes. In this example the 

classes are designated as positive and negative. 

 
Table 1 – Confusion matrix for two classes 

Class Predicted C1 Predicted C2 

Real C1 
True positive 

TP 
False negative 

FN 

Real C2 
False positive 

FP 
True negative 

TN 
 
 
With this matrix it is possible to calculate important measures for the model evaluation: 
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Specificity: %100×
+

=
FPTN

TNspec       5  Sensitivity: %100×
+

=
FNTP

TPsens       6 

Accuracy: %100×
+

=
N

TNTPtacc          7 Precision: %100×
+

=
FNTP

TPprec        8 

 

1.3 Application example 

 

1.3.1 Description 

 

Two of the most used classification systems are the RMR (Bieniawski, 1989) and the Q-

system (Barton et al, 1974). Most of the times there are some difficulties to apply these 

classifications systems. Some of the data required to their application may not be 

available, can lack of reliability or may be difficult/expensive to obtain. Also, the 

considered parameters may have different importance depending on the type of rock 

mass being analyzed. 

 

In this work it is intended to develop new alternative models to calculate the RMR 

index for the particular case of granite rock masses which are very important in the 

North of Portugal (Miranda et al., 2007 a)). They are intended to use only the most 

important parameters in the behaviour of granite rock masses with a good predictive 

accuracy. 

 

This study was carried out using a large database of the empirical systems application in 

an important underground structure built in a granite rock mass. On this database DM 

techniques were applied to obtain the new models. Multiple regression techniques and 

artificial neural networks (ANN) were used. The first are simpler to use and analyze and 

allow having an insight of which parameters are the most important in the indexes 

prediction while the latter are more complex and suitable for highly non-linear 

problems. 

 

1.3.2 The database 
 

Some of the variables histograms presented skewed distributions and others only 

assumed a few different values. Figure 6 presents the histogram of the RMR variable 
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one example of a skewed distribution. This fact can influence the quality of the induced 

models specially those based on neural networks since this kind of algorithm can learn 

better the behaviour of normally distributed variables. This way, and after some 

preliminary trial calculations, it was decided to proceed to the transformation of some 

variables in order to maximize their normality. 

 

 
Figure 6 – Histogram of the RMR variable where is possible to observe the skewness of the distribution 

 
 

The data for these models was assembled from the Venda Nova II powerhouse complex 

which is an important underground work recently built in the North of Portugal. The 

interested rock mass is a granite formation so the conclusions drawn in this study are 

only applicable to formations with similar characteristics.  

 

The collected data was composed by applications of the empirical RMR and Q systems. 

After some data cleaning work it was then organized and structured in a database 

composed of 1230 examples and 21 attributes which are described in Table 2. Other 

attributes were added to the database in order to check their possible influence on the 

models. Globally, 9 new attributes were added and are presented in Table 3. 

 

The data is based on the results obtained in a granite rock mass. More specifically, the 

main limitations that should be considered are high uniaxial compressive strength (>100 

MPa), RQD values over 65% and slightly wet to dry rock mass. The models developed 

in this work should only be applied to rock masses with similar characteristics. 
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Table 2 – Name and description of the attributes in the original database 
Name Description 
RQD Rock Quality Designation  
Jw Factor related with the underground water 
Jn Factor related with the number of discontinuities sets 
Jr Factor related with discontinuities rugosity 
Ja Factor related with the weathering degree of discontinuities 
SRF Factor related with the stress state in the rock mass 
Q Rock mass quality index proposed by Barton et al. (1974) 
Q’ Altered form of the Q index (Q’ = RQD/Jn * Jr/Ja) 
RCU Uniaxial compressive strength 
P1 Weight related with the uniaxial compressive strength of the intact rock 
P2 Weight related with the RQD 
P3 Weight related with discontinuities spacing 
P4 Weight related with discontinuities conditions 
P5 Weight related with the underground water conditions 
P6 Weight related with discontinuities orientation 
P41 Discontinuities conditions – persistence 
P42 Discontinuities conditions – aperture 
P43 Discontinuities conditions – rugosity 
P44 Discontinuities conditions – filling 
P45 Discontinuities conditions – weathering 
RMR Rock Mass Rating proposed by Bieniawski (1978) 
  

Table 3 – List of attributes added to the original database 
Name Description 

RQD/Jn Ratio which represents the compartimentation of the rock mass 
Jr/Ja Ratio which represents the shear strength of discontinuities 
Jw/SRF Ratio which represents an empirical factor named “active stress” 
logQ Base 10 logarithm of the Q value 
logQ' Base 10 logarithm of the Q’ value 
GSI Geological Strength Index proposed by Hoek et al., 2002 
N Altered form of the Q index (Q' = RQD/Jn * Jr/Ja * Jw) 
RCR Altered form of the RMR index (RCR = P2+P3+P4+P5+P6) 
RCU Uniaxial compressive strength 
 

1.3.3 Modelling and evaluation 

 

The SAS Enterprise Miner was used as modelling tool (www.sas.com). It was 

developed by the SAS Institute to perform DM tasks and combines statistical analysis 

with graphical interfaces and delivers a wide range of predictive models. The evaluation 

of the models was carried out using the results provided by this software and 

complementary calculations on spreadsheets. In the SAS Enterprise Miner, the DM 

tasks are carried out programming and connecting nodes in a graphical workspace, 

adjust settings, and run the constructed workflow. In Figure 7 the workflow used for in 

this work is presented. 
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Figure 7 – Workflow used for the DM tasks 

 

The algorithms used for the regression models were multiple regression and ANN. The 

applied artificial network was a multilayer feed-forward network with one hidden layer 

of six neurons. Focus was drawn to the multiple regression models because it was 

intended to obtain the explanatory physical knowledge behind the models (for instance, 

which were the main attributes in the prediction of a certain variable). Moreover, these 

models are simpler to use and to implement. The neural network models were used 

more for comparison purposes. It was not tried to optimize their behaviour for instance 

changing the numbers of neurons or topology and are an open issue for further research. 

The used error measures were the MAD and the RMSE. 

 

To validate and assess the models accuracy the holdout method was used. In this 

method data is randomly partitioned into two independent sets, a training set and a test 

set. In this case, 2/3 of data was used for training and 1/3 for testing. The training set is 

used to induce the model and its accuracy is estimated with the test set. For each model 

10 runs were carried out randomizing the data within the training and testing sets. The 

mean and confidence intervals for the error measures were then computed considering 

the results of the 10 runs and a 95% confidence interval of a T-student distribution. 

These statistical measures define the range of expected errors for future predictions of 

the final model which is induced using all the data for training. In addition to the error 

measures also the determination coefficient (R2) was used. 
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1.3.4 Results 

 

The study of all target variables started considering firstly all the attributes. This was 

done to determine, for the linear regression models and, which were the most important 

attributes in the prediction of this variable.  In Figure 8, a graph of the relative 

importance of the main attributes for the RMR variable is presented. 

 

 
Figure 8 – Relative importance of the attributes for the prediction of the RMR variable 

 

As it was expected, the main parameters which influence the prediction of RMR are the 

ones directly related to its calculation even though P1 appears only in an indirect way in 

the form of the unconfined compressive strength (defined as RCU in the plot). It is 

important to notice that, among these parameters, the most important are, by far, the 

ones related with the discontinuities. In particular the parameters related with conditions 

(P4) and orientation of discontinuities (P6) are very good predictors of RMR. Moreover, 

in the scale of relative importance, the parameters of the Q system also related with 

discontinuities appear (Jn and Jr/Ja). These facts point out to the conclusion that, in 

granite formations, the data related with the discontinuities is a very good predictor of 

the overall quality of the rock. 
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The next step was to induce models considering only the most important parameters: P3, 

P4 and P6. The obtained regression model was the following: 

 

64
2

3 977.0369.1065.077.35 PPPRMR ×+×+×+=  9

 

In Table 4 the results for the regression and ANN models are presented in terms of 

average errors and determination coefficient and correspondent t-student 95% 

confidence intervals. These results are concerned only with the testing set since they are 

the ones related with the behaviour of the models when facing new cases. The results 

for the models which use all the attributes are presented only for comparison matters.  

 
Table 4 – Results for the models considering all the attributes and the most important ones for the RMR 

coefficients 
All attributes P3, P4 and P6 

Regression ANN Regression ANN 

R2 MAD RMSE RMSE R2 MAD RMSE RMSE 

0.995 

± 0.001 

0.650 

± 0.050 

1.094 

± 0.073 

1.070 

± 0.070 

0.944 

± 0.005 

2.565 

± 0.083 

3.522 

± 0.169 

2.857 

± 0.114 

 

As it was expected, the models which use all attributes are very accurate. The error 

measures are low and the determination coefficient is close to 1. Using only the three 

main parameters, the error significantly increases. This is because only half of the 

parameters used in the original expression are applied. Nevertheless, the error can be 

considered low for engineering purposes. Analysing the MAD and RMSE values a 

prediction error around 3 is expected. This means that, for instance, if a rock mass has a 

“real” RMR value of 65, a value within [62; 68] will be predicted which is acceptable. 

This expression can be useful for preliminary stages of design or when only information 

about discontinuities is available or is reliable. 

 

Considering the RMSE, the ANN slightly outperforms the regression models. Only for 

the ones with less attributes the difference can be considered significant. In this case the 

RMSE for the ANN is approximately 20% less than the correspondent value of the 

regression model. In Figure 9 the plot of computed versus predicted RMR values is 

presented. 
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Figure 9 – Computed versus Predicted RMR values for regression model with parameters P3, P4 and P6 

 

It can be seen that the values lay near a 45 degree slope line which means that the 

prediction model shows a good accuracy. However, the deviations between real and 

predicted values increase with decreasing rock mass quality. For RMR values below 30-

35 the prediction error increases and the model tends to overestimate the RMR. Above 

RMR values of 85 this overestimation trend is also observed. Since the model is based 

in the discontinuities characteristics this fact can be explained by the importance loss of 

discontinuities for poorer and massive rock masses. 

 

The plot of Figure 9 shows a tail with an almost quadratic trend. In order to minimize 

this fact a transformation of the RMR variable was performed. Calculations were 

repeated using RMR2 and the following regression model was obtained. 

 

64
2

3
2 7.1163.166148.77.1036 PPPRMR ×+×+×+=  10

 

Table 5 resumes the results and Figure 10 presents a plot of real versus predicted values 

for this model. 

 
Table 5 – Results for the multiple regression model considering parameters P3, P4 and P6 and using the 

transformed form of the target variable 
Regression 

R2 MAD RMSE 

0.954 ± 0.004 2.179 ± 0.081 3.172 ± 0.119 
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Figure 10 – Real versus Predicted RMR values for regression model with parameters P3, P4 and P6 and 

considering the transformation RMR 
 

This transformation led to a slight reduction on the error measurements (approximately 

0.4 for each) and confidence intervals and a small increase on R2. In Figure 10, a loss of 

accuracy for lower RMR values can still be observed. However, this happens with 

higher significance for RMR values below 30 and the overestimation trend is no longer 

observed has in the previous model. The points are almost equally distributed along the 

45 degree slope line which means that the mean prediction error is close to 0. Table 6 

summarizes the main issues of the regression models for the two approaches, 

considering RMR and RMR2 as the target variables. 

 
Table 6 – Comparison of the main results between the regression models which use RMR and RMR2 as 

target variables   
Target variable 

RMR RMR2 
- Overestimation trend for RMR<35 and 

RMR>85. 
- Good behaviour in a central range of 

RMR values. 
- Accuracy lost for poorer rock masses. 

- Very good results for RMR>50. 
- Higher dispersion than previous model 

in a central range of RMR values 
(35<RMR<50).  

- For the lower range also accuracy lost 
with no specific trend. 

 

In a merely statistic point of view, the model which uses RMR2 as the target variable 

presents a better performance since it has lower error measures and higher R2. Also, in 

this case the error does not follow a specific trend presenting a mean value close to 0. 

However, for design purposes, the conclusion may not be necessarily the same. In fact, 

the error measures are very close but when using the model with RMR, one knows that 
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in a certain range of values, an overestimation trend is expected. When using the other 

model the expected error is random. 

 

As it was already referred, the Q system related parameters Jn and Jr/Ja are also 

important to the RMR prediction.  These attributes were added to this model and 

calculations were again performed. However, only negligible increased performance 

was achieved. 

 

 

2. Bayesian updating in geomechanics 
 

2.1 Introduction 
 

Determination of geomechanical parameters is an exercise of subjective nature. The 

inherent uncertainty about their real value hinders the establishment of a deterministic 

set of values for the parameters. In practice, for each geotechnical zone, a range of 

values is assigned to the parameters based on the geotechnical survey and, in the case of 

rock masses, often by application of the empirical classification systems. 

 

In the initial stages, the available information about the rock masses is limited. 

However, the construction of geotechnical models is a dynamic process and, as the 

project advances, it can be updated as new data is gathered. Data can have different 

sources each with its own precision and accuracy. Data uncertainty involves an 

objective (frequentist) and subjective component: the latter is usually dependent on the 

geotechnical engineer’s experience. Nowadays, a methodology to consistently treat the 

problem of geomechanical model updating is needed in order to reduce the uncertainty. 

 

The characteristics of the Bayesian methods of data analysis make them well suited for 

geotechnical purposes where uncertainty is present at several levels and data is 

compiled in different stages and with different properties. In Figure 11 a general scheme 

for the deformability modulus (E) calculation and updating during preliminary and 

construction stages is presented. It consists of a Bayesian framework where E is 

considered a random variable with a given distribution function. Uncertainty about the 
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parameter is represented by its standard deviation which can be reduced as more data 

are obtained through in situ tests, mapping of the tunnel face and backanalysis. 

 

In this work, the general Bayesian framework for the geotechnical model updating is 

presented. It is shown how data from a preliminary geotechnical survey can be updated 

using in situ tests. More specifically, information about E is available by application of 

the empirical systems and then updated using the results of LFJ tests (LNEC, 1983). 

Real data from the Venda Nova II powerhouse complex was used for the updating 

process. Different types of prior information and distributions were considered and 

results were compared to evaluate the sensitivity of the results to prior assumptions. 

 

Preliminary
research E1

LFJ, SFJ tests

Update
Eactual 
   stage

Preliminary Stage

2D and 3D
Numerical models

Mapping of the
tunnel face:
RMR and Q

Stress and displacements
measurements

E2 E3

Stress and 
displacements
prediction

Backanalysis

Eactual 
   stage

Update Update

E

Construction 
Stage

LFJ - Large Flat Jacks
SFJ - Small Flat Jacks

 
Figure 11 - Scheme of the updating process 

 
 
 
 
2.2 Bayesian data analysis and uncertainty 

 

Uncertainties can be represented in terms of mathematical concepts (Ditlevsen and 

Madsen, 1996; Einstein, 2006). In many cases it is enough to model the uncertain 
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quantities using random variables with given distribution functions and parameters 

estimated on the basis of statistical and/or subjective information (Faber, 2005). The 

principles and methodologies for data analysis that derive from the subjective point of 

view are often referred to as Bayesian statistics. Its central principle is the explicit 

characterisation of all forms of uncertainty in a data analysis problem. The knowledge 

about an unknown parameter is described by a probability distribution. Probability is 

used as the fundamental measure of uncertainty. 

 

Bayesian techniques allow one to update random variables when new data are available 

using a mathematical process in order to reduce uncertainties. This process can be 

divided into the three following steps (Ditlevsen and Madsen, 1996): 

 

1 – Set up a joint probability distribution for all variables. 

2 – Calculate the conditional posterior distribution of the variables given new data. 

3 – Evaluate the fit of the model to the data analysing if the conclusions are reasonable 

and how sensitive, the results are to the modelling assumptions in step 1. 

 

The posterior distribution is a compromise with reduced uncertainty between the prior 

information and the one contained in the new data (Bernardo & Smith, 2004). As it 

contains prior and new information the posterior is the updated distribution for the 

random variable with reduced uncertainty. 

 

Bayesian methods provide tools to incorporate data and external information into the 

data analysis process. In a Bayesian approach, the data analysis process starts with a 

given probability distribution. Its parameters may be chosen or estimated based on 

previous experimental results, experience and professional judgement. This distribution 

is called prior distribution and represents the uncertainty about the parameter states. 

 

When additional data become available, this is used to update this prior distribution into 

a posterior distribution using the Bayes theorem. Figure 12 summarizes this overall 

process. 
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Figure 12 - Scheme of the updating process (adapted from Faber, 2005) 

 

If the prior distribution of a parameter θ, with n possible outcomes (θ1, … θk), is 

continuous and the new information x is available, then the Bayes theorem is given by: 

 

( ) ( ) ( )
( ) ( )∫

=
θθθ

θθθ
dxpp

xppxp
|
||                                                       11 

 

where, p(θ) is the prior distribution of the possible θ values which summarizes the prior 

beliefs about the possible values of the parameter, p(x|θ) is the conditional probability 

(or likelihood) of the data given θ and p(θ|x) is the posterior distribution of θ given the 

observed data x. 

 

The joint probability distribution of the data and the parameter is given by p(x|θ) which 

is called the likelihood and is defined by: 

 

( ) ( ) ( )∏==
i

ixpLxp θθθ ||                                                    12 

Bayes theorem consists of multiplying the prior with the likelihood function and then 

normalizing (term in nominator), to get the posterior probability distribution, which is 

the conditional distribution of the uncertain quantity given the data. The posterior 

density summarizes the total information, after considering the new data, and provides a 

basis for posterior inference regarding θ. 
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2.3 Bayesian inference 

 

The process of Bayesian inference involves passing from a prior distribution p(θ) to a 

posterior distribution p(θ|x) using the likelihood function of the data. Because the 

posterior integrate information from the data it will be less variable than the prior. The 

consideration of normal likelihood, i.e. that data follows a normal distribution, has the 

computational advantage of allowing the use of conjugate priors or uninformative priors 

which result in proper posteriors. The central limit theorem helps to justify the use of 

the normal likelihood and the results are often perfectly acceptable (Dietlevsen & 

Madsen, 1996). However, the modelling assumptions should always be checked 

analysing the posterior distribution. 

 

In the Bayesian approach the parameters of interest are assumed to follow certain 

probability distributions with one or more unknown distribution parameters. These 

parameters are also considered to have given distributions with known prior 

hyperparameters. The hyperparameters are then updated given the data and will be used 

to infer to the parameter distribution. The consideration of variable moments rather than 

fixed ones intends to incorporate several levels of uncertainty in the model. 

 

In this work a multiparameter model that involves the consideration of both mean and 

variance as unknowns was used. In the developed Bayesian framework it was 

considered that both mean (µ) and variance (σ2) of E were random variables. A normal 

likelihood was considered together with the conjugate prior. The natural conjugate prior 

has the following form: 
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where n0 is the initial number of E values taken from the analytical solutions. This 

means that the prior is the product of the density of an inverted Gamma distribution 

with argument σ2 and 0ν degrees of freedom and the density of a normal distribution 

with argument µ, where the variance is proportional to σ2. In other words, it is the 
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density of the so-called normal-gamma distribution. Therefore, the prior for µ 

conditional on σ2 is a normal with mean µ0 and variance 0
2 nσ : 
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⎠
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n

N σμ                                                          14 

 
The prior for the precision ( 21 σ ) is a gamma distribution with hyperparameters 20υ  

and 20S : 
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The appearance of σ2 in the conditional distribution of µ| σ2 means that µ and σ2 are 

necessarily interdependent. The conditional posterior density of µ, given σ2, is 

proportional to ( )2,σμp  with σ2 held constant. After some algebra, it can be shown that 

x,| 2σμ ~ ⎟⎟
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The parameters of the posterior distribution combine the prior information and the 

information contained in the data. For example, µ1 is a weighted average of the prior 

and of the sample mean, with weights determined by the relative precision of the two 

pieces of information. The marginal posterior density of 21 σ is gamma: 

x|1
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~ ⎟
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2
,

2
11 Sgamma υ                                    19 
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n+= 01 υυ                                               20 
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⋅

+⋅−+= x
nn
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snSS                          21 

 
The posterior sum of squares, S1, combines the prior sum and the sample sum of 

squares, and the additional uncertainty given by the difference between the sample and 

the prior mean. 
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2.4 Posterior simulation 

 

Obtaining the posterior distribution is the fundamental objective of Bayesian analysis. 

To obtain the complete posterior distributions of the parameters it is normally necessary 

to use simulation methods. There are several different algorithms to simulate the 

posterior distributions. One of the most popular is the Markov Chain Monte Carlo 

(MCMC). Markov chain simulation is a general method based on a sequential draw of 

sample values with the distribution of the sampled draws depending only on the last 

value (Brooks, 1998). In probability theory, a Markov chain is a sequence of random 

variables θ1, θ2… θn for which, for any time t, the distribution of θt depends only on the 

most recent value, θt-1. 

 

The Gibbs sampler is a particular Markov chain algorithm. It is the most popular one 

and is normally chosen for simulation in conditionally conjugate models, where it is 

possible to directly sample from each conditional posterior distribution. In this work, 

the Gibbs sampler was implemented in order to simulate the posterior distributions. 

 

2.5 Application of the Bayesian framework to update the deformability modulus of 

a rock mass 

 

In this work the general Bayesian framework for updating E was applied in an 

underground structure (Miranda et al., 2007 b)). The data were collected in the Venda 

Nova II project and consisted of 40 LFJ tests performed in a gallery. In each test 4 

cycles were conducted resulting in a total of 160 values of E. The mean and standard 

deviation of the tests were 36.9 GPa and 6.1 GPa, respectively. 

 

The mean and variance of E were considered to be unknown variables. The prior was 

developed considering the information of 76 values of E with mean value of 38.5 GPa, 

calculated using analytical expressions found in literature based on the empirical 

classification systems. The parameters of the gamma distribution were computed using 

this information and the abovementioned formulae.  

 

The normal and lognormal distributions were tested as the probability density functions 

of the tests and initial data in order to compare the sensitivity of the results to this 
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assumption. The prior and correspondent updated posterior distributions are presented 

in Table 7. 
Table 7 – Prior and posterior distributions considering the conjugate prior 

 Normal distribution Lognormal distribution 
2|σμ ~ ⎟⎟
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⎝
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6.14597
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1
σ
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⎞

⎜
⎝
⎛
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As the mean is conditional on the variance, prior and posterior estimates for the mean 

value and standard deviation were obtained by simulation using the Gibbs sampler 

similarly to the previous example. The main results for the prior and posterior 

distributions are presented in Tables 8 and 9. 

 
Table 8 – Prior and posterior estimates of the mean value of E (normal distribution) 

Parameter Prior values (GPa) Posterior values (GPa) 
µ 38.5 37.4 

σ(μ) 2.02 0.73 
σ 17.5 11.1 

σ(σ) 1.45 0.52 
95% CI for the mean 35.2-41.8 36.2-38.6 

µpop 38.4 37.5 
σpop 19.6 11.9 

95% CI for the 
population mean 

6.1-70.7 17.9-57.1 

 
Table 9 – Prior and posterior estimates of the mean value of E (lognormal distribution) 

Parameter Prior values (GPa) Posterior values (GPa) 
µ 32.8 35.2 

σ(μ) 2.47 0.915 
σ 1.943 1.498 

σ(σ) 0.105 0.028 
95% CI for the mean 28.9-37.1 33.6-36.7 

µpop 42.8 38.3 
σpop 36.1 17.3 

95% CI for the 
population mean 

9.8-109.2 17.2-71.0 
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The updated mean value of the mean (µ) underwent a small variation from prior to 

posterior estimates. In fact this variation was only of about 3% and 7% for the normal 

and lognormal case, respectively. The initial mean value was already close to the results 

provided by the LFJ tests. This means that the analytical solutions provided a very good 

estimate of E.  

 

The most important aspect is the substantial uncertainty reduction at all levels. For the 

normal distributions case the standard deviation of the mean (σ(μ)) has reduced from 

2.02 GPa to 0.73 GPa, i.e. only 36% of the initial value. The mean of the standard 

deviation (σ) underwent a 37% decrease from 17.5 GPa to 11.1 GPa. Finally, the 

standard deviation of the standard deviation (σ(σ)) was also significantly decreased 

from 1.45 GPa to 0.51 GPa. 

 

The lognormal distribution follows the same trend of uncertainty reduction. The relative 

reduction of σ(μ) was very similar to the previous case. In relation to the remaining 

parameters, σ and σ(σ), they were reduced in 23% and 73%, respectively. 

 

To illustrate this fact, Figure 13 shows the prior and posterior probability density 

functions of the mean value of E considering the mean value of its standard deviation. 

The uncertainty reduction from the prior to the posterior can be clearly observed. 
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Figure 13 – Prior and posterior probability density functions for the mean value of E 
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Using simulation it was possible to infer mean and 95% CI for the population. In 

relation to the mean value the updating process only changed significantly the mean of 

the lognormal distribution which was reduced in about 11%. For the normal distribution 

case this value remained almost unchanged.  

 

Also for the population values the updating process allowed a significant reduction on 

the dispersion measures which means less uncertainty. The standard deviation values 

were reduced in 39% and 52%, respectively for the normal and lognormal distributions 

with direct impact on a substantial narrowing of the 95% CI for the mean. 

 

In Figure 14 the prior and posterior probability distributions of E considering the mean 

values of the mean and standard deviation is presented. The uncertainty about the 

parameter was clearly reduced using the Bayesian methodology. For the normal 

distribution case the prior allowed for negative values to have positive probabilities. The 

updating process corrected this situation. The prior lognormal distribution avoided this 

situation to happen because it does not allow negative values. The updating enabled to 

reduce the uncertainty as well as the high skewness of the prior.  
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Figure 14 – Prior and posterior probability density functions for E (inferred values for the population) 
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3. Final remarks 
 

The vast amounts of data which are produced in the different activity fields can not be 

adequately explored and analysed using classical tools like statistics. Deeper 

understanding of data and relationships or patterns embedded in highly complex 

databases urge the need of using “intelligent tools” to uncover them and transform it 

into useful knowledge. The overall process of the intelligent knowledge discovery in 

complex databases is called Knowledge Discovery in Databases (KDD). DM is only a 

step of this process related to the application of the algorithms to induce the models. 

 

In the particular case of geotechnical engineering, vast quantities of data are produced 

associated for instance to important underground structures. However, and in spite of 

some very successful applications, its use it is not yet widespread. 

 

Bayesian methods have an inherent flexibility introduced by the incorporation of 

multiple levels of uncertainty and the resultant ability to combine information from 

different sources. This methodology allows one to update random variables as new data 

are collected. 

 

It is believed that the characteristics of the Bayesian data analysis make it well suited to 

be applied on geotechnical problems where uncertainty is always present at different 

levels. In geotechnics, the information about the interested formations increases as the 

project advances for different stages and can be used to update the geotechnical models. 

Nowadays, this updating is carried out based on empirical knowledge and basic statistic 

procedures. 

 

The simple examples presented in this work, which used real data, showed how DM and 

Bayesian techniques can be used in the geomechanical field. 
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