
1 INTRODUCTION 

The geomechanical parameters determination is an exercise 
of subjective nature. The inherent uncertainty about their 
real value hinders the establishment of a deterministic set of 
values for the parameters. In practice, for each geotechnical 
horizon, a range of values is assigned for the parameters 
based on the geotechnical survey and, in the case of rock 
masses, by application of the empirical classification 
systems. 

In the initial stages, the available information about the 
rock masses is limited. However, the construction of 
geotechnical models is a dynamic process and, as the 
project advances, it can be updated as new data is gathered.  

Data can have different sources each with its own 
precision and reliability. This fact transforms the updating 
process subjective and dependent on the geotechnical 
engineer experience. Nowadays, it lacks a methodology to 
consistently treat the problem of the geomechanical model 
updating in order to reduce the subjectivity of this 
procedure. 

The characteristics of the Bayesian methods of data 
analysis makes them well suited for geotechnical purposes 
where uncertainty is present at several levels and data is 
compiled in different stages and with different properties. 

In Figure 1 a general scheme for the deformability 
modulus (E) calculation and update during preliminary and 
construction stages is presented. It consists in a Bayesian 
framework where E is considered a random variable with a 
given distribution function. Uncertainty about the parameter 
is translated by its standard deviation which can be reduced 
as more data is obtained through in situ tests, mapping of 
the tunnel front and backanalysis data. 
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Figure 1 – Scheme of the updating process (adapted from 
Faber, 2005) 

 
In this work, a part of this general Bayesian framework 

for the geotechnical model updating is presented. It is 
shown how data from preliminary geotechnical survey can 
be updated using reliable in situ tests. More specifically 
information about E is available by application of the 
empirical systems and then updated using the results of LFJ 
tests. Real data from the Venda Nova II powerhouse 
complex was used for the update process (LNEC, 1983). 

This geomechanical parameter was considered a random 
variable with a normal distribution. Calculations were 
performed considering mean and variance unknown with 
prior knowledge based on analytical solutions and empirical 
systems application. 
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2 BAYESIAN METHODS 

2.1 Bayesian data analysis and uncertainty 
 

Uncertainties may be represented in terms of mathematical 
concepts from the probabilistic theory (Ditlevsen and 
Madsen, 1996; Einstein, 2006). In many cases it is enough 
to model the uncertain quantities by random variables with 
given distribution functions and parameters estimated on the 
basis of statistical and/or subjective information (Faber, 
2005). The principles and methodologies for data analysis 
that derive from the subjective point of view are often 
referred to as Bayesian statistics. Its central principle is the 
explicit characterization of all forms of uncertainty in a data 
analysis problem. 

Bayesian techniques allow updating random variables 
when new data is available using a mathematical process in 
order to reduce uncertainties. This process can be divided 
into the three following steps (Ditlevsen and Madsen, 
1996): 

 
1 – Set up a joint probability distribution for all variables 

consistent with knowledge about the underlying problem. 
2 – Calculate the conditional posterior distribution of the 

variables of interest given new observed data. 
3 – Evaluate the fit of the model to the data analysing if 

the conclusions are reasonable and how sensitive are the 
results to the modelling assumptions on step 1. 

 
The posterior distribution is a compromise with reduced 

uncertainty between the prior information and the one 
contained in the new data. This compromise is increasingly 
controlled by the data as the sample size increases in what is 
sometimes referred to as asymptotic theory (Gelman et al., 
2004). 

Bayesian methods provide tools to incorporate data and 
external information into the data analysis process. In a 
Bayesian approach, the data analysis process starts already 
with a given probability distribution. Its parameters may be 
chosen or estimated based on previous experiment results, 
experience and professional judgement. This distribution is 
called prior distribution and translates the uncertainty about 
the parameter value. When additional data becomes 
available it is used to update this prior distribution into a 
posterior distribution using the Bayes theorem. Figure 2 
resumes this overall process. 

 

Theory Judgment Empirical knowledge

Previous 
 results

Prior New data

Updating

Posterior
 

Figure 2 – Scheme of the updating process (adapted from Faber, 
2005) 

If the prior distribution of a parameter θ, with n possible 
outcomes (θ1, … θk), is continuous and the new information 
x is available, then the Bayes theorem is translated by: 
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where, p(θ) is the prior distribution of the possible θ 

values which summarizes the prior beliefs about the 
possible values of the parameter, p(x|θ) is the conditional 
probability (or likelihood) of the data given θ and p(θ|x) is 
the posterior distribution of θ given the observed data x. 

The prior and posterior distributions of θ are represented 
by density functions. The joint probability distribution of 
the data and the parameter is given by p(x|θ) which is called 
the likelihood and is defined by: 

( ) ( ) ( )∏==
i

ixpLxp θθθ ||                                            (2) 

Bayes theorem is applied multiplying the prior by the 
likelihood function and then normalizing, to get the 
posterior probability distribution, which is the conditional 
distribution of the uncertain quantity given the data. The 
posterior density summarizes the total information, after 
considering the new data, and provides a basis for posterior 
inference regarding θ. 

2.2 Bayesian inference 

 
The process of Bayesian inference involves passing from a 
prior distribution p(θ) to a posterior distribution p(θ|x) using 
the likelihood function of the data. The consideration of 
normal likelihood, i.e. that data follows a normal 
distribution, has the computational advantage of allowing 
the use of conjugate priors (the posterior distribution 
follows the same parametric form as the prior). This type of 
prior distributions has the practical advantage of 
computational convenience. The obtained results are 
normally easy to understand and can often be put in 
analytical form. If information is available that contradicts 
the conjugate parametric family, it may be necessary to use 
a more realistic prior distribution (Gelman et al., 2004). The 
central limit theorem helps to justify the use of the normal 
likelihood and the results are often acceptable (Dietlevsen & 
Madsen, 1996). 

In the Bayesian approach the parameters of interest are 
assumed to follow certain probability distributions with one 
or more unknown distribution parameters. These parameters 
are also considered to have given distributions with known 
prior hyperparameters. The hyperparameters are then 
updated given the data and will be used to infer to the 
parameter distribution. 

In this work a multiparameter model that involves the 
consideration of both mean and variance as unknowns was 
used. In the developed Bayesian framework it was 
considered that both mean and variance of E were random 
variables. A normal likelihood was considered together with 
the conjugate prior. 

The natural conjugate prior has the following form: 
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This means that the prior is the product of the density of 
an inverted Gamma distribution with argument σ2 and ν0 
degrees of freedom and the density of a normal distribution 
with argument µ, where the variance is proportional to σ2. It 
is the density of the so-called normal-gamma distribution. 
Therefore, the prior for µ conditional on σ2 is a normal with 
mean µ0 and variance σ2/n0: 
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The prior for 1/σ2 is a gamma with hyperparameters ν0/2 

and S0/2: 
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The appearance of σ2 in the conditional distribution of 

µ|σ2 means that µ and σ2 are dependent. The conditional 
posterior density of µ, given σ2, is proportional to p(µ,σ) 
with σ2 held constant. It can be shown that: 
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The parameters of the posterior distribution combine the 
prior information and the information contained in the data. 
For example, µ1 is a weighted average of the prior and the 
sample mean, with weights determined by the relative 
precision of the two pieces of information. The marginal 
posterior density of 1/σ2 is gamma: 
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The posterior sum of squares, S1, combines the prior and 

the sample sum of squares, and the additional uncertainty 
given by the difference between the sample and the prior 
mean. 

2.3 Posterior simulation 

 
The posterior distribution is the fundamental object of 
Bayesian analysis and contains the relevant information 
about all values of µ and σ. To obtain the complete posterior 
distributions on the parameters it is normally necessary to 
use simulation methods.  

There are several different algorithms to simulate the 
posterior distributions. One of the most popular is the 
Markov Chain Monte Carlo (MCMC). Markov chain 
simulation is a general method based on a sequential draw 
of sample values with the distribution of the sampled draws 
depending only on the last value (Brooks, 1998). In 
probability theory, a Markov chain is a sequence of random 
variables θ1, θ2… θn for which, for any time t, the 
distribution of θt depends only on the most recent value, θt-1. 

The Metropolis and the Gibbs sampler are particular 
Markov chain algorithms. The Gibbs sampler is the most 
popular one and is normally chosen for simulation in 
conditionally conjugate models, where it is possible to 
directly sample from each conditional posterior distribution. 
For parameters whose conditional posterior distribution has 
standard forms it is better to use the Gibbs sampler 
otherwise the Metropolis should be used. In this work, the 
Gibbs sampler was implemented in order to simulate the 
posterior distributions. 

3 APPLICATION OF THE BAYESIAN FRAMEWORK 
TO UPDATE THE DEFORMABILITY MODULUS OF 
THE ROCK MASS 

In this work the general Bayesian framework for the 
deformability modulus (E) updating was applied in an 
underground structure. The data was collected in the Venda 
Nova II project and consisted of 40 LFJ tests performed in a 
gallery. In each test 4 cycles were conducted resulting in a 
total of 160 values of E. The mean and standard deviation of 
the tests were 36.9 GPa and 6.1 GPa, respectively. 

The mean and variance of E were considered to be 
unknown variables. The prior was developed considering 
the information of 76 values of E calculated using analytical 
expressions based on the empirical classification systems 
and takes the following form: 
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Applying Bayes theorem and using the data from the LFJ 

tests, the conditional posterior distribution for the mean and 
the marginal posterior for the variance are the following: 
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As the mean is conditional on the variance, prior and 

posterior estimates for the mean value and standard 
deviation were obtained by simulation using the Gibbs 
sampler with 10000 iterations. Using this methodology the 
parameters for the mean and standard deviation were 
calculated and are presented in Table 1 as well as the 95% 
confidence interval for the mean. 



Table 1 – Prior and posterior estimates of the mean value of E 
Parameter Prior values 

(GPa) 
Posterior values 

(GPa) 
µ 38.5 37.4 

σ(μ) 2.02 1.15 
σ 17.5 11.1 

σ(σ) 1.45 0.51 
95% CI for the mean 35.2-41.8 35.5-39.3 
 
The updated mean value of the mean (µ) is only about 3% 

lower than the initial guess. This means that the analytical 
solutions provided a very good estimate of E. The most 
important aspect is the substantial uncertainty reduction at 
all levels. The standard deviation of the mean (σ(μ)) was 
reduced from 2.02 GPa to 1.15 GPa, i.e. only 57% of the 
initial value. The mean of the standard deviation (σ) 
suffered a 37% decrease from 17.5 GPa to 11.1 GPa. 
Finally, the standard deviation of the standard deviation 
(σ(σ)) was also significantly decreased from 1.45 GPa to 
0.51 GPa. To illustrate this fact, Figure 3 shows the prior 
and posterior probability density functions of the mean 
value of E considering the mean value of its standard 
deviation. It can be clearly observed the uncertainty 
reduction from the prior to the posterior. 
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Figure 3 – Prior and posterior probability density functions for the 
mean value of E 

In terms of the inferred population parameters, the mean 
value and the standard deviation passed from prior values of 
38.4 GPa and 19.6 GPa to posterior values of 37.4 GPa and 
12.4 GPa, respectively. The 37% decrease on the standard 
deviation had considerable influence on the 95% confidence 
intervals. The prior interval ranged from 6.1 GPa to 
70.7 GPa and the posterior from 17.1 GPa to 57.7 GPa. 

In Figure 4 the prior and posterior probability 
distributions of E considering the mean values of the mean 
and standard deviation is presented. Even though the mean 
value is practically unchanged, the uncertainty about the 
parameter was clearly reduced using the Bayesian 
methodology. 

From an engineering point of view, the posterior results 
and inferences can be considered consistent and validate the 
prior assumptions especially that of normal likelihood. 

It is worth underline that, the Bayesian updating 
procedure did not significantly changed the mean value of 
E. The preliminary evaluation based on analytical solutions 
was almost corroborated by the results of the LFJ tests. 
However, it allowed a very significant decrease in the 
uncertainty about the parameters. 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100

Deformability modulus

P
ro

ba
bi

lit
y 

de
ns

ity

Prior
Posterior

 

Figure 4 – Prior and posterior probability density functions for E 
(inferred values for the population) 

4 FINAL REMARKS 

Bayesian methods have an inherent flexibility introduced by 
the incorporation of multiples levels of uncertainty and the 
resultant ability to combine information from different 
sources. This methodology allows the updating of random 
variables as new data is collected through Bayes theorem.  

This work was an approach on how the Bayesian tools 
can be used in geotechnics. The developed framework for 
the E updating showed interesting results especially in the 
uncertainty reduction. This procedure could be sequentially 
applied as more information about the rock mass was 
gathered. 

It is believed that the characteristics of the Bayesian data 
analysis make it well suited to be applied on geotechnical 
problems where uncertainty is always present at different 
levels. In geotechnics, the information about the interested 
formations increases as the project advances for different 
stages and can be used to update the geotechnical models.  
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