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Abstract: We present an attractor based dynamics that autonomously generates
temporally discrete movements and temporally coordinated movements for two
vehicles, stably adapted to changing online sensory information. Movement ter-
mination is entirely sensor driven. We build on a previously proposed solution
in which timed trajectories and sequences of movements were generated as at-
tractor solutions of dynamic systems. We present a novel system composed of
two coupled dynamical architectures that temporally coordinate the solutions of
these dynamical systems. The coupled dynamics enable synchronization of the
different components providing an independence relatively to the specification of
their individual parameters.
We apply this architecture to generate temporally coordinated trajectories for two
vision-guided mobile robots in a simulated environment, whose goal is to reach a
target in an approximately constant time while navigating within a non-structured
environment. The results illustrate the robustness of the proposed decision-
making mechanism and show that the two vehicles are temporal coordinated: they
terminate their movements approximately simultaneously.
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1. INTRODUCTION

This article addresses the problem of generat-
ing timed trajectories and temporally coordinated
movements for two wheeled vehicles, when rel-
atively low-level, noisy sensorial information is
used to steer action. The developed architectures
are fully formulated in terms of nonlinear dy-
namical systems which lead to a flexible timed
behavior stably adapted to changing online sen-
sory information. The generated trajectories have
controlled and stable timing (limit cycle type solu-
tions). Incoupling of sensory information enables
sensor driven termination of movement.

Specifically, we address the following questions:
Can the temporal coordination among differ-
ent degrees-of-freedom (dofs) be applied to the
robotics domain such that a tendency to syn-
chronize among two vehicles is achieved? Can the
applied dynamical systems approach provide a
theoretically based way of tuning the movement
parameters such that it is possible to account for
relationships among these?

These questions are positively answered and
shown in an exemplary simulation in which two
low-level vehicles temporally coordinated must
reach a target within a certain time independently
of the environment configuration or the distance
to the target. The results illustrate the robustness
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of the proposed decision-making mechanism and
show that the two vehicles are temporal coor-
dinated: if a robot movement is affected by the
environment configuration such that it will take
longer to reach the target, the control level coor-
dinates the two robots such that they terminate
approximately simultaneously. The proposed solu-
tion provides a flexible and reactive framework for
adaptive motor planning and control that reduces
the dimensionality of the control problem.

We build on previous work (Santos, 2004; Schöner
and Santos, 2001; Schöner, 1994), where we have
shown that the proposed approach is sufficient
versatile to generate, through limit cycle attrac-
tors, a whole variety of rich forms of behavior,
including both rhythmic and discrete tasks. The
online linkage to online noisy sensorial informa-
tion, was achieved through the coupling of these
dynamical systems to time-varying sensory infor-
mation (Schöner, 1994; Santos, 2004). In (Santos,
2004), this architecture was implemented in a real
vehicle and integrated with other dynamical ar-
chitectures which do not explicitly parameterize
timing requirements (Santos, 2004). In (Schöner
and Santos, 2001), we have generated temporally
coordinated movements among two PUMA arms
by coupling two such dynamical systems.

This work is innovative in the formalization and
utilization of movement primitives, both in the
context of biological and robotics research. Fur-
ther, it significantly facilitates generation of move-
ment, sequences of movements and temporally co-
ordinated movements. We apply autonomous dif-
ferential equations to model how behaviors related
to locomotion are programmed in the oscillatory
feedback systems of ”central pattern generators”
in the nervous systems (Schöner, 1994). Coordi-
nation can be modeled through mutual coupling
of such differential equations. This coordination
through coupling resembles the generation of co-
ordinated patterns of activation in locomotory
behavior of nervous systems (Santos, 2004).

The idea of using dynamic systems for movement
generation is not new. For instance, the Dynami-
cal Systems approach to autonomous robotics, has
been developed for the control of autonomous
vehicles (Schöner and Dose, 1992; Bicho et al.,
2000). Other solutions (Raibert, 1986; Clark et
al., 2000; Williamson, 1998) have tried to address
the timing problem, by generating time structure
at the level of control. More generally, the non-
linear control approach to locomotion pioneered
by (Raibert, 1986) amounts to using limit cy-
cle attractors that emerge from the coupling of
a nonlinear dynamical control system with the
physical environment of the robot. A limitation of
such approaches is that they essentially generate
a single motor act in rhythmic fashion and remain

limited with respect to the integration of multiple
constraints (but see (Schaal et al., 2000) where
temporally discrete movement is also generated).

The work presented in this article extends the
use of oscillators to generate timed trajectories
and temporally coordinated tasks on a low-level
vehicle. In robotics, the control of two dofs is gen-
erally achieved by considering the dofs are com-
pletely independent. However, in motor control of
biological systems this independence is not veri-
fied. Movement coordination requires some form
of planning and there exist an infinite number
of possible movement plans for any given task.
A rich area of research has been evolving to
study the computational principles and implicit
constraints in the coordination of multiple dofs,
specifically the question whether or not there are
specific principles in the organization of central
nervous systems, that coordinate the movements
of individual dofs. This research has been mainly
directed towards coordination of rhythmic move-
ment (Schaal et al., 2000). This coordination has
been addressed within the dynamic theoretical
approach (Schöner, 1994) and more recently has
been applied in the robotics domain (Buchli and
Ijspeert, 2004). The applied dynamic concepts are
herein generalized to understand the coordination
of discrete movement.

2. TIMED TRAJECTORIES GENERATION

In this article, two low level vehicles must nav-
igate in a simulated non-structured environment
while being capable of reaching a target in an ap-
proximately constant time. For each robot, target
position is internally acquired by a visual system
mounted over the robot and robot velocity is
controlled such that the vehicle has a fixed time
to reach the target while continuously avoiding
sensed obstacles in its path. The two robot move-
ments are coupled in time such that if the two
movements onsets are not perfectly simultaneous
or if there time trajectories are evolving differ-
ently (one is going faster/slower than the other),
leading to different movement times (time it takes
to reach the target), this coupling coordinates the
two movements such that they terminate approx-
imately simultaneously.

The dynamical systems formulated in order to
solve this robotic problem are divided onto two
integrated architectures which act out at different
levels. The dynamics of heading direction act out
at the level of the turning rate. The dynamics of
driving speed act out at the level of the driving
speed and express time constraints. The ease with
which these dynamical systems are integrated
providing for system integration and behavioral
organization is an advantage of our approach.



2.1 Attractor dynamics of heading direction

The robot action of turning is generated by let-
ting the robot’s heading direction, φh, measured
relative to some allocentric reference frame, vary
by making φh the behavioral variable of a dy-
namical system (for a full discussion see (Schöner
and Dose, 1992)). This behavioral variable is gov-
erned by a nonlinear vector field in which task
constraints contribute independently by model-
ing desired behaviors (target acquisition) as at-
tractors and undesired behaviors (obstacle avoid-
ance) as repellers of the overall behavioral dynam-
ics. Integration of the target acquisition,Ftar(φh)
and obstacle avoidance,Fobs(φh) contributions is
achieved by adding each of them to the vector
field that governs heading direction dynamics

dφh

dt
= Fobs(φh) + Ftar(φh) + Fstoch(φh). (1)

We add a stochastic component force, Fstoch, to
ensure escape from unstable states within a lim-
ited time. The complete behavioral dynamics for
heading direction has been implemented and eval-
uated in detail on a physical mobile robot (Bicho
et al., 2000; Santos, 2004).

2.2 The dynamical systems of driving speed

The path velocity, v of the vehicle is controlled
through a dynamical system architecture that
generates timed trajectories for the vehicle as
described in (Santos, 2004). Specifically, timed
trajectories are modeled as time courses of behav-
ioral variables (m, n) which are stable solutions of
dynamical systems. Although only the variable,
m, will be used to set the velocity of the robot, a
second auxiliary variable, n, is needed to enable
the system to undergo periodic motion.

We set two spatially fixed coordinates systems
each centered on the initial robot position: one for
the x and the other for the y spatial coordinates
of robot movement. A dynamical system which
generates both stable oscillations (limit cycle so-
lutions) and two stationary states (Schöner and
Santos, 2001; Santos, 2004), is defined for each of
these fixed coordinate systems as follows:
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where the index i = x, y refers to dynamics of x
and y spatial coordinates of robot movement. A
neural dynamics controls the switching between
the three regimes through three “neurons” uj,i

(j = init, hopf, final). The “init” and “final” con-
tributions generate stable stationary solutions at
mi = 0 for “init” and Aic for “final” with ni = 0
for both. These states are characterized by a time
scale of τ = 1/5 = 0.2.

Herein, an approach is defined to achieve temporal
coordination among the two robots, by coupling
these two architectures in a way that generates
phase-locking in the oscillation regime. This was
achieved by modifying the “Hopf” contribution
that generates the limit cycle solution as follows:
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where index j refers to index i time courses of
the coupled dynamical system (the other robot),
γi = 4 α

A2
ic

defines amplitude of Hopf contribution
and θij is the desired relative phase among oscil-
lators i and j (−θij among oscillators j and i).
For instance, for x spatial coordinates (mx, nx)
of robot 1 is coupled with (mx, nx) of robot 2.
The coupling term is multiplied with the neuronal
activation of the other system’s Hopf state so that
coupling is effective only when both components
are in the oscillation regime. Because we want
both coupled dynamical systems to be in-phase
we set θij = 0 degrees. This “Hopf” contribution
provides a stable periodic solution (limit cycle
attractor) with cycle time T = 2π

ω = 20s. We use
it because it can be completely solved analytically,
providing complete control over its stable states.
This analytical specification is an innovative as-
pect of our work. Relaxation to the limit cycle
solution occurs at a time scale of 1/(2 α) = 0.2
time units.

The dynamics of (2) are augmented by a Gaussian
white noise term, gwn, that guarantees escape
from unstable states and assures robustness to the
system.

2.2.1. Neural dynamics The “neuronal” dy-
namics of uj,i ∈ [−1, 1] (j = init, final, hopf)
switches the dynamics from the initial and fi-
nal posture states into the oscillatory regime and
back. The competitive dynamics are given by

αuu̇j,i = µj,iuj,i − |µj,i|u3
j,i − 2.1

∑
a�=j

u2
a,iuj,i + gwn.(4)

where “neurons” can go “on” (=1) or “off” (=0).
This dynamics enforces competition among task



constraints depending on the neural competitive
parameters (“competitive advantages”), µi. The
neuron, ui, with the largest competitive advan-
tage, µi > 0, is likely to win the competition,
although for sufficiently small differences between
the different µi values multiple outcomes are pos-
sible (the system is multistable).

In order to control switching, the µi parameters
are explicitly designed as functions of user com-
mands, sensory events, or internal states and con-
trol the sequential activation of the different neu-
rons (see (Steinhage and Schöner, 1998), for a gen-
eral framework for sequence generation based on
these ideas). We vary the µ-parameters between
the values 1.5 and 3.5: µi = 1.5+2bi, where bi are
“quasi-boolean” factors taking on values between
0 and 1 (with a tendency to have values either
close to 0 or close to 1). Hence, we assure that one
neuron is always “on”. Herein, the time, t, and
target location, fully control the neural dynam-
ics through the quasi-boolean parameters. A se-
quence of neural switches is generated by translat-
ing sensory conditions and logical constraints into
values for these parameters(see (Santos, 2004) for
a description).

The time scale of the neuronal dynamics is set
to a relaxation time of τu = 0.02, ten times
faster than the relaxation time of the (m, n)
dynamical variables. By using different time scales
one can design the several dynamical systems
separately (Santos, 2004; Steinhage and Schöner,
1998).

Temporally discrete movement is autonomously
generated through a sequence of neural switches
such that an oscillatory state exists during an
appropriate time interval of about a half-cycle.
This approximately half-cycle is movement time
(MT), here MT = 10s.

2.3 Coupling to sensorial information

Ball position is acquired by simulating a camera
mounted on the robot. The goal is to robustly
detect a red ball standing in an unstructured,
complex environment.

We apply a color based real-time tracker, Con-
tinuously Adaptive Mean Shift (CAMSHIFT) al-
gorithm (Bradski, 1998), that handles several
computer-vision application problems during its
operation. This algorithm tracks the x′, y′ image
coordinates and area of the color blob represent-
ing the red ball. A perspective projection model
transforms the x′, y′ image coordinates onto the
x, y world coordinates. To simulate sensor noise
(which can be substantial if such optical measures
are extracted from image sequences), we added
either white or colored noise to the image coordi-

nates. Here we show simulations that used colored
noise, ζ, generated from

ζ̇ = − 1
τcorr

ζ +
√

Q gwn (5)

where gwn is gaussian white noise with zero mean
and unit variance, so that Q = 5 is the effective
variance. The correlation time, τcorr, was chosen
as 0.2 sec. The simulated target location was thus

xtarget = true xtarget + ζ(t)

ytarget = true xtarget + ζ(t) (6)

2.4 Velocity

Robot velocity is controlled by a dynamics similar
to that described in (Bicho et al., 2000), such
that the planning variable is in or near a re-
sulting attractor of the dynamical system most
of the time. This dynamics assures that velocity
depends whether or not obstacles are detected for
the current heading direction value. In case an
obstacle has been detected, velocity is set as Vobs,
which is computed as a function of the current
distance to the obstacle (Bicho et al., 2000). In
case no obstacle has been detected, velocity is set
as Vtiming:

Vtiming =
√

ṁx + ṁy , (7)

where mx, my are the dynamical variables.

In the following, we briefly explain the dynamic
architecture behavior of each robot. At t = 0 s
the robot is resting at its initial fixed position,
xRinit , yRinit . The robot rotates in the spot in order
to orient towards or look for the target direction.
At time tinit, timed forward movement is initiated.
The periodic motion’s amplitude, Amc, is updated
during periodic movement each time step as fol-
lows

Amc = (xtarget − xRinit) − ((xR − xRinit) − mx) ,(8)

where xtarget is x target position, xR is x robot
position and mx is the dynamical variable.

The periodic solution is deactivated again when
the x vehicle position comes into the vicinity of
this periodic amplitude value, and the final postu-
ral state (which equals Amc) is turned on instead.
The same behavior applies for the dynamical sys-
tems defined for the y spatial coordinate.

3. EXPERIMENTAL RESULTS

The dynamic architecture was simulated in Mat-
lab/simulink (product of the MATHWORKS



company). The dynamics of heading direction,
timing, competitive neural, path velocity and
dead-reckoning equations are numerically inte-
grated using the Euler method. The cycle time is
70 ms and MT is 10s. Forward timed movement
only starts for tinit = 3s.

In order to verify if temporal coordination among
the two robot movements is achieved we have per-
formed several experiments. Herein, due to space
constraints, we illustrate only one exemplary ex-
periment. During its path towards the target,
robot 2 is faced with an obstacle which it must
circumnavigate. This obstacle does not interfere
with the robot 1 movement towards the target.
Fig. 1 illustrates the robot motions and time
stamps of these trajectories. The ball is depicted
by a light circle. Small crosses around ball position
indicate ball position as acquired by the vision
systems. The robots path are indicated by lines
formed by crosses. The interval between two con-
secutive crosses indicates the robot’s path velocity
since the time acquisition interval is constant: the
smaller the velocity the closer the points. When
the obstacle is no longer detected for the current
heading direction, at t = 9.1s, robot 2 is strongly
accelerated in order to compensate for the object
circumnavigation.

Fig. 1. A simulation run illustrating the robots’
timed trajectories to meet the red ball.

Robot velocities are depicted in Fig. 2. v repre-
sents forward velocity of the robot. vtiming and
vobs represent velocity imposed by the discussed
dynamical architecture and velocity imposed in
case an obstacle is detected, respectively.

The proposal dynamic architecture without cou-
pling (c = 0) is similar to work presented
in (Santos, 2004), where results have shown that
robot velocity is controlled such that the tar-
get is reached in an approximately constant time
(MT = 10s) independently of the environment
configuration and of the distance to the target.

The introduction of a coupling of this form tends
to synchronize movement in the two robots. Thus,
when x and/or y movement of robot 2 is affected
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Fig. 2. Velocity variables for robot 1 and 2.

by the environment configuration such that its
periodic motion amplitude is increased, robot 1
movement is coordinated through coupling such
that movements of both robots terminate simul-
taneously. This results in delayed simultaneous
switch, around t = 12.8s, among Hopf and final
contributions for x and y dynamical systems of
both robots (see Fig. 3).
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Fig. 3. Top and bottom panels illustrate u neural
variables of x and y coordinate dynamical
systems of both robots.

This discrete analogue of frequency locking is
illustrated in Fig. 4. Note that synchronization
only exists when both dynamical systems exhibit
periodic motion.
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Fig. 4. Dynamical variables for robot 1 and 2 in x
and y coordinate dynamical systems.

Coupling two such dynamical systems removes the
need to compute exactly identical movement times



for two robot movements that must be temporally
coordinated. Even if there is a discrepancy in the
movement time programmed by the parameter, ω,
of the Hopf dynamics (which corresponds to larger
MTs due to complex environment configurations),
coupling generates identical effective movement
times.

One interesting aspect is that since the velocities
applied to the robots are different depending if
there is coupling or not, this results in slightly
different qualitative paths followed by the robot.

4. CONCLUSION/OUTLOOK

In this article, an attractor based dynamics au-
tonomously generated temporally discrete and co-
ordinated movements. The task was to tempo-
rally coordinate the timed movements of two low-
level vehicles, which must navigate in a simu-
lated non-structured environment while being ca-
pable of reaching a target within a certain time
independently of the environment configuration.
Movement termination was entirely sensor driven
and autonomous sequence generation was stably
adapted to changing unreliable simulated visual
sensory information. We applied autonomous dif-
ferential equations to formulate two integrated dy-
namical architectures which act out at the head-
ing direction and driving speed levels of each
robot. Each robot velocity is controlled by a dy-
namical systems architecture based on previous
work (Santos, 2004), which generates timed tra-
jectories. Temporal coordination of the two robots
is enabled through the coupling among these ar-
chitectures.

Results enable to positively answer to the two
questions addressed in the introduction. The for-
mer asked if synchronization among two vehi-
cles can be achieved when we apply temporal
coordination among dofs. Results illustrate the
dynamic architecture robustness and show that
such a coupling tends to synchronize movement
in the two robots, a tendency captured in terms
of relative timing of robots movements. The later
question asked if the applied approach provides a
theoretically based way of tuning the movement
parameters such that it is possible to account for
relationships among these. Results show that the
coupled dynamics enable synchronization of the
robots providing an independence relatively to the
specification of their individual movement param-
eters, such as movement time, movement extent,
etc. This synchronization reduces computational
requirements for determining identical movement
parameters across robots. From the view point of
engineering applications, the inherent advantages
are huge, since the control system is released from

the task of recalculating the movement parame-
ters of the different components.

Future work will mainly address how to extend
the described model to achieve more complex be-
havior for systems with several dofs. We will ad-
dress the approach extension to robust locomotion
generation and movement controllers for robots as
this framework finds a great number of applica-
tions in service tasks and seems ideal to achieve
intelligent and more human like prostheses.
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representation on an autonomous vehicle with
low-level sensors. The Int. Journal of Robotics
Research 19(5), 424–447.

Bradski, G. (1998). Computer vision face tracking
as a component of a perceptual user interface.
Applications of Computer Vision. Princeton.
pp. 214–219.

Buchli, J. and A. Ijspeert (2004). Distributed cen-
tral pattern generator model for robotics ap-
plication based on phase sensitivity analysis.
In: BioADIT. Vol. 3141. pp. 333–349.

Clark, M, G Anderson and R Skinner (2000). Cou-
pled oscillator control of autonomous mobile
robots. Autonomous Robots 9, 189–198.

Raibert, M H (1986). Legged robots that balance.
MIT Press. Cambridge, Massachusetts.

Santos, C (2004). Generating timed trajectories
for an autonomous vehicle: A non-linear dy-
namical systems approach. In: IEEE Int.
Conf. On Robotics and Automation. IEEE.
New Orleans. pp. 3741–3746.

Schaal, S, S Kotosaka and D Sternad (2000).
Nonlinear dynamical systems as movement
primitives. In: IEEE Int. Conf. On Humanoid
Robotics. IEEE, Cambridge, MA.
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